
954 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

Using Linear Programming to Decode
Binary Linear Codes

Jon Feldman, Martin J. Wainwright, Member, IEEE, and David R. Karger, Associate Member, IEEE

Abstract—A new method is given for performing approximate
maximum-likelihood (ML) decoding of an arbitrary binary linear
code based on observations received from any discrete memoryless
symmetric channel. The decoding algorithm is based on a linear
programming (LP) relaxation that is defined by a factor graph
or parity-check representation of the code. The resulting “LP de-
coder” generalizes our previous work on turbo-like codes.

A precise combinatorial characterization of when the LP de-
coder succeeds is provided, based on pseudocodewords associated
with the factor graph. Our definition of a pseudocodeword unifies
other such notions known for iterative algorithms, including “stop-
ping sets,” “irreducible closed walks,” “trellis cycles,” “deviation
sets,” and “graph covers.”

The fractional distance frac of a code is introduced, which is a
lower bound on the classical distance. It is shown that the efficient
LP decoder will correct up to frac 2 1 errors and that there
are codes with frac =
(1). An efficient algorithm to com-
pute the fractional distance is presented. Experimental evidence
shows a similar performance on low-density parity-check (LDPC)
codes between LP decoding and the min-sum and sum-product al-
gorithms. Methods for tightening the LP relaxation to improve per-
formance are also provided.

Index Terms—Belief propagation (BP), iterative decoding, low-
density parity-check (LDPC) codes, linear codes, linear program-
ming (LP), LP decoding, minimum distance, pseudocodewords.

I. INTRODUCTION

LOW-density parity-check (LDPC) codes were first discov-
ered by Gallager in 1962 [7]. In the 1990s, they were “re-

discovered” by a number of researchers [8], [4], [9], and have
since received a lot of attention. The error-correcting perfor-
mance of these codes is unsurpassed; in fact, Chung et al. [10]
have given a family of LDPC codes that come within 0.0045 dB
of the capacity of the channel (as the block length goes to in-
finity). The decoders most often used for this family are based

Manuscript received May 6, 2003; revised December 8, 2004. The work of
J. Feldman was conducted while the author was at the MIT Laboratory of Com-
puter Science and supported in part by the National Science Foundation Post-
doctoral Research Fellowship DMS-0303407. The work of D. Karger was sup-
ported in part by the National Science Foundation under Contract CCR-9624239
and a David and Lucille Packard Foundation Fellowship. The material in this
paper was presented in part at the Conference on Information Sciences and Sys-
tems, Baltimore, MD, June 2003.

J. Feldman is with the Department of Industrial Engineering and Opera-
tions Research, Columbia University, New York, NY 10027 USA (e-mail:
jonfeld@ieor.columbia.edu).

M. J. Wainwright is with the Department of Electrical Engineering and
Computer Science and the Department of Statistics, University of California,
Berkeley, Berkeley, CA, 94720 USA (e-mail: wainwrig@eecs.berkeley.edu).

D. R. Karger is with the Computer Science and Artificial Intelligence Labo-
ratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA 02139
USA (e-mail: karger@mit.edu).

Communicated by R. L. Urbanke, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2004.842696

on the belief-propagation algorithm [11], where messages are
iteratively sent across a factor graph modeling the structure of
the code. While the performance of this decoder is quite good,
analyzing its behavior is often difficult when the factor graph
contains cycles.

In this paper, we introduce a new algorithm for decoding
an arbitrary binary linear code based on the method of linear
programming (LP) relaxation. We design a polytope that con-
tains all valid codewords, and an objective function for which
the maximum-likelihood (ML) codeword is the optimum point
with integral coordinates. We use linear programming to find the
polytope’s (possibly fractional) optimum, and achieve success
when that optimum is the transmitted codeword. Experiments
on LDPC codes show that the performance of the resulting LP
decoder is better than the iterative min-sum algorithm. In addi-
tion, the LP decoder has the ML certificate property; whenever
it outputs a codeword, it is guaranteed to be the ML codeword.
None of the standard iterative methods are known to have this
desirable property.

A desirable feature of the LP decoder is its amenability to
analysis. We introduce a variety of techniques for analyzing the
performance of this algorithm. We give an exact combinatorial
characterization of the conditions for LP decoding success, even
in the presence of cycles in the factor graph. This characteriza-
tion holds for any discrete memoryless symmetric channel; in
such channels, a linear cost function can be defined on the code
bits such that that the lowest cost codeword is the ML codeword.
We define the set of pseudocodewords, which is a superset of the
set of codewords, and we prove that the LP decoder always finds
the lowest cost pseudocodeword. Thus, the LP decoder succeeds
if and only if the lowest cost pseudocodeword is actually the
transmitted codeword.

Next we define the notion of the fractional distance of
a factor graph, which is essentially the minimum distance be-
tween a codeword and a pseudocodeword. In analogy to the per-
formance guarantees of exact ML decoding with respect to clas-
sical distance, we prove that the LP decoder can correct up to

errors in the binary-symmetric channel (BSC). We
prove that the fractional distance of a linear code with check de-
gree at least three is at least exponential in the girth of the graph
associated with that code. Thus, given a graph with logarithmic
girth, the fractional distance can be lower-bounded by ,
for some constant , where is the code length.

For the case of LDPC codes, we show how to compute the
fractional distance efficiently. This fractional distance is not
only useful for evaluating the performance of the code under
LP decoding, but it also serves as a lower bound on the true
distance of the code.

0018-9448/$20.00 © 2005 IEEE

FELDMAN et al.: USING LINEAR PROGRAMMING TO DECODE BINARY LINEAR CODES 955

A. Relation to Iterative Algorithms

The techniques used by Chung et al. [10] to analyze LDPC
codes are based on those of Richardson and Urbanke [12] and
Luby et al. [13], who give an algorithm to calculate the threshold
of a randomly constructed LDPC code. This threshold acts as a
limit on the channel noise; if the noise is below the threshold,
then reliable decoding (using belief propagation (BP)) can be
achieved as the block length goes to infinity.

The threshold analysis is based on the idea of considering an
“ensemble” of codes for the purposes of analysis, then averaging
the behavior of this ensemble as the block length of the code
goes to infinity. For many ensembles, it is known [3] that for any
constant , the difference in error rate (under belief-propagation
decoding) between a random code and the average code in the
ensemble is less than with probability exponentially small in
the block length.

Calculating the error rate of the ensemble average can be-
come difficult when the factor graph contains cycles; because
iterative algorithms can traverse cycles repeatedly, noise in the
channel can affect the final decision in complicated, highly de-
pendent ways. This complication is avoided by considering the
limiting case of infinite block length, such that the probability
of a message traversing a cycle converges to zero. However, for
many practical block lengths, this leads to a poor approximation
of the true error rate [3].

Therefore, it is valuable to examine the behavior of a code
ensemble at fixed block lengths, and try to analyze the effect of
cycles. Recently, Di et al. [3] took on the “finite length” analysis
of LDPC codes under the binary erasure channel (BEC). Key
to their results is the notion of a purely combinatorial structure
known as a stopping set. BP fails if and only if a stopping set
exists among the erased bits; therefore, the error rate of BP is
reduced to a purely combinatorial question.

For the case of the BEC, we show that the pseudocodewords
we define in this paper are exactly stopping sets. Thus, the per-
formance of the LP decoder is equivalent to BP on the BEC. Our
notion of a pseudocodeword also unifies other known results
for particular cases of codes and channels. For tail-biting trel-
lises, our pseudocodewords are equivalent to those introduced
by Forney et al. [5]. Also, when applied to the analysis of com-
putation trees for min-sum decoding, pseudocodewords have a
connection to the deviation sets defined by Wiberg [4], and re-
fined by Forney et al. [6] and Frey, Koetter, and Vardy [14].

B. Previous Results

In previous work [1], [2], we introduced the approach of de-
coding any “turbo-like” code based on similar network flow and
linear programming relaxation techniques. We gave a precise
combinatorial characterization of the conditions under which
this decoder succeeds. We used properties of this LP decoder to
design a rate- repeat–accumulate (RA) code (a certain class
of simple turbo codes), and proved an upper bound on the prob-
ability of decoding error. We also showed how to derive a more
classical iterative algorithm whose performance is identical to
that of our LP decoder.

C. Outline

We begin the paper in Section II by giving background on
factor graphs for binary linear codes, and the ML decoding
problem. We present the LP relaxation of ML decoding in
Section III. In Section IV, we discuss the basic analysis of
LP decoding. We define pseudocodewords in Section V, and
fractional distance in Section VI. In Section VII, we draw
connections between various iterative decoding algorithms and
our LP decoder, and present some experiments. In Section VIII,
we discuss various methods for “tightening” the LP in order to
get even better performance. We conclude and discuss future
work in Section IX.

D. Notes and Recent Developments

Preliminary forms of part of the work in this paper have ap-
peared in the conference papers [15], [16], and in the thesis of
one of the authors [17]. Since the submission of this work, it
has been shown that the LP decoder defined here can correct a
constant fraction of error in certain LDPC codes [18], and that
a variant of the LP can achieve capacity using expander codes
[19].

Additionally, relationships between LP decoding and iterative
decoding have been further refined. Discovered independently
of this work, Koetter and Vontobel’s notion of a “graph cover”
[20] is equivalent to the notion of a “pseudocodeword graph”
defined here. More recent work by the same authors [21], [22]
explores these notions in more detail, and gives new bounds for
error performance.

II. BACKGROUND

A linear code with parity-check matrix can be repre-
sented by a Tanner or factor graph , which is defined in the
following way. Let and
be indices for the columns (respectively, rows) of the
parity-check matrix of the code. With this notation, is a bi-
partite graph with independent node sets and . We refer to
the nodes in as variable nodes, and the nodes in as check
nodes. All edges in have one endpoint in and the other in

. For each , the edge is included in if
and only if .

The neighborhood of a check node , denoted by ,
is the set of nodes such that check node is incident to
variable node in . Similarly, we let be the set of check
nodes incident to a particular variable node .

Imagine assigning to each variable node a value in
, representing the value of a particular code bit. A parity-

check node is “satisfied” if the collection of bits assigned to
the variable nodes s.t. have even parity. The binary
vector is a codeword if and only if all check
nodes are satisfied. Fig. 1 shows an example of a linear code
and its associated factor graph. In this Hamming code, if we set

, and , then the
neighborhood of every check node has even parity. Therefore,
represents a codeword, which we can write as . Other
codewords include , , and .

