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Abstract. We present an approach to the detection of parts of highly
deformable objects, such as the human body. Instead of using kinematic
constraints on relative angles used by most existing approaches for mod-
eling part-to-part relations, we learn and use special observed ‘linking’
features that support particular pairwise part configurations. In addi-
tion to modeling the appearance of individual parts, the current ap-
proach adds modeling of the appearance of part-linking, which is shown
to provide useful information. For example, configurations of the lower
and upper arms are supported by observing corresponding appearances
of the elbow or other relevant features. The proposed model combines
the support from all the linking features observed in a test image to in-
fer the most likely joint configuration of all the parts of interest. The
approach is trained using images with annotated parts, but no a-priori
known part connections or connection parameters are assumed, and the
linking features are discovered automatically during training. We evalu-
ate the performance of the proposed approach on two challenging human
body parts detection datasets, and obtain performance comparable, and
in some cases superior, to the state-of-the-art. In addition, the approach
generality is shown by applying it without modification to part detection
on datasets of animal parts and of facial fiducial points.

Keywords: linking features,parts detection,FLPM model.

1 Introduction

In this paper, we present a method for detecting parts of highly deformable
objects. In these objects the parts configuration is flexible, and therefore the
detection of the correct configuration is a difficult problem. As a central applica-
tion we consider the detection of human body parts, namely: head, torso, lower
and upper arms (figure 1). Recently, several approaches have been proposed to
tackle this problem [1–10]. The central pipeline in all of these approaches can be
roughly summarized as: input image → extraction of image features → estimat-
ing part posteriors using dedicated part detectors → extracting the most likely
parts configuration by utilizing the human body kinematic constraints. For the
last step of the pipeline prior parametric models of the human body are used,

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part III, LNCS 7574, pp. 326–339, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.weizmann.ac.il


Using Linking Features in Learning Non-parametric Part Models 327

Fig. 1. Examples of detected body parts on the Buffy (left) and PASCAL stickmen
(right). The detected parts are annotated using color-coded sticks.

which are based on the pictorial-structure (PS) model [1], with either standard
tree-connectivity of the body parts [1–4, 8–10] (tree edges representing joints
with constrained range of motion), or with extra non-tree edges for additional
spatial constraints between physically unconnected parts [5–7, 11]. Notably, [10]
use more parts in their tree PS model, allowing better treatment of non-rigid
part deformations like foreshortening of limbs leading to better performance. In
addition, [12] handle limb foreshortening in human pose estimation from video
by employing stretchable models which model joint locations instead of limbs.

In the standard PS model, the pairwise constraints between the related parts
are purely kinematic (e.g. a distribution of allowed relative angles) and do not
depend on the query image. Recently, several approaches [8, 9] introduced some
image dependence into the pairwise kinematic constraints of the PS model. In
[8] the pairwise kinematic constraints are adaptive, and are derived from a sub-
set of training images that are similar (in appearance) to the query image. In
[9], connected parts are required to follow common segmentation boundaries,
but only in the lower levels of the cascade, while in the higher cascade levels
kinematic constraints are used. In addition, [13] uses the detections of poselet
features to constrain the relative configuration between the parts. This state-of-
the-art person detector [13] focuses on the detection of entire persons and their
segmentation boundaries, and does not detect the arms and their sub-parts. Fi-
nally, a related idea of using chains of features to reach the part being detected
has appeared in [14]; However, [14] detects only a single location on a part of
interest (e.g. a hand), and its probabilistic model does not represent parts ex-
plicitly, leading to reduced detection performance compared with the proposed
scheme (section 3).

