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USING LEAST-SQUARES TO FIND AN APPROXIMATE
EIGENVECTOR∗

DAVID HECKER† AND DEBORAH LURIE†

Abstract. The least-squares method can be used to approximate an eigenvector for a matrix
when only an approximation is known for the corresponding eigenvalue. In this paper, this technique
is analyzed and error estimates are established proving that if the error in the eigenvalue is sufficiently
small, then the error in the approximate eigenvector produced by the least-squares method is also
small. Also reported are some empirical results based on using the algorithm.
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1. Notation. We use upper case, bold letters to represent complex matrices,
and lower case bold letters to represent vectors in Ck. We consider a vector v to
be a column, and so its adjoint v∗ is a row vector. Hence v∗

1v2 yields the complex
dot product v2 · v1. The vector ei is the vector having 1 in its ith coordinate and 0
elsewhere, and In is the n × n identity matrix. We use ‖v‖ to represent the 2-norm
on vectors; that is ‖v‖2 = v∗v. Also, |||F||| represents the spectral matrix norm
of a square matrix F, and so ‖Fv‖ ≤ |||F||| ‖v‖ for every vector v. Finally, for an
n × n Hermitian matrix F, we will write each of the n (not necessarily distinct) real
eigenvalues for F as λi(F), where λ1(F) ≤ λ2(F) ≤ · · · ≤ λn(F).

2. The Method and Our Goal. Suppose M is an arbitrary n×n matrix having
λ as an eigenvalue, and let A = λIn − M. Generally, one can find an eigenvector for
M corresponding to λ by solving the homogeneous system Ax = 0. However, the
computation of an eigenvalue does not always result in an exact answer, either because
a numerical technique was used for its computation, or due to roundoff error. Suppose
λ′ is the approximate, known value for the actual eigenvalue λ. If λ �= λ′, then the
known matrix K = λ′In − M is most likely nonsingular, and so the homogeneous
system Kx = 0 has only the trivial solution. This situation occurs frequently when
attempting to solve small eigenvalue problems on calculators.

Let ε = λ′ − λ. Then K = A + εIn. Our goal is to approximate a vector in
the kernel of A when only the matrix K is known. We assume that M has no other
eigenvalues within |ε| units of λ, so that K is nonsingular, and thus has trivial kernel.
Let u be a unit vector in ker(A). Although we know that u exists, u is unknown. Let
v be an arbitrarily chosen unit vector in Cn such that w = v∗u �= 0. In practice, when
choosing v, the value of w is unknown, but if v is chosen at random, the probability
that w = 0 is zero. Let B be the (n + 1)× n matrix formed by appending the row v∗
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to K. Written in block form, B =
[

K
v∗

]
. The system Bx = en+1 is inconsistent,

since any solution must satisfy both Kx = 0 and v∗x = 1, which is impossible
since Kx = 0 has only the trivial solution. We apply the least-squares method to
Bx = en+1 obtaining a vector y such that By is as close to en+1 as possible. Then,
we normalize y producing s = y/ ‖y‖, an approximation for a unit vector in ker(A).
This is essentially the technique for approximating an eigenvector described, but not
verified, in [1]. Our goal in this paper is to find constants N1 and N2, each independent
of ε, and a unit vector u′ ∈ ker(A), such that

‖As‖ ≤ N1|ε| and(2.1)
‖u′ − s‖ ≤ N2|ε|.(2.2)

Note that the unit vector u′ might depend upon s, which is dependent on ε. These
inequalities will show that as ε → 0, As → 0 and s gets close to ker(A). Although
(2.1) clearly follows from (2.2) by continuity, we need to prove (2.1) first since that
inequality is used in the proof of (2.2).

