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Abstract. Mobile ad hoc networks (MANETs) define a challenging
computing scenario where access to resources is restrained by connec-
tivity among hosts. Replication offers an opportunity to increase data
availability beyond the span of transient connections. Unfortunately,
standard replication techniques for wired environments mostly target
improvements to fault-tolerance and access time, and in general are not
well-suited to the dynamic environment defined by MANETs.

In this paper we explore replication for mobility in the context of a
veneer for Lime, a Linda-based middleware for MANETs. This veneer
puts into the hands of the application programmer control over what
to replicate as well as a set of novel replication and consistency modes
meaningful in mobile ad hoc networks. The entire replication veneer is
built on top of the existing Lime model and implementation, confirming
their versatility.

1 Introduction

Mobile ad hoc networks (MANETs) recently emerged as a technology enabling
distributed computing in untethered scenarios. Typical applications exhibiting
novel coordination patterns range from collaborative work in impromptu meet-
ings to coordination of rescue teams in a disaster recovery setting. As MANETs
are characterized by fluid topology and transient connectivity, they undermine
the assumptions traditionally made by established distributed computing meth-
ods, algorithms, and technologies, and in many cases demand new solutions
taking into account the opportunistic nature of communication in the mobile ad
hoc environment.

In this paper we focus on the issue of data replication. In traditional dis-
tributed systems, replication is usually employed for fault tolerance or perfor-
mance by exploiting, respectively, the redundancy and the locality of data copies.
In a mobile environment, and especially in MANETs, replication achieves data
availability by enabling access to the data beyond the span of a transient connec-
tion. Moreover, traditional replication schemes usually aim at providing a high
degree of consistency in the way clients perceive access to replicas. Consistency
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protocols introduce synchronization and therefore communication and compu-
tational overhead, often make assumptions about the placement of replicas, and
usually assume stable connectivity—characteristics that often clash with the
requirements of MANET applications.

The work we present here tackles replication from a different angle. To begin
with, the data we replicate are tuples belonging to a distributed tuple space
system. More specifically, we developed our replication strategy as a veneer on
top of the federated tuple space provided by Lime [14, 18, 21], a middleware we
developed expressly for the MANET environment. In Lime, each mobile host3

carries a local tuple space; an agent running on a given host is given access to a
global, federated tuple space constituted by the “fusion” of all the tuple spaces
belonging to the hosts in range. Therefore, in a mobile setting the content of
this global tuple space changes dynamically based on the current connectivity.

In Lime, a tuple exists at a single location, and becomes available only for
the time span during which the host carrying it is transiently connected to the
rest of the system. Following what has been done in related work targeted to
improving fault tolerance or access performance, one could support replication
by copying tuples across machines and providing transparent, consistent access
to them (e.g., by properly serializing read and write operations). As we men-
tioned, however, the available techniques need substantial adaptation to become
usable in the MANET environment. Replicating the whole tuple space is likely
to generate too much overhead, and keeping the tuple space consistent is hard
if not impossible in the presence of hosts that can disconnect arbitrarily and
possibly never reconnect.

Instead, our focus here is a simple and yet effective mechanism to increase
data availability. We achieve this by providing the programmer with the ability
to specify replication profiles, denoting the tuples of interest for the application.
The underlying replication system exploits these profiles to opportunistically and
automatically create a local replica whenever a matching tuple is encountered in
the system. Differently from traditional replication systems, where replication is
entirely transparent to the programmer, in our model the programmer is aware
of whether a tuple is the original copy or a replica, as in the uncertain environ-
ment we target this information is often key in determining the confidence to
be placed in the data being communicated. We do, however, provide guarantees
about when a tuple is updated to a newer version, and provide options for spec-
ifying constraints on how this update is performed (e.g., only from the master
copy or from any replica). Notably, replicating from replicated data instead of
only from original data enables transitive models of coordination where replicas
epidemically spread in the system, even if the master copy is not available.

In the work we present here, all these aspects are folded into the Lime ap-
plication programming interface (API). This provides the programmer with the
ability to query for and react to conventional tuples as well as replicas—and to
do this in a distributed fashion regardless of connectivity, by exploiting the Lime

3
Lime actually provides support for both mobile agents and hosts, therefore encom-
passing both logical and physical mobility.
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federated tuple space. Moreover, our replication veneer is entirely built on top of
the original Lime middleware, exploiting in particular its reactive features, and
therefore providing additional evidence of Lime’s versatility and expressiveness.

The paper is structured as follows. Section 2 provides the reader with the
necessary background, by surveying related work and concisely illustrating the
features of the Lime middleware. Section 3 illustrates the motivations behind
our approach by leveraging our previously reported experience [13] in developing
context-aware applications with Lime. Section 4 presents the replication model
we define, together with the API provided to the programmer. Section 5 re-
ports about the design and implementation of our replication veneer. Section 6
elaborates on the previous sections and highlights opportunities for alternative
designs. Section 7 contains brief concluding remarks.