In this paper, we propose a new method for parts detection that takes a dif-
ferent modeling approach. The approach follows the above pipeline of choosing
the best configuration of detected part candidates. However, instead of estimat-
ing the quality of the relative configuration of part candidates using kinematic
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Fig. 2. (a) The learned associations between parts. An arrow from part A to part B
shows how much part A affected (via the linking features) the detection of part B
relative to all parts that affected part B. The incoming arrows sum to 100% (only
arrows with at least 15% are shown); (b) Since no a-priori skeleton model is assumed
(i.e. the object skeleton is not constrained by the model) the same approach can be
directly applied to other objects (e.g. ostrich); (c) A graphical illustration of the FLPM
model. The dotted orange and the solid blue rectangles are the features plate and the
query images plate respectively. Only F

n

i variables are observed.

pairwise PS model constrains (either general or image-dependent), we propose
a simple generative non-parametric Feature-Linked Parts Model (FLPM) that
connects the part candidates through ‘linking features’ observed in the query
image. Roughly speaking, the score of the relative configuration of two part
candidates in a test image is measured by the cumulative score of the detected
linking features. These features are patch descriptors learned, during training, to
support this particular configuration. For example, to detect a particular bent-
arm configuration, in addition to knowing that the relation between upper and
lower arm parts is kinematically possible, it is useful to verify the appearance
and location of features, such as the elbow, common to this arm configuration.
In other words, the elbow appearance and possibly other image features com-
mon to this bent arm, ‘link’ the two parts of the arm together in this particular
configuration.

As opposed to the kinematic models, no a-priori known model for the parts
connectivity is assumed. The model implicitly adapts the parts connectivity
pattern to each query image using the detected linking features associated with
the different part-to-part connections. The adaptive nature of the connectivity
pattern can also use image features that support relations between two kine-
matically unrelated parts. For example, crossed hands or hand over torso have
some informative local image features associated with them that can be detected
and used by the FLPM model. Figure 2a shows the average connectivity pattern
obtained by averaging all of the linking-features based pairwise configuration
scores from all the test images of the human body parts detection experiments
(section 3).
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Fig. 3. Main stages of the proposed approach. (a) SIFT descriptor features are ex-
tracted on a regular grid (section 2.2); (b) Each part is voted for by the features (top
shows a voting map for bottom left arm), and features are then clustered (section 2.4)
to get candidates for the part (illustrated by lines on the bottom image); (c) Features
vote for connections between parts and ‘linking features’ are identified to form the
FLPM model for the test image, the example shows two automatically discovered sets
of linking features (orange dots), for the lower-upper right arm and the lower-upper
left arm connections respectively (section 2.1); (d) The final result is obtained through
approximate inference on the obtained FLPM model (section 2.1). Best viewed in color.

The experimental results show that without known kinematic constraints, and
using only simple SIFT descriptors computed on grayscale images as features
(without more complex features such as color and segmentation contours used
in [8, 9]) the approach achieves results comparable, and in some cases superior, to
state-of-the-art on two challenging upper body datasets, Buffy [3] and PASCAL-
stickmen [3]. In addition, since no a-priori known connectivity between the parts
is assumed, the same approach can be successfully applied (without modification)
to other domains. This is illustrated by applying the approach for facial fiducial
points detection on the AR dataset [15, 16] (figure 5), and applying it for ostrich
parts detection (figure 2b).

The rest of the paper is organized as follows. Section 2 provides the details
of the proposed approach, section 3 describes the experimental evaluation; sum-
mary and discussion are provided in section 4.

2 Method

This section gives a brief overview of our approach further details are provided
in subsections below.

The method starts with two standard pre-processing stages (figure 3a): (i)
Extracting the region of interest (bounding box) around the object (e.g. hu-
man) whose parts are to be detected. It is a standard practice in pose estima-
tion approaches, e.g. [3, 4, 8, 9], to assume that the object is already detected
and roughly localized; and (ii) Computing image features (patch descriptors)
centered on dense regular grid locations inside the region of interest. For the
feature extraction stage, the step size of the grid and the size of the patches for
which the descriptors are computed are determined by the scale of the region of
interest, assuming the scale is roughly determined by the object detector. The
details of the pre-processing are described in section 2.2.
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After the pre-processing, the method proceeds in three main stages. Roughly,
the first focuses on individual parts (figure 3b), the second on pairwise connec-
tivity between part candidates (figure 3c), and the third on extracting the most
likely global parts configuration (figure 3d). First, a set of candidate locations,
orientations and sizes, are detected for each part. The detection of candidates
is explained in section 2.4. Second, parameters of pairwise connectivity between
part candidates are estimated, using non-parametric probability computations.
At this stage, each configuration formed by a pair of part-candidates (e.g. relative
position of two sticks), is scored by using the linking features (observed in the
test image) that support this particular configuration. These linking features are
patch descriptors that were associated with this configuration during training.
The combined set of estimated connectivity parameters forms the FLPM model.
Third, the most consistent subset of candidate parts is computed by a greedy
approximate MAP inference over the estimated FLPM. The FLPM model, the
computation of its parameters, and the approximate inference procedure for it
are detailed in section 2.1.