3. Proving Estimate (2.1). The method of least-squares is based upon the
following well-known theorem [1]:

Theorem 3.1. Let F be an m×n matrix, let q ∈ C
m, and let W be the subspace

{Fx | x ∈ Cn}. Then the following three conditions on a vector y are equivalent:

(i) Fy = projWq
(ii) ‖Fy − q‖ ≤ ‖Fz − q‖ for all z ∈ Cn

(iii) (F∗F)y = F∗q

So, given the inconsistent system Bx = en+1, parts (i) and (iii) of Theorem 3.1
show that the system B∗Bx = B∗en+1 is consistent. Let y be a solution to this
system. With s = y/ ‖y‖, we use the properties of y from part (ii) to prove inequalities
(2.1) and (2.2).1

First, using block notation,

∥∥∥B(u
w

)
− en+1

∥∥∥ =

∥∥∥∥∥
[

1
wKu

1
wv∗u− 1

]∥∥∥∥∥ =

√
1

|w|2 ‖Ku‖2 +
∣∣∣∣ 1
w

w − 1
∣∣∣∣
2

=
1
|w| ‖Ku‖ =

1
|w| ‖(A + εIn)u‖

=
1
|w| ‖Au + εu‖ =

1
|w| ‖εu‖ =

|ε|
|w| ,

1A quick computation shows that B∗en+1 = v, and so y is the solution to a nonhomogeneous
system. Therefore y �= 0, and y can be normalized.
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since u is a unit vector in ker(A). Hence, by part (ii) of Theorem 3.1 with z = u
w ,

|ε|
|w| ≥ ‖By − en+1‖ =

∥∥∥∥
[

Ky
v∗y − 1

]∥∥∥∥ =
√
‖Ky‖2 + |v∗y − 1|2

≥ ‖Ky‖ = ‖(A + εIn)y‖
≥
∣∣∣‖Ay‖ − |ε| ‖y‖

∣∣∣ , by the Reverse Triangle Inequality.

Now, if ‖Ay‖ − |ε| ‖y‖ < 0, then

‖As‖ =
‖Ay‖
‖y‖ < |ε|,

and we have inequality (2.1) with N1 = 1.
But, instead, if ‖Ay‖ − |ε| ‖y‖ ≥ 0, then

|ε|
|w| ≥ ‖Ay‖ − |ε| ‖y‖ , implying

‖As‖ =
‖Ay‖
‖y‖ ≤ |ε|

(
1 +

1
|w| ‖y‖

)
.

In this case, we would like to set N1 equal to 1 + 1
|w|‖y‖ . However, ‖y‖ depends upon

ε. Our next goal is to bound 1 + 1
|w|‖y‖ independent of ε.

Now, since K is nonsingular, rank(K) = n. Therefore rank(B) = n. This implies
that rank(B∗B) = n, and so B∗B is nonsingular. Since B∗B is Hermitian, there
is a unitary matrix P and a diagonal matrix D such that B∗B = P∗DP, where
the eigenvalues of B∗B, which must be real and nonnegative, appear on the main
diagonal of D in increasing order. Also, none of these eigenvalues are zero since B∗B
is nonsingular.

As noted above, B∗en+1 = v. The vector y is thus defined by the equation
B∗By = B∗en+1= v. Hence, P∗DPy = v, or Py = D−1Pv. Therefore,

‖y‖ = ‖Py‖ =
∥∥D−1Pv

∥∥ ≥ min
‖x‖=1

∥∥D−1Px
∥∥

= min
‖x‖=1

∥∥D−1x
∥∥ =

∥∥D−1en

∥∥ =
1

λn(B∗B)
.

And so,

1
‖y‖ ≤ λn(B∗B), implying

1 +
1

|w| ‖y‖ ≤ 1 +
λn(B∗B)

|w| .

Our next step is to relate λn(B∗B) to λn(K∗K). Now,

B∗B =
[

K∗ v
] [ K

v∗

]
= K∗K + vv∗.
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Because v is a unit vector, vv∗ is the matrix for the orthogonal projection onto the
subspace spanned by v. Hence, λi(vv∗) = 0 for i < n, and λn(vv∗) = 1. Therefore,
by Weyl’s Theorem [2], λn(B∗B) ≤ λn(K∗K) + λn(vv∗) = λn(K∗K) + 1.

Now K = A + εIn, and so K∗K = (A∗ + εIn) (A + εIn) = A∗A + (εA + εA∗) +
|ε|2In. But A∗A, (εA + εA∗), and |ε|2In are all Hermitian matrices. Hence, Weyl’s
Theorem implies that λn(K∗K) ≤ λn(A∗A) + λn (εA + εA∗) + |ε|2. Since we are
only interested in small values of ε, we can assume that there is some bound C such
that |ε| ≤ C. Therefore, λn(K∗K) ≤ λn(A∗A) + λn (εA + εA∗) + C2.