2 Background

In this section we first survey related work concerning replication applied to
tuple space systems or in the mobile environment, and then provide a concise
overview of the Lime model and middleware.

2.1 Related Work

With the growing interest in MANETs, strategies have been investigated for
hoarding data and keeping it accessible when hosts are disconnected from data
servers. Coda [12] was among the first hoarding systems, using user profiles
to decide what to hoard and requiring user intervention for conflict resolution.
Bayou [22] and IceCube [11] maintain consistency by logging changes and ensur-
ing log serializability. Similarly, [2] proposes a middleware service for increasing
data availability among groups of users according to user-specified profiles. It
applies a conservative coherence protocol to ensure data is accessed consistently
among group members in the presence of data updates and allows any member
to update data as long as the object’s unique consistency token is available. In-
stead, the work presented here is based on less constraining assumptions about
the connectivity among hosts and thus their ability to reconcile inconsistent data.
This choice simplifies the model, yet still addresses the needs of a wide range of
applications where data availability is necessary even during disconnection.

In fixed networks, some distributed implementations of Linda investigated
replication for fault tolerance [1, 19, 23] and strategies have been proposed for
maintaining consistency among the distributed data [5]. All of these approaches
assume that disconnection of a host is a failure and require extensive network
communication to maintain data consistency. Both of these assumptions are
fundamentally challenged by the MANET environment in which disconnection
is an expected event and wireless communication is more constrained than wired
communication.

Two interesting alternatives are GSpace [20] and PeerSpaces [3]. GSpace pro-
poses a system-level framework for managing the trade-offs between replication
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for availability versus performance. PeerSpaces supports shared data spaces in
the peer-to-peer environment and introduces replication for availability, but only
for read-only data. Nonetheless, both systems target large scale networks, and
are not applicable in MANET environments.

MobiSpaces [9] targets replication of tuple spaces among mobile devices and
shares many goals with the work presented here. It allows replication from non-
primary sources and accepts interest profiles from mobile users to control what
data is replicated. However, The MobiSpaces assumes a single, master tuple
space that serves as the primary holder of the data and determines the legal
sequence of access to tuples based on a form of causal ordering. In contrast, our
work assumes each mobile device can be the primary holder data and we do
not assume any causal ordering semantics among access to tuples, keeping our
semantics closer to the original Linda.

2.2 Lime: Linda in a Mobile Environment

The Lime model [18] defines a coordination layer for applications that exhibit
logical and/or physical mobility, and has been embodied in a middleware [14]
available as open source at http://lime.sourceforge.net. Lime borrows and
adapts the communication model made popular by Linda [10].

In Linda, processes communicate through a shared tuple space, a multiset of
tuples accessed concurrently by several processes. Each tuple is a sequence of
typed parameters, such as <"foo",9,27.5>, and contains the actual information
being communicated. Tuples are added to a tuple space by performing an out(t)
operation. Tuples are anonymous, thus their removal by in(p), or read by rd(p),
takes place through pattern matching on the tuple content. The argument p is
often called a template, and its fields contain either actuals or formals. Actuals
are values; the parameters of the previous tuple are all actuals, while the last two
parameters of <"foo",?integer,?float> are formals. Formals act like “wild
cards” and are matched against actuals when selecting a tuple from the tuple
space. For instance, the template above matches the tuple defined earlier. If
multiple tuples match a template, selection is non-deterministic.

Linda characteristics resonate with the mobile setting. Communication is
implicit, and decoupled in time and space. This decoupling is of paramount
importance in a mobile setting, where the parties involved in communication
change dynamically due to migration, and hence the global context for operations
is continuously redefined. Lime accomplishes the shift from a fixed context to a
dynamically changing one by breaking up the Linda tuple space into many tuple
spaces, each permanently associated to a mobile unit, and by introducing rules
for transient sharing of the individual tuple spaces based on connectivity.

Transiently shared tuple spaces. In Lime, a mobile unit accesses the global data
context only through a so-called interface tuple space (its), permanently and
exclusively attached to the unit itself. The its, accessed using Linda primitives,
contains tuples that are physically co-located with the unit and defines the only
data available to a lone unit. Nevertheless, this tuple space is also transiently
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Fig. 1. Transiently shared tuple spaces encompass physical and logical mobility.

shared with the itss belonging to the mobile units currently accessible. Upon
arrival of a new unit, the tuples in its its are logically merged with those already
shared, belonging to the other mobile units, and the result is made accessible
through the its of each of the units. This sequence of operations, called engage-

ment, is performed as a single atomic operation. Similarly, the departure of a
mobile unit results in the disengagement of the corresponding tuple space, whose
tuples are no longer available through the its of the other units.