The training phase of the method receives a set of images with annotated
parts (e.g. stick annotation in upper body experiments). As the method is
non-parametric, the training only involves building efficient data structures for
similar descriptor search and memorizing a set of parameters for each feature,
e.g. relative offset from different parts. These data structures are later used in
order to compute the model probabilities for test images using Kernel Density
Estimation (KDE) (section 2.3).

2.1 Feature-Linked Parts Model (FLPM)

Model Definition. The FLPM is a generative model which consists of the fol-
lowing random variables.

{

Ln
j

}m

j=1
are hidden variables describing the location,

scale and orientation of the parts being detected in a test image In. In case the
parts we are detecting are sticks (as in Buffy and PASCAL-stickmen datasets),
the location is the (x, y) image location of the center of the stick, the scale is
the length of the stick, and orientation is its 0 − 180 degrees angle. We also
add an additional part denoted ‘full object’, which is a union of all the parts,
and its corresponding Ln

j has only location (of the center of mass of the object)
and no orientation and scale. During the first step (section 2.4) we compute a
discrete pool of candidates for each part and Ln

j takes its possible values from

the corresponding pool for the j − th part. {Fn
i }

kn

i=1 are observed variables for
the kn features collected from the region of interest (around the object) on the
test image In. In our implementation, Fn

i are the SIFT descriptors [17, 18] col-
lected during the pre-processing stage (section 2.2) together with their image
locations. The model includes two additional sets of auxiliary hidden random
variables, which reside in the feature plate (i.e. two additional unobserved vari-

ables for each feature). These variables are: pair-of-parts choices {Rn
i }

kn

i=1 and

linking feature indicators {An
i }

kn

i=1. The exact meaning of these additional vari-
ables is explained below the definition of the joint distribution. The FLPMmodel
joint distribution is defined as:
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P
(

{

Ln
j

}m

j=1
, {Fn

i , R
n
i , A

n
i }

kn

i=1

)

= P
(

{

Ln
j

}m

j=1

)

·
∏kn

i=1

[

P (An
i ) · P

(

Rn
i

∣

∣

∣
{Lj}

m

j=1

)

· P
(

Fn
i

∣

∣

∣
An

i , R
n
i , {Lj}

m

j=1

)] (1)

A graphical illustration of the model in plate notation is given in figure 2c.
The components of the model are explained below and the way to empirically

estimate the necessary probabilities from the training data is explained in section
2.3. We do not impose any specific prior on the parts pose, therefore the joint

P
(

{

Ln
j

}m

j=1

)

is assumed uniform. The An
i are binary hidden variables, one for

each feature identifying the linking features in the image:

P (Fn
i |An

i , Rn
i ,
{

Ln
j

}m

j=1

)

=
{

P
(

Fn
i

∣

∣

∣
Rn

i ,
{

Ln
j

}m

j=1

)

An
i = 1

P (Fn
i ) An

i = 0

(2)

Here P (Fn
i ) is the probability of spontaneously observing the feature Fn

i any-
where inside the region of interest regardless of the parts configuration. During
the inference, the An

i = 0 option provides a more robust way of ignoring some
of the features that are either outside the object or are not potential linking
features. The Rn

i are pair-of-parts hidden variables taking values from the set of
part pairs: Rn

i = (p, q) ∈ {(p, q) |1 ≤ p �= q ≤ m}. The Rn
i provides the means to

associate the feature Fn
i with a pair of parts from

{

Ln
j

}m

j=1
. Roughly, Rn

i = (p, q)

means that the feature Fn
i connects parts p and q. The corresponding conditional

is defined as follows:

P
(

Fn
i

∣

∣

∣
Rn

i = (p, q) ,
{

Ln
j

}m

j=1

)

= P
(

Fn
i

∣

∣Ln
p , Ln

q

)

(3)

The conditional probability of Rn
i = (p, q) depends only on the assignemnts to

Ln
p and Ln

q and is independent of the feature index i:

P
(

Rn
i = (p, q)

∣

∣

∣

{

Ln
j

}m

j=1

)

= ηpq
(

Ln
p , L

n
q

)

(4)

See section 2.3 for the way to compute P
(

Fn
i

∣

∣Ln
p , Ln

q

)

and ηpq
(

Ln
p , L

n
q

)

from
the training data. The ηpq can also contain any external prior on pairwise con-
figuration of the parts, such as an articulation prior, and can be used to combine
the proposed approach with other methods.

Inference. The MAP inference in the FLPM model involves the computation of
the argmax, over part candidate choices

{

Ln
j

}m

j=1
, of the following log-posterior:

{

LMAP
j

}m

j=1
= argmax

{Ln
j }

m

j=1

[

logP
(

{

Ln
j

}m

j=1

∣

∣

∣
{Fn

i }
kn

i=1

)]

(5)

It is shown in Appendix A in the supplementary material that assuming that
P (An

i ) is such that P (An
i = 1) << P (An

i = 0), reflecting the fact that most of
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the features are not potential linking features (or belong to the background), we
can approximate the posterior as:

{

LMAP
j

}m

j=1
∼

argmax
{Ln

j }
m

j=1

∑m
p,q=1

[

ηpq
(

Ln
p , L

n
q

)

·
∑kn

i=1

P(Fn
i |Ln

p ,L
n
q )

P(Fn
i )

]

(6)

Note that although the posterior 6 does not depend on {An
i }, these auxiliary

variables are necessary in order to derive it and make it more robust.
For a given test image In, the pre-processing (sec. 2.2) produces a set of kn

features {Fn
i }

kn

i=1 and part candidates stage (sec. 2.4) produces a set of part
candidates Sj for each of the m parts (such that for every j, Ln

j ∈ Sj). Assume
for brevity that for every j: |Sj | = r, i.e. we have the same number of candidates
for each part. In order to perform MAP inference, we compute the two tables
WR and WF , both of size m×m× r × r, each entry of which corresponds to a
choice of 1 ≤ p, q ≤ m (m ×m options), and choice of assignment to

{

Ln
p , L

n
q

}

(r × r options). The WR (p, q, r1, r2) = ηpq
(

Ln
p = Sp {r1} , L

n
q = Sq {r2}

)

corre-
sponds to pairs-of-parts prior, here Sp {r1} means the r1-th element of the Sp

set of part p candidates. TheWF (p, q, r1, r2) =
∑kn

i=1

P(Fn
i |L

n
p=Sp{r1},L

n
q =Sq{r2} )

P(Fn
i )

corresponds to the feature based relative configuration prior. Note that the likeli-
hood ratio inside the sum is higher for features that are more strongly associated
with the considered relative part configuration. Finally, we multiply these two
tables entry-wise (denoted .∗) to form: W = WR. ∗WF which is used for MAP
inference over the FLPM posterior. According to equation 6, we need to find an
optimal choice of indices {r∗1 , r

∗
2 , . . . , r

∗
m} such that

∑m
p=1

∑m
q=1 W

(

p, q, r∗p, r
∗
q

)

is
maximal. In our experiments, we have tested two greedy approximate inference
approaches to the choice of these indices. In the first approach, denoted ’FLPM-
sum’, we start from the most likely candidate of the auxiliary ’full object’ part
and then greedily select parts and their optimal candidates having maximal sum
of weights (entries in W ) to the already selected parts:

q, r∗q ← argmax
q,rq

⎡

⎣

∑

p∈selected

W
(

p, q, r∗p, rq
)

⎤

⎦ (7)

In the second approach, denoted ’FLPM-max’, the next part and its optimal
candidate are greedily chosen using only the maximal weight to one of the already
selected candidates:

q, r∗q ← argmax
q,rq

[

max
p∈selected

W
(

p, q, r∗p, rq
)

]

(8)

Experiments have shown that ’FLPM-sum’ produces marginally better results
than ’FLPM-max’ and it was eventually the one we used for the FLPM inference.