Let denote the maximum variable (left) degree of the
factor graph; i.e., the maximum, among all nodes , of the

956 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

Fig. 1. A factor graph for the (7; 4; 3) Hamming code. The nodes
f1; 2; 3; 4; 5; 6; 7g drawn in open circles correspond to variable nodes,
whereas nodes fA;B;Cg in black squares correspond to check nodes.

degree of . Let denote the minimum variable degree. Let
and denote the maximum and minimum check (right) degree
of the factor graph.

A. Channel Assumptions

A binary-codeword of length is sent over a noisy channel,
and a corrupted word is received. In this paper, we assume
an arbitrary discrete memoryless symmetric channel. We use
the notation to denote the probability that was the
codeword sent over the channel, given that was received. We
assume that all information words are equally likely a priori. By
Bayes’ rule, this assumption implies that

for any code . Moreover, the memoryless property of the
channel implies that

Let be the space of possible received symbols. For example,
in the BSC, , and in the additive white Gaussian
noise (AWGN) channel, . By symmetry, the set can be
partitioned into pairs such that

(1)

and

(2)

B. ML Decoding

Given the received word , the ML decoding problem is to
find the codeword that maximizes . It is equivalent to
minimizing the negative log-likelihood, which we will call our
cost function. Using our assumptions on the channel, this cost
function can be written as , where

(3)

is the (known) negative log-likelihood ratio (LLR) at each vari-
able node. For example, given a BSC with crossover probability

, we set if the received bit , and
if . The interpretation of is the

“cost” of decoding . Note that this cost may be negative,
if decoding to is the “better choice.”

We will frequently exploit the fact that the cost vector can
be uniformly rescaled without affecting the solution of the ML
problem. In the BSC, for example, rescaling by
allows us to assume that if , and if

.

III. DECODING WITH LINEAR PROGRAMMING

In this section, we formulate the ML decoding problem for
an arbitrary binary linear code, and show that it is equivalent to
solving a linear program over the codeword polytope. We then
define a modified linear program that represents a relaxation of
the exact problem.

A. Codeword Polytope

To motivate our LP relaxation, we first show how ML de-
coding can formulated as an equivalent LP. For a given code ,
we define the codeword polytope to be the convex hull of all
possible codewords

Note that is a polytope contained within the -hyper-
cube , and includes exactly those vertices of the hyper-
cube corresponding to codewords. Every point in corre-
sponds to a vector , where element is defined
by the summation .

The vertices of a polytope are those points that cannot be ex-
pressed as convex combinations of other points in the polytope.
A key fact is that any linear program attains its optimum at a
vertex of the polytope [23]. Consequently, the optimum will al-
ways be attained at a vertex of , and these vertices are
in one-to-one correspondence with codewords.

We can therefore define ML decoding as the problem of min-
imizing subject to the constraint . This
formulation is a linear program, since it involves minimizing a
linear cost function over the polytope .

B. LP Relaxation

The most common practical method for solving a linear pro-
gram is the simplex algorithm [23], which generally requires an
explicit representation of the constraints. In the LP formulation
of exact ML decoding we have just described, although
can be characterized by a finite number of linear constraints,
the number of constraints is exponential in the code length .
Even the Ellipsoid algorithm [24], which does not require such
an explicit representation, is not useful in this case, since ML
decoding is NP-hard in general [25].

Therefore, our strategy will be to formulate a relaxed poly-
tope, one that contains all the codewords, but has a more man-
ageable representation. More concretely, we motivate our LP
relaxation with the following observation. Each check node in a
factor graph defines a local code; i.e., the set of binary vectors
that have even weight on its neighborhood variables. The global
code corresponds to the intersection of all the local codes. In LP

FELDMAN et al.: USING LINEAR PROGRAMMING TO DECODE BINARY LINEAR CODES 957

terminology, each check node defines a local codeword polytope
(meaning the set of convex combinations of local codewords),
and our global relaxation polytope will be the intersection of all
of these polytopes.

We use the variables to denote our code bits.
Naturally, we have

(4)

To define a local codeword polytope, we consider the set of
variable nodes that are neighbors of a given check node

. Of interest are subsets that contain an even
number of variable nodes; each such subset corresponds to a
local codeword set, defined by setting for each index

, for each but , and setting all other
arbitrarily.
For each in the set even , we

introduce an auxiliary LP variable , which is an indicator
for the local codeword set associated with —notionally, setting

equal to indicates that is the set of bits of that
are set to . Note that the variable is also present for each
parity check, and it represents setting all variables in equal
to zero.

As indicator variables, the variables must satisfy the
constraints

(5)

The variable can also be seen as indicating that the code-
word “satisfies” check using the configuration . Since each
parity check is satisfied with one particular even-sized subset of
nodes in its neighborhood set to one, we may enforce

(6)

as a constraint that is satisfied by every codeword. Finally, the
indicator at each variable node must belong to the local
codeword polytope associated with check node . This leads to
the constraint

(7)

Let the polytope be the set of points such that (4)–(7)
hold for check node . Let be the intersection of
these polytopes; i.e., the set of points such that (4)–(7)
hold for all . Overall, the Linear Code Linear Program
(LCLP) corresponds to the problem

minimize s.t. (8)

An integral point in a polytope (also referred to as an integral
solution to a linear program) is a point in the polytope whose
values are all integers. We begin by observing that there is a
one-to-one correspondence between codewords and integral so-
lutions to LCLP.

Proposition 1: For all integral points , the se-
quence represents a codeword. Furthermore, for all
codewords , there exists a such that is
an integral point in where for all .

Proof: Suppose is a point in where all
and all . Now suppose is not a

codeword, and let be some parity check unsatisfied by setting
for all . By the constraints (6), and the fact that

is integral, for some , and for all
other where . By the constraints (7), we have

for all , and for all , . Since
is even, is satisfied by setting , a contradiction.

For the second part of the claim, let be a code-
word, and let . For all , let be the set of nodes
in where . Since is a codeword,
check is satisfied by , so is even, and the variable is
present. Set and for all other . All
constraints are satisfied, and all variables are integral.

Overall, the decoding algorithm based on LCLP consists
of the following steps. We first solve the LP in (8) to obtain

. If , we output it as the optimal code-
word; otherwise, is fractional, and we output an “error.”
From Proposition 1, we get the following.

Proposition 2: LP decoding has the ML certificate property:
if the algorithm outputs a codeword, it is guaranteed to be the
ML codeword.

Proof: If the algorithm outputs a codeword , then
has cost less than or equal to all points in . For some codeword

, we have that is a point in by Proposition 1.
Therefore, has cost less than or equal to .

Given a cycle-free factor graph, it can be shown that any op-
timal solution to LCLP is integral [26]. Therefore, LCLP is an
exact formulation of the ML decoding problem in the cycle-free
case. In contrast, for a factor graph with cycles, the optimal solu-
tion to LCLP may not be integral. Take, for example, the Ham-
ming code in Fig. 1. Suppose that we define a cost vector as
follows: for variable node , set , and for all other
nodes , set . It is not hard to verify that
under this cost function, all codewords have nonnegative cost:
any codeword with negative cost would have to set , and
therefore set at least two other , for a total cost of at least

. Consider, however, the following fractional solution to
LCLP: first, set and then for check
node , set ; at check node , as-
sign ; and lastly at check node , set

. It can be verified that satisfies
all of the LCLP constraints. However, the cost of this solution
is , which is strictly less than the cost of any codeword.

Note that this solution is not a convex combination of code-
words, and so is not contained in . This solution gets
outside of by exploiting the local perspective of the re-
laxation: check node is satisfied by using the configuration

, whereas in check node , the configuration is not
used. The analysis to follow will provide further insight into the
nature of such fractional (i.e., nonintegral) solutions to LCLP.

It is worthwhile noting that the local codeword constraints (7)
are identical to those enforced in the Bethe free energy formu-
lation of BP [27]. For this reason, it is not surprising that the
performance of our LP decoder turns out to be closely related to
that of the BP and min-sum algorithms.

958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

C. LP Solving and Polytope Representations

The efficiency of practical LP solvers depends on how the
LP is represented. An LP is defined by a set of variables, a
cost function, and a polytope (set of linear constraints). The
ellipsoid algorithm is guaranteed to run in time polynomial in
the size of the LP representation, which is proportional to the
number of variables and constraints. The simplex algorithm,
though not guaranteed to run efficiently in the worst case, still
has a dependence on the representation size, and is usually
much more efficient than the ellipsoid algorithm. For more de-
tails on solving linear programs, we refer the reader to standard
texts [28], [23].

The polytope described by (4)–(7) is the most intuitive
form of the relaxation. For LDPC codes, has size linear in

. Thus, the ellipsoid algorithm is provably efficient, and we
can also reasonably expect the simplex algorithm to be even
more efficient in practice. For arbitrary binary linear codes, the
number of constraints in is exponential in the degree of each
check node. So, if some check node has degree (as one
would expect in random codes, for example), the polytope has
a number of constraints that is exponential in . Therefore, to
solve efficiently, we need to define a smaller polytope that
produces the same results.

Alternative representations of the LP are useful for analytical
purposes as well. We will see this when we discuss fractional
distance in Section VI.

1) Polytope Equivalence: All the polytopes we use in this
paper have variables for all . They may also involve aux-
iliary variables, such as the variables in the description
of . However, if two polytopes share the same set of possible
settings to the variables, then we may use either one. We
formalize this notion.

Definition 3: Let be some polytope defined over variables
where , as well as some auxiliary variables

. We define

s.t.

as the projection of onto the variables. Given such a ,
we say is equivalent to if

In other words, we require that the projections of and onto
the variables are the same. Since the objective function of
LCLP only involves the variables, optimizing over and

will produce the same result.

In the remainder of this section we define two new polytopes.
The first is an explicit description of that will be useful for
defining (and computing) the fractional distance of the code,
which we cover in Section VI. The second polytope is equivalent
to , but has a small overall representation, even for high-den-
sity codes. This equivalence shows that LCLP can be solved ef-
ficiently for any binary linear code.