Next, we need to compute a bound on λn (εA + εA∗) that is independent of ε.
Suppose pε(z) is the characteristic polynomial of εA+ εA∗ and ai(ε) is the coefficient
of zi in pε(z). The coefficients of the characteristic polynomial of a matrix are a sum
of products of entries of the matrix, so ai(ε) is a polynomial in ε and ε. Therefore,
|ai(ε)| attains its maximum on the compact set |ε| ≤ C. Let mi be this maximum
value. Since λn (εA + εA∗) is a root of pε(z), Cauchy’s bound [2] implies that

|λn (εA + εA∗) | ≤ 1 + max{|a0(ε)|, |a1(ε)|, . . . , |an−1(ε)|}
≤ 1 + max{m0, m1, . . . mm−1}.

Hence, λn(K∗K) ≤ λn(A∗A) + 1 + max{m0, m1, . . . mm−1} + C2, which is inde-
pendent of ε.

Finally, we let

N1 = 1 +
2 + λn(A∗A) + max{m0, m1, . . .mm−1} + C2

|w| .

Our argument so far shows that ‖As‖ ≤ N1|ε|, completing the proof of (2.1).2

4. Proving Estimate (2.2). Next, we find u′ and N2 that satisfy inequality
(2.2). Since A∗A is Hermitian, there is a unitary matrix Q such that A∗A = Q∗HQ,
where H is a diagonal matrix whose main diagonal entries h1, h2, . . . , hn are the
real, nonnegative eigenvalues of A∗A in increasing order. Let l = dim(ker(A∗A)) =
dim(ker(A)) > 0. Thus, h1 = h2 = · · · = hl = 0, and hl+1 > 0. Let t = Qs, with
coordinates t1, . . . tn. Note that ‖t‖ = ‖Qs‖ = ‖s‖ = 1. Let

tα =




t1
...
tl


 , tβ =




tl+1

...
tn


 , in which case t =

[
tα

tβ

]
,

where we have written t in block form. Using this notation,

1 = ‖t‖2 = ‖tα‖2 + ‖tβ‖2. Note that
[

tα

0

]
is essentially the projection of s onto

ker(A∗A) = ker(A), expressed in the coordinates that diagonalizes A∗A.

2Technically, there are two cases in the proof. In the first case, we obtained N1 = 1. However,
the expression for N1 in Case 2 is always larger than 1, allowing us to use that expression for both
cases.
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First, we claim that for |ε| sufficiently small, ‖tα‖ �= 0. We prove this by showing
that ‖tβ‖ < 1.

Assume that A �= O, so that |||A∗||| �= 0. (If A = O, the entire problem is
trivial.) In addition, suppose that |ε| <

hl+1
N1 |||A∗||| . Then,

|||A∗|||N1 |ε| ≥ |||A∗||| ‖As‖ ≥ ‖A∗As‖ = ‖Q∗HQs‖ = ‖HQs‖

= ‖Ht‖ =

√√√√ n∑
i=1

|hiti|2 =

√√√√ n∑
i=l+1

|hiti|2

≥ hl+1

√√√√ n∑
i=l+1

|ti|2 = hl+1 ‖tβ‖ .

Therefore,

‖tβ‖ ≤ |||A∗|||N1|ε|
hl+1

<
|||A∗|||N1

hl+1

hl+1

N1 |||A∗||| = 1,

completing the proof that ‖tα‖ > 0.
Next, we find u′ ∈ ker(A) that is close to s. Since ‖tα‖ > 0, we can define

z = 1
‖tα‖

∑l
i=1 tiei =

[
1

‖tα‖tα

0

]
, and let u′ = Q∗z. Note that ‖u′‖ = ‖z‖ = 1.