Transient sharing of the its is a very powerful abstraction, providing a mobile
unit with the illusion of a local tuple space containing tuples coming from all the
units currently accessible, without any need to know them explicitly. Moreover,
the content perceived through this tuple space changes dynamically according
to changes in the system configuration.

The Lime notion of a transiently shared tuple space is applicable to a mobile
unit regardless of its nature, as long as a notion of connectivity ruling engagement
and disengagement is properly defined. Figure 1 shows how transient sharing may
take place among mobile agents co-located on a given host, and among hosts in
communication range. Mobile agents are the only active components, and the
ones carrying a “concrete” tuple space; mobile hosts are just roaming containers
providing connectivity and execution support for agents.

Operations on the transiently shared tuple space of Lime include those al-
ready mentioned for Linda, namely out, rd, and in, as well as the probing
operations rdp and inp whose semantics is to return a matching tuple or return
null if no matching tuple exists at the time the query is issued. For convenience
Lime also provides the bulk operations rdg and ing that return a set of tuples
that match the given pattern. If no matching tuples exist, the set is empty.

Restricting Operation Scope. The concept of transiently shared tuple space re-
duces the details of distribution and mobility to changes in what is perceived as
a local tuple space. This view is powerful as it relieves the designer from specifi-
cally addressing configuration changes, but sometimes applications may need to
address explicitly the distributed nature of data for performance or optimization
reasons. For this reason, Lime extends Linda operations with scoping parame-
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ters, expressed in terms of agent or host identifiers, that restrict operations to a
given projection of the transiently shared tuple space. For instance, rd[ω, λ](p)
looks for tuples matching p that are currently located at ω but destined to λ.
Lime allows ω to be either a host or an agent, enabling queries over the entire
host-level tuple space or only over the subset pertaining to a specific agent.

Reacting to changes. In the dynamic environment defined by mobility, reacting
to changes constitutes a large fraction of application design. Therefore, Lime

extends the basic Linda tuple space with a notion of reaction. A reaction R(s, p)
is defined by a code fragment s specifying the actions to be performed when a
tuple matching the pattern p is found in the tuple space. A notion of mode is
also provided to control the extent to which a reaction is allowed to execute.
A reaction registered with mode once is allowed to fire only one time, i.e., it
becomes automatically deregistered after its execution. Instead, a reaction regis-
tered with mode oncepertuple is allowed to fire an arbitrary number of times,
but never twice for the same tuple. Details about the semantics of reactions can
be found in [15]. Here, it is sufficient to note that two kinds of reactions are
provided. Strong reactions couple in a single atomic step the detection of a tuple
matching p and the execution of s. Instead, weak reactions decouple the two by
allowing execution to take place eventually after detection. Strong reactions are
useful to react locally to a host, while weak reactions are suitable for use across
hosts, and hence on the entire transiently shared tuple space.

Lime provides a number of additional features, including the ability to output
a tuple into the tuple space of a different agent with the out[λ](t) operation,
and to obtain information about the host, agents, and tuple spaces currently
present in the system through a specialized LimeSystem tuple space. However, as
these and other features are not central to the work described here, we redirect
the reader interested in a comprehensive description to [15], which also includes
a formal semantics of the Lime model.

3 A Motivating Example

In this section we discuss the motivation behind our particular approach to
improving data availability through replication by leveraging off our previously
reported experience [13] with the Lime tuple space primitives to develop context-
aware applications.

In [13] we discussed the design of Tuling, a location-aware application sup-
porting collaborative exploration of geographical areas, e.g., to coordinate the
help in a disaster recovery scenario. Users are equipped with portable comput-
ing devices and a localization system (e.g., GPS), are freely mobile, and are
transiently connected through ad hoc wireless links. The key functionality pro-
vided is the ability for a user to request the visualization of the current location
and/or trajectory of any other user, provided wireless connectivity is available
towards her. Additionally, applicative data (e.g., images or notes) can be an-
notated with location information before being stored in the tuple space, and
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therefore searched based on context. The implementation exploits tuple spaces
as repositories for context information—i.e., location data in this case. The Lime

primitives are used to seamlessly perform queries not only on a local tuple space,
but on all the spaces in range. For instance, a user’s location can be determined
by performing a rdp operation for the location tuple associated to the given
user identifier. Similarly, reactions can be used to trigger some behavior when a
user changes her location.

The thesis of the paper was simple and yet relevant: tuple spaces can be suc-
cessfully exploited to store not only the application data needed for coordination,
but also data representing the physical context. The advantage is the provision of
a single, unified programming interface—the Lime coordination primitives—for
accessing both forms of data, therefore simplifying the programmer’s chore.

