
316 Atkeson

Using Local Models to Control Movement

Christopher G. Atkeson

Department of Brain and Cognitive Sciences

and the Artificial Intelligence Laboratory

Massachusetts Institute of Technology

NE43-771, 545 Technology Square

Cambridge, MA 02139

cga@ai.mit.edu

ABSTRACT

This paper explores the use of a model neural network for motor

learning. Steinbuch and Taylor presented neural network designs to

do nearest neighbor lookup in the early 1960s. In this paper their

nearest neighbor network is augmented with a local model network,

which fits a local model to a set of nearest neighbors. The network

design is equivalent to local regression. This network architecture

can represent smooth nonlinear functions, yet has simple training

rules with a single global optimum. The network has been used

for motor learning of a simulated arm and a simulated running

machine.

1 INTRODUCTION

A common problem in motor learning is approximating a continuous function from

samples of the function's inputs and outputs. This paper explores a neural net­

work architecture that simply remembers experiences (samples) and builds a local

model to answer any particular query (an input for which the function's output is

desired). This network design can represent smooth nonlinear functions, yet has

simple training rules with a single global optimum for building a local model in

response to a query. Our approach is to model complex continuous functions us­

ing simple local models. This approach avoids the difficult problem of finding an

appropriate structure for a global model. A key idea is to form a training set for

the local model network after a query to be answered is known. This approach

Using Local Models to Control Movement 317

allows us to include in the training set only relevant experiences (nearby samples).

The local model network, which may be a simple network architecture such as a

perceptron, forms a model of the portion of the function near the query point. This

local model is then used to predict the output of the function, given the input. The

local model network is retrained with a new training set to answer the next query.

This approach minimizes interference between old and new data, and allows the

range of generalization to depend on the density of the samples.

Steinbuch (Steinbuch 1961, Steinbuch and Piske 1963) and Taylor (Taylor 1959,

Taylor 1960) independently proposed neural network designs that used a local rep­

resentation to do nearest neighbor lookup and pointed out that this approach could

be used for control. They used a layer of hidden units to compute an inner product

of each stored vector with the input vector. A winner-take-all circuit then selected

the hidden unit with the highest activation. This type of network can find near­

est neighbors or best matches using a Euclidean distance metric (Kazmierczak and

Steinbuch 1963). In this paper their nearest neighbor lookup network (which I will

refer to as the memory network) is augmented with a local model network, which

fits a local model to a set of nearest neighbors.

The ideas behind the network design used in this paper have a long history. Ap­

proaches which represent previous experiences directly and use a similar experience

or similar experiences to form a local model are often referred to as nearest neighbor

or k-nearest neighbor approaches. Local models (often polynomials) have been used

for many years to smooth time series (Sheppard 1912, Sherriff 1920, Whittaker and

Robinson 1924, Macauley 1931) and interpolate and extrapolate from limited data.

Lancaster and Salkauskas (1986) refer to nearest neighbor approaches as "moving

least squares" and survey their use in fitting surfaces to arbitrarily spaced points.

Eubank (1988) surveys the use of nearest neighbor estimators in nonparametric

regression. Farmer and Sidorowich (1988) survey the use of nearest neighbor and

local model approaches in modeling chaotic dynamic systems.

Crain and Bhattacharyya (1967), Falconer (1971), and McLain (1974) suggested

using a weighted regression to fit a local polynomial model at each point a function

evaluation was desired. All of the available data points were used. Each data point

was weighted by a function of its distance to the desired point in the regression.

McIntyre, Pollard, and Smith (1968), Pelto, Elkins, and Boyd (1968), Legg and

Brent (1969), Palmer (1969), Walters (1969), Lodwick and Whittle (1970), Stone

(1975) and Franke and Nielson (1980) suggested fitting a polynomial surface to a set

of nearest neighbors, also using distance weighted regression. Cleveland (1979) pro­

posed using robust regression procedures to eliminate outlying or erroneous points

in the regression process. A program implementing a refined version of this ap­

proach (LOESS) is available by sending electronic mail containing the single line,

send dloess from a, to the address netlib@research.att.com (Grosse 1989). Cleve­

land, Devlin and Grosse (1988) analyze the statistical properties of the LOESS

algorithm and Cleveland and Devlin (1988) show examples of its use. Stone (1977,

1982), Devroye (1981), Cheng (1984), Li (1984), Farwig (1987), and Miiller (1987)

318 Atkeson

provide analyses of nearest neighbor approaches. Franke (1982) compares the per­

formance of nearest neighbor approaches with other methods for fitting surfaces to

data.