Now,

A∗Au′ = (Q∗HQ)(Q∗z) = Q∗Hz = Q∗0 = 0,

and so u′ ∈ ker(A∗A) = ker(A). But

‖u′ − s‖2 = ‖Q (u′ − s)‖2 =
∥∥Qu′ − Qs

∥∥2 = ‖QQ∗z − t‖2 = ‖z − t‖2

=
∥∥∥∥
[ 1

‖tα‖tα − tα

−tβ

]∥∥∥∥
2

=
l∑

i=1

|ti|2
(

1
‖tα‖ − 1

)2

+
n∑

i=l+1

|ti|2

=
l∑

i=1

|ti|2
(

1
‖tα‖2 − 2

‖tα‖ + 1

)
−

l∑
i=1

|ti|2 +
n∑

i=1

|ti|2

=

(
1

‖tα‖2 − 2
‖tα‖

)(
l∑

i=1

|ti|2
)

+ 1 since
n∑

i=1

|ti|2 = ‖t‖2 = 1

=

(
1

‖tα‖2 − 2
‖tα‖

)
‖tα‖2 + 1 = 2 − 2 ‖tα‖

≤ 2 − 2 ‖tα‖2 = 2(1 − ‖tα‖2) = 2 ‖tβ‖2
.

Hence, ‖u′ − s‖ ≤ √
2 ‖tβ‖. Next,

‖Ht‖ =

√√√√ n∑
i=1

|hiti|2 =

√√√√ n∑
i=l+1

hi
2|ti|2 ≥ hl+1

√√√√ n∑
i=l+1

|ti|2 = hl+1 ‖tβ‖ .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 99-110, March 2007



ELA

104 D. Hecker and D. Lurie

But,

‖Ht‖ = ‖Q∗Ht‖ = ‖Q∗HQs‖ = ‖A∗As‖ ≤ |||A∗||| ‖As‖
≤ |||A∗|||N1|ε|.

Putting this all together, we let

N2 =
√

2 |||A∗|||N1

hl+1
.

Then,

N2|ε| =
√

2 |||A∗|||N1 |ε|
hl+1

≥
√

2
hl+1

‖Ht‖ ≥
√

2
hl+1

(hl+1 ‖tβ‖)

=
√

2 ‖tβ‖ ≥ ‖u′ − s‖ ,

thus proving inequality (2.2).

5. Further Observations. The formulas we present for N1 and N2 are derived
from worst-case scenarios, not all of which should be expected to occur simultaneously.
Also, the constants N1 and N2 depend upon various other fixed, but unknown, values,
such as w = v∗u and |||A∗|||. However, they are still useful, since they demonstrate
that, so long as v is chosen such that v∗u �= 0, the least-squares technique works; that
is, it will produce a vector close to an actual eigenvector (provided ε is sufficiently
small). Of course, if one happens to choose v so that v∗u = 0 (which is highly
unlikely) and the method fails, one could just try again with a new randomly chosen
unit vector v.

In a particular case, we might want good estimates for ‖As‖ and ‖u′ − s‖. Using
A = K− εIn and the triangle inequality produces

‖As‖ ≤ ‖Ks‖ + |ε| .
Hence, ‖As‖ can be estimated just by computing ‖Ks‖ after s has been found. (One
usually has a good idea of an upper bound on |ε| based on the method used to find
the approximate eigenvalue.) Similarly, tracing through the proof of estimate (2.2),
it can be seen that

‖u′ − s‖ ≤
√

2 (|||K||| + |ε|) (‖Ks‖ + |ε|)
hl+1

.

Applying Weyl’s Theorem shows that

hl+1 ≥ λl+1(K∗K) + λ1 (−εK∗ − εK) + |ε|2,
yielding an estimate for ‖u′ − s‖ in terms of (hopefully) computable quantities.

It should also be noted that this technique has the advantage that if there is no
error in the eigenvalue, that is if ε = 0, then the method produces an exact eigenvector,
assuming that no further roundoff errors occur.
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6. Empirical Results. We wrote a set of five computer simulation programs in
Pascal to test the algorithm for several hundred thousand matrices. Our goal was to
empirically answer several questions:

1. How well does the algorithm work?
2. What effect does the choice of the random vector v have on the algorithm?
3. What happens as the values of v∗u approach zero?
4. In the general case, how often does the value of v∗u get close to zero?
5. How does the size of the closest eigenvalue to λ affect the error?
6. How does the algorithm behave as the size of the matrix M increases?
7. Can the algorithm be used to find a second vector for a two-dimensional

eigenspace?
Let us first describe the general method used to generate the matrices to be tested.

