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ABSTRACT

Systematic variation in the methylation of cytosines

at CpG sites plays a critical role in early development

of humans and other mammals. Of particular inter-

est are regions of differential methylation between

parental alleles, as these often dictate monoallelic

gene expression, resulting in parent of origin spe-

cific control of the embryonic transcriptome and sub-

sequent development, in a phenomenon known as

genomic imprinting. Using long-read nanopore se-

quencing we show that, with an average genomic

coverage of ∼10, it is possible to determine both

the level of methylation of CpG sites and the hap-

lotype from which each read arises. The long-read

property is exploited to characterize, using novel

methods, both methylation and haplotype for reads

that have reduced basecalling precision compared

to Sanger sequencing. We validate the analysis both

through comparison of nanopore-derived methyla-

tion patterns with those from Reduced Representa-

tion Bisulfite Sequencing data and through compari-

son with previously reported data. Our analysis suc-

cessfully identifies known imprinting control regions

(ICRs) as well as some novel differentially methylated

regions which, due to their proximity to hitherto un-

known monoallelically expressed genes, may repre-

sent new ICRs.

INTRODUCTION

Methylation of the �fth carbon of cytosines (5mC or sim-
ply mC) is an epigenetic modi�cation essential for normal
mammalian development. Methylation differences between
alleles contribute to establish allele-speci�c expression pat-
terns. As obtaining genome-wide haplotyped methylomes
with short reads remains challenging, we evaluated the abil-
ity of long-read, nanopore-based sequencing to improve
allele-speci�c methylation analyses.
We apply the technique to the study of genomic imprint-

ing, where differential expression of the maternal and pater-
nal alleles in the offspring is at least partially set by the dif-
ferential methylation (1–5). Imprinting is proposed to arise
from the diverging interests of the maternal and paternal
genes (6). In accordance with its primordial role in alloca-
tion of resources from the mother to the offspring, the pla-
centa, along with the brain, is the organwhere parental con-
�ict results in the most pronounced imprinted expression
(7–9). We thus conduct a survey of differential methylation
and expression in murine embryonic placenta.
Recent studies have increased the number of genes iden-

ti�ed as subject to imprinting in mouse to ∼200 (10–15).
The cause of the differential expression between paternal
and maternal alleles is only known for a subset of these
genes; maternal histone marks can play a role (14), and in
other cases it involves the differential methylation of adja-
cent regions (5). The differential methylation patterns may
be established in the gametes and persist through the epi-
genetic reprogramming occurring after fertilization (16).
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These differentially methylated regions (DMRs) are called
primary DMRs, or imprinting control regions (ICRs). Al-
ternatively, differential methylation may arise during devel-
opment, perhaps as a downstream effect of differential ex-
pression, in which case the regions are called somatic or sec-
ondary DMRs (17).

Apart from the parent of origin of the allele, genetic dif-
ferences can also be associated with differential methyla-
tion. In this case, F1 hybrids of distinct mouse strains will
display DMRs between the alleles according to the strain
of origin (18), and not the parent. Genetically determined
DMRs can have profound effects on phenotype, for in-
stance in humans by altering the expression of mismatch
repair genes important in cancer (19). Therefore, we also
investigate the link between DNA methylation and expres-
sion for strain-biased genes.
Reconstructing haplotyped methylomes necessitates

the simultaneous measurement of DNA methylation and
single-nucleotide polymorphisms (SNPs) differentiating
the alleles. This can be achieved by deep sequencing
of bisul�te-converted DNA on the Illumina platforms,
although the short reads combined with the reduced
complexity of the bisul�te-treated DNA make the process
inef�cient, meaning many regions with low SNP density re-
main unresolved. Long reads provided by third generation
sequencing technologies can overcome the requirement
of a high SNP density, while several methods allow the
assessment of base modi�cations on native DNA (thus
also avoiding the reduction in complexity associated with
bisul�te conversion). These methods include: analysis
of polymerase kinetics for PacBio SMRT sequencing
(20), and detection of deviations in the electric signal
for Oxford Nanopore sequencing, via nanopolish (21),
signalAlign (22), mCaller (bioRxiv doi:10.1101/127100),
Tombo (bioRxiv doi:10.1101/094672) or DeepSignal
(bioRxiv doi:10.1101/385849). We note that, for the dom-
inant eukaryotic genome base modi�cation at 5mC, the
PacBio technology requires very high coverage making it
impractical for use in the analysis of mammalian genomes
(23). PacBio SMRT sequencing can be combined with
bisul�te treatment (SMRT-BS) to facilitate 5mC detection,
but this approach is currently only available for targeted
sequencing (24) and the bisul�te treatment introduces the
same drawbacks noted above in addition to fragmenting
the DNA. Additionally, while PacBio technology is limited
to maximum read lengths of between 50 and 100 kb (25),
Oxford Nanopore sequencing has no theoretical upper
limit on read length and exhibits no bias in sequencing
quality with read length (26), which is especially bene�cial
in genomic regions devoid of SNPs, or highly repetitive
regions.
Here, we use the MinION and PromethION long-read

nanopore sequencers to generate whole-genome haplo-
typedmethylomes frommurine embryonic placenta.With a
mean coverage of 10× we successfully identify known ICRs
as well as novel parent-of-origin DMRs near imprinted
genes, as well as strain-speci�c DMRs close to both strain-
biased genes and structural variants. We show the improved
ef�ciency of this strategy over existing work�ows to resolve
allele-speci�c methylation, and highlight its utility in inves-
tigating the mechanisms of genomic imprinting.

METHODS

Animal strains and husbandry

All mice were maintained and treated in accordance with
Walter and Eliza Hall Institute Animal Ethics Committee
approved protocols under approval number WEHI AEC
2014.026.Musmusculus castaneusmice were obtained from
Jackson Labs. Note that due to prior inter-crossing for
transgene transmission, the femaleM.musculus domesticus
C57BL/6 mice that served as dams for our study comprise
12.5%FVB/NJ genome, however for simplicity wewill refer
to this mouse as B6. Wild-type B6 were reciprocally mated
to wild-typeMus musculus castaneus (Cast).

