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ABSTRACT 

This paper explores the use of a model neural network for motor 

learning. Steinbuch and Taylor presented neural network designs to 

do nearest neighbor lookup in the early 1960s. In this paper their 

nearest neighbor network is augmented with a local model network, 

which fits a local model to a set of nearest neighbors. The network 

design is equivalent to local regression. This network architecture 

can represent smooth nonlinear functions, yet has simple training 

rules with a single global optimum. The network has been used 

for motor learning of a simulated arm and a simulated running 

machine. 

1 INTRODUCTION 

A common problem in motor learning is approximating a continuous function from 

samples of the function's inputs and outputs. This paper explores a neural net­

work architecture that simply remembers experiences (samples) and builds a local 

model to answer any particular query (an input for which the function's output is 

desired). This network design can represent smooth nonlinear functions, yet has 

simple training rules with a single global optimum for building a local model in 

response to a query. Our approach is to model complex continuous functions us­

ing simple local models. This approach avoids the difficult problem of finding an 

appropriate structure for a global model. A key idea is to form a training set for 

the local model network after a query to be answered is known. This approach 



Using Local Models to Control Movement 317 

allows us to include in the training set only relevant experiences (nearby samples). 

The local model network, which may be a simple network architecture such as a 

perceptron, forms a model of the portion of the function near the query point. This 

local model is then used to predict the output of the function, given the input. The 

local model network is retrained with a new training set to answer the next query. 

This approach minimizes interference between old and new data, and allows the 

range of generalization to depend on the density of the samples. 

Steinbuch (Steinbuch 1961, Steinbuch and Piske 1963) and Taylor (Taylor 1959, 

Taylor 1960) independently proposed neural network designs that used a local rep­

resentation to do nearest neighbor lookup and pointed out that this approach could 

be used for control. They used a layer of hidden units to compute an inner product 

of each stored vector with the input vector. A winner-take-all circuit then selected 

the hidden unit with the highest activation. This type of network can find near­

est neighbors or best matches using a Euclidean distance metric (Kazmierczak and 

Steinbuch 1963). In this paper their nearest neighbor lookup network (which I will 

refer to as the memory network) is augmented with a local model network, which 

fits a local model to a set of nearest neighbors. 

The ideas behind the network design used in this paper have a long history. Ap­

proaches which represent previous experiences directly and use a similar experience 

or similar experiences to form a local model are often referred to as nearest neighbor 

or k-nearest neighbor approaches. Local models (often polynomials) have been used 

for many years to smooth time series (Sheppard 1912, Sherriff 1920, Whittaker and 

Robinson 1924, Macauley 1931) and interpolate and extrapolate from limited data. 

Lancaster and Salkauskas (1986) refer to nearest neighbor approaches as "moving 

least squares" and survey their use in fitting surfaces to arbitrarily spaced points. 

Eubank (1988) surveys the use of nearest neighbor estimators in nonparametric 

regression. Farmer and Sidorowich (1988) survey the use of nearest neighbor and 

local model approaches in modeling chaotic dynamic systems. 

Crain and Bhattacharyya (1967), Falconer (1971), and McLain (1974) suggested 

using a weighted regression to fit a local polynomial model at each point a function 

evaluation was desired. All of the available data points were used. Each data point 

was weighted by a function of its distance to the desired point in the regression. 

McIntyre, Pollard, and Smith (1968), Pelto, Elkins, and Boyd (1968), Legg and 

Brent (1969), Palmer (1969), Walters (1969), Lodwick and Whittle (1970), Stone 

(1975) and Franke and Nielson (1980) suggested fitting a polynomial surface to a set 

of nearest neighbors, also using distance weighted regression. Cleveland (1979) pro­

posed using robust regression procedures to eliminate outlying or erroneous points 

in the regression process. A program implementing a refined version of this ap­

proach (LOESS) is available by sending electronic mail containing the single line, 

send dloess from a, to the address netlib@research.att.com (Grosse 1989). Cleve­

land, Devlin and Grosse (1988) analyze the statistical properties of the LOESS 

algorithm and Cleveland and Devlin (1988) show examples of its use. Stone (1977, 

1982), Devroye (1981), Cheng (1984), Li (1984), Farwig (1987), and Miiller (1987) 
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provide analyses of nearest neighbor approaches. Franke (1982) compares the per­

formance of nearest neighbor approaches with other methods for fitting surfaces to 

data. 

2 THE NETWORK ARCHITECTURE 

The memory network of Steinbuch and Taylor is used to find the nearest stored 

vectors to the current input vector. The memory network computes a measure of 

the distance between each stored vector and the input vector in parallel, and then a 

"winner take all" network selects the nearest vector (nearest neighbor). Euclidean 

distance has been chosen as the distance metric, because the Euclidean distance is 

invariant under rotation of the coordinates used to represent the input vector. 

