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ABSTRACT The rising temperature is one of the key indicators of a warming climate, capable of causing
extensive stress to biological systems as well as built structures.Ambient temperature collected at ground
level can have higher variability than regional weather forecasts, which fail to capture local dynamics.
There remains a clear need for accurate air temperature prediction at the suburban scale at high temporal
and spatial resolutions. This research proposed a framework based on a long short-term memory (LSTM)
deep learning network to generate day-ahead hourly temperature forecasts with high spatial resolution. Air
temperature observations are collected at a very fine scale (~150m) along major roads of New York City
(NYC) through the Internet of Things (IoT) data for 2019-2020. The network is a stacked two layer LSTM
network, which is able to process the measurements from all sensor locations at the same time and is able
to produce predictions for multiple future time steps simultaneously. Experiments showed that the LSTM
network outperformed other traditional time series forecasting techniques, such as the persistence model,
historical average, AutoRegressive Integrated Moving Average (ARIMA), and feedforward neural networks
(FNN). In addition, historical weather observations are collected from in situ weather sensors (i.e., Weather
Underground, WU) within the region for the past five years. Experiments were conducted to compare the
performance of the LSTM network with different training datasets: 1) IoT data alone, or 2) IoT data with
the historical five years of WU data. By leveraging the historical air temperature from WU, the LSTM
model achieved a generally increased accuracy by being exposed to more historical patterns that might
not be present in the IoT observations. Meanwhile, by using IoT observations, the spatial resolution of air
temperature predictions is significantly improved.

INDEX TERMS air temperature, Internet of Things (IoT), long short-term memory (LSTM), urban weather

l. INTRODUCTION

NE of the significant aspects of climate change is

the globally rising temperature. According to the Na-
tional Oceanic and Atmospheric Administration (NOAA)
2020 Global Climate Summary, the land and ocean surface
temperature of August 2020 was 0.94 °C (1.69 °F) above av-
erage and ranked as the second-highest August temperature
since 1880 [1]. Rising temperature and extreme heat events,
exacerbated by the urban heat island effect, can produce
life-threatening conditions to humans, overheat rivers, and
increase risks to plants and wildlife. The urban heat island
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(UHI) is a phenomenon in which urban areas have higher
temperatures (1-7 °F) than the surrounding rural areas [2].
Apart from the overall rising temperature, urban heat islands
can be caused by reduced natural landscapes in urban areas,
urban material properties that reflect less solar energy, urban
geometries that hinder wind flow, and heat generated from
human activities. Over 55% of the world’s population lives
in urban areas, which is predicted to reach 68% by 2050
[3]. Therefore, increasing risks of heat-related deaths and
illnesses and growing demands of power exist in urban areas.

It is essential to adequately monitor local temperature
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dynamics to mitigate the risks associated with increasing
global temperatures. For that purpose, it is necessary to have
good spatiotemporal coverage of temperature measurements.
Regional weather forecasts provide a spatiotemporally con-
tinuous estimate of weather conditions, but such estimates
are still limited in their spatial resolution, especially for
personal or street-level uses [4]. Localized weather can be
quite different from regional weather forecasts. Localized
heat forecasting can help identify the regions prone to over-
heating, target warnings to citizens about potential heatwaves
and provide aid to residents in time [5]. There is an important
need for accurate hourly air temperature measurements at
very high spatial resolution in urban environments.

Although high spatial-resolution weather simulation mod-
els can produce local forecasts, the accuracy of the pre-
dictions and future mitigation decisions are still heavily
influenced by the availability of observations—the ground
truth. These mitigation measures can be salting icy roads,
turning on public water sprays, or providing shelters to the
public in extreme weather situations [6]. The verification of
model forecasts also requires high-resolution observations.
However, traditional monitoring infrastructures cannot pro-
vide such information due to the limited number of discrete
stations installed. The increasing availability of Internet of
Things (IoT) sensors can provide an excellent complement
to traditional in situ observations regarding local uncertainty.
For example, the Array of Things network in Chicago has
embedded approximately 150 sensors to monitor the urban
climate at a community level [7]. The surface temperature
has also been estimated using smartphone battery temper-
atures through crowdsourcing where proper quality control
is conducted [8, 9]. The fifth generation (5G) of mobile
technologies and their potential impact on the IoT will bring
enormous benefits to localized weather observations with
higher data transmission speeds and more connected net-
works [10].