2) Projected Polytope: In this subsection, we derive an ex-
plicit description of the polytope . The following definition of

in terms of constraints on was derived from the parity poly-
tope of Jeroslow [29], [30]. We first enforce for all

Fig. 2. The equivalence of the polytopes
 and Q in three dimensions.
The polytope
 is defined as the set of points inside the unit hypercube with l
distance at least one from all odd-weight hypercube vertices. The polytope Q
is the convex hull of even-weight hypercube vertices.

. Then, for every check , we explicitly forbid every bad con-
figuration of the neighborhood of . Specifically, for all

, odd, we require

(9)

Note that the integral settings of the bits that satisfy these con-
straints for some check are exactly the local codewords for ,
as before.

Let be the set of points that satisfy (9) for a particular
check , and all with odd. We can further under-
stand the constraints in by rewriting (9) as follows:

(10)

In other words, the distance between (the relevant portion of)
and and the incidence vector for each set is at least one. This

constraint ensures that is separated by at least one bit flip from
all illegal configurations. In three dimensions (i.e,),
it is easy to see that these constraints are equivalent to the convex
hull of the even-sized subsets , as shown in Fig. 2. In
fact, the following theorem states that in general, if we enforce
(9) for all checks, we get an explicit description of .

Theorem 4: Let the polytope . Then and are
equivalent. In other words, the polytope

s.t.

is exactly the set of points that satisfy (9) for all checks and
all where odd.

Proof: Recall that is the set of points that satisfy
the local codeword polytope for check . Consider the projection

s.t.

In other words, is the convex hull of local codeword sets
defined by sets . Note that , since each

exactly expresses the constraints associated with check .
Recall that is the set of points that satisfy the constraints
(9) for a particular check . Since , it suffices to
show for all . This is shown by Jeroslow [29].
For completeness, we include a proof of this fact in Appendix I.

FELDMAN et al.: USING LINEAR PROGRAMMING TO DECODE BINARY LINEAR CODES 959

3) High-Density Code Polytope: Recall that is the max-
imum degree of any check node in the graph. As stated, LCLP
has variables and constraints. For turbo and LDPC
codes, this complexity is linear in , since is constant.

For arbitrary binary linear codes, we give a characterization
of LCLP with

variables and constraints. To derive this characterization, we
give a new polytope for each local codeword polytope, based
on a construction of Yannakakis [30], whose size does not have
an exponential dependence on the size of the check neighbor-
hood. We refer to this representation of the polytope as . The
details of this representation, as well as a proof that and are
equivalent, can be found in Appendix II.

IV. ANALYSIS OF LP DECODING

When using the LP decoding method, an error can arise in one
of two ways. Either the LP optimum is not integral, in which
case the algorithm outputs “error”; or, the LP optimum may be
integral (and therefore corresponds to the ML codeword), but
the ML codeword is not what was transmitted. In this latter case,
the code itself has failed, so even exact ML decoding would
make an error.

We use the notation to denote the probability that
the LP decoder makes an error, given that was transmitted. By
Proposition 1, there is some feasible solution to LCLP
corresponding to the transmitted codeword . We can charac-
terize the conditions under which LP decoding will succeed as
follows.

Theorem 5: Suppose the codeword is transmitted. If all fea-
sible solutions to LCLP other than have cost more than
the cost of , the LCLP decoder succeeds. If some solu-
tion to LCLP has cost less than the cost of , the decoder
fails.

Proof: By Proposition 1, is a feasible solution to
LCLP. If all feasible solutions to LCLP other than have
cost more than the cost of , then must be the
unique optimal solution to LCLP. Therefore, the decoder will
output , which is the transmitted codeword.

If some solution to LCLP has cost less than the cost of
, then is not an optimal solution to LCLP. Since

the variables do not affect the cost of the solution, it must
be that . Therefore, the decoder either outputs “error,” or
it outputs , which is not the transmitted codeword.

In the degenerate case where is one of multiple op-
tima of LCLP, the decoder may or may not succeed. We will be
conservative and consider this case to be decoding failure, and
so by Theorem 5

(11)

We now proceed to provide combinatorial characterizations of
decoding success and analyze the performance of LP decoding
in various settings.

A. The All-Zeros Assumption

When analyzing linear codes, it is common to assume that
the codeword sent over the channel is the all-zeros vector (i.e.,

), since it tends to simplify analysis. In the context of our
LP relaxation, however, the validity of this assumption is not
immediately clear. In this section, we prove that one can make
the all-zeros assumption when analyzing LCLP. Basically, this
follows from the fact that the polytope is highly symmetric;
from any codeword, the polytope “looks” exactly the same.

Theorem 6: The probability that the LP decoder fails is in-
dependent of the codeword that was transmitted.

Proof: See Appendix III.

From this point forward in our analysis of LP decoding, we
assume that the all-zeros codeword was the transmitted code-
word. Since the all-zeros codeword has zero cost, Theorem 5,
along with our consideration of multiple LP optima as “failure,”
gives the following.

Corollary 7: Given that the all-zeros codeword was trans-
mitted (which we may assume by Theorem 6), the LP decoder
will fail if and only if there is some point in other than

with cost less than or equal to zero.

V. PSEUDOCODEWORDS

In this section, we introduce the concept of a pseudocodeword
for LP decoding, which we will define as a scaled version of a
solution to LCLP. As a consequence, Theorem 5 will hold for
pseudocodewords in the same way that it holds for solutions to
LCLP.

The following definition of a codeword motivates the notion
of a pseudocodeword. Recall that is the set of even-sized sub-
sets of the neighborhood of check node . Let .
Let be a vector in , and let be a setting of nonnegative
integer weights, one weight for each check and .
We say that is a codeword if, for all edges in the
factor graph , . This corresponds ex-
actly to the consistency constraint (7) in LCLP. It is not difficult
to see that this construction guarantees that the binary vector
is always a codeword of the original code.

We obtain the definition of a pseudocodeword by re-
moving the restriction , and instead allowing each
to take on arbitrary nonnegative integer values. In other words,
a pseudocodeword is a vector of nonnegative
integers such that, for every parity check , the neighbor-
hood is a sum of local codewords (incidence
vectors of even-sized sets in).

With this definition, any codeword is (trivially) a pseudocode-
word as well; moreover, any sum of codewords is a pseudocode-
word. However, in general, there exist pseudocodewords that
cannot be decomposed into a sum of codewords. As an illus-
tration, consider the Hamming code of Fig. 1; earlier, we con-
structed a fractional LCLP solution for this code. If we simply
scale this fractional solution by a factor of two, the result is
a pseudocodeword of the following form. We begin by

960 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

setting . To satisfy the constraints of a
pseudocodeword, set

This pseudocodeword cannot be expressed as the sum of indi-
vidual codewords.

In the following, we use the fact that all optimum points of a
linear program with rational coefficients are themselves rational
[23]. Using simple scaling arguments, and the all-zeros assump-
tion, we can restate Corollary 7 in terms of pseudocodewords as
follows.

Theorem 8: Given that the all-zeros codeword was trans-
mitted (which we may assume by Theorem 6), the LP decoder
will fail if and only if there is some pseudocodeword ,

, where .
Proof: Suppose the decoder fails. Let be the op-

timal point of the LP, the point in that minimizes . By
Corollary 7, . Construct a pseudocodeword
as follows. Let be the lowest common denominator of the
and , which exists because is the optimal point of the
LP and all optimal points of the LP are rational. Then is
an integer for all , and is an integer for all for all

and sets . For all bits , set ; for all
checks and sets , set .

By the constraints (7) of , meets the definition of a
pseudocodeword. The cost of is exactly . Since

, we have . This implies that . Since
and , we see that .

To establish the converse, suppose a pseudocodeword ,
, has . Let . We

construct a point as follows: Set for all
code bits . For all checks , do the following:

i) set for all sets ;
ii) set .

We must handle as a special case since does not exist.
By construction, and the definition of a pseudocodeword,
meets all the constraints of the polytope . Since , we
have . The cost of is exactly . Since

, the point has cost less than or equal to zero.
Therefore, by Corollary 7, the LP decoder fails.

This theorem will be essential in proving the equivalence to
iterative decoding in the BEC in Section VII.

A. Pseudocodeword Graphs

A codeword corresponds to a particular subgraph of the factor
graph . In particular, the vertex set of this subgraph consists
of all the variable nodes for which , as well as all
check nodes to which these variable nodes are incident.

Any pseudocodeword can be associated with a graph
in an analogous way. The graph consists of the following

vertices.

• For all , the graph contains copies of each
node .

• For all , , the graph contains copies of
each check node , with “label” .

We refer to the set of copies of the variable node as

and the copies of the check node with label as

The edges of the graph are connected according to membership
in the sets . More precisely, consider an edge in . There
are copies of node in , i.e., . Now consider the
set of nodes in that are copies of check node labeled
with sets that include . In other words, the set

By the definition of a pseudocodeword

and so

In the pseudocodeword graph , connect the same-sized node
sets and using an arbitrary matching (one-to-one corre-
spondence). This process is repeated for every edge in .
Note that every check node in appears in exactly sets

, one for each . Therefore, the neighbor set of any
node in consists of exactly one copy of each variable node

. Furthermore, every variable node in will be connected
to exactly one copy of each check node in . The cost of the
pseudocodeword graph is the sum of the costs of the variable
nodes in the graph, and is equal to the cost of the pseudocode-
word from which it was derived. Therefore, Theorem 8 holds
for pseudocodeword graphs as well.

Fig. 3 gives the graph of the pseudocodeword example given
earlier, and Fig. 4 gives the graph of a different more complex
pseudocodeword.

This graphical characterization of a pseudocodeword is es-
sential for proving our lower bound on the fractional distance.
Additionally, the pseudocodeword graph is helpful in making
connections with other notions of pseudocodewords in the liter-
ature. We discuss this further in Section VII.

VI. FRACTIONAL DISTANCE

A classical quantity associated with a code is its distance,
which for a linear code is equal to the minimum weight of any
nonzero codeword. In this section, we introduce a fractional
analog of distance, and use it to prove additional results on
the performance of LP decoding. Roughly speaking, the frac-
tional distance is the minimum weight of any nonzero vertex
of ; since all codewords are nonzero vertices of , the frac-
tional distance is a lower bound on the true distance. This frac-
tional distance has connections to the minimum weight of a
pseudocodeword, as defined by Wiberg [4], and also studied by
Forney et al. [6].