The memory network consists of three layers of units: input units, hidden or memory 

units, and output units. The squared Euclidean distance between the input vector 

(i) and a weight vector (Wk) for the connections of the input units to hidden unit 

k is given by; 

d2 (0 )T(o ) °To 20T T 
k = 1- Wk 1- Wk = 1 1 - 1 Wk + Wk Wk 

Since the quantity iTi is the same for all hidden units, minimizing the distance 

between the input vector and the weight vector for each hidden unit is equivalent 

to maximizing: 

iTWk -1/2wlw k 

This quantity is the inner product of the input vector and the weight vector for 

hidden unit k, biased by half the squared length of the weight vector. 

Dynamics of the memory network neurons allow the memory network to output a 

sequence of nearest neighbors. These nearest neighbors form the selected training 

sequence for the local model network. Memory unit dynamics can be used to allocate 

"free" memory units to new experiences, and to forget old training points when the 

capacity of the memory network is fully utilized. 

The local model network consists of only one layer of modifiable weights preceded by 

any number of layers with fixed connections. There may be arbitrary preprocessing 

of the inputs of the local model, but the local model is linear in the parameters 

used to form the fit. The local model network using the LMS training algorithm 

performs a linear regression of the transformed inputs against the desired outputs. 

Thus, the local model network can be used to fit a linear regression model to the 

selected training set. With multiplicative interactions between inputs the local 

model network can be used to fit a polynomial surface (such as a quadratic) to the 

selected training set. An alternative implementation of the local model network 

could use a single layer of "sigma-pi" units. 

This network design has simple training rules. In the memory network the weights 

are simply the values of the components of input and output vectors, and the bias 

for each memory unit is just half the squared length of the corresponding input 

weight vector. No search for weights is necessary, since the weights are directly 
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Figure 1: Simulated Planar Two-joint Arm 

given by the data to be stored. The local model network is linear in the weights, 

leading to a single optimum which can be found by linear regression or gradient 

descent. Thus, convergence to the global optimum is guaranteed when forming a 

local model to answer a particular query. 

This network architecture was simulated using k-d tree data structures (Friedman, 

Bentley, and Finkel 1977) on a standard serial computer and also using parallel 

search on a massively parallel computer, the Connection Machine (Hillis 1985). A 

special purpose computer is being built to implement this network in real time. 

3 APPLICATIONS 

The network has been used for motor learning of a simulated arm and a simulated 

running machine. The network performed surprisingly well in these simple evalua..­

tions. The simulated arm was able to follow a desired trajectory after only a few 

practice movements. Performance of the simulated running machine in following a 

series of desired velocities was also improved. This paper will report only on the 

arm trajectory learning. 

Figure 1 shows the simulated 2-joint planar arm. The problem faced in this sim­

ulation is to learn the correct joint torques to drive the arm along the desired 

trajectory (the inverse dynamics problem). In addition to the feedforward control 

signal produced by the network described in this paper, a feedback controller was 

also used. 

Figure 2 shows several learning curves for this problem. The first point in each 

of the curves shows the performance generated by the feedback controller alone. 

The error measure is the RMS torque error during the movement. The highest 

curve shows the performance of a nearest neighbor method without a local model. 

The nearest point was used to generate the torques for the feedforward command, 

which were then summed with the output from the feedback controller. The second 
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Figure 2: Learning curves from 3 different network designs on the two joint arm 

trajectory learning problem. 

curve shows the performance using a linear local model. The third curve shows 

the performance using a quadratic local model. Adding the local model network 

greatly speeds up learning. The network with the quadratic local model learned 

more quickly than the one with the local linear model. 

4 WHY DOES IT WORK? 

In this learning paradigm the feedback controller serves as the teacher, or source of 

new data for the network. If the feedback controller is of poor quality, the nearest 

neighbor function approximation method tends to get "stuck" with a non-zero error 

level. The use of a local model seems to eliminate this stuck state, and reduce the 

dependence on the quality of the feedback controller. 

Fast training is achieved by modularizing the network: the memory network does 

not need to search for weights in order to store the samples, and local models can 

be linear in the unknown parameters, leading to a single optimum which can be 

found by linear regression or gradient descent. 

The combination of storing all the data and only using a certain number of nearby 

samples to form a local model minimizes interference between old and new data, 

and allows the range of generalization to depend on the density of the samples. 

There are many issues left to explore. A disadvantage of this approach is the limited 

capacity of the memory network. In this version of the proposed neural network 
• 
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architecture, every experience is stored. Eventually all the memory units will be 

used up. To use memory units more sparingly, only the experiences which are suf­

ficiently different from previous experiences could be stored. Memory requirements 

could also be reduced by "forgetting" certain experiences, perhaps those that have 

not been referenced for a long time, or a randomly selected experience. It is an 

empirical question as to how large a memory capacity is necessary for this network 

design to be useful. 

How should the distance metric be chosen? So far distance metrics have been 

devised by hand. Better distance metrics may be based on the stored data and 

a particular query. How far will this approach take us? Experiments using more 

complex systems and actual physical implementations, with the inevitable noise and 

high order dynamics, need to be done. 
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