This greedy inference procedure was selected based on its performance com-
pared with alternatives. In particular, in our experiments, an optimization (for
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maximizing
∑m

p=1

∑m
q=1 W

(

p, q, r∗p, r
∗
q

)

) based on Quadratic Integer Program-
ming (QIP) approximation produced results slightly inferior to the greedy scheme
that we have eventually used.

2.2 Pre-processing and Feature Extraction

Given a training or test image In, and a bounding box around the object on that
image, we extract the region of interest (ROI) by scaling the bounding box to a
common 150 pixel height (in our implementation) and enlarging it by 20 pixels
on every side. Exactly as in [3, 4, 8, 9], for the tested human body datasets the
bounding boxes were automatically estimated from bounding boxes provided by
[3]. The features {Fn

i }
kn

i=1 extracted from the above ROI are SIFT descriptors
computed for 20× 20 pixel sized patches centered on a regular grid with 3 pixel
step size.

The method parameters mentioned here and in subsequent sections 2.3 and
2.4, were set once (based on previous experiments with similar methods) and
not further optimized; it is possible that optimization of the parameters for the
current method could lead to even better perfromance.

2.3 Empirically Estimating FLPM Probabilities from the Training
Images

The training phase of FLPM receives a set of images annotated with (body)
parts on objects of interest. In our human upper-body experiments we used
”sticks” annotation for parts [3], where each part is marked by a stick (two end-
points). No a-priori known connectivity pattern between the parts was assumed
by our method. In order to obtain features associated with a specific part on
each training image, we enlarge the part’s stick in orthogonal directions to form
a rectangle. Training features associated with the j-th part are collected from
all the grid points (see section 2.2) residing inside the j-th part rectangles in
all the training images. For each part, we construct an efficient Approximate
Nearest Neighbors search data-structure (ANN) that allows efficiently searching
for (approximate) neighbors of descriptors of test features among the descriptors
of the training features. We use ANN implementation of [19] in our experiments.
Denote by ANNj the ANN containing the training features associated with the
j-th part, and by ANNall the ANN containing all the collected training features.
Approximate Kernel Density Estimation (KDE) [20] over neighbors returned by
querying the respective ANNs is used to compute all the feature related proba-
bilities, namely: P (Fn

i ) - probability of Fn
i to appear spontaneously inside the

object ROI; Pj (F
n
i ) - probability of Fn

i to appear somewhere on the j-th part
(see section 2.4); Pj

(

Fn
i

∣

∣Ln
j

)

- probability of Fn
i to appear in its particular lo-

cation on j-th part (see section 2.4); and P
(

Fn
i

∣

∣Ln
j , Ln

k

)

- probability of Fn
i to

“link” the j-th and the k-th parts.
Given a test feature descriptor Fn

i , the probabilities P (Fn
i ) and Pj (F

n
i ) are

obtained by querying q = 25 neighbors of Fn
i in ANNall and ANNj respec-

tively. The probabilities are then computed by KDE over these neighbors, as an
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average (over the q neighbors) of exp
(

−0.5 · d2r/σ
2
)

, where dr is the distance to

the r-th neighbor (1 ≤ r ≤ q), and σ = 0.2. We assume that Pj

(

Ln
j

)

and the

P
(

Ln
j , L

n
k

)

are uniform. Then the Pj

(

Fn
i

∣

∣Ln
j

)

∝ Pj

(

Fn
i , L

n
j

)

is obtained using
the neighbors of Fn

i returned by the ANNj query. It is computed as an average of

exp
(

−0.5 ·
[

d2r/σ
2 +

∥

∥oj − ojr
∥

∥

2
/σ2

L

])