This research proposed a framework by integrating long-
term historical in situ observations and IoT observations
together to train a long short-term memory (LSTM) network
for air temperature prediction within New York City (NYC).
By leveraging the historical air temperature data from in
situ observations, the LSTM model can be exposed to more
historical patterns that might not be present in the IoT obser-
vations. Meanwhile, by using [oT observations, the spatial
resolution of air temperature predictions is significantly im-
proved.

The paper is organized as follows. The related works are
reviewed and discussed in Section 2. In situ and IoT sensor
measurements used in this study are introduced in Section
3. The LSTM model adopted in this study is described in
Section 4. Experimental results are reported in Section 5, and
extreme cases are demonstrated in Section 6, followed by the
conclusions and discussion in Section 7.

Il. RELATED WORKS

2

A. 10T FOR URBAN TEMPERATURE MONITORING

An increasing number of cities are implementing urban mete-
orological monitoring projects of differing size and scales as
part of "smart city" initiatives and scientific research projects,
including the Birmingham urban climate laboratory [11],
the Safe Community Alert Network at Montgomery County
[12], the Array of Things network in Chicago [7], and the
Smart Santander in Spain [13]. These initiatives and research
projects have provided unprecedented new opportunities for
high-resolution monitoring of the urban climate. Moreover,
monitoring helps the city become smarter by controlling
energy demand and reducing transport network disruption.

For temperature studies, increasing the spatiotemporal res-
olution of urban meteorological monitoring becomes even
more crucial. Street-level air temperature has tremendous
spatiotemporal variability that impacts vulnerable popula-
tions in different ways. For example, the Array of Things
network in Chicago installed approximately 150 stationary
devices ("nodes"), typically at street intersections, to monitor
the city’s climate, noise level, and air quality [7]. However,
these "nodes" help increase the density of monitoring only
to a certain extent, where each "node" covers a community
instead of a street. The Smart Santander project is now
embedding the city with more than 12,500 sensors [13].
Many sensors are mounted on stationary objects, such as
trash containers, streetlights, and parking spaces. In contrast,
other sensors are mounted on vehicles such as police cars
and taxicabs that monitor air pollution and traffic conditions.
The data collected from the larger number of sensors leads
to improvements in urban weather monitoring and a better
grasp of urban issues.

Utilizing their high spatiotemporal resolution, researchers
have explored IoT infrastructures to monitor urban climate
and assist in various urban issues. Chapman et al. [14]
used the IoT network to measure rail moisture and leaf-fall
contamination to achieve a low-cost, real-time, and high spa-
tiotemporal resolution rail monitoring system. Chapman and
Bell [6] demonstrated a use case utilizing IoT sensors to ob-
tain high-resolution temperature observations for winter road
maintenance. These observations are used in route-based
forecasting models to determine which road segments need
salting treatments in snowy or icy conditions. Ferranti et al.
[15] utilized an IoT network to monitor the temperature rise
along railways and analyze the relationship between railway
failure and the gradual rise in temperature during the early- or
mid-summer season. This relationship could be useful in heat
risk management to potentially reduce disruptions and delays
in railway services. Kraemer et al. [16] utilized an 10T sys-
tem with solar power and weather forecasts to predict solar
power energy. They selected relevant features from weather
forecasts and trained machine learning models that generate
predictions with 20% better accuracy than current state-of-
the-art predictions. Solar energy predictions can be used
for effective energy budget planning. Using IoT hardware,
software, and communication technologies, Shapsough et al.
[17] developed a cost-effective system for stakeholders to
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monitor and efficiently control large-scale solar photovoltaic