DNA and RNA extraction

Pregnant females were sacri�ced at E14.5 by CO2 asphyxi-
ation and the embryonic portion of each placenta was dis-
sected from the maternal portion in phosphate buffered
saline, as we have done previously (27). Samples were snap
frozen in buffer RLT plus (Qiagen) and DNA and RNA
were later extracted from the same sample using the All-
Prep DNA/RNA Mini Kit (Qiagen), according to manu-
facturer’s instructions. Samples were sexed by polymerase
chain reaction (PCR) using primers forOtc (X-linked gene)
and Zfy (Y-linked gene) as previously described (28), and
male samples were selected for further analysis.

Illumina sequencing

Reduced Representation Bisul�te Sequencing (RRBS) li-
braries were made from 100 ng of DNA puri�ed from the
embryonic layer of a male B6 × Cast E14.5 placenta using
the Ovation RRBS Methyl-Seq System (NuGEN), accord-
ing to the manufacturer’s recommendations, which include
use of the Qiagen Epitect kit for bisul�te conversion. The
resultant library was sequenced on a HiSeq 2500 (Illumina)
using 100 bp paired-end reads and analysed as previously
described (28,29).
RNA-seq libraries were prepared from1�g ofRNA from

four B6 × Cast and four Cast × B6 samples, including
the same sample as the RRBS library, using the TruSeq
RNA sample preparation kit (Illumina). 75-bp paired-end
sequencing was performed on a NextSeq 500 (Illumina).
Reads were trimmed with Trim Galore v0.4.2 and mapped
withHISAT2 v2.0.5 (30) with option --no-softclip to
theGRCm38 (mm10)mouse genomewithN-masked casta-
neus SNPs. Mapped reads were haplotyped with SNPsplit
v0.3.2 (31), and gene counts obtained by running feature-
Counts (32) on the GRCm38 v90 Ensembl annotation. Dif-
ferential analysis was performed with edgeR (33,34) using
quasi-likelihood �ts (35) and controlling the false discov-
ery rate (FDR) at 10% (36). Interactive plots were produced
with Glimma (37).

Nanopore sequencing

The B6 × Cast F1 sample was sequenced on three Min-
ION �ow cells with the 1D Sequencing Genomic Ligation
(LSK108) protocol from ONT with minor adjustments:
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4 �g of starting material were used for each library prepa-
ration, and for two libraries DNA was sheared to 10 kb
with a Covaris G-Tube, whereas shearing was omitted for
the third library (resulting in longer read lengths). Reads
were basecalled with Albacore 1.2.2. The Cast × B6 F1
was sequenced on one PromethION �ow cell with the 1D
Sequencing Genomic Ligation (LSK109) protocol without
shearing, and basecalled with Albacore 2.2.7. Nanopore
reads were aligned to the same SNP-masked genome as be-
fore, using BWA-MEM (arXiv:1303.3997).

Haplotyping

Haplotyping is achieved through the identi�cation of SNPs
that are unique to one or the other allele. Examining only
the SNPs identi�ed as passing all �lters in Keane et al. (38),
we combine two distinct methods to con�dently haplotype
each read.

Basecall haplotyping. Where a read is aligned to a SNP
position i on the reference genome, we assign a score Si if
the aligned base agrees with the reference haplotype, or 1
− Si if the aligned base agrees with the alternate haplotype,
where the score depends on the basecalling quality score qi
of the base in question as

Si = 1 − e−0.6927−0.1203qi ,

where the co-ef�cients of the above relationship were deter-
mined empirically on successfully haplotyped reads. Bases
which match neither haplotype, or which exhibit a deletion
at the SNP location are excluded from the analysis. Finally,
the read is assigned an aggregate haplotype value h ∈ [0, 1]
across the n informative SNP calls as follows:

h =
1

n

n
∑

i

{

Si , if base i agrees with ref. allele;
1 − Si , if base i agrees with alt. allele.

Signal-level haplotyping. For signal-level haplotyping, we
use the hidden markov model (HMM) of Simpson et al.,
implemented in nanopolish phase-reads (39). Brie�y, the raw
signal corresponding to the section of the read aligned to the
reference at the SNP position is realigned using a HMM,
and the likelihood of the sequence of 6-mers in this vicinity
is maximized by choosing the more likely of the two pos-
sible alleles. Each read is then assigned scores according to
the same rule as in Basecall Haplotyping, where nanopolish
quality scores are offset by −35 in order to exhibit a similar
relationship to basecall quality scores.

Combining haplotype calls. For each read with nbase and
nsignal associated SNP calls and associated haplotype values
hbase and hsignal, we de�ne the haplotype calls

Hbase = sgn (hbase − 0.5) and

Hsignal = sgn
(

hsignal − 0.5
)

.

The calls are then combined according to the following
rules, applied in order:

H =
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0, if nbase < 5 and nsignal < 5; (1)
Hbase, if Hbase = Hsignal; (2)
Hbase, if nbase > 3nsignal and not (1); (3)
Hsignal, if nsignal > 3nbase and not (1); (4)
Hbase, if |hbase − 0.5| > 3|hsignal − 0.5| (5)

and not (1), (3) or (4);
Hsignal, if |hsignal − 0.5| > 3|hbase − 0.5| (6)

and not (1), (3) or (4);
0, otherwise. (7)

whereH= 1 represents a read assigned to the reference hap-
lotype, H = −1 represents a read assigned to the alternate
haplotype and H = 0 represents an unassigned read. This
process is shown graphically as a �owchart in Supplemen-
tary Figure S3.