Nevertheless, the paper also elicited a number of shortcomings in the primi-
tives and mechanisms traditionally provided by tuple space systems in general,
and by Lime in particular. For instance, it evidenced how the matching by equal-
ity traditionally provided by Linda is not sufficiently expressive for context-aware
applications. This observation provided the main motivation for a recent exten-
sion [17] to the LighTS tuple space engine [16] at the core of Lime.

Similarly, the motivation for the particular flavor of replication presented
here can be found among the “lessons learned” we reported after developing
Tuling, as evident in the following excerpt (see [13], p. 276):

Another feature to consider adding to Lime is replication. In Tuling, the
previous locations of the other components are effectively replicated at
the application level, to enable their visualization. Location information,
however, is not duplicated within the tuple space. Therefore, if A copies
B’s history, and then later meets C, the information about B is outside
the tuple space and therefore not accessible to C. Several efforts in the
mobile ad hoc community have looked at the issue of replication [. . . ],
but none of the solutions is immediately applicable to the tuple space
environment.

This excerpt captures the essence of the problem. The reactive primitives
provided by Lime can be used effectively to copy location information as soon
as it becomes available through the federated space and carry on the associ-
ated behavior, but replication occurs at the application level and therefore does
not enable further sharing of the information acquired. The desired scenario is
instead the one shown in Figure 2.

Clearly, one could write a reaction reinserting the location tuple in the local
tuple space, but care must be taken in “tagging” this copy so that it does not
get reacted again, locally or remotely. Therefore, rather than simply build this
behavior into Tuling, we created an application-independent middleware layer
on top of Lime to support this kind of replication. As we detail in the next
section, the goal is to give users the ability to declare the patterns of tuples
to be replicated, when and how to replicate, and whether and how the replica
should be updated in the presence of new values.
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h o s t B
h o s t C

h o s t A

(a) A and B engage: B’s tuple is
replicated in A’s tuple space.

h o s t B
h o s t C h o s t A

(b) A disengages from B and en-
gages with C: the replica of B’s tu-
ple is copied in C’s tuple space.

Fig. 2. A motivating scenario. Dashed outlines indicate replicated data.

Obviously, location is only one of the many kinds of data that is meaningful
to replicate. Besides other contextual data (e.g., energy level, temperature, light,
and so on), replication of application data is useful as well. For instance, Tuling

users can share images, e.g., pictures useful for a damage assessment of buildings
in an earthquake scenario.

By using the features of our middleware, programmers can leverage repli-
cation in many ways. Not only can the programmer specify replication profiles
such as “replicate all pictures of buildings between the 5th and 7th avenue”,
but she can also choose whether such pictures should be downloaded only from
the user that took them or from anyone. The implications of what looks like
a trivial choice are amplified by the integration of replication with the tran-
siently shared tuple space abstraction provided by Lime. Indeed, in the first
case our system implicitly supports a sort of “hoarding” [12] from information
producers, which materializes the requested information in the tuple space of
a potential consumer tuple space as soon as it becomes available in the sys-
tem. In the second case, by allowing duplication from any replica, information
can flow even in the absence of a connected path between its producer and its
consumers, by “hopping” opportunistically from one machine to another when-
ever connectivity becomes available. This pattern of information dissemination,
somewhat reminiscent of epidemic protocols [7], is more closely related to the
disconnected transitive communication model explored in [4] and, more recently,
by the networking community under the notion of delay tolerant network [8].
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Therefore, besides enhancing data availability, our replication layer can be
regarded (and exploited) as a building block for a different form of coordination
that extends the transient communication enabled by Lime by removing the
need for interacting parties to be present at the same time.

4 Replication Model and API

Throughout the development of the model and implementation, our goal was
to put control over replication in the hands of the programmer while keeping
the interface straightforward and easy to use. The primary issues to address are
updating tuple contents to allow tuples to evolve over time, identifying what
to replicate based on user input, and updating replicas when master tuples are
updated and connectivity allows. In this section we address each of these issues
as they relate to the model, concluding with a description of the API.

Updating tuples. Some applications logically create multiple versions of the same
piece of information with each successive version invalidating the previous. For
example, location data in Tuling constantly changes as a host moves through
space. Each new location represents an update, replacing the now-irrelevant
previous location. In most tuple space systems, it is only possible to remove the
old data and insert new data, losing any logical connection between the two.
Instead, it is meaningful to allow the data to be changed, associating it with the
old data and at the same time identifying that it has been updated.

This is precisely what we provide, allowing the user to specify a template for
the old data together with the actual new data. The new data is distinguished
from the old with a version number. This mechanism also serves as a building
block upon which consistency between master and replicas is managed.