, where σL = 15 pixels, oj is an offset be-

tween Fn
i ’s location (around which the descriptor was computed) and Ln

j ’s center

location, and ojr is the offset between the location of the r-th neighbor and the
center of the j-th part on the r-th neighbor source image. The P

(

Fn
i

∣

∣Ln
j , L

n
k

)

∝

P
(

Fn
i , L

n
j , L

n
k

)

is computed as 0.5 ·
(

Pj

(

Fn
i , L

n
j , L

n
k

)

+ Pk

(

Fn
i , L

n
j , L

n
k

))

, where

Pj

(

Fn
i , L

n
j , L

n
k

)

(and similarly Pk

(

Fn
i , L

n
j , L

n
k

)

) is obtained by the KDE over

neighbors of Fn
i returned by the ANNj query. The Pj

(

Fn
i , L

n
j , L

n
k

)

is an aver-
age over r of:

exp
(

−0.5 ·
[

d2r/σ
2 +

(

∥

∥oj − ojr
∥

∥

2
+
∥

∥ok − okr
∥

∥

2
)

/σ2
L +

(

∥

∥θj − θjr
∥

∥

2
+
∥

∥θk − θkr
∥

∥

2
)

/σ2
θ

]) (9)

where dr, oj , ok, o
j
r, and okr are as above; θj and θk are orientations of the

Ln
j and the Ln

k , and θjr and θkr are the orientations of the j-th and k-th parts
respectively on the r-th neighbor source image; we use σθ = 20 degrees. In
addition, we restrict the above Pj

(

Fn
i , L

n
j , L

n
k

)

computation only to neighbors
which are identified as candidate ‘linking features’ during training. Those are
the features, collected from training images, that lay in the intersections of the
j-th and k-th part training rectangles enlarged by 10 pixels. This increases the
importance of more relevant ‘mutual’ features for candidate parts consistency
weighting (e.g. elbows for lower and upper arms).

Finally, we define P
(

Rn
i = (p, q)

∣

∣

∣

{

Ln
j

}m

j=1

)

= ηpq
(

Ln
p , L

n
q

)

to be uniform,

thus providing no prior on the relative configuration of the parts. The ηpq
(

Ln
p , L

n
q

)

can also incorporate the part candidate scores produced by the star model used
to generate the candidates (section 2.4). However, in our experiments using part
candidate scores did not result in performance increase due to the obvious dif-
ficulty of detecting parts independently of the other parts. In addition, any
kinematic prior on the pairwise relative configuration of the parts that is used

by the existing approaches may be incorporated into P
(

Rn
i = (p, q)

∣

∣

∣

{

Ln
j

}m

j=1

)

by substituting it with the prior value.

2.4 Generating Part Candidates

In this section we describe how the part candidates are generated for a given
ROI in a test image In. The hidden variable Ln

j of the FLPM takes values from
the candidates detected for the j-th part. The detection of candidates for the
j-th part proceeds in three steps (same steps are repeated independently for each
part to generate part candidates for all the parts).

First, all the collected features {Fn
i }

kn

i=1 vote for the j-th part center of mass
location using the non-parametric star model. This star model was used as one
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of the baselines in [14] and is described in more detail there. Briefly, we ac-
cumulate votes from all the features in a matrix Vj with the size equal to
the size of In, while each feature votes for 25 candidate locations of the part
obtained from 25 approximate nearest neighbors, with voting weight equal to
Pj

(

Fn
i

∣

∣Ln
j

)

/Pj (F
n
i ) (section 2.3). Each vote is smoothed by a Gaussian with

STD of 15 pixels.
Second, up to t ≤ 100 strongest local maxima {ms}

t

s=1 are collected from Vj

(with the weakest one mt having at least 5% score of the Vj global maxima m1:
mt ≥ 0.05 ·m1). Then for each feature Fn

i we compute a t-sized vector vi each
entry of which contains the amount of weight it contributed to each of the chosen
maxima {ms}

t

s=1. The features {F
n
i }

kn

i=1 are then clustered into 20 clusters using
spectral clustering [21], where the association between two features Fn

i and Fn
l

is computed as an inner product between vi and vl. The reason for this clustering
is that for the more ambiguous parts such as lower or upper arms, small local
features along the boundary of the part have a wider range of possible part
center locations relative to them (and they essentially vote for many of those).