Resolution of maternal recombination. Owing to the cross
of an FVB-strain into the maternal line in the grand-
parental generation, it is necessary to resolve which sec-
tion of the maternal genome was contributed by recombi-
nation from the FVB chromosome.We run the above haplo-
typing procedure with three possible outcomes, rather than
two: mm10, FVB and CAST, with variants called by Keane
et al. (38). The proportion of maternal (non-CAST) reads
within any 100 Kb region was �tted to a recursive partition
tree, which splits continuous data into a stepwise function,
here representing the proportion of a contiguous section
of chromosome haplotyped to FVB (Supplementary Fig-
ure S5). Fitting was performed using the R package rpart
with parameters minsplit=5 and cp=0.1 (40). SNPs in
sections of the chromosome with mean proportion of FVB
>50% were replaced with the FVB allele for further analy-
sis.

Methylation calling

We determined the methylation status of each CpG site on
each read using nanopolish call-methylation (21). Brie�y, na-
nopolish uses a 5-base alphabet, with 5-methylcytosine rep-
resented as M, to build a Gaussian mixture model rep-
resenting every possible 6-mer with both methylated and
unmethylated cytosine in a CpG context, excluding those
6-mers which contain both the methylated and unmethy-
lated base. We ran nanopolish separately on reads haplo-
typed to the maternal and paternal chromosome, using a
SNP-masked version of each chromosome to decrease bias
in reads with expected deviations from the mm10 reference.
Nanopolish then assigns each section or ‘event’ of

nanopore current to a base on the reference genome and cal-
culates the likelihood of each 6-mer containing the CpG site
being either methylated (LM(dij)) or unmethylated (LC(dij))
given the data dij for a call group i covered by a read j.
Groups of consecutive CpG sites in which the distance be-
tween any two adjacent sites is <11 bases (therefore having
overlap between 6-mers containing the cytosines in ques-
tion) are chained into CpG call groups. All sites within the
one CpG call group are assumed to have the same methy-
lation status, such that each 6-mer is only considered once.
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We convert these likelihoods to probabilities as follows:

LM(di j ) = P(di j |M) and LC(di j ) = P(di j |C)

By Bayes’ law,

P(M|di j )

P(C|di j )
=

P(di j |M)P(M)

P(di j |C)P(C)

and since M and C are mutually exclusive and jointly ex-
haustive,

P(C|di j ) = 1 − P(M|di j ).

Then, de�ning the prior probability of methylation as P(M)
= p0,

P(M|di j )

1 − P(M|di j )
=

p0

1 − p0

LM(di j )

LC(di j )

and rearranging for P(M|dij),

P(M|di j ) =
1

1 +
1 − p0

p0

LC(di j )

LM(di j )

.

Noting results from Decato et al. (41) showing methylation
levels ranging from 0.433 to 0.538 formouse placental tissue
we set p0 = 0.5, so �nally we de�ne the single-read, single-
site probability of methylation as

βi j = P(M|di j ) =
1

1 +
LC(di j )

LM(di j )

.

Comparison with RRBS methylation calls. Individual
methylation calls on a single CpG call group are aggregated
over the set of reads covering each group in order to com-
pare with aggregate values provided by bisul�te sequencing.
That is, for each CpG call group i covered by n reads, we de-
�ne the call group average

βi =
1

n

n
∑

j=1

βi j .

In order to compare methylation calls between nanopore
and RRBS, we must split CpG call groups de�ned by na-
nopolish as CpG sites separated by <11 base pairs into in-
dividual sites, including GpC sites on the reverse strand,
with each site retaining the same � value as the original
call group. Only those CpG sites for which both RRBS and
nanopore data exist are considered.

Identi�cation of differentially methylated regions

Following methylation detection and haplotype assignment
of each read, it is possible to assign each call of methy-
lation on the genome to one of the two haplotypes. The
aggregated � methylation values for each CpG group are
tested for DMRs using the DSS software (42). Brie�y, DSS
tests for differential methylation at single CpG-sites, using a
Wald test on the co-ef�cients of a beta-binomial regression
of count data with an ‘arcsine’ link function. Then, using
a default P-value threshold of 10−5, DSS aggregates differ-
entially methylated sites into DMRs based on a maximum

separation between sites and a minimum density and num-
ber of sites in each DMR.
To detect parent-of-origin DMRs, we perform DSS with

the comparison B6♀ and Cast♀ versus Cast♂ and B6♂; to
detect strain-speci�cDMRs, we performDSS a second time
with the comparison B6♀ andB6♂ versus Cast♂ andCast♀.

Visualization of haplotyped methylation

Owing to the noisy nature of nanoporemethylation calls, we
use a loess smoothing curve to visually represent the methy-
lation of a single nanopore read (43). Here, the smoothing
parameter � is determined by

α = 0.1 + 8 · 10−11(max{105 − L, 0})2,

where L is read length. This relationship was determined
empirically to have minimal impact on visualization while
minimizing computation time. Genomic tracks of methyla-
tion and expression were plotted with the following Biocon-
ductor packages: ggbio (44), rtracklayer (45) and Genomi-
cRanges (46).

RESULTS

Nanopore methylation calls are concordant with other tech-
nologies

We sequenced the embryonic portion of placenta derived
from a male embryonic day 14.5 (E14.5) conceptus from
a C57BL/6 (Black6, or B6) × Castaneus (Cast) F1 on the
MinION platform to a depth of ∼8× (Supplementary Fig-
ure S1) and called methylation using nanopolish (21). The
genome-wide methylation data successfully recapitulated
known patterns: CpG islands (CGIs), as de�ned by Irizarry
et al. (47), separated into two groups of high and lowmethy-
lation (Figure 1A); the methylation level dipped at tran-
scriptional start sites (TSSs) (Figure 1B), and the average
genome-wide methylation level was∼50%, as previously re-
ported for placental tissue (41).

To further validate the accuracy of the nanopore methy-
lation calls, we compared them to RRBS data on the same
sample at sites covered by both methods. Nanopore methy-
lation calls showed an overall similar distribution to RRBS
methylation calls, albeit with a bias toward intermediate
values of methylation (Figure 1C). Despite being less cor-
related than measurements from methylation-speci�c tech-
nologies (48) with a median absolute deviation of 0.18, per-
site methylation was also relatively concordant between the
two methods, with 85% of CpG sites being called correctly
when converting average methylation values to binary calls
(Figure 1D).
Sequencing of E14.5 embryonic placenta from the recip-

rocal cross (Cast×B6) on the PromethIONplatformat 12×
coverage (Supplementary Figure S1) generated comparable
results.