Identifying what to replicate. As our goal is to improve availability of data for
users rather than to improve the performance of the system, our replication
mechanism is driven by user input in the form of replication profiles. These
are composed of the template specifying the tuples to be replicated, together
with the replication and consistency modes controlling the replica creation and
update.

As we discussed in Section 2.2, the scope of Lime operations can be restricted
to the tuple space associated to a single host or agent, by properly setting the
current and destination location of matching tuples. We provide a similar feature
for replication, therefore enabling the programmer to to replicate matching data
only if it belongs to the specified tuple space projection, e.g., tuples belonging to
a given host. Alternately, this tuple location information can be left unspecified
in the template, therefore enabling replication of tuples from any connected host.
One notable exception, however, is that replication of local tuples is suppressed
because it does not improve information availability.

Another dimension of the replication profiles is whether replicas should be
made only from original data or also from replicas held by other users. Because no
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single policy holds for all applications, we place this decision in the hands of the
programmer in the form of a replication mode as shown in Figure 3. Replication
mode master makes replicas only from the original data while mode any allows
a replica to be made indifferently from the original or a replica.

To make this more concrete, consider an extension of the case outlined in
Section 3 in which host A replicates B’s location information and then later
meets C. Without replication inside the tuple space information about B is
not available to C, as in Tuling. However, with the mechanism described here
and replication mode any, this information is available as replica tuples carried
inside A’s tuple space. This enables transitive communication of data as shown
in Figure 2(b) even though B and C have never been in communication range.

Updating replicas. When a tuple is updated, a new version is created that makes
any replicas of this tuple out of date. If connectivity exists between the holder
of the master tuple and the holder of the replica it is possible to update the
replica to the new version, however this comes at the cost of the data transfer.
Depending on the type of data, it is reasonable to keep the replica out of date
or to update it. Location information, for example, is typically small and most
useful if kept up to date. Large documents, instead, may remain useful even if
they are slightly out of date. Therefore, our model allows the user to specify
the policy for keeping replicated data consistent with the original. As shown in
Figure 3, three possibilities are provided: never, which never updates a replica,
master, which updates only from the master version of the tuple, and any,
which updates from master or replica versions. If a replica is updated, its previous
copy is deleted from the system.

To continue with the location example, by using replication mode any and
consistency mode any at host A, when it engages with C as in Figure 2(b), C

will have access to the most recently known location of B from when A and B

were last connected. Although this is likely to be out of date with respect to
the actual, current location of B, is it the best that can be done in the mobile
environment with transient connections.

Replication API. For the programmer familiar with Lime, using replication re-
quires minor changes to deal with extensions of tuple and template formats
and new operations for dealing with replication profiles. The primary access
to the tuple space is through an instance of the ReplicableLimeTupleSpace,
as shown in Figure 4. The operations here retain the same meaning as in the

Replication Mode master The first replica must be made from the master
any The first replica can be made from any tuple

Consistency Mode never Replicas must never be updated
master Replicas must only be updated from their master

any Replicas can be updated from any newer version

Fig. 3. Replication and consistency modes.
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public class ReplicableLimeTupleSpace {
public ReplicableLimeTupleSpace(String name);
public boolean setShared(boolean isShared);

public ReplicableTuple out(ITuple t);
public ReplicableTuple out(AgentLocation destination, ITuple t);

public ReplicableTuple in(ReplicableTemplate p);
public ReplicableTuple inp(ReplicableTemplate p);

public ReplicableTuple[] ing(ReplicableTemplate p);
public ReplicableTuple rd(ReplicableTemplate p);
public ReplicableTuple rdp(ReplicableTemplate p);

public ReplicableTuple[] rdg(ReplicableTemplate p);
public ReplicableRegisteredReaction[] addStrongReaction(ReplicableLocalizedReaction[] rlr);

public ReplicableRegisteredReaction[] addWeakReaction(ReplicableReaction[] rr);
public void removeStrongReaction(ReplicableRegisteredReaction[] rrr);

public void removeWeakReaction(ReplicableRegisteredReaction[] rrr);
// REPLICATION-SPECIFIC OPERATIONS
public ReplicableTuple change(ReplicableTemplate p, ITuple t);

public RegisteredReplicaRequest addReplicaRequest(LimeTemplate p,
int replicationMode,

int consistencyMode);
public void removeReplicaRequest(RegisteredReplicaRequest r);

}

Fig. 4. The class ReplicableLimeTupleSpace.

original LimeTupleSpace, however the parameters are changed to deal with the
additional information maintained for replication. Specifically, tuples, templates,
and reactions have been replaced with their “replicable” counterparts, as seen
in the figure.