2 THE NETWORK ARCHITECTURE

The memory network of Steinbuch and Taylor is used to find the nearest stored

vectors to the current input vector. The memory network computes a measure of

the distance between each stored vector and the input vector in parallel, and then a

"winner take all" network selects the nearest vector (nearest neighbor). Euclidean

distance has been chosen as the distance metric, because the Euclidean distance is

invariant under rotation of the coordinates used to represent the input vector.

The memory network consists of three layers of units: input units, hidden or memory

units, and output units. The squared Euclidean distance between the input vector

(i) and a weight vector (Wk) for the connections of the input units to hidden unit

k is given by;

d2 (0)T(o) °To 20T T
k = 1- Wk 1- Wk = 1 1 - 1 Wk + Wk Wk

Since the quantity iTi is the same for all hidden units, minimizing the distance

between the input vector and the weight vector for each hidden unit is equivalent

to maximizing:

iTWk -1/2wlw k

This quantity is the inner product of the input vector and the weight vector for

hidden unit k, biased by half the squared length of the weight vector.

Dynamics of the memory network neurons allow the memory network to output a

sequence of nearest neighbors. These nearest neighbors form the selected training

sequence for the local model network. Memory unit dynamics can be used to allocate

"free" memory units to new experiences, and to forget old training points when the

capacity of the memory network is fully utilized.

The local model network consists of only one layer of modifiable weights preceded by

any number of layers with fixed connections. There may be arbitrary preprocessing

of the inputs of the local model, but the local model is linear in the parameters

used to form the fit. The local model network using the LMS training algorithm

performs a linear regression of the transformed inputs against the desired outputs.

Thus, the local model network can be used to fit a linear regression model to the

selected training set. With multiplicative interactions between inputs the local

model network can be used to fit a polynomial surface (such as a quadratic) to the

selected training set. An alternative implementation of the local model network

could use a single layer of "sigma-pi" units.

This network design has simple training rules. In the memory network the weights

are simply the values of the components of input and output vectors, and the bias

for each memory unit is just half the squared length of the corresponding input

weight vector. No search for weights is necessary, since the weights are directly

Using Local Models to Control Movement 319

/

/

Figure 1: Simulated Planar Two-joint Arm

given by the data to be stored. The local model network is linear in the weights,

leading to a single optimum which can be found by linear regression or gradient

descent. Thus, convergence to the global optimum is guaranteed when forming a

local model to answer a particular query.

This network architecture was simulated using k-d tree data structures (Friedman,

Bentley, and Finkel 1977) on a standard serial computer and also using parallel

search on a massively parallel computer, the Connection Machine (Hillis 1985). A

special purpose computer is being built to implement this network in real time.

3 APPLICATIONS

The network has been used for motor learning of a simulated arm and a simulated

running machine. The network performed surprisingly well in these simple evalua..­

tions. The simulated arm was able to follow a desired trajectory after only a few

practice movements. Performance of the simulated running machine in following a

series of desired velocities was also improved. This paper will report only on the

arm trajectory learning.

Figure 1 shows the simulated 2-joint planar arm. The problem faced in this sim­

ulation is to learn the correct joint torques to drive the arm along the desired

trajectory (the inverse dynamics problem). In addition to the feedforward control

signal produced by the network described in this paper, a feedback controller was

also used.

Figure 2 shows several learning curves for this problem. The first point in each

of the curves shows the performance generated by the feedback controller alone.

The error measure is the RMS torque error during the movement. The highest

curve shows the performance of a nearest neighbor method without a local model.

The nearest point was used to generate the torques for the feedforward command,

which were then summed with the output from the feedback controller. The second

320 Atkeson

-E 50.0
I

Z -ct>
a: 40.0
o
a:
a:
w
ct>
::E
a:
w
=>
o
a:

~
....
z
o ...,

o

~ ..
~'.

o

\",
o

\ I"

\~
o

[;- - o€J Nearest neighbor * * Linear local model
• • Quadratic local model

\ t ••

13-'.- B- - 'i5l
" "-
". ~
'.
" 'So - -B _ -..r._ .. * ~-~-B--~ •

-' .
--o.

•
'* ... ~." ..

0.0 o~-~-~==--t--'-':'':':':':~'''''''''''''-''-''''--t'''''-''

Movement

Figure 2: Learning curves from 3 different network designs on the two joint arm

trajectory learning problem.

curve shows the performance using a linear local model. The third curve shows

the performance using a quadratic local model. Adding the local model network

greatly speeds up learning. The network with the quadratic local model learned

more quickly than the one with the local linear model.