Increased haplotyping ef�ciency with nanopore reads

We next used high-con�dence SNPs between the Cast and
B6 strains to haplotype RRBS and nanopore reads. In or-
der to mitigate the high sequencing error rates of nanopore
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A B

C D

Figure 1. Nanopore methylation calls are consistent with expected results and established technologies. (A) Metaplot of nanopore methylation calls across
CGIs, clustered in two groups of high and low methylation. (B) Metaplot of nanopore methylation calls across the aggregated gene bodies of all protein-
coding genes recapitulated known methylation structures. (C) Density of methylation calls (�, the average methylation based on all reads covering that
position) for sites covered by both nanopore and RRBS. (D) Joint density of nanopore and RRBS methylation calls for the same sites as in panel (C).
Darker regions indicate regions of higher density, while lighter regions indicate regions of lower density. The density plot is split into four quadrants
according to a RRBS threshold of 0.5 and a nanopore threshold of 0.36, and the percentage of sites in each quadrant is displayed.

sequencing, we used two methods of haplotype assignment,
denoted the ‘basecall method’, based on FASTQ data, and
the ‘signal method’, based on the phase-reads module from
nanopolish, an HMM, which uses the raw nanopore signal
to predict genotype (39). Additionally, we only assigned a
haplotype to those nanopore reads with at least �ve high-
con�dence SNPs (Supplementary Figure S3). All RRBS
reads overlapping at least one SNP were assigned a haplo-
type (31). Only 24%of themappedRRBS reads could be as-
signed to one haplotype, whereas 74% of mapped nanopore
reads were haplotyped in the expected proportions (Fig-
ure 2A and B): roughly half of the haplotyped reads were
assigned to the maternal haplotype, and half to the pater-
nal haplotype, albeit showing a slight bias toward the pa-
ternal haplotype (due to an increased number of split reads
in regions where sections of the Cast genome has a dele-
tion with respect to the B6 genome). The pattern of haplo-
type assignment was consistent across the autosomal chro-
mosomes, while, as expected for a male sample, almost all
(91%) of the reads aligned to the X chromosome were as-
signed to the maternal haplotype (Figure 2B). Haplotyping
of the Cast × B6 cross gave similar results (Supplementary
Figure S2A). The lack of maternal bias in read haplotype
indicates minimal maternal contamination, which is also re-
�ected in consistent RNA-seq library sizes (Supplementary
Figure S4).
We further evaluated the accuracy of the haplotyping of

the nanopore reads by sequencing the same tissue from the
parents (B6 only, and Cast only). Following the same hap-
lotyping procedure, 85.7% of the reads were correctly as-

Table 1. Accuracy and support of haplotyping methods on pure-strain

reads

Method AUROC Accuracy (%) Called reads

Basecall 0.976 0.963 261 806
Signal 0.988 0.961 199 474
Regression 0.992 0.972 198 684
Ad hoc – 0.983 228 866

signed to the relevant genotype, and 1.5% were misassigned
(Supplementary Figure S2B and C).
The large majority of nanopore reads showed strong

agreement between the two haplotyping methods. Discrep-
ancy between the basecall and signal methods are typi-
cally due to a low number of SNPs being scored by one or
both methods, resulting in these alignments being �ltered
out by the haplotyping procedure (Supplementary Figure
S3). However, when examining the overall predictive per-
formance of the two methods with Area Under Receiver
Operating Characteristic Curve (AUROC) on the single-
strain experiments, the signal method marginally outper-
formed the basecall method (see Table 1). We also found
that the combination of the two methods achieved a slight
improvement again over the signal method, either with a lo-
gistic regression model (49) or an ad hoc combination of the
two approaches (see ‘Materials and Methods’ section). The
ad hoc method allowed classi�cation of 30 000 additional
reads over the logistic regression and signal method, both
of which excluded reads for which nanopolish failed to pro-
duce output.
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Figure 2. Accurate and ef�cient haplotyping of nanopore reads. (A) Percentages of mapped reads fromRRBS and nanopore sequencing that were assigned
to the B6 genome (maternal), Cast genome (paternal), or that could not be haplotyped (�ltered) for the B6 × Cast F1 sample. (B) Percentages of mapped
reads from nanopore sequencing that were assigned to each haplotype on each chromosome. (C) Scatter plot of haplotype scores for nanopore reads
according to signal (x-axis) and basecall (y-axis) methods. Only 10 000 randomly selected reads are shown for ease of visualization. (D) Signal and basecall
haplotype scores for reads from the sequencing of the pure parental Cast strain.

In both nanopore andRRBSdata, themain cause of hap-
lotyping failure is the lack of SNPs in the region covered by
the read (Supplementary Figure S3). While the proportion
of successfully haplotyped nanopore reads could increase
with optimization for longer reads and anticipated im-
proved sequencing accuracy, RRBS haplotyping ef�ciency
is limited by the short read length.

Parent-of-origin and strain-biased gene expression

To investigate the correlation between differential methyla-
tion and differential gene expression, we performed RNA-
seq on the same F1 placental tissue from reciprocal crosses
of B6 and Cast, in quadruplicates. Maternal tissue contam-
ination was unlikely as for each embryo maternal and pa-
ternal counts were similar (Supplementary Figure S4). We
found 135 genes with a parental bias in expression (im-
printed genes, 10% FDR, Figure 3A): 88 with higher ex-
pression from the maternal allele and 47 with higher ex-
pression of the paternal allele. Among the 135 genes, 53
corresponded to well-characterized imprinted genes in clas-
sic databases (50–53). A further 17 of these genes, including
Fkbp6, Smoc1/2, Gzmc/d/e/f/g, Zdhhc14 and Arid1b have
been identi�ed as imprinted in one or several recent studies
(12–15). The remaining 65 genes constitute novel candidate
genes with parent-biased expression inmouse placenta. The
complete annotated list is reported in Additional File 1.
We also identi�ed 4 029 genes (13% of expressed autoso-

mal genes) with a strain bias >2-fold (5% FDR, Figure 3B
and Additional File 1), evenly split between B6 dominance
(2 027 genes) and Cast dominance (2 002).