For space reasons, we do not show the interfaces of all public classes here,
however it is worth noting that the ReplicableTemplate allows the user to
specify whether the tuple returned should be a master, replica, or any. Fur-
thermore, ReplicableTuple exposes the isMaster method to allow the user to
distinguish if the tuple returned from the tuple space is a master or not.

Reactions are also extended with respect to what available in Lime. Namely,
when specifying a ReplicableReaction and a ReplicableLocalizedReaction,
the user must identify the reaction mode. In addition to the once mode which re-
acts one time before deregistering, we provide onceperreplica and onceper-

change. The former allows the user to react one time for each tuple, but not
for each version of that tuple. The latter reacts also to each version.

The ReplicableLimeTupleSpace offers three new methods not present in
the LimeTupleSpace to support tuple updating and replication. The change

method accepts as parameters the template of the tuple to change and the con-
tents of the new tuple. If no tuple matches the template, no change is made
to the tuple space. Similar to the out operation, change operates only on the
local tuples contained in the tuple space of the agent issuing the operation.
Moreover, only master tuples can be selected and changed. The last two meth-
ods, addReplicaRequest and removeReplicaRequest allow the user to activate
replication for the specified replication profile (template, replication mode, and
consistency mode), and stop it, respectively.
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5 Design and Implementation

Implementing the replication model just described was accomplished as a com-
bination of two application-level packages above Lime, requiring no changes
to Lime itself. The two layers support tuple versioning and tuple replication,
respectively. Internally, each layer is implemented as a wrapper around the
lower layer. Specifically, the VersionedLimeTupleSpace wraps an instance of
LimeTupleSpace and the ReplicableLimeTupleSpace of Figure 4 wraps a Ver-

sionedLimeTupleSpace. Each layer implements the operations visible to the
user by adapting and delegating them to the layer below. It should be noted
that in a federated system, all tuple spaces must be of the same type, e.g., it is
not possible to federate a LimeTupleSpace with a VersionedLimeTupleSpace.

In this section we describe the key components of each layer, focusing pri-
marily on the replication layer.

5.1 Versioning

The primary functionality of the versioning layer is to support the change op-
eration, allowing tuples to be updated instead of replaced. This requires changes
both to the tuple format and to the primary tuple space operations.

Tuple format. Versioning of tuples requires that the new version both be asso-
ciated with the old and distinguished as newer. The former is accomplished by
assigning a tuple identifier to each newly created tuple. This identifier is simply
prepended to the user data before the tuple is passed to Lime. When a tuple is
updated, the new version uses the same tuple identifier. To identify the relative
newness of a tuple, we also insert a version number, incremented each time the
tuple is changed. To clarify, if the user requests insertion of the tuple 〈data〉, the
versioning layer creates the following and passes it to Lime:

〈data〉 → 〈tupleID , versNum, data〉

Operations. To support updating tuples, the API is extended with the change

operation, similar to that shown in Figure 4, accepting the template and new
data as parameters. Internally, change is implemented by performing an inp on
the embedded LimeTupleSpace to remove a tuple matching the pattern. If a
tuple is returned, the versioning layer extracts the tuple identifier and version
number, increments the version number, prepends both to the tuple, and issues
an out to insert the new tuple.

Similar to ReplicableLimeTupleSpace, the VersionedLimeTupleSpace op-
erations have been modified to accept “versioned” tuples and templates to ad-
dress the tuple identifier and version number. Reactions have also been modified
to use two new modes in addition to once, namely onceperid and onceper-

version to react only one time per tuple identifier, or one time to each version
of each tuple. These reactions, with their enhanced modes, are actually the main
building block for implementing replication, as described next.
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5.2 Replication

Building replication on top of the versioning layer involved much the same pro-
cess as implementing the versioning layer on top of Lime. It requires fields to be
added to tuples and new operations to accept and implement replication profiles.
The new operations, however, have already been described in Section 4: here,
we describe their implementation.

Tuple format. The first design decision we faced was whether to keep the replica
tuples in the same tuple space as the master tuples or to divide the two explicitly.
We chose the former, opting to tag each tuple with a new field (isReplica) to
distinguish whether it is a master or a replica. A nice side effect of this choice is
that a query for a tuple without explicitly specifying replica or master requires
only one operation, with the aforementioned field set to formal. Dividing the
tuples would require issuing operations on both spaces.

In addition to the isReplica field, tuples are also extended with two fields
representing the current and destination locations of the master tuple. To un-
derstand the need for these new fields, it is important to remember that Lime

uses current and destination fields to identify the current location of a tuple
and whether it should be migrated into the tuple space of a different, remote
agent upon engagement. Because replica tuples are normal Lime tuples, location
information is also maintained for all replica tuples internally to Lime. However,
this information reflects the current and destination of the replica tuples, namely
the agent that requested the replication, not the original location of the mas-
ter tuple. Because the user may need to know this original location, we provide
accessor methods on ReplicableTuple and append fields to all user tuples to
represent the original current and destination locations of the master tuple as in
the following:

〈data〉 → 〈origCur , origDest , isReplica, data〉

Note how the tuple we obtain is then passed as a “data” tuple to the versioning
layer where it gets extended with other fields, as described in Section 5.1.