FELDMAN et al.: USING LINEAR PROGRAMMING TO DECODE BINARY LINEAR CODES 961

Fig. 3. The graph of a pseudocodeword for the (7; 4; 3) Hamming code.
In this particular pseudocodeword, there are two copies of node 1, and also two
copies of check A.

Fig. 4. A graph H of the pseudocodeword [0; 1; 0; 1; 0; 2; 3] of the (7;4; 3)
Hamming code. The dotted circles show the original variable nodes i of the
factor graph G, which are now sets Y of nodes in H . The dotted squares are
original check nodes j in G, and contain sets C (shown with dashed lines)
for each S 2 E .

A. Definitions and Basic Properties

Since there is a one-to-one correspondence between code-
words and integral vertices of , the (classical) distance of the
code is equal to the minimum weight of a nonzero integral
vertex in the polytope. However, the relaxed polytope may
have additional nonintegral vertices. In particular, our earlier ex-
ample with the Hamming code involved constructing precisely
such a fractional or nonintegral vertex.

As stated previously, any optimal solution to LCLP
must be a vertex of . However, note that the objective func-
tion for LCLP only affects the variables ; as a con-
sequence, the point must also be a vertex of the projection

. (In general, not all vertices of will be projected to vertices
of .)

Therefore, we use the projected polytope in our definition
of the fractional distance, since its vertices are exactly the set-
tings of that could be optimal solutions to LCLP. (Using
would introduce “false” vertices that would be optimal points
only if the problem included costs on the variables.)

For a point in , define the weight of to be , and let
be the set of nonzero vertices of . We define the fractional

distance of a code to be the minimum weight of any vertex in
. Note that this fractional distance is always a lower bound

on the classical distance of the code, since every nonzero code-
word is contained in . Moreover, the performance of LP de-
coding is tied to this fractional distance, as we make precise in
the following.

Theorem 9: For a code with fractional distance , the
LP decoder is successful if at most bits are flipped
by the binary symmetric channel.

Proof: Suppose the LP decoder fails; i.e., the optimal so-
lution to LCLP has . We know that must be
a vertex of . Since , we have . This implies
that , since the fractional distance is at least .

Let be the set of bits flipped by the channel.
Under the BSC, and the all-zeros assumption, we have
if , and if . Therefore, we can write the cost
of as the following:

(12)

Since at most bits are flipped by the channel, we
have that , and so

It follows that

since . Therefore, by (12), we have .
However, by Theorem 5 and the fact that the decoder failed, the
optimal solution to LCLP must have cost less than or
equal to zero; i.e., . This is a contradiction.

Note again the analogy to the classical case: just as exact ML
decoding has a performance guarantee in terms of classical dis-
tance, Theorem 9 establishes that the LP decoder has a perfor-
mance guarantee specified by the fractional distance of the code.

B. Computing the Fractional Distance

In contrast to the classical distance, the fractional distance of
an LDPC code can be computed efficiently. Since the fractional
distance is a lower bound on the real distance, we thus have
an efficient algorithm to give a nontrivial lower bound on the
distance of an LDPC code.

To compute the fractional distance, we must compute the
minimum-weight vertex in . We first consider a more gen-
eral problem: given the facets of a polytope over vertices

, a specified vertex of , and a linear function
, find the vertex in other than that minimizes .

An efficient algorithm for this problem is the following: let be
the set of all facets of on which does not sit. Now for each
facet in , intersect with the facet to obtain , and then opti-
mize over . The minimum value obtained over all facets
in is the minimum of over all vertices other than .
The running time of this algorithm is equal to the time taken by

calls to an LP solver.
This algorithm is correct by the following argument. It is

well known [23] that a vertex of a polytope of dimension is
uniquely determined by giving linearly independent facets of
the polytope on which the vertex sits. Using this fact, it is clear
that the vertex we are looking for must sit on some facet in

; otherwise, it would be the same point as . Therefore, at
some point in our procedure, each potential is considered.
Furthermore, when we intersect with a facet of to obtain

962 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

Fig. 5. The average fractional distance d as a function of length for a
randomly generated LDPC code, with left degree 3, right degree 4, from an
ensemble of Gallager [7].

we have that all vertices of are vertices of not equal to
. Therefore, the true will obtain the minimum value over

all facets in .
For our problem, we are interested in the polytope , and the

special vertex . In order to run the above procedure,
we use the small explicit representation of given by (9) and
Theorem 4. The number of facets in this representation of has
an exponential dependence on the check degree of the code. For
an LDPC code, the number of facets will be linear in , so that
we can compute the exact fractional distance efficiently. For ar-
bitrary linear codes, we can still compute the minimum-weight
nonzero vertex of (from Section III-C), which provides a (pos-
sibly weaker) lower bound on the fractional distance. However,
this representation (given explicitly in Appendix II) introduces
many auxiliary variables, and therefore may have many “false”
vertices with low weight.

C. Experiments

Fig. 5 gives the average fractional distance of a randomly
chosen LDPC factor graph, computed using the algorithm we
just described. The graph has left degree , right degree , and
is randomly chosen from an ensemble of Gallager [7]. This data
is insufficient to extrapolate the growth rate of the fractional
distance; however, it certainly grows nontrivially with the block
length. We had conjectured that this growth rate could be made
linear in the block length [17]; for the case of graphs with regular
degree, this conjecture has since been disproved by Koetter and
Vontobel [20].

Fig. 6 gives the fractional distance of the “normal realiza-
tions” of the Reed–Muller(,) codes [31].1 These codes,
well defined for lengths equal to a power of , have a classical
distance of exactly . The curve in the figure suggests that the
fractional distance of these graphs is roughly . Note that
for both these code families, there may be alternate realizations
(factor graphs) with better fractional distance.

1We thank G. David Forney for suggesting the study of the normal realizations
of the Reed–Muller codes.

Fig. 6. The classical versus fractional distance of the “normal realizations” of
the Reed–Muller(n � 1, n) codes [31]. The classical distance of these codes
is exactly n=2. The upper part of the fractional distance curve follows roughly
n .

D. The Max-Fractional Distance

In this subsection, we define another notion of fractional dis-
tance, which we call the max-fractional distance. This is simply
the fractional distance, normalized by the maximum value.
We can also show that the LP decoder corrects up to half the
max-fractional distance. Furthermore, we prove in the next sec-
tion that the max-fractional distance grows exponentially in the
girth of .

We define the max-fractional distance of the code using
polytope as

Using essentially the same proof as for Theorem 9, we obtain
the following.

Theorem 10: For a code with max-fractional distance
, the LP decoder is successful if at most bits

are flipped by the binary-symmetric channel.

The exact relationship between and is an inter-
esting question. Clearly, in general, since
is always at most . In fact, we know that ,
which follows from the fact that for all , there is some
for which . (The proof of this fact comes from simple
scaling arguments.) Therefore, for LDPC codes, the two quan-
tities are the same up to a constant factor. We can compute the
max-fractional distance efficiently using an algorithm similar to
the one used for the fractional distance: we reduce the problem
of finding the point with the minimum to finding the min-
imum-weight point in a polytope.

E. A Lower Bound Using the Girth

The following theorem asserts that the max-fractional dis-
tance is exponential in the girth of . It is analogous to an ear-
lier result of Tanner [32], which provides a similar bound on the
classical distance of a code in terms of the girth of the associ-
ated factor graph.

FELDMAN et al.: USING LINEAR PROGRAMMING TO DECODE BINARY LINEAR CODES 963

Theorem 11: Let be a factor graph with and .
Let be the girth of , . Then the max-fractional distance
is at least .

This theorem is proved in Appendix IV, and makes heavy
use of the combinatorial properties of pseudocodewords. One
consequence of Theorem 11 is that the max-fractional distance
is at least for some constant (where),
for any graph with girth . Note that there are many
known constructions of such graphs (e.g., [33]). Although The-
orem 11 does not yield a bound on the word error rate (WER)
for the BSC, it demonstrates that LP decoding can always cor-
rect errors, for any code defined by a graph with loga-
rithmic girth.

VII. COMPARISON TO ITERATIVE DECODING

In this section, we draw several connections between LP de-
coding and iterative decoding for several code types and channel
models. We show that many known combinatorial character-
izations of decoding success are in fact special cases of our
definition of a pseudocodeword. We discuss stopping sets in
the BEC, cycle codes, tail-biting trellises, the tree-reweighted
max-product algorithm of Wainwright et al. [26], and min-sum
decoding.

At the end of the section, we give some experimental results
comparing LP decoding with the min-sum and sum-product
(BP) algorithms.

A. Stopping Sets in the BEC

In the BEC, bits are not flipped but rather erased. Conse-
quently, for each bit, the decoder receives either , , or an era-
sure. If either symbol or is received, then it must be correct.
On the other hand, if an erasure (which we denote by) is re-
ceived, there is no information about that bit. It is well known
[3] that in the BEC, the iterative BP decoder fails if and only if
a “stopping set” exists among the erased bits. The main result
of this section is that stopping sets are the special case of pseu-
docodewords on the BEC, and so LP decoding exhibits the same
property.

We can model the BEC in LCLP with our cost function . As
in the BSC, if the received bit , and
if . If , we set , since we have no informa-
tion about that bit. Note that under the all-zeros assumption, all
the costs are nonnegative, since no bits are flipped. Therefore,
Theorem 8 implies that the LP decoder will fail only if there is
a nonzero pseudocodeword with zero cost.

Let be the set of code bits erased by the channel. A subset
is a stopping set if all the checks in the neighborhood

of have degree at least two with respect to . In
the following statement, we have assumed that both the iterative
and the LCLP decoders fail when the answer is ambiguous. For
the iterative algorithm, this ambiguity corresponds to the exis-
tence of a stopping set; for the LCLP algorithm, it corresponds
to a nonzero pseudocodeword with zero cost, and hence mul-
tiple optima for the LP.

Theorem 12: Under the BEC, there is a nonzero pseudocode-
word with zero cost if and only if there is a stopping set. There-
fore, the performance of LP and BP decoding are equivalent for
the BEC.

Proof: If there is a zero-cost pseudocodeword, then
there is a stopping set. Let be a pseudocodeword where

. Let . Since all , we must
have for all ; therefore, .