4 WHY DOES IT WORK?

In this learning paradigm the feedback controller serves as the teacher, or source of

new data for the network. If the feedback controller is of poor quality, the nearest

neighbor function approximation method tends to get "stuck" with a non-zero error

level. The use of a local model seems to eliminate this stuck state, and reduce the

dependence on the quality of the feedback controller.

Fast training is achieved by modularizing the network: the memory network does

not need to search for weights in order to store the samples, and local models can

be linear in the unknown parameters, leading to a single optimum which can be

found by linear regression or gradient descent.

The combination of storing all the data and only using a certain number of nearby

samples to form a local model minimizes interference between old and new data,

and allows the range of generalization to depend on the density of the samples.

There are many issues left to explore. A disadvantage of this approach is the limited

capacity of the memory network. In this version of the proposed neural network
•

Using Local Models to Control Movement 321

architecture, every experience is stored. Eventually all the memory units will be

used up. To use memory units more sparingly, only the experiences which are suf­

ficiently different from previous experiences could be stored. Memory requirements

could also be reduced by "forgetting" certain experiences, perhaps those that have

not been referenced for a long time, or a randomly selected experience. It is an

empirical question as to how large a memory capacity is necessary for this network

design to be useful.

How should the distance metric be chosen? So far distance metrics have been

devised by hand. Better distance metrics may be based on the stored data and

a particular query. How far will this approach take us? Experiments using more

complex systems and actual physical implementations, with the inevitable noise and

high order dynamics, need to be done.

Acknowledgments

B. Widrow and J. D. Cowan made the author aware of the work of Steinbuch and

Taylor (Steinbuch and Wid row 1965, Cowan and Sharp 1988).

This paper describes research done at the Whitaker College, Department of Brain

and Cognitive Sciences, Center for Biological Information Processing and the Arti­

ficial Intelligence Laboratory of the Massachusetts Institute of Technology. Support

was provided under Office of Naval Research contract N00014-88-K-0321 and under

Air Force Office of Scientific Research grant AFOSR-89-0500. Support for CGA

was provided by a National Science Foundation Engineering Initiation A ward and

Presidential Young Investigator Award, an Alfred P. Sloan Research Fellowship, the

W. M. Keck Foundation Assistant Professorship in Biomedical Engineering, and a

Whitaker Health Sciences Fund MIT Faculty Research Grant.

References

Cheng, P.E. (1984), "Strong Consistency of Nearest Neighbor Regression Func­

tion Estimators", Journal of Multivariate Analysis, 15:63-72.

Cleveland, W.S. (1979), "Robust Locally Weighted Regression and Smoothing

Scatterplots", Journal of the American Statistical Association, 74:829-836.

Cleveland, W.S. and S.J. Devlin (1988), "Locally Weighted Regression: An

Approach to Regression Analysis by Local Fitting", Journal of the American Sta­

tistical Association, 83:596-610.

Cleveland, W.S., S.J. Devlin and E. Grosse (1988), "Regression by Local

Fitting: Methods, Properties, and Computational Algorithms", Journal of Econo­

metrics, 37:87-114.

Cowan, J.D. and D.H. Sharp (1988), "Neural Nets", Quarterly Reviews of

Biophysics, 21(3):365-427.

Crain, I.K. and B.K. Bhattacharyya (1967), "Treatment of nonequispaced

two dimensional data with a digital computer", Geoexploration, 5:173-194.

322 Atkeson

Devroye, L.P. (1981), "On the Almost Everywhere Convergence of Nonparamet­

ric Regression Function Estimates", The Annals of Statistics, 9(6):1310-1319.

Eubank, R.L. (1988), Spline Smoothing and Nonparametric Regression, Marcel

Dekker, New York, pp. 384-387.

Falconer, K.J. (1971), "A general purpose algorithm for contouring over scat­

tered data points", Nat. Phys. Lab. Report NAC 6.

Farmer, J.D., and J.J. Sidorowich (1988), "Predicting Chaotic Dynamics",

in Dynamic Patterns in Complex Systems, J .A.S. Kelso, A.J. Mandell, and M.F.

Shlesinger, (eds.), World Scientific, New Jersey, pp. 265-292.

Farwig, R. (1987), "Multivariate Interpolation of Scattered Data by Moving Least

Squares Methods", in J .C. Mason and M.G. Cox (eds), Algorithms for Approxima­

tion, Clarendon Press, Oxford, pp. 193-21l.