Implementing replication. The core of the implementation is the internal mecha-
nism used for replication. Our model requires creation and updating of replicas.
Both operations occur in reaction to the appearance, in the federated tuple
space, of new tuples matching the specified pattern and conforming to the repli-
cation and consistency modes. Therefore, implementing reaction with a set of
(versioning-layer) reactions over master and replica tuples is a natural approach.

Implementing a replication request for a given profile involves installing a
reaction watching for master tuples and, depending on the replication and con-
sistency modes, possibly one for replica tuples as well. When the reaction fires
with a new tuple, the listener for that reaction must take the appropriate action
to keep the replicas inside the tuple space in line with the replication profile.

Consider, for instance, a case where the programmer requests a replication
profile with a master replication mode and a never consistency mode. In this
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Replication Consistency Master listener Replica listener

Mode Mode

master never Keep —
master master Keep or update —
master any Keep or update Discard if first, else update

any never Keep Keep
any master Keep or update Keep
any any Keep or update Keep or update

Fig. 5. Implementing replication using reactions belonging to the versioning layer. For
all combinations of replication and consistency mode, the listeners describe the actions
performed when the reaction fires with a tuple on either a master or replica tuple.
Italicized listeners are mode onceperid, all others are onceperversion.

case, only the reaction watching for master tuples is needed, as subsequent ver-
sions are uninteresting. For the same reason, the corresponding listener needs to
react each time a new master tuple is inserted, but not when it is updated. There-
fore, the reaction (with the semantics defined in Section 5.1 for the versioning
layer), must be installed with a onceperid reaction mode. The reaction takes
care of sending matching tuples from their owner to the requesting host when
connectivity is available. However, Lime ensures also, through its engagement
protocol, that the reaction is installed when hosts initially come into contact and
that it remains enabled while the hosts are connected. Therefore, because Lime

deals with the distribution and installation of listeners as connectivity changes,
the replication layer can simply use this functionality, significantly reducing its
own complexity.

To round out the other actions that must be taken to effect the various repli-
cation profiles, Figure 5 shows all combinations of the replication and consistency
modes and the actions of all listeners for master and replica tuples. The other
listeners for master tuples differ from the one we just described because they
must also update the replica if it already exists. Therefore, the listener “Keep
or update” updates the replica tuple if it already exists, or creates one if not.
The combination master/any utilizes a third type of listener that does not al-
low creation of the first replica from another one, but instead uses replicas only
to update existing ones. Finally, all the combinations requiring updates upon a
change in version number utilize onceperversion reactions in order to capture
all updates.

6 Discussion

Our current implementation, albeit fully working according to the design just
described, must be considered as a proof-of-concept prototype demonstrating
the feasibility of our ideas. A number of improvements and additional features
can be introduced, some of which are discussed in the following.
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Communication overhead. The current implementation just described may gen-
erate unnecessary overhead when the network is dense and stable and many
nodes requested the replication mode any. Consider a host joining the system
with replication mode any. By virtue of engagement its replication reactions are
propagated to the other hosts, where they are immediately evaluated and return
any matching replicas the hosts possess. However, if in turn the replication mode
on the other hosts is any as well, the same process unfolds in the opposite di-
rection. This causes not only new replicas brought by the joining host to be
communicated to the other hosts, but also the newly inserted replica to follow
the same destiny. This last replica is most likely discarded, because it carries
information already present in the network. In the scenarios mentioned above,
this unnecessary extra step my cause a significant contribution to overhead.

A couple of points are worth making, however. First of all, in scenarios where
the system contains many hosts enjoying rather stable connectivity, the repli-
cation mode any is bound to generate a lot of traffic anyway, since everybody
is likely to be up-to-date with respect to the system. Consider an impromptu
meeting: a replication mode master is probably the best choice, allowing each
meeting attendees to obtain a copy of the document as soon as the latter is pub-
lished by its owner. Instead, the mode any is well-suited to address the sparse
scenarios typical of many MANET applications, where very few nodes are con-
nected at any given time but over time overall system connectivity is provided as
a consequence of movement and opportunistic interaction. For instance, in a dis-
aster recovery scenario the members of the exploration team may be connected
only transiently and unpredictably, and yet be able to get the images and notes
posted by fellow members without ever being connected with them, thanks to
transitive replication of replicas of the original documents. As we pointed out in
Section 3, these scenarios are similar to those targeted, at the network layer, by
disconnected transitive communication [4] and delay tolerant networks [8].