Suppose is not a stopping set; then
where check node has only one neighbor in . By the defi-
nition of a pseudocodeword, we have .
Since (by the definition of), there must be some

, such that . Since has even cardi-
nality, there must be at least one other code bit in , which
is also a neighbor of check . We have by the def-
inition of pseudocodeword, and so , implying .
This contradicts the fact that has only one neighbor in .

If there is a stopping set, then there is a zero-cost pseudocode-
word. Let be a stopping set. Construct pseudocodeword
as follows. For all , set ; for all , set .
Since , we immediately have .

For a check , let . For all ,
where even, set . By the definition of a stop-
ping set, , so if is odd, then . For all

, where odd, let be an
arbitrary size- subset of . If , set .
Set Set all other

that we have not set in this process. We have

for all

Additionally

for all

Therefore, is a pseudocodeword.

B. Cycle Codes

A cycle code is a binary linear code described by a factor
graph whose variable nodes all have degree . In this case, pseu-
docodewords consist of a collection of cycle-like structures we
call promenades [1]. This structure is a closed walk through the
graph that is allowed to repeat nodes, and even traverse edges in
different directions, as long as it makes no “U-turns;” i.e., it does
not use the same edge twice in a row. Wiberg [4] calls these same
structures irreducible closed walks. We may conclude from this
connection that iterative and LP decoding have identical perfor-
mance in the case of cycle codes.

We note that even though cycle codes are poor in general,
they are an excellent example of when LP decoding can decode
beyond the minimum distance. For cycle codes, the minimum
distance is no better than logarithmic. However, we showed [1]
that there are cycle codes for which LP decoding has a WER of

for any , requiring only that the crossover probability
is bounded by a certain function of the constant (independent
of).

964 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

C. Tail-Biting Trellises

On tail-biting trellises, one can write down a linear program
similar to the one we explored for turbo codes [1] such that pseu-
docodewords in this LP correspond to those analyzed by Forney
et al. [5]. This linear program is, in fact, an instance of network
flow, and therefore is solvable by a more efficient algorithm than
a generic LP solver. (See [17] for a general treatment of LPs for
trellis-based codes, including turbo-like codes.)

In this case, pseudocodewords correspond to cycles in a di-
rected graph (a circular trellis). All cycles in this graph have
length for some integer . Codewords are simple cy-
cles of length exactly . Forney et al. [5] show that iterative
decoding will find the pseudocodeword with minimum weight-
per-symbol. Using basic network flow theory, it can be shown
that the weight-per-symbol of a pseudocodeword is the same as
the cost of the corresponding LP solution. Thus, these two algo-
rithms have identical performance.

We note that to get this connection to tail-biting trellises, if
the code has a factor graph representation, it is not sufficient
simply to write down the factor graph for a code and plug in
the polytope . This would be a weaker relaxation in general.
One has to define a new linear program like the one we used
for turbo-like codes [1]. With this setup, the problem reduces
directly to min-cost flow.

D. Tree-Reweighted Max-Product

In earlier work [2], we explored the connection between
this LP-based approach applied to turbo codes, and the
tree-reweighted max-product message-passing algorithm de-
veloped by Wainwright, Jaakkola, and Willsky [26]. Similar
to the usual max-product (min-sum) algorithm, the algorithm
is based on passing messages between nodes in the factor
graph. It differs from the usual updates in that the messages are
suitably reweighted according the structure of the factor graph.
By drawing a connection to the dual of our linear program, we
showed that whenever this algorithm converges to a codeword,
it must be the ML codeword. Note that the usual min-sum
algorithm does not have such a guarantee.

E. Min-Sum Decoding

The deviation sets defined by Wiberg [4], and further refined
by Forney et al. [6] can be compared to pseudocodeword graphs.
The computation tree of the iterative min-sum algorithm is a
map of the computations that lead to the decoding of a single
bit at the root of the tree. This bit will be decoded correctly
(assuming the all-zeros word is sent) unless there is a negative-
cost locally consistent minimal configuration of the tree that sets
this bit to . Such a configuration is called a deviation set, or a
pseudocodeword.

All deviation sets have a support, which is the set of nodes
in the configuration that are set to . All such supports are
acyclic graphs of the following form. The nodes of are nodes
from the factor graph, possibly with multiple copies of a node.
Furthermore,

• all the leaves of are variable nodes;

Fig. 7. A waterfall-region comparison between the performance of LP
decoding and min-sum decoding (with 100 iterations) under the BSC using
the same random rate-1=2 LDPC code with length 200, left degree 3, and
right degree 6. For each trial, both decoders were tested with the same channel
output. The “Both Error” curve represents the trials where both decoders failed.

• each nonleaf variable node is connected to one copy
of each check node in ; and

• each check node has even degree.
As is clear from the definition, deviation sets are quite sim-

ilar to pseudocodeword graphs; essentially the only difference is
that deviation sets are acyclic. In fact, if we removed the “non-
leaf” condition above, the two would be equivalent. In his thesis,
Wiberg states:

Since the (graph) is finite, an infinite deviation cannot be-
have completely irregularly; it must repeat itself somehow.
… It appears natural to look for repeatable, or ’closed’
structures (in the graph)…, with the property that any de-
viation can be decomposed into such structures. [4]

Our definition of a pseudocodeword is the natural “closed”
structure within a deviation set. However, an arbitrary deviation
set cannot be decomposed into pseudocodewords, since it may
be irregular near the leaves. Furthermore, as Wiberg points out,
the cost of a deviation set is dominated by the cost near the
leaves, since the number of nodes grows exponentially with the
depth of the tree.

Thus, strictly speaking, min-sum decoding and LP decoding
are incomparable. However, experiments suggest that it is rare
for min-sum decoding to succeed and LP decoding to fail (see
Fig. 7). We also conclude from our experiments that the irregular
“unclosed” portions of the min-sum computation tree are not
worth considering; they more often hurt the decoder than help it.

F. New Iterative Algorithms and ML Certificates
From the LP Dual

In earlier work [2], we described how the iterative subgra-
dient ascent [34] algorithm can be used to solve the LP dual for
RA codes. Thus, we have an iterative decoder whose error-cor-
recting performance is identical to that of LP decoding in this
case. This technique may also be applied in the general setting
of LDPC codes [17]; thus, we have an iterative algorithm for any
LDPC code with all the performance guarantees of LP decoding.

FELDMAN et al.: USING LINEAR PROGRAMMING TO DECODE BINARY LINEAR CODES 965

Fig. 8. A comparison between the performance of LP decoding, min-sum
decoding (100 iterations) and BP (100 iterations) under the BSC using the same
random rate-1=4 LDPC code with length 200, left degree 3, and right degree 4.

Fig. 9. A comparison between the performance of ML decoding, LP decoding,
min-sum decoding (100 iterations), and BP (100 iterations) under the BSC using
the same random rate-1=4 LDPC code with length 60, left degree 3, and right
degree 4. The ML decoder is a mixed-integer programming decoder using the
LP relaxation.

Furthermore, we show [17] that LP duality can be used to give
any iterative algorithm the ML certificate property; that is, we
derive conditions under which the output of a message-passing
decoder is provably the ML codeword.

G. Experimental Comparison

We have compared the performance of the LP decoder with
the min-sum and sum-product decoders on the BSC. We used
a randomly generated rate- LDPC code with left degree ,
and right degree . Fig. 8 shows an error-rate comparison in
the waterfall region for a block length of . We see that LP
decoding performs better than min-sum in this region, but not
as well as sum-product.

However, when we compare all three algorithms to ML de-
coding, it seems that at least on random codes, all three have
similar performance. This is shown in Fig. 9. In fact, we see
that LP decoding slightly outperforms sum-product at very low
noise levels. It would be interesting to see whether this is a gen-
eral phenomenon, and whether it can be explained analytically.

Fig. 10. Error-correcting performance gained by adding a set of (redundant)
parity checks to the factor graph. The code is a randomly selected regular LDPC
code, with length 40, left degree 3, and right degree 4, from an ensemble of
Gallager [7]. The “First-Order Decoder” is the LP decoder using the polytope
Q defined on the original factor graph. The “Second-Order Decoder” uses the
polytope Q defined on the factor graph after adding a set of redundant parity
checks; the set consists of all checks that are the sum (mod2) of two original
parity checks.

VIII. TIGHTER RELAXATIONS

It is important to observe that LCLP has been defined with
respect to a specific factor graph. Since a given code has
many such representations, there are many possible LP-based
relaxations, and some may be better than others. Of particular
significance is the fact that adding redundant parity checks to
the factor graph, though it does not affect the code, provides
new constraints for the LP relaxation, and will in general
strengthen it. For example, returning to the Hamming
code of Fig. 1, suppose we add a new check node whose neigh-
borhood is . This parity check is redundant for the
code, since it is simply the mod two sum of checks and .
However, the linear constraints added by this check tighten the
relaxation; in fact, they render our example pseudocodeword

infeasible. Whereas redundant
constraints may degrade the performance of BP decoding (due
to the creation of small cycles), adding new constraints can
only improve LP performance.

As an example, Fig. 10 shows the performance improvement
achieved by adding all “second-order” parity checks to a factor
graph . By second-order we mean all parity checks that are the
sum of two original parity checks. A natural question is whether
adding all redundant parity checks results in the codeword poly-
tope . This turns out not to be the case; the dual of the

Hamming code provides one counterexample.
In addition to redundant parity checks, there are various

generic ways in which an LP relaxation can be strengthened
(e.g., [35], [36]). Such “lifting” techniques provide a nested
sequence of relaxations increasing in both tightness and com-
plexity, the last of which is equivalent to (albeit with
exponential complexity). Therefore, we obtain a sequence of
decoders, increasing in both performance and complexity, the
last of which is an (intractable) ML decoder. It would be inter-
esting to analyze the rate of performance improvement along

966 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

Fig. 11. The WER of the lift-and-project relaxation compared with LP
decoding and ML decoding.

this sequence. Fig. 11 shows the performance gained by one
application of the “lift-and-project” [35] method on a random

LDPC code of length . Another interesting question
is how complex a decoder is needed in order to surpass the
performance of BP.

Finally, the fractional distance of a code, as defined here, is
also a function of the factor graph representation of the code.
Fractional distance yields a lower bound on the true distance,
and the quality of this bound could also be improved by adding
redundant constraints, or other methods of tightening the LP.