Known imprinting control regions are observable by nanopore
sequencing

We combined the methylation and haplotyping data from
the nanopore reads to compare methylation between the
parental alleles. To highlight the linkage information of the
methylation data available for nanopore reads, as well as the
per-site per-read data, we plotted the loess �t of the cyto-
sine methylation levels for each read in the region of interest
(Figure 4A and B).
DMRs at known ICRs (52) were readily visible and con-

cordant with matched allele-speci�c RNA-seq and RRBS
data (Figure 4A and B). Nanopore data recapitulated
methylation differences at most known ICRs (Figure 4C),
often showing extended differential methylation past the
annotated ICR borders.

Nanopore sequencing reveals novel differentially methylated
regions

Next, we sought to de�neDMRs between parental alleles as
well as between strains de novo, using the differential methy-
lation tool DSS (42). We ranked putative DMRs based on
the area statistic. Using the DSS default threshold of 10−5,
we obtained a total of 933 DMRs, of which 309 were ex-
plained by parent-of-origin differences, and the remainder
by strain-speci�c effects (Additional File 2). We then exam-
ined these DMRs, in conjunction with haplotyped RRBS
and RNA sequencing data for corroborating evidence of
differential methylation and differential expression, respec-
tively, in order to �nd putative DMRs of interest at im-
printed genes.
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Figure 3. Differential allelic expression in mouse E14.5 embryonic placenta. (A) Differential expression between the maternal and paternal alleles. Genes
with adjusted P-value < 0.1 are coloured in red when maternal expression dominates (positive log-fold change) and blue when paternal expression is
greater (negative log-fold change). The shape of the point indicates whether the differentially expressed gene has previously been reported as imprinted.
(B) Differential expression between B6 and Cast alleles. Genes with adjusted P-value < 0.05 and absolute log2 fold-change > 1 are coloured in black when
B6 expression is higher and orange when Cast expression is higher. Interactive plots are available at bioinf.wehi.edu.au/haplotyped methylome.

Figure 4. Nanopore allele-speci�c methylation captures known differential methylation at ICRs. (A) Allelic methylation plot of maternally imprinted gene
Impact displays a clear DMR at its ICR. Haplotyped RRBS data shows concordance with nanopore allelic methylation. Allele-speci�c RNA-seq coverage
plots show monoallelic paternal expression. CGIs are displayed in black, with CpG shores in dark grey and CpG Shelves in light grey. Nanopore: Vertical
bars at the base of the B6Cast track denote CpG sites used for methylation calling, while ‘+’ signs at the base of the CastB6 track denote SNPs used for
haplotyping. Highlighted red regions indicate DMRs detected by DSS. The maternal allele is shown in red and the paternal allele in cyan for all plots. (B)
Allelic methylation plot as in A for the reciprocally imprinted genes Nespas and Gnas. RNA-seq gives very low expression and is not shown. (C) Heatmap
of differences (maternal − paternal) in allelic methylation in relative-width bins along known ICRs. Regions are sorted in order of average methylation
difference, with regions in the same imprinting cluster placed adjacent to each other. Regions without haplotyped calls for both alleles are shown in grey.

Of the 20 highest ranking DMRs, 15 corresponded to
known ICRs. Although many of the lower-ranking DMRs
are potential false-positives, they also included regions of
known imprinted expression (for instance two small de-
tected DMRs immediately adjacent to knownDMRs at the
IMPACT and NESP ICRs, shown in Figure 4A and B, re-
spectively.) Thus in the absence of statistically robustDMR-
�nding methods for nanopore data, we kept this permissive
threshold.
Five ICRs annotated in the WAMIDEX database (52)

were not detected de novo (Table 2). INPP5F V2 and

GRB10 simply lacked coverage in the B6 × Cast sample
but showed clear differential allelic methylation in the Cast
× B6 sample; GNAS-EXON1A also lacked coverage in B6
× Cast but the reciprocal sample and the RRBS did not
suggest differential methylation, while NDN lacked cover-
age in both samples. The last undetected region was GPR1-
ZBDF2; however Duf�é et al. (17) have shown that this re-
gion lacks important features of a bona �de ICR, and that a
neighbouring maternally hypermethylated region is the true
ICR. The region in question was readily detected as differ-

http://bioinf.wehi.edu.au/haplotyped_methylome
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entially methylated from the nanopore data (DMR #229,
Table 2).

In addition to ICRs, we detected numerous DMRs at im-
printed genes that do not appear to be present in gametes
(54–56), and which therefore likely constitute secondary
DMRs (Table 2). When RRBS coverage was present, the
bisul�te data corroborated the de novo DMR identi�ca-
tion. Five of the secondary DMRs have been described
previously, although they are not currently compiled in a
database: maternal hypermethylation at the Igf2 promoter
(57), maternal hypermethylation at the placental-speci�c
promoter of Gab1 (58), paternal hypermethylation of the
Meg3 TSS (59), maternal hypermethylation at the Slc38a4
TSS (60) and paternal hypermethylation at the Igf2r pro-
moter (2).