Since we expect the algorithm to be most useful for small matrices, we restricted
ourselves to considering n × n matrices with 3 ≤ n ≤ 9. For simplicity, we used
λ = 0. In four of the programs, the dimension of the eigenspace for λ = 0 was
1, in the fifth we specifically made it 2 in order to answer Question #7. In order
to get a variety of types of matrices, the programs generated matrices with every
possible set of patterns of Jordan block sizes for the Jordan canonical form of the
matrix (for example the pattern 1, 1, 2, 2 for a 6 × 6 matrix represents a 1 × 1 block
for the eigenvalue 0, and then, for other eigenvalues, a 1 × 1 block, and two 2 × 2
blocks). The other eigenvalues were chosen using a pseudo-random number generator
that created complex numbers whose real and imaginary parts each ranged from −10
to 10. The Jordan matrix was created, and then we conjugated it with a matrix of
random complex numbers (generated by the same random number generator). In this
way, the program knew all of the actual eigenvalues and corresponding eigenvectors.
The number of different matrices generated for each possible block structure ranged
from 100 to 5000, depending upon the particular program being run. Our method of
generating matrices introduced an eighth question:

8. How does the Jordan block pattern of the matrix effect the error?
Next, in all cases, we used λ′ = 0.001 as the estimate for the actual eigenvalue

0. Although in practice, the error in λ′ will be much smaller since it is typically
caused by round-off error in some other computation, we used this larger value for
two reasons. First, we wanted to be sure that error caused by the error in λ′ would
dominate natural round-off error in our computer programs, and second, we wanted
to allow for v∗u to be significantly smaller than the error in λ′.3

The random vector v used in the algorithm was created by merely generating n
random complex numbers for its entries, and then normalizing the result to obtain a
unit vector.

We measured the error in the approximate unit eigenvector s by first projecting s
onto the actual eigenspace for λ = 0, normalizing this result to get a unit eigenvector
u′, and then computing ‖u′ − s‖. If the magnitude of the error in each coordinate of

3We also tried several runs of the programs with smaller values of λ′. Although we did not do
a detailed analysis of this data, the final error, for the same matrices, seemed to be proportional to
the size of λ′.
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s is about 0.001 (the error in λ), then the value of ‖u′ − s‖ would be about 0.001
√

n.
Thus, we used this level of error as our standard for considering the algorithm to have
successfully found an approximate eigenvector. We deemed the error to be large if it
exceeded 0.001

√
n. We also recorded the absolute value of the eigenvalue closest to

zero, in order to answer Question #5.
Let us consider the results of our simulations:
1. How well does the algorithm work? (Simulation 1)

When the algorithm was used on 325,000 matrices of varying sizes and Jordan
block patterns with a randomly generated vector v, the error exceeded 0.001

√
n in

only 0.86% (2809/325000) of the matrices. The error had a strong negative correla-
tion (−0.7) with the size of the next smallest eigenvalue, indicating a strong inverse
relationship between the size of this eigenvalue and error in the algorithm. This is
exactly what we should expect, considering that hl+1 appears in the denominator of
N2 in theoretical error estimate (2.2). The mean value of the size of the smallest
eigenvalue when the error exceeded 0.001

√
n was less than 0.7, as compared to a

mean of over 4 for the other trials. (This answers Question #5.) No correlation was
found between the error and the absolute value of v∗u for this general case. In this
simulation, the smallest value |v∗u| observed was 0.0133.

2. What effect does the choice of the random vector v have on the algorithm?
(Simulation 2)

The goal of this simulation was to evaluate the variability in the error in s if the
initial random vector v is varied. For each of 13,000 matrices, 200 different random
vectors v were selected and the algorithm was executed, for a total of 2,600,000 trials.
In general, for each of the 13,000 matrices, there was very little variation in the error
in s over the 200 vectors for v. The range of errors in a given matrix was as small as
9.0×10−12 and as large as 0.0225. The average standard deviation of error per matrix
was at most 1.45 × 10−5. Since simulation 2 had more trials than simulation 1, the
minimum value of |v∗u| in simulation 2 (0.00001) was smaller than in simulation 1
(reported above). However, the percent of trials in which the error exceeded 0.001

√
n

was still only 0.90%. Again, the large errors were associated with low values for the
size of the smallest eigenvalue.