Third, for each feature cluster the voting (as in the first step) is repeated using
only features belonging to the cluster. The location of the maximal accumulated
vote for each cluster is taken as the center location for the corresponding part
candidate. Then the features of each cluster vote for the top three candidate
orientations and top one length estimate of the part. The weights for orientation
and length voting are the same as in the first step. This way, out of 20 feature
clusters, 60 candidates are produced for each of the m parts.

After the computation of part candidates, the computation proceeds as ex-
plained in the description of the inference procedure in section 2.1. The next
section describes the experimental evaluation of the proposed approach.

3 Results

To test the proposed approach we applied it to two challenging human body
parts datasets proposed by [3], namely Buffy (version 2.1) and PASCAL stick-
men (version 1.1). Moreover, in order to test the generality of the method, we
also applied it (without modification) to the AR facial fiducial points detection
dataset [15], and an ostrich parts detection dataset (see below). Table 4a sum-
marizes the numerical results and state-of-the-art comparisons. The detections
are assumed correct if they meet the standard PCP0.5 criterion [3], where both
endpoints of the detected part should be within 0.5 ground-truth part length
from the ground-truth part endpoints (the full PCP curves are given in figure
5a). The results show that the FLPM produces comparable performance to the
state-of-the-art approaches, improving the best result on the PASCAL stickmen
v1.1 dataset. Note that FLPM is trained without knowing the kinematics of the
object (connections and allowed relative angles between the parts) that is used
by all the other methods [3, 8, 9], and using only grayscale images and simple
SIFT descriptor features (as opposed to complex features involving color and
segmentation boundaries used by [8, 9]). Figure 2a shows the average connectiv-
ity pattern discovered by the FLPM. This pattern is obtained by averaging all
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Fig. 4. (a) Summary of Buffy and PASCAL stickmen results. Our results are in blue.
The ‘candidate-recall’ test computes the maximum recall rates (disregarding the score)
of the individual part detectors (providing upper bound on the potential performance).
To the best of our knowledge, [8] tested on the Buffy dataset version 1.0 (we test on
v2.1); (b) Baseline comparison that tests the contribution of the core component of the
model - the linking features. The comparison shows the prominent contribution of the
linking features to the FLPM performance; (c) More examples of successfully detected
parts on the tested datasets, illustrating a range of poses and appearances.

the entries of W (defined in section 2.1) corresponding to the part candidates
selected during the inference stage for each of the test images. We also tested the
maximal recall of the part candidates for the individual parts. In this experiment,
denoted ‘candidate-recall’, we computed, for each part, the percentage of the test
images on which at least one of the part candidates was correct (PCP0.5). The
results of ‘candidate-recall’ provide an upper-bound for FLPM performance and
show that the correct part detection is included in the candidate set with high
probability and therefore does not significantly limit the FLPM performance.

Table 4b shows FLPM vs. baseline comparison that tests the contribution of
the core component of the FLPM – the linking features. Instead of choosing part
candidates using the connectivity scores between the candidates (obtained by the
linking features), for each test image, the baseline chose maximal scoring part
candidate for each part. The candidate scores are produced by the star model
that is used to generate them, as explained in section 2.4. Using these scores
resulted in significant > 35% drop in performance, underscoring the importance
of the linking features to the approach. The results of the baseline remained
low even when adding a kinematic prior on the relative positions and angles
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Fig. 5. (a) PCP curves for FLPM on PASCAL stickmen & Buffy datasets; (b) Example
visual results of applying the FLPM approach (without modification) to the detection
of 130 facial fiducial points (light blue) on the AR dataset.

between parts. The FLPM has two sources of information to select the most
likely parts configuration, namely, the candidate part detection scores and the
part connection scores via the linking features. The baseline illustrates that
the most significant source of information in the model comes from the linking
features. Figure 4c shows more examples of successfully detected parts.