The remaining secondary DMRs have not been previ-
ously characterized. Six of them overlapped the TSSs of im-
printed genes: Sfmbt2, Jade1, Ascl2, Cd81/R74862, Tssc4
and AC158554.1.
Other novel secondary DMRs overlapped introns rather

than TSSs. Park2, a recently identi�ed maternally-biased
gene (13), had seven intronic DMRs, all displaying hyper-
methylation of the maternal allele. Rian displayed a DMR
that had not been previously reported in mice, although
its human orthologue also presents an intronic imprinted
DMR (61).
In some cases, inspection of the parent-speci�c DMRs

revealed unannotated imprinted transcription nearby, for
example in the Kcnq1 and Igf2r clusters (Table 2). These
RNA-seq reads may be part of imprinted long non-coding
RNAs, frequent at imprinted clusters.
While we have collated all the imprinted DMRs that

we found to directly overlap with imprinted expression -
in addition to the WAMIDEX ICRs- in Table 2, we note
that other imprinted DMRs may be associated with the
imprinted expression of more distant genes, or with genes
that are only expressed or imprinted in speci�c tissues. For
example, we found imprinted DMRs in the promoters of
Smoc2 (DMR #224) and Arid1b (DMR #863), two genes
recently identi�ed as being imprinted (and also imprinted
in our data). The strong DMR #110 overlapped the TSS of
Gtsf2, which was poorly expressed in placenta but may be
imprinted in the tissues where it is expressed (in gonocytes
and spermatids (62)). In the absence of chromatin confor-
mation data or functional validation, we did not attempt to
formally assign these DMRs to speci�c genes.
We however used the top, most reliable 400 DMRs to

calculate the distance of genes to their nearest DMR de-
pending on their expression status.We found that parentally
biased genes were more likely to be proximal to parent-
of-origin DMRs than unbiased genes (median distance
0.9 Mbp compared to 7.4 Mbp), whereas strain-biased
genes and DMRs did not show this relationship (median
distance 2.9 Mbp compared to 3.1 Mbp) The distributions
of distances to the nearest DMR are shown in Figure 5,
which shows a striking relationship between parentally bi-
ased genes and parent-of-origin DMRs. This result is con-
sistent with parental bias in expression being driven neces-
sarily by epigenetic differences, whereas differential expres-
sion between strains is mainly driven by genetic differences.

Long reads provide advantages in differential methylation
analysis

Inspection of the DMRs revealed multiple advantages of
our nanopore-based method of methylome haplotyping
over traditional bisul�te sequencing (Figure 6).
Wewere able to resolveDMRs in regions of lowSNPden-

sity, where there were no haplotyped RRBS reads despite
the presence of a CGI (Figure 6A). The particular DMR
in Figure 6A encompassed the TSS of the imprinted gene
Peg10, and was much wider than the previously annotated
ICR. The increased DMR width was a regular occurrence
at ICRs (Table 2).

Our method also uncovered novel secondary DMRs at
known imprinted genes such as Jade1 (Figure 6B), as well
as at previously uncharacterized imprinted transcripts such
as AC158554.1, annotated as a long intergenic noncoding
RNA (ENSMUSG00000116295, Figure 6C).

Another advantage provided by the long reads was ap-
parent at the ZIM2-PEG3 ICR (Figure 6D). RRBS data
from the B6Cast F1 showed that certain CG dinucleotides
were highly methylated on the maternal allele (100%methy-
lation at these positions) while others were variably methy-
lated, resulting in averages of 25–50%methylation. Two sce-
narios could give rise to these intermediate values: either the
variable positions are randomly unmethylated in all mater-
nal alleles, or there exists two populations of maternal alle-
les, one where CG dinucleotides are methylated throughout
the region and one where the variable positions are con-
sistently unmethylated. The long nanopore reads revealed
that the second scenario contributes to the observed inter-
mediate methylation patterns: there was a mixture of cells,
in some of which the maternal allele showed a contiguous
loss of methylation. Although this result is well known to
those who have practiced Sanger bisul�te sequencing, the
haplotyped methylome derived from nanopore sequencing
allowed investigation of this variability more accurately (no
PCR bias) and across the whole genome.
Eight strain-speci�c DMRs were also found within 5 kb

of a gene with strain-biased expression (Figure 6E). Most
of these exhibit structural variation proximal to the DMR,
although a small number exhibited changes in expression
seemingly not associated with any structural variant.
One example of a structural variant between B6 and Cast

associated with differential methylation can be found on
Figure 6F. Upstream of the Tap2 gene, an IAPEZ retro-
transposon in the B6 genome is absent from the Cast
genome (Cast reads are truncated upstream of the repeat
and absent downstream), and the gene-proximal border is
more highly methylated on B6 alleles than on Cast alle-
les. This differential methylation would be consistent with
the insertion of the transposon attracting methylation that
spreads to adjacent regions. We could also see at this repeat
region a lot of spuriously mapping reads from both strains,
suggesting that the repeat is present in multiple copies that
the current assembly fails to account for.

DISCUSSION

Determining allele-speci�c methylation patterns in diploid
or polyploid cells with short-read sequencing is hampered
by the dependence on a high SNP density and the reduction
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Table 2. List of known and proposed DMRs associated with imprinted genes

DMR name

Known

co-ordinates

Present

co-ordinates Hypermethylated Nearest gene Nanopore RRBS

RNA-

seq Note

GPR1-ZDBF2 1:63,257,407-

63,264,876

p Zdbf2,Gpr1 several transient

DMRs (17)

GPR1-PLATR12/LIZ 1:63,200,250-

63,200,470

m Zdbf2,Gpr1 229 � � Gpr1 ICR (17)

SFMBT2 2:10,371,327-

10,371,731

m Sfmbt2,Gm13261 75 � � Sfmbt2 TSS

secondary DMR

MCTS2 2:152,686,755:

152,687,275

2:152,686,261-

152,687,856

m Mcts2 13 � � wider than

annotation

NNAT 2:157,560,050-

157,561,662

2:157,559,825-

157,561,802

m Nnat 29 � � wider than

annotation

NESP 2:174,284,269-

174,286,690

2:174,283,034-

174,287,439

p Nespas 1 � �

NESPAS 2:174,295,707-

174,300,901

2:174,294,696-

174,300,693

m Gnas 6 � �

GNAS-EXON1A 2:174,326,930-

174,329,007

m Gnas �

JADE1 3:41,555,359-

41,556,940

m Jade1 19 � � Jade1 TSS

secondary DMR

PEG10 6:4,747,209-

4,747,507

6:4,746,012-

4,749,480

m Peg10 2 � wider than

annotation

MEST 6:30,736,488-

30,737,237

6:30,735,330-

30,739,552

m Mest 4 � �

NAP1L5 6:58,906,696-

58,907,062

6:58,906,821-

58,907,095

m Nap1l5,Herc3 89

NDN 7:62,348,214-

62,348,695

m Ndn � low coverage

ZIM2 7:6,727,576-

6,732,116

7:6,727,344-

6,731,296

m Peg3 5 � �

SNURF/SNRPN 7:60,004,992-

60,005,415

7:60,003,140-

60,005,295

m Snrpn,Snurf 16;343 � � wider than

annotation

INPP5F V2 7:128,688,274-

128,688,642

m Inpp5f � lack of coverage

in B6Cast, clear

DMR in CastB6

H19/IGF2 7:142,580,263-

142,582,140

7:142,575,503-

142,582,086

p H19 17;35;54,534 � � wider than

annotation

IGF2-DMR0 7:142,669,246-

142,670,067

m Igf2,Igf2os,Gm49394 39 � � known

placenta-speci�c

secondary DMR

(57)

ASCL2 7:142,968,946-

142,969,300

p Ascl2 62 � � Ascl2 TSS

secondary DMR

CD81 7:143,052,956-

143,053,090

p Cd81,R74862 463;887 � � Cd81/R74862

TSS secondary

DMR

TSSC4 7:143,068,896-

143,069,197

p Tssc4,Trpm5,Cd81 153 � � Tssc4 TSS

secondary DMR

KCNQ1OT1 7:143,295,155-

143,295,622

7:143,294,879-

143,296,757

m Kcnq1ot1 11 � � wider than

annotation

KCNQ1-

INTERGENIC1

7:143,438,058-

143,438,341

p 205 � � secondary DMR

with unannotated

imprinted

expression

KCNQ1-

INTERGENIC2

7:143,445,526-

143,445,944

p Gm27901 67 � � secondary DMR

with unannotated

imprinted

expression

CDKN1C 7:143,459,775-

143,459,891

p Cdkn1c,Gm4732 355 � � Cdkn1c

secondary DMR

GAB1 8:80,859,569-

80,859,745

m Gab1 221 � � known Gab1

placental TSS

secondary DMR

(58)

RASGRF1 9:89,879,568-

89,879,853

9:89,879,601-

89,880,045

p Rasgrf 69

ZAC1 10:13,090,470-

13,091,527

10:13,090,313-

13,092,161

m Plagl1 12 � wider than

annotation

U2AF1-RS1 11:22,971,842-

22,972,319

11:22,971,545-

22,973,999

m Zrsr1 3 � � wider than

annotation

GRB10 11:12,025,482-

12,026,332

m Grb10 � � lack of coverage

in B6Cast, clear

DMR in CastB6
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Table 2. Continued

DMR name

Known

co-ordinates

Present

co-ordinates Hypermethylated Nearest gene Nanopore RRBS

RNA-

seq Note

GTL2/DLK1 12:109,526,740-

109,528,734

12:109,527,519-

109,528,845

p Gm27528,Gm27528 52 � � narrower than

annotation

MEG3 12:109,540,792-

109,541,676

p Meg3,Mir1906-

1,Gm27300,Gm27596

207;776 � � knownMeg3 TSS

secondary DMR

(59)

MEG3-INTRON 12:109,556,071-

109,556,162

m Meg3 921 � Meg3 intronic

secondary DMR

RIAN 12:109,612,8804-

109,612,962

m Rian,Mir1188,

Mir341

304 � Rian intronic

secondary DMR

PEG13 15:72,806,335-

72,811,649

15:72,809,183-

72,811,180

m Peg13 14 � � narrower than

annotation

SLC38A4 15:97,053,880-

97,056,427

m Slc38a4 9 � � known TSS

secondary DMR

(60)

AC158554.1 15:97,166,956-

97,167,257

m AC158554.1 403;406 � � lincRNA TSS

secondary DMR

PDE10A 17:8,772,760-

8,773,118

m Pde10a 474;701 � Pde10a intronic

secondary DMR

PARK2 17:11,123,807-

11,124,219

m Park2 222;289;488;597;

782;827;852

� seven Park2

intronic

secondary DMRs

SLC22A2 17:12,607,783-

12,608,088

m Slc22a2 452 � Scl22a2 intronic

secondary DMR

IGF2R/AIR 17:12,741,297-

12,742,707

17:12,741,160-

12,742,949

m Igf2r,Airn 8 � �

IGF2R-TSS 17:12,769,605-

12,770,120

p Igf2r,Airn,Gm23833 37 � � known Igf2r TSS

secondary DMR

(2)

SMOC2-INTERGENIC 17:14,590,437-

14,590,640

m Smoc2, Thbs2 862 � secondary DMR

with unannotated

imprinted

expression

IMPACT 18:12,972,197-

12,973,741

18:12,972,182-

12,974,748

m Impact 7 � � wider than

annotation

A check mark is shown where RRBS and RNA-seq evidence supports the DMR. The DMR rank is shown when supporting nanopore data exists.
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Figure 5. Proximity of differentially expressed genes to DMRs. (A) Distribution of distance from genes to imprinted DMRs, shown on a log-scale. Inset
shows distances from 0 to 10 000 bp on a linear scale. Imprinted genes are much more frequently located within 100–100 000 bp of an imprinted DMR.
(B) Distribution of distance from genes to strain-speci�c DMRs. Strain-biased genes are for the most part located no closer to a strain-speci�c DMR than
non-differentially expressed genes, indicating the strain-speci�c differential expression is likely caused by other factors, such as genomic differences. In both
cases, we use only DMRs ranked in the top 400.