A. ML Decoding Using Integer Programming

Another interesting application of LP decoding is to use the
polytope to perform true ML decoding. An integer program
(IP) is an optimization problem that allows integer constraints;
that is, we may force variables to be integers. If we add the con-
straint to our linear program, then we get an exact
formulation of ML decoding. In general, integer programming
is NP-hard, but there are various methods for solving an IP that
far outperform the naive exhaustive search routines for ML de-
coding. Using the program CPLEX [37], we were able to per-
form ML decoding on LDPC codes with moderate block lengths
(up to about 100) in a “reasonable” amount of time. Fig. 9 in-
cludes an error curve for ML decoding an LDPC code with a
block length of . Each trial took no more than a few seconds
(and often much less) on a Pentium IV (2-GHz) processor.

Drawing this curve allows us to see the gap between various
suboptimal algorithms and the optimal ML decoder. This gap
further motivates the search for tighter LP relaxations to ap-
proach ML decoding. The running time of this decoder becomes
prohibitive at longer block lengths; however, ML decoding at
small block lengths can be very useful in evaluating algorithms,
and determining whether decoding errors are the fault of the de-
coder or the code.

IX. DISCUSSION

We have described an LP-based decoding method, and proved
a number of results on its error-correcting performance. Cen-
tral to this characterization is the notion of a pseudocodeword,

which corresponds to a rescaled solution of the LP relaxation.
Our definition of pseudocodeword unifies previous work on it-
erative decoding (e.g., [5], [6], [4], [3]). We also introduced the
fractional distance of a code, a quantity which shares the worst
case error-correcting guarantees with the classical notion, but
with an efficient algorithm to realize those guarantees.

There are a number of open questions and future directions
suggested by the work presented in this paper, some of which
we detail here. In an earlier version of this work [15], we had
suggested using graph expansion to improve the performance
bounds given here. This has been accomplished [18] to some
degree, and we now know that LP decoding can correct a con-
stant fraction of error. However, there is still work to be done in
order to improve the constant to the level of the best known (e.g.,
on the Zyablov bound or beyond). We also know that LP de-
coding can achieve the capacity of many commonly considered
channels [19]. It would be interesting to see if these methods
can be extended to achieve capacity without an exponential de-
pendence on the gap to capacity (all known capacity-achieving
decoders also have this dependence).

Since turbo codes and “turbo-like” codes have much more ef-
ficient encoders than LDPC codes, it would be interesting to see
if LP decoding can be used to obtain good performance bounds
in this setting as well. In previous work on RA codes [1], we
were able to prove a bound on the error rate of LP decoding
stronger than that implied by the minimum distance. Analo-
gous LP decoders for general “turbo-like” codes have also been
given [17], but it remains to provide satisfying analysis of their
performance.

APPENDIX I
PROVING THEOREM 4

Recall that is the set of points such that for
all , and for all , odd

(13)

To prove Theorem 4, it remains to show the following.

Theorem 13: [29] The polytope

s.t.

Proof: For all , the variable is unconstrained
in both and (aside from the constraints);
thus, we may ignore those indices, and assume that .
(We henceforth use to denote .)

Let be a point in . By the constraints (6) and (7), is the
convex hull of the incidence vectors of even-sized sets .
Since all such vectors satisfy the constraints (13) for check node
, then must also satisfy these constraints. Therefore, .

For the other direction, suppose some point is not
contained in . Then some facet of cuts (makes it
infeasible). Since for all , it must be the case
that passes through the hypercube , and so it must cut
off some vertex of the hypercube; i.e., some . Since
all incidence vectors of even-sized sets are feasible for , the
vertex must be the incidence vector for some odd-sized set

.

FELDMAN et al.: USING LINEAR PROGRAMMING TO DECODE BINARY LINEAR CODES 967

For a particular , let if ,
and if . We specify the facet in terms of the
variables , using the equation

Since is infeasible for , it must be that . Since
for all , we have , so we may

conclude that .
For some , let denote vector with bit flipped;

i.e., and for all . Since has odd
parity, we have that for all , has even parity, so ,
and is not cut by . This implies that for all

Note that for all , and

So, we may conclude , for all .
Except for the case , the polytope is full-dimen-

sional. For example, the set of points with exactly two (cycli-
cally) consecutive ’s is a full-dimensional set. (For a full proof,
see [29]). Therefore, must pass through vertices of ; i.e.,
it must pass through at least even-parity binary vectors. This
claim is still true for the case , since both faces in this case
pass through both points.

We claim that those vectors must be the points
. Suppose this is not the case. Then some vertex of

is on the facet , and differs from in more than one place.
Suppose without loss of generality (w.l.o.g.) that and

, and so , . Since is on , we have
. Therefore,

Since , we have , and so

This contradicts the fact that .
Thus, passes through the vertices . It is

not hard to see that is exactly the odd-set constraint (13) cor-
responding to the set for which is the incidence vector.
Since cuts , and is a facet of , we have , a
contradiction.

APPENDIX II
HIGH-DENSITY POLYTOPE REPRESENTATION

In this appendix, we give a polytope of for use in LCLP
with variables and con-
straints. This polytope provides an efficient way to perform LP
decoding for any binary linear code. This polytope was derived
from the “parity polytope” of Yannakakis [30].

For a check node , let
be the set of even numbers between and . Our new rep-
resentation has three sets of variables.

• For all , we have a variable , where .
This variable represents the code bit , as before.

• For all and , we have a variable ,
. This variable indicates the contribution

of weight- local codewords.
• For all , , and , we have a variable

, , indicating the portion of
locally assigned to local codewords of weight .

Using these variables, we have the following constraint set:

(14)

(15)

(16)

(17)

(18)

(19)

Let be the set of points such that the above
constraints hold. This polytope has only vari-
ables per check node , plus the variables, for a total of

variables. The number of constraints is at
most . In total, this representation has at
most variables and constraints. We must now show that
optimizing over is equivalent to optimizing over . Since
the cost function only affects the variables, it suffices to
show that the two polytopes have the same projection onto the

variables. Before proving this, we need the following fact.

Lemma 14: Let , , and
, where , , , and all are nonnegative integers. Then,

can be expressed as the sum of sets of size . Specifically,
there exists a setting of the variables

to nonnegative integers such that , and for all
, .

Proof: By induction on .2 The base case is
simple; all are equal to either or , and so exactly of them
are equal to . Set .

For the induction step, assume w.l.o.g. that
. Set , where if , and

otherwise. The fact that and for all
implies that for all , and for all .

Therefore, for all . We also have

Therefore, by induction, can be expressed as the sum of ,
where has size . Set , then increase by .
This setting of expresses .

Proposition 15: The set is
equal to the set s.t. . Therefore,
optimizing over is equivalent to optimizing over .

Proof: Suppose . Set

(20)

2We thank Ryan O’Donnell for showing us this proof.

968 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

(21)

It is clear that the constraints (17)–(19) are satisfied by this set-
ting. Constraint (14) is implied by (7) and (21). Constraint (15)
is implied by (6) and (20). Finally, we have, for all ,

(by (21))

(by (20))

giving constraint (16).
Now suppose is a vertex of the polytope , and so

all variables are rational. For all , , consider the set

By (19), all members of are between and . Let be a
common divisor of the numbers in such that is an integer.
Let

The set consists of integers between and . By (16), we
have that the sum of the elements in is equal to . So, by
Lemma 14, the set can be expressed as the sum of sets of
size . Set the variables according to
Lemma 14. Now set , for all .
We immediately satisfy (5). By Lemma 14 we get

(22)

and

(23)

By (14), we have

(by (22))

giving (7). By (15), we have

(by (23))

giving (6). Since this construction works for all vertices of ,
the projection of any point in onto the variables must be
in s.t. .

APPENDIX III
PROVING THEOREM 6

In this appendix, we show that the all-zeros assumption is
valid when analyzing LP decoders defined on factor graphs.
Specifically, we prove the following theorem.

Theorem 6: The probability that the LP decoder fails is in-
dependent of the codeword that was transmitted.

Proof: Recall that is the probability that the
LP decoder makes an error, given that was transmitted. For an
arbitrary transmitted word , we need to show that

Define to be the set of received words that
would cause decoding failure, assuming was transmitted. By
Theorem 5

Note that in the above, the cost vector is a function of the
received word . Rewriting (11), we have for all codewords

(24)

Applying this to the codeword , we get

(25)

We will show that the space of possible received vectors
can be partitioned into pairs such that

and if and only if . This, along with (24)
and (25), gives

The partition is performed according to the symmetry of the
channel. Fix some received vector . Define as follows: let

if , and if , where is the
symmetric symbol to in the channel. Note that this operation
is its own inverse and therefore gives a valid partition of into
pairs.

First, we show that . From the
channel being memoryless, we have

0 1

0 1

(26)

0 1

(27)

0 1

(28)

Equations (26) and (28) follow from the definition of , and
(27) follows from the symmetry of the channel.

FELDMAN et al.: USING LINEAR PROGRAMMING TO DECODE BINARY LINEAR CODES 969

Now it remains to show that if and only if
. Let be the cost vector when is received, and let

be the cost vector when is received, as defined in (3).
Suppose . Then, , and so . Now

suppose ; then , and so

(29)

Equation (29) follows from the symmetry of the channel. We
conclude that

and if (30)

The following lemma shows a correspondence between the
points of under cost function , and the points of under
cost function .

Lemma 16: Fix some codeword . For every ,
, there is some , , such that

Furthermore, for every , , there is some
, , such that

We prove this lemma later in this section. Now suppose
, and so by the definition of there is some ,

where

By Lemma 16, there is some , , such that

Therefore, . A symmetric argument (using the other
half of the lemma) shows that if then .

Before proving Lemma 16, we need to define the notion of a
relative solution in , and prove results about its feasibility and
cost. For two sets and , let denote the symmetric
difference of and , i.e., . Let

be the point in LCLP corresponding to the codeword
sent over the channel. For a particular feasible solution
to LCLP, set to be the relative solution with respect to

as follows: For all bits , set . For all
checks , let be the member of where . For all

, set .
Note that for a fixed , the operation of making a rel-

ative solution is its own inverse; i.e., the relative solution to
is .