Franke, R. (1982), "Scattered Data Interpolation: Tests of Some Methods",

Mathematics of Computation, 38(157):181-200.

Franke, R. and G. Nielson (1980), "Smooth Interpolation of Large Sets of

Scattered Data", International Journal Numerical Methods Engineering, 15:1691-

1704.

Friedman, J.H., J.L. Bentley, and R.A. Finkel (1977), "An Algorithm for

Finding Best Matches in Logarithmic Expected Time", ACM Trans. on Mathemat­

ical Software, 3(3):209-226.

Grosse, E. (1989), "LOESS: Multivariate Smoothing by Moving Least Squares",

in C.K. Chui, L.L. Schumaker, and J.D. Ward (eds.), Approximation Theory VI,

Academic Press, Boston, pp. 1-4.

Hillis, D. (1985), The Connection Machine, MIT Press, Cambridge, Mass.

Kazmierczak, H. and K. Steinbuch (1963), "Adaptive Systems in Pattern

Recognition" , IEEE Transactions on Electronic Computers, EC-12:822-835.

Lancaster, P. and K. Salkauskas (1986), Curve And Surface Fitting, Academic

Press, New York.

Legg, M.P.C. and R.P. Brent (1969), "Automatic Contouring", Proc. 4th

A ustralian Computer Conference, 467-468.

Li, K.C. (1984), "Consistency for Cross-Validated Nearest Neighbor Estimates in

Nonparametric Regression", The Annals of Statistics, 12:230-240.

Lodwick, G.D., and J. Whittle (1970), "A technique for automatic contouring

field survey data", Australian Computer Journal, 2:104-109.

Macauley, F.R. (1931), The Smoothing of Time Series, National Bureau of Eco­

nomic Research, New York.

McIntyre, D.B., D.D. Pollard, and R. Smith (1968), "Computer Programs

For Automatic Contouring" , Kansas Geological Survey Computer Contributions 23,

Using Local Models to Control Movement 323

University of Kansas, Lawrence, Kansas.

McLain, D.H. (1974), "Drawing Contours From Arbitrary Data Points", The

Computer Journal, 17(4):318-324.

Miiller, H.G. (1987), "Weighted Local Regression and Kernel Methods for Non­

parametric Curve Fitting", Journal of the A merican Statistical Association, 82:231-

238.

Palmer, J.A.B. (1969), "Automated mapping", Proc. 4th Australian Computer

Conference, 463-466.

Pelto, C.R., T.A. Elkins, and H.A. Boyd (1968), "Automatic contouring of

irregularly spaced data", Geophysics, 33:424-430.

Sheppard, W.F. (1912), "Reduction of Errors by Means of Negligible Differ­

ences", Proceedings of the Fifth International Congress of Mathematicians, E. W.

Hobson and A. E. H. Love (eds), Cambridge University Press, 11:348-384.

Sherriff, C.W.M. (1920), "On a Class of Graduation Formulae", Proceedings of

the Royal Society of Edinburgh, XL:112-128.

Steinbuch, K. (1961), "Die lernmatrix", Kybernetik, 1:36-45.

Steinbuch, K. and U.A.W. Piske (1963), "Learning Matrices and Their Ap­

plications" , IEEE Transactions on Electronic Computers, EC-12:846-862.

Steinbuch, K. and B. Widrow (1965), "A Critical Comparison of Two Kinds

of Adaptive Classification Networks" , IEEE Transactions on Electronic Computers,

EC-14:737-740.

Stone, C.J. (1975), "Nearest Neighbor Estimators of a Nonlinear Regression

Function", Proc. of Computer Science and Statistics: 8th Annual Symposium on

the Interface, pp. 413-418.

Stone, C.J. (1977), "Consistent Nonparametric Regression", The Annals of Sta­

tistics, 5:595-645.

Stone, C.J. (1982), "Optimal Global Rates of Convergence for Nonparametric

Regression", The Annals of Statistics, 10(4):1040-1053.

Taylor, W.K. (1959), "Pattern Recognition By Means Of Automatic Analogue

Apparatus", Proceedings of The Institution of Electrical Engineers, 106B:198-209.

Taylor, W.K. (1960), "A parallel analogue reading machine", Control, 3:95-99.

Taylor, W.K. (1964), "Cortico-thalamic organization and memory", Proc. Royal

Society B, 159:466-478.

Walters, R.F. (1969), "Contouring by Machine: A User's Guide", American

Association of Petroleum Geologists Bulletin, 53(11):2324-2340.

Whittaker, E., and G. Robinson (1924), The Calculus of Observations, Blackie

& Son, London.