in sequence complexity inherent to bisul�te treatment. In
this study, we demonstrate the use of long-read nanopore
sequencing to derive haplotyped methylomes of the em-
bryonic portion of mouse placentae. Methylation estimates
from nanopore reads are consistent with previous knowl-
edge (Figure 1). The longer read lengths allowedmost reads
to overlap multiple SNPs, resulting in accurate haplotyp-
ing of 75% of the reads, a much higher proportion than
comparable short-read data (Figure 2). Sequencing of na-
tive DNA not only maintains the sequence complexity that

is lost in bisul�te treatment, but also has the potential to
detect a variety of base modi�cations outside 5mC, bypass-
ing the need for specialized chemistries such as bisul�te (for
5mC) or oxidative-bisul�te (for 5hmC) treatments. Further-
more, we are able to characterize allele-speci�c methylation
at a relatively shallow level of genomic coverage (∼10×),
which is substantially lower than the coverage required by
Paci�c Biosciences single-molecule sequencing to ascertain
any native base modi�cation (25×) or 5mC in particular
(250×) (23). Nonetheless, a detailed comparison of the per-
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Figure 6. Examples of de novoDMRs and the advantages proffered by long reads. (A) Allelic methylation (as in Figure 4) plot of maternally imprinted gene
Peg10 displayed a clear DMR at its ICR, which was much wider than the previously annotated DMR (bottom). (B) Previously uncharacterized secondary
DMR at the TSS of maternally imprinted gene Jade1. (C) Novel maternally imprinted gene AC158554.1, with imprinted methylation at its TSS. (D) Allelic
methylation plot of maternally imprinted gene Peg3 showed consistently high methylation across some maternal reads, and consistently low methylation
across others, a conclusion that could not be drawn from the middling bisul�te methylation values. (E) Strain-of-origin DMR associated with the strain-
biased expression of 493342110Rik. (F) DMR associated with the omission of a IAPEZ repeat from the Cast genome, suggesting that the methylation in
the �anking region was affected by the presence or absence of the repeat.
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formance of nanopore and PacBio in the detection of base
modi�cations on matched samples would be of interest.
Recent increases in throughput of nanopore sequenc-

ing instruments make this approach a cost-effective way
of obtaining genome-wide allele-speci�c methylation for
mammalian-sized genomes, compared to the alternatives of
short-read whole-genome bisul�te sequencing, or PacBio
SMRT sequencing. Thus, the approach we present is unique
in its ability to characterize allele-speci�c single-molecule
cytosine methylation state in eukaryotes, in which the 5mC
modi�cation is both common and highly relevant to tran-
scriptional regulation.
The haplotyped methylomes for reciprocal B6 × Cast

F1 samples con�rm the parent-of-origin speci�c methy-
lation of ICRs and provide an improved de�nition of
their boundaries (Figure 4). By integrating the haplotyped
methylomes with allele-speci�c expression data, we identi-
�ed novel DMRs linked to imprinted genes. These are likely
to constitute secondary DMRs, whose role and origin are
unclear. We note that the low sequencing coverage in this
study (∼10×) limits our ability to detect modest methy-
lation differences between alleles, and is thus most suited
to the detection of large differences such as those occur-
ring at ICRs. We con�rm a large number (70) of previ-
ously identi�ed imprinted genes and propose another 65
as new candidates (Figure 3 and Additional File 1). This
suggests that although the monoallelically expressed genes
are now well characterized, sensitive analyses can still un-
cover parentally biased genes. Interestingly, though we �nd
more maternal-dominant genes than paternal-dominant
ones (88 and 47, respectively), the imbalance is much less
pronounced than in Finn et al. (2014) (12) (96% maternal
dominance). Applying long-read sequencing to the tran-
scriptome also promises improvements in the percentage
of usable data, the detection of allele-speci�c as well as
isoform-speci�c differential expression and even the detec-
tion of RNA base modi�cations.
Our allele-speci�c methylation and expression data can

also be used to reveal strain-biased expression of genes
linked to strain-speci�c DMRs. The genetic divergence be-
tween the two strains accounts for most of the differences
in expression, however the presence of DMRs could sug-
gest an epigenetic component to the regulation of a subset
of genes.
We foresee a number of improvements that will make the

determination of haplotyped methylomes by nanopore se-
quencing more ef�cient and comprehensive in the future.
First, we expect to see an expansion in the types and nu-
cleotide contexts of base modi�cations characterized. Our
analysis is based on Simpson et al. (21) (21), and is lim-
ited to 5mC at CpG sites. However that is not a limita-
tion of the technology, as has been demonstrated by oth-
ers ((22), Tombo (bioRxiv doi:10.1101/094672), mCaller
(bioRxiv doi:10.1101/127100)). Second, improvements can
be made in reaching true nucleotide-resolution methylation
calls. Where multiple CpG sites occur within less than twice
the k-mer length (here 6), all these sites are considered to
have the same methylation state. Again, this is not a lim-
itation of the technology, as more complete training data
will allow resolution of mixed methylation states. Finally,
we see opportunities for improvement in the analysis of

nanopore methylation data. Instead of binary calls from
bisul�te sequencing, the output of nanopore sequencing is a
likelihood ratio that the site is methylated versus unmethy-
lated. Currently, there is no method for the detection of dif-
ferential methylation that accepts these continuous values
as input. Additionally, the DMR detection algorithm that
we used was designed originally for bisul�te data, and we
expect that algorithms designed speci�cally to incorporate
long reads and probabilistic methylation assignment would
achieve greater levels of accuracy.

CONCLUSIONS

We demonstrate that long-read sequencing using nanopore
technology can ef�ciently generate haplotyped mammalian
methylomes. With no additional sample preparation than
that routinely used for basic sequencing and with only
a mean coverage of ∼10×, we identify differential allelic
methylation throughout the genome. Combined with ex-
pression data, this improves the resolution of imprinting
analyses. Our approach is widely applicable to other sys-
tems, for instance with more complex genetics, or to phase
cancer mutations with methylation state and to determine
the effects of structural variation on methylation.

DATA AVAILABILITY

All sequencing data are available at ENA under study
accession ERP109201. Processed data can be explored
via a Genome browser (63,64), interactive plots (37)
and a summary page available from bioinf.wehi.edu.
au/haplotyped methylome. All analysis scripts are avail-
able on GitHub at github.com/scottgigante/haplotyped-
methylome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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