Lemma 17: For a feasible solution to LCLP, the rela-
tive solution with respect to is also a feasible
solution to LCLP.

Proof: First consider the bounds on the variables (see (4)
and (5)). These are satisfied by definition of , and the
fact that both and are feasible. Now consider the
distribution constraints (6). From the feasibility of and
the definition of we have, for all checks

(31)

where is defined as in the definition of . Note that

so we get , satisfying the distribution
constraints.

It remains to show that satisfies the consistency con-
straints (7). In the following, we assume that sets are con-
tained within the appropriate set , which will be clear from
context. For all edges in , we have

(32)

• Case 1: . In this case, from (32) we have

The last step follows from the fact that

as long as .
• Case 2: . From (32), we have

(by (31))

(33)

The last step follows from the fact that

as long as . Finally, from the distribution constraints on
, we get , and therefore, by (33),

Lemma 18: Given a point , and its relative solu-
tion , we have

Proof: From the definition of , we have

970 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

Using (30), we get

The lemma follows from the fact that .

We are now ready to prove Lemma 16, which completes the
proof of Theorem 6. We restate the lemma here for reference.

Lemma 16: Fix some codeword . For every ,
, there is some , , such that

Furthermore, for every , , there is some
, , such that

Proof: Consider some , and let be
the relative solution with respect to . By Lemma 17,

. By definition, , since . By Lemma
18

For the second part of the lemma, consider some
, and let be the relative solution with respect to . By

Lemma 17, . By definition, , since .
Because the operation of making a relative solution is its own

inverse, the relative solution to is . Therefore, by
Lemma 18

APPENDIX IV
PROVING THEOREM 11

Before proving Theorem 11, we will prove a few useful facts
about pseudocodewords and pseudocodeword graphs. For all
the theorems in this section, let be a factor graph with all
variable nodes having degree at least , where and all
check nodes having degree at least , where . Let
be the girth of , . Let be the graph of some arbitrary
pseudocodeword of , .

We define a promenade to be a path
in that may repeat nodes and edges, but takes no U-turns; i.e.,
for all , , . We will also use to
represent the set of nodes on the path (the particular use will
be clear from context). Note that each could be a variable or a
check node. These paths are similar to the notion of promenade
in [1], and to the irreducible closed walk of Wiberg [4]. A simple
path of a graph is one that does not repeat nodes.

Recall that and represent the sets of variable and
check nodes in that are copies of the same node in the un-
derlying factor graph . For a variable node , let
be the corresponding node in ; i.e., if
is a variable node, and (for some)
if is a check node.

Claim 19: For all promenades of length less than the girth
of , is a simple path in , and also represents a simple path
in . More precisely, for all promenades

is a simple path in , and that

is a simple path in .
Proof: First note that is a valid path. By construc-

tion, if there is an edge in , there must be an edge
in . If is simple, then must be

simple, so we only need to show that is simple. This is
true since the length of is less than the girth of the graph.

For the remainder of this appendix, suppose w.l.o.g. that
. Thus, . Note that is even, since is

bipartite. For all , let be the set of nodes in
within distance of ; i.e., is the set of nodes

with a path in of length at most from .

Claim 20: The subgraph induced by the node set is a tree.
Proof: Suppose this is not the case. Then, for some node

in , there are at least two different paths from to ,
each with length at most . This implies a cycle in
of length less than ; a contradiction to Claim 19.

Claim 21: The node subsets in are all mu-
tually disjoint.

Proof: Suppose this is not the case; then, for some ,
and share at least one vertex. Let be the vertex in

closest to the root that also appears in . Now consider
the promenade , where the
subpath from to is the unique such path in the tree ,
and the subpath from to is the unique such path in the
tree . We must show that has no U-turns. The subpaths

and are simple, so we must
show only that . Since we chose to be the node closest
to that appears in , must not appear in , and so

. Since , must be simple path by Claim
19. However, it is not, since node appears twice in , once
at the beginning and once at the end. This is a contradiction.

Claim 22: The number of variable nodes in is at least
.

Proof: Take one node set . We will count the number
of nodes on each “level” of the tree induced by . Each level

consists of all the nodes at distance from . Note that
even levels contain variable nodes, and odd levels contain check
nodes.

FELDMAN et al.: USING LINEAR PROGRAMMING TO DECODE BINARY LINEAR CODES 971

Consider a variable node on an even level. All variable
nodes in are incident to at least other nodes, by the con-
struction of . Therefore, has at least children
in the tree on the next level. Now consider a check node on an
odd level; check nodes are each incident to at least two nodes,
so this check node has at least one child on the next level.

Thus, the tree expands by a factor of at least
from an even to an odd level. From an odd to an even level, it
may not expand, but it does not contract. The final level of the
tree is level , and thus, the final even level is level

. By the expansion properties we showed, this
level (and, therefore, the tree) must contain at least

variable nodes.
By Claim 21, each tree is independent, so the number of vari-

able nodes in is at least .

Theorem 11: Let be a factor graph with and
. Let be the girth of , . Then the max-fractional

distance is at least .
Proof: Let be an arbitrary vertex in . Construct

a pseudocodeword from as in Lemma 8; i.e., let
be an integer such that is an integer for all bits , and
is an integer for all for all checks and sets . Such
an integer exists because is a vertex of , and therefore
rational [23]. For all bits , set ; for all checks and
sets , set .

Let be a graph of the pseudocodeword , as defined
in Section V-A. By Lemma 22, has at least

variable nodes. Since the number of variable nodes is equal to
, we have

(34)

Recall that . Substituting into (34), we have

It follows that

This argument holds for an arbitrary where
. Therefore.

REFERENCES

[1] J. Feldman and D. R. Karger, “Decoding turbo-like codes via linear pro-
gramming,” in Proc. 43rd Annu. IEEE Symp. Foundations of Computer
Science (FOCS), Vancouver, BC, Canada, Nov. 2002, pp. 251–260.

[2] J. Feldman, M. J. Wainwright, and D. R. Karger, “Linear program-
ming-based decoding of turbo-like codes and its relation to iterative
approaches,” in Proc. Allerton Conf. Communications, Control and
Computing, Monticello, IL, Oct. 2002.

[3] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, “Fi-
nite-length analysis of low-density parity-check codes on the binary era-
sure channels,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579,
Jun. 2002.

[4] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Linköping University, Linköping, Sweden, 1996.

[5] G. D. Forney, F. R. Kschischang, B. Marcus, and S. Tuncel, “Iterative de-
coding of tail-biting trellises and connections with symbolic dynamics,”
in Codes, Systems and Graphical Models. New York: Springer-Verlag,
2001, pp. 239–241.

[6] G. D. Forney, R. Koetter, F. R. Kschischang, and A. Reznik, “On the
effective weights of pseudocodewords for codes defined on graphs
with cycles,” in Codes, Systems and Graphical Models. New York:
Springer-Verlag, 2001, pp. 101–112.

[7] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. IT-8, no. 1, pp. 21–28, Jan. 1962.

[8] D. MacKay, “Good error correcting codes based on very sparse ma-
trices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar.
1999.

[9] M. Sipser and D. Spielman, “Expander codes,” IEEE Trans. Inf. Theory,
vol. 42, no. 6, pp. 1710–1722, Nov. 1996.

[10] S.-Y. Chung, G. D. Forney, T. Richardson, and R. Urbanke, “On the de-
sign of low-density parity-check codes within 0.0045 dB of the Shannon
limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

[11] R. McEliece, D. MacKay, and J. Cheng, “Turbo decoding as an instance
of Pearl’s belief propagation algorithm,” IEEE J. Sel. Areas Commun.,
vol. 16, no. 2, pp. 140–152, Feb. 1998.

[12] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb. 2001.

[13] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Improved low-density parity-check codes using irregular graphs and
belief propagation,” in Proc. IEEE Int. Symp. Information Theory, Cam-
bridge, MA, Oct. 1998, p. 117.

[14] B. J. Frey, R. Koetter, and A. Vardy, “Signal-space characterization of
iterative decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 766–781,
Feb. 2001.

[15] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear program-
ming to decode linear codes,” presented at the 37th Annu. Conf. on In-
formation Sciences and Systems (CISS ’03), Baltimore, MD, Mar. 2003.

[16] J. Feldman, D. R. Karger, and M. J. Wainwright, “LP decoding,” in Proc.
41st Annu. Allerton Conf. Communications, Control, and Computing,
Monticello, IL, Oct. 2003.

[17] J. Feldman, “Decoding error-correcting codes via linear programming,”
Ph.D. dissertation, MIT, Cambridge, MA, 2003.

[18] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright,
“LP decoding corrects a constant fraction of errors,” in Proc. IEEE Int.
Symp. Information Theory, Chicago, IL, Jun./Jul. 2004, p. 68.

[19] J. Feldman and C. Stein, “LP decoding achieves capacity,” in Proc.
Symp. Discrete Algorithms (SODA ’05), Vancouver, BC, Canada, Jan.
2005.

[20] R. Koetter and P. O. Vontobel, “Graph-covers and iterative decoding of
finite length codes,” in Proc. 3rd Int. Symp. Turbo Codes, Brest, France,
Sep. 2003, pp. 75–82.

[21] P. Vontobel and R. Koetter, “On the relationship between linear pro-
gramming decoding and max-product decoding,” paper submitted to Int.
Symp. Information Theory and its Applications, Parma, Italy, Oct. 2004.

[22] , “Lower bounds on the minimum pseudo-weight of linear codes,”
in Proc. IEEE Int. Symp. Information Theory, Chicago, IL, Jun./Jul.
2004, p. 70.

[23] A. Schrijver, Theory of Linear and Integer Programming. New York:
Wiley, 1987.

[24] M. Grotschel, L. Lovász, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization,” Combinatorica, vol. 1,
no. 2, pp. 169–197, 1981.

972 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

[25] E. Berlekamp, R. J. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems,” IEEE Trans. Inf. Theory, vol.
IT-24, no. 3, pp. 384–386, May 1978.

[26] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MAP estimation
via agreement on (hyper)trees: Message-passing and linear program-
ming approaches,” in Proc. 40th Annu. Allerton Conf. Communication,
Control, and Computing, Monticello, IL, Oct. 2002.

[27] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding Belief Prop-
agation and its Generalizations,” Mitsubishi Electric Res. Labs, Tech.
Rep. TR2001-22, 2002.