3. What happens as the values of v∗u approach zero? (Simulation 3)
In this simulation, for each of 6,500 matrices, 200 vectors v were specifically

selected so that |v∗u| approached zero. Hence, v was not truly random. (This yields
a total of 1,300,000 trials.) The value of |v∗u| ranged from 1.39 × 10−17 to 0.0969.
Errors in s that exceeded 0.001

√
n were observed in 3.48% of the trials (as compared

to 0.86% and 0.90% in simulations 1 and 2). The trials were grouped by value of
|v∗u| into 10 intervals, labeled 1 through 10 in Figure 6.1: (0, 10−14), (10−14, 10−12),
(10−12, 10−10), (10−10, 10−8), (10−8, 10−6), (10−6, 10−5), (10−5, 10−4), (10−4, 10−3),
(10−3, 10−2), (10−2, 1.0). The percent of large errors is approximately 1% for |v∗u|
between 0.001 and 1. The rate increases to 2.3% for values between .0001 and .001
and then to 4% for values between .0001 and .00001. The rate ranges between 4.18%
and 4.25% as |v∗u| decreases toward 0.

Although the error rate increased in this simulation, the errors are not excessive.
The error exceeded 0.01

√
n (ten times higher) 0.23% of the time. The error rates
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per interval of values for |v∗u| are graphed in Figure 6.1.

Fig. 6.1. A comparison of the error rates by |v∗u|

4. In the general case, how often does the value of v∗u get close to zero?
A value for |v∗u| less than 0.001 (Categories 9 and 10, above) never occurred in

simulation 1 and was observed in only 20 cases (out of 2,600,000) in simulation 2.
Thus, we conclude that if the vector v is truly chosen at random, as in simulations
1 and 2, the value of |v∗u| is rarely an issue. The effect of a small value of |v∗u|
causing large error was really only seen in simulation 3, in which v was not chosen
randomly, but rather |v∗u| was forced to approach zero.

5. How does the size of the closest eigenvalue to λ effect the error?
This question was answered by simulation 1, in which we found a strong inverse

relationship between the size of this eigenvalue and error in the algorithm, as was
expected.

6. How does the algorithm behave as the size of the matrix M increases?
As the size of the matrix increases, there are typically more eigenvalues corre-

sponding to each matrix. Therefore, since these eigenvalues were chosen randomly,
the likelihood of getting an alternate eigenvalue that is close to λ increases. For exam-
ple, in simulation 1 we saw the minimum value for the size of the smallest eigenvalue
decrease slightly as the size of the matrix increased. Correspondingly, we also saw a
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slight increase in the percentage of cases with large error as n increases. Because of
the strong inverse relationship between error and the size of the closest eigenvalue, we
suspect that this small increase in error is mostly an effect of the random generation
method used for choosing the matrices.

7. Can the algorithm be used to find a second vector for a two-dimensional
eigenspace? (Simulation 4)

In this simulation, the matrices ranged from 4×4 to 9×9 in size, and we generated
5000 matrices for each possible Jordan block pattern having at least two Jordan blocks,
for a total of 895,000 matrices. Two of the blocks in each matrix were assigned to
the eigenvalue λ = 0. Thus, in some cases, zero was the only actual eigenvalue.
Eigenvalues corresponding to the other blocks were assigned at random. For each
matrix we computed the following:

• The size of the smallest (nonzero) eigenvalue, if it existed.
• An approximate unit eigenvector u1 and the error from its projection onto

the actual eigenspace for λ = 0.
• The norm of Au1, to help test theoretical Estimate (2.1).
• A second approximate unit eigenvector, u2, found by choosing a second ran-

dom vector v in the algorithm.
• The error for u2 and the value of ‖Au2‖.
• The length of the projection of u2 onto u1, to measure how different the

two approximate eigenvectors were; that is, how close is u2 to being a scalar
multiple of u1? We considered a value > 0.9 to be unacceptable, and between
0.8 and 0.9 to be moderately acceptable, but not desirable.

• A unit vector u3 found by normalizing the component of u2 orthogonal to
u1. (So u1 and u3 would form an orthonormal basis (approximately) for the
two-dimensional eigenspace.)