Buffy v2.1.This dataset consists of 748 frames from 5 episodes (2-6) of ‘Buffy the
Vampire Slayer’ TV series. On each image one person is annotated. The results
are reported for the usual 235 images from the episodes 2, 5 & 6 detected by the
upper body detector used in [3]. In our Buffy experiments, the training and testing
is done in leave-one-episode-out manner, in which all images of one episode are
used for testing, while images of all the other episodes are used for training.

PASCAL Stickmen v1.1. This dataset consists of 549 unrelated images with
one annotated person per-image. In our experiments on this dataset, the training
and testing was done in 5-fold cross validation manner, in which we divided the
dataset images into 5 equal folds, and for testing on images of each fold the
model was trained using images of the other folds. As in [3, 8, 9], the results are
reported for the subset of 412 dataset images (denoted test images) on which
the person bounding box was successfully detected by the upper body detector
of [3]. Note however, that the two previous schemes [8, 9], originally reported
their results on the previous (currently unavailable) version 1.0 of this dataset
(with only 360 test images). Therefore, in table 4a, we compare the results of
the proposed approach (FLPM) with the results of publicly available code of [9]
applied to the 1.1 version of this dataset (412 test images).

AR Dataset. This is a facial fiducial points detection dataset proposed by [15,
16]. It consists of 895 images (with ground truth annotations) of 112
different people with 130 facial landmarks to be detected (figure 5b). The
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images exhibit different facial expressions, different lighting conditions, and some
occluders (glasses, facial hair, etc.). We treat each facial landmark as a part
whose location is to be detected on the test images. The linking features in
the FLPM model score the relative locations of the facial landmarks, and the
most coherent (according to the FLPM) configuration of the facial landmarks
is selected during inference. The experiments were conducted in leave-person-
out-manner, each time leaving all the images belonging to a test person out of
the training. The FLPM model attains an average detection error of 4.0 ± 1.3
pixels comparing favorably to the average error of 8.4 ± 1.2 pixels reported by
the state-of-the-art method of [16].

Osterich. The dataset consists of 558 frames of a running ostrich movie sequence
downloaded from YouTube. The training and testing was again done by 5-fold
cross validation, each time leaving a sequence of about 110 consecutive frames
for testing and training on the other frames. The average PCP0.5 was 90.7%,
with perfect detection of neck and torso, 78.2% detection of the upper legs and
93.8% detection of the lower legs. A movie with the visual results is provided in
the supplementary.

4 Summary and Discussion

We presented an approach to the detection of highly flexible parts of deformable
objects, which uses linking appearance features to weigh pairwise configurations
between part candidates. Previous models have focused on the appearance of the
individual parts combined with kinematic constraints (general or adaptive to the
query image), the current model also learns and uses the appearance of part-
linking. The results show that linking features supply highly useful information
for identifying likely configurations of complex objects. In our implementation,
linking features were used instead of the kinematic constraints that were used
by other approaches. An interesting future research direction is to combine both
the linking features constraints and the kinematic constraints in a single model,
which can enjoy the power of both. For example, choosing the best result between
the FLPM and the CPS method [9] for each test image of PASCAL stickmen
v1.1, has the potential to improve the average correct detection to 81.4% (choos-
ing all 6 parts together) or even to 83.7% (choosing each part separately). This
suggests that the two methods are complementary on many test images and
that a combined method is worth pursuing. In the current implementation, part
candidates are discovered using dedicated star models, and are then connected
by the linking features, which vote for consistent pairwise part configurations.
One plausible future extension is to use a single model which will simultane-
ously discover parts and link them through intermediate linking features. A
possible way to achieve this is to use an extension of the chains model [14], in
which parts can be connected by extended chains of linking features (between
parts) and internal features (within parts). Additional extensions include using
more complex features and color information, which have been used successfully,
e.g. in [8, 9, 13].
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