[28] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimiza-
tion. Belmont, MA: Athena Scientific, 1997.

[29] R. G. Jeroslow, “On defining sets of vertices of the hypercube by linear
inequalities,” Discr. Math., vol. 11, pp. 119–124, 1975.

[30] M. Yannakakis, “Expressing combinatorial optimization problems by
linear programs,” J. Comp. Syst. Sci., vol. 43, no. 3, pp. 441–466, 1991.

[31] G. D. Forney Jr., “Codes on graphs: Normal realizations,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 529–548, Feb. 2001.

[32] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533–547, Sep. 1981.

[33] J. Rosenthal and P. O. Vontobel, “Constructions of LDPC codes using
Ramanujan graphs and ideas from Margulis,” in Proc. 38th Annu.
Allerton Conf. Communication, Control, and Computing, Monticello,
IL, Oct. 2000, pp. 248–257.

[34] D. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scien-
tific, 1995.

[35] L. Lovász and A. Schrijver, “Cones of matrices and set-functions
and 0–1 optimization,” SIAM J. Optimiz., vol. 1, no. 2, pp. 166–190,
1991.

[36] H. D. Sherali and W. P. Adams, “A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming
problems,” SIAM J. Optimiz., vol. 3, pp. 411–430, 1990.

[37] User’s Manual for ILOG CPLEX, 7.1 ed., ILOG, Inc., Mountain View,
CA, 2001.

	toc
	Using Linear Programming to Decode Binary Linear Codes
	Jon Feldman, Martin J. Wainwright, Member, IEEE, and David R. Ka
	I. I NTRODUCTION
	A. Relation to Iterative Algorithms
	B. Previous Results
	C. Outline
	D. Notes and Recent Developments

	II. B ACKGROUND

	Fig. 1. A factor graph for the $(7,4,3)$ Hamming code. The nodes
	A. Channel Assumptions
	B. ML Decoding
	III. D ECODING W ITH L INEAR P ROGRAMMING
	A. Codeword Polytope
	B. LP Relaxation
	Proposition 1: For all integral points $(f,w) \in Q $, the seque
	Proof: Suppose (f,w) is a point in $ Q$ where all $f_{i} \in \

	Proposition 2: LP decoding has the ML certificate property: if t
	Proof: If the algorithm outputs a codeword $ y$, then $(y,w^{y}

	C. LP Solving and Polytope Representations
	1) Polytope Equivalence: All the polytopes we use in this paper
	Definition 3: Let $ P$ be some polytope defined over variables $
	2) Projected Polytope: In this subsection, we derive an explicit

	Fig. 2. The equivalence of the polytopes $ \Omega _{j}$ and $ \o
	Theorem 4: Let the polytope $ \Omega = \cap _{j} \Omega _{j}$.
	Proof: Recall that $ Q_{j}$ is the set of points (f,w) that sa

	3) High-Density Code Polytope: Recall that $ {\delta }^{+}_{r}$
	IV. A NALYSIS OF LP D ECODING
	Theorem 5: Suppose the codeword $ y$ is transmitted. If all feas
	Proof: By Proposition 1, (y, w^{y}) is a feasible solution to

	A. The All-Zeros Assumption
	Theorem 6: The probability that the LP decoder fails is independ
	Proof: See Appendix€III . $% \hfill\square$

	Corollary 7: Given that the all-zeros codeword was transmitted (

	V. P SEUDOCODEWORDS
	Theorem 8: Given that the all-zeros codeword was transmitted (wh
	Proof: Suppose the decoder fails. Let (f,w) be the optimal poi

	A. Pseudocodeword Graphs

	VI. F RACTIONAL D ISTANCE

	Fig. 3. The graph of a pseudocodeword for the $(7,4,3)$ Hamming
	Fig. 4. A graph H of the pseudocodeword $[0,1, 0, 1, 0, 2, 3]$
	A. Definitions and Basic Properties
	Theorem 9: For a code G with fractional distance $ d_{ {\rm fr
	Proof: Suppose the LP decoder fails; i.e., the optimal solution

	B. Computing the Fractional Distance

	Fig. 5. The average fractional distance $ d_{ {\rm frac}}$ as a
	C. Experiments

	Fig. 6. The classical versus fractional distance of the normal r
	D. The Max-Fractional Distance
	Theorem 10: For a code G with max-fractional distance $ d^{\ma

	E. A Lower Bound Using the Girth
	Theorem 11: Let G be a factor graph with $ {\delta }^{-}_{\ell

	VII. C OMPARISON TO I TERATIVE D ECODING
	A. Stopping Sets in the BEC
	Theorem 12: Under the BEC, there is a nonzero pseudocodeword wit
	Proof: If there is a zero-cost pseudocodeword, then there is a s

	B. Cycle Codes
	C. Tail-Biting Trellises
	D. Tree-Reweighted Max-Product
	E. Min-Sum Decoding

	Fig. 7. A waterfall-region comparison between the performance of
	F. New Iterative Algorithms and ML Certificates From the LP Dual
	Fig. 8. A comparison between the performance of LP decoding, min
	Fig. 9. A comparison between the performance of ML decoding, LP

	G. Experimental Comparison

	Fig. 10. Error-correcting performance gained by adding a set of
	VIII. T IGHTER R ELAXATIONS

	Fig. 11. The WER of the lift-and-project relaxation compared wit
	A. ML Decoding Using Integer Programming
	IX. D ISCUSSION
	P ROVING T HEOREM 4
	Theorem 13: [29] The polytope $$\Omega _{j} = \overline { Q}_{
	Proof: For all $i \notin N(j)$, the variable f_{i} is unconstr

	H IGH -D ENSITY P OLYTOPE R EPRESENTATION
	Lemma 14: Let $X = \{x_{1}, \ldots, x_{N}\}$, $x_{i} \leqslant M
	Proof: By induction on $ M$. 2 The base case $ (M= 1)$ is simpl

	Proposition 15: The set $\{ f: \exists \alpha, z, \; {\rm s.t.}
	Proof: Suppose $(f,w) \in Q $. Set $$\eqalignno{\alpha _{j, k}

	P ROVING T HEOREM 6
	Theorem 6: The probability that the LP decoder fails is independ
	Proof: Recall that $ {\rm Pr}\,[{\rm err} \mid y]$ is the probab

	Lemma 16: Fix some codeword $ y$. For every $(f,w) \in Q $, $f
	Lemma 17: For a feasible solution (f,w) to LCLP, the relative
	Proof: First consider the bounds on the variables (see (4) and (

	Lemma 18: Given a point $(f,w) \in Q $, and its relative solutio
	Proof: From the definition of $ f^{r}$, we have $$\eqalignno{\su

	Lemma 16: Fix some codeword $ y$. For every $(f,w) \in Q $, $f
	Proof: Consider some $(f,w) \in Q $, and let (f^{r}, w^{r})

	P ROVING T HEOREM 11
	Claim 19: For all promenades $ \Phi $ of length less than the gi
	Proof: First note that $G(\Phi)$ is a valid path. By construct

	Claim 20: The subgraph induced by the node set $ {\cal T}_{i}$ i
	Proof: Suppose this is not the case. Then, for some node in $% \ph

	Claim 21: The node subsets $({\cal T}_{1}, \ldots, {\cal T}_{ h
	Proof: Suppose this is not the case; then, for some $i \ne i^{\p

	Claim 22: The number of variable nodes in H is at least $ h_{1
	Proof: Take one node set $ {\cal T}_{i}$. We will count the num

	Theorem 11: Let G be a factor graph with $ {\delta }^{-}_{\ell
	Proof: Let (f,w) be an arbitrary vertex in $ {\cal V}^{-}_{Q}$

	J. Feldman and D. R. Karger, Decoding turbo-like codes via linea
	J. Feldman, M. J. Wainwright, and D. R. Karger, Linear programmi
	C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. U
	N. Wiberg, Codes and decoding on general graphs, Ph.D. dissertat
	G. D. Forney, F. R. Kschischang, B. Marcus, and S. Tuncel, Itera
	G. D. Forney, R. Koetter, F. R. Kschischang, and A. Reznik, On t
	R. Gallager, Low-density parity-check codes, IRE Trans. Inf. The
	D. MacKay, Good error correcting codes based on very sparse matr
	M. Sipser and D. Spielman, Expander codes, IEEE Trans. Inf. Theo
	S.-Y. Chung, G. D. Forney, T. Richardson, and R. Urbanke, On the
	R. McEliece, D. MacKay, and J. Cheng, Turbo decoding as an insta
	T. J. Richardson and R. L. Urbanke, The capacity of low-density
	M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielm
	B. J. Frey, R. Koetter, and A. Vardy, Signal-space characterizat
	J. Feldman, M. J. Wainwright, and D. R. Karger, Using linear pro
	J. Feldman, D. R. Karger, and M. J. Wainwright, LP decoding, in
	J. Feldman, Decoding error-correcting codes via linear programmi
	J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainw
	J. Feldman and C. Stein, LP decoding achieves capacity, in Proc.
	R. Koetter and P. O. Vontobel, Graph-covers and iterative decodi
	P. Vontobel and R. Koetter, On the relationship between linear p
	A. Schrijver, Theory of Linear and Integer Programming . New Yor
	M. Grotschel, L. Lovász, and A. Schrijver, The ellipsoid method
	E. Berlekamp, R. J. McEliece, and H. van Tilborg, On the inheren
	M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, MAP estimat
	J. S. Yedidia, W. T. Freeman, and Y. Weiss, Understanding Belief
	D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimizat
	R. G. Jeroslow, On defining sets of vertices of the hypercube by
	M. Yannakakis, Expressing combinatorial optimization problems by
	G. D. Forney Jr., Codes on graphs: Normal realizations, IEEE Tra
	R. M. Tanner, A recursive approach to low complexity codes, IEEE
	J. Rosenthal and P. O. Vontobel, Constructions of LDPC codes usi
	D. Bertsekas, Nonlinear Programming . Belmont, MA: Athena Scient
	L. Lovász and A. Schrijver, Cones of matrices and set-functions
	H. D. Sherali and W. P. Adams, A hierarchy of relaxations betwee

	User's Manual for ILOG CPLEX, 7.1 ed., ILOG, Inc., Mountain View