From an implementation standpoint, it is worth saying that there are ways
to remove the aforementioned extra communication. A quick-and-dirty solution
is simply to timestamp replicas upon their insertion in the tuple space, and use
this time information to defer its propagation by a time T , under the assumption
that the rest of the system (from where it came in the first place) is already aware
of it. The question is clearly how to set the deferring time T : values too small
reduce the benefit of the optimization if the network is stable, while in dynamic
scenarios values too high may prevent propagation of the replica to hosts that
recently joined the system. More sophisticated mechanisms (e.g., piggybacking
lists of reacted-upon replicas) can be implemented, but at the cost of building
replication management directly into the Lime system. Indeed, our mechanism
is based on Lime’s oncepertuple reactions, which are not aware of replication
and simply react to the presence of a new tuple. In our current prototype we
aimed instead at preserving the independence of the replication layer from the
base middleware, in an effort to foster separation of concerns and modularity.

Ultimately, the need for more optimized communication must be weighed
against the deployment scenario and the way applications use replication. We
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contend that the design and implementation we chose is appropriate for the
assumptions made by the deployment scenario and application examples mo-
tivating this work, as well as for the “exploratory” goals of the research we
report. Its exploitation in scenarios characterized by different assumptions may
obviously require significant adaptation.

Automatic purging of local replicas. In the current implementation, replicated
tuples are automatically inserted in the local tuple space, where they remain until
the programmer expressly decides to remove them. This policy constitutes the
most basic solution and meets the needs of simple applications. Nevertheless, in
the presence of several replicas that need different treatment, their management
may place considerable bookkeeping burden on the programmer.

Automatic purging can be easily defined by modifying addReplicaRequest

to accept, in addition to replication and consistency mode, a “purge mode”. For
instance, the purge mode can be one of the values manual, number, time.
manual corresponds to the current strategy, while the other two modes allow
purging of the tuple space based on an additional parameter, i.e., either the maxi-
mum number of replicas for the specified template or their maximum permanence
time in the tuple space. The implementation of this additional functionality is
straightforward, and consists of either modifying the replication listeners to keep
track of a counter (number) or associating a timer to the replica (time).

Removal of the master copy. As we discussed in Section 3, our motivation for
tackling replication was provided by applications where the data being replicated
is continuously updated (e.g., location). As such, we did not include mechanisms
for dealing with the removal of a master tuple, and accordingly remove the
replicas in the system. Moreover, in a true MANET scenario no assumption can
be made about the movement of hosts, which therefore can remain out for range
after the tuple withdrawal has been performed, complicating—or completely
preventing—the reconciliation of the distributed tuple space.

One way to achieve this functionality is through the notion of a “death cer-
tificate” [6] associated to the tuple. A simple implementation of this notion is to
update the master tuple by nullifying the application data, while retaining the
version identifier. Hosts becoming connected with the master’s host would get
a copy of the master tuple, but its nullified content would signal that the mas-
ter has actually been withdrawn from the tuple space, and therefore the replica
must be withdrawn as well.

In a MANET environment, however, there is no guarantee that all the hosts
owning a replica eventually become again part of the system, thus receiving the
death certificate. Interestingly, a replication mode any somewhat helps in this
respect, as its ability to epidemically spread information may bypass disconnec-
tions. At the same time, however, it complicates matters since the master host
has absolutely no control over the replication of its tuple, which can be dupli-
cated from a different replica. Therefore, the master faces the option of either
keeping the death certificate ad infinitum, or removing it after a given time but
potentially leaving some hosts with an inconsistent view of the tuple space.
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Future work will investigate more sophisticated schemes able to strike better
tradeoffs by making different assumptions about the movement of hosts.

7 Conclusions

Replication is a well-studied topic in distributed system, often applied also in
the case of coordination languages exploiting tuple spaces. Nevertheless, the
motivations for exploiting replication are typically to improve fault-tolerance or
access time to tuples, while preserving a consistent view of the tuple space.

In this work, we took a different angle motivated by the desire to exploit
coordination in the highly dynamic and disconnected environment characterizing
MANETs, where the preeminent reason for replication is to ensure availability
of the replicated data in the face of disconnection. Consistency is less important,
as it may be difficult if not impossible to provide if no assumption about the
movement of hosts is made. This particular flavor of replication may also be
effectively exploited as a new form of coordination, based on interactions that
occur without the coordination parties ever being connected at the same time.

We made these observations concrete by describing how they can be incor-
porated in Lime, an existing coordination middleware for MANETs. We defined
an appropriate replication model, extended the Lime API with replication prim-
itives, and built replication mechanisms as a veneer on top of Lime.
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