• The error for u3 and the value of ‖Au3‖.
• Another approximate unit eigenvector, u4, found by choosing the random

vector v in the algorithm to be orthogonal to the vector u1, thus making it
less likely for u4 to be a scalar multiple of u1.

• The error for u4 and the value of ‖Au4‖.
• The length of the projection of u4 onto u1.
• A unit vector u5 found by normalizing the component of u4 orthogonal to

u1.
• The error for u5 and the value of ‖Au5‖.

These were our results:
• In assessing u1, the error exceeded 0.001

√
n in only 0.2% (1800) of the 895,000

matrices. The value of ‖Au1‖ was always within the acceptable range. Sim-
ilarly, for u2, the error exceeded 0.001

√
n in 0.104% (933) of the matrices.

The value of ‖Au2‖ was also always within the acceptable range. Since there
is no real difference in the methods used to generate u1 and u2, this amounts
to 1,790,000 trials of the algorithm with only 2733 cases of large error. This
is comparable to the general results for the algorithm found in simulation 1,
in which the eigenspace was one-dimensional.

• The absolute value of the projection of u2 onto u1 was greater than 0.8 in
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87.6% of the cases, and greater than 0.9 in 81.0% of the cases. Hence, u2 was
frequently close to being a scalar multiple of u1.

• The error in u3 exceeded 0.001
√

n in only 0.4% of the matrices (3597/895000).
The value of ‖Au3‖ was always within the acceptable range. Thus, while this
is still a relatively small percentage of cases, the percentage of large errors
almost quadrupled from u2 to u3.

• The error in u4 exceeded 0.001
√

n in 0.24% of the matrices (2111/895000),
with ‖Au4‖ always being within the acceptable range. The length of the
projection of u4 onto u1 exceeded 0.8 in 39.0% of the cases, and exceeded 0.9
in 24.5% of the cases, a large improvement over u2.

• The vector u5, orthogonal to u1, had large error in 0.47% of the cases
(4203/895000), and had small error in ‖Au5‖ in all cases.

• We computed the Spearman rank-order correlation between the size of the
smallest eigenvalue and the error of each vector. Surprisingly, for matrices
5× 5 and larger, there was no correlation found – the correlation coefficients
ranged from −0.052 to 0.052. For the 4×4 matrices, there was a low negative
relationship. Correlation coefficients with each of the five error terms ranged
from −0.314 to −0.231. However, further analysis of the error in u4 found
that for those matrices in which the error in the estimated eigenvector was
greater than 0.001

√
n, the size of the smallest eigenvalue was less than 1 in

74.5% of the matrices, greater than 1 in 14.7% of the matrices, while 10.8%
of these large errors were from matrices in which 0 was the only eigenvalue.

In running this simulation there were 13 cases in which, while computing either
u1, u2, or u4, the program reported that the matrix B∗B was singular, and so the
desired vector could not be computed. (The program actually arbitrarily changed a
0 in a pivot position to a 1 and continued on anyway, with remarkably good results.)
Twelve of these 13 cases occurred with matrices in which there were only two Jordan
blocks, and so λ = 0 was the only eigenvalue. The remaining case was a 5× 5 matrix
with a 1 × 1 and a 3 × 3 Jordan block for λ = 0, and a single 1 × 1 block for some
other eigenvalue (having absolute value about 4.96).

From simulation 4, we came to the conclusion that the algorithm works equally
well for cases in which the eigenspace is two-dimensional, and that the preferred
method for finding a second eigenvector not parallel to the first is to choose a random
vector v for the algorithm that is orthogonal to the first approximate eigenvector
found, as done in the computation of u4.

8. How does the Jordan block pattern of the matrix effect the error?
(Simulation 5)

In this simulation, we allowed the size of the single Jordan block for the eigenvalue
λ = 0 to range from 1 to (n − 1). Now, a generic matrix should be diagonalizable,
and so the Jordan block pattern will have all 1 × 1 blocks. We compared the typical
error in this generic block pattern with the error observed in other non-generic block
patterns. Our results indicated that there was no change in error if non-generic block
patterns are used rather than the generic block pattern.

Our conclusion is that these empirical results support the use of the least squares
algorithm to find an approximate eigenvector when only an approximation for the
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corresponding eigenvalue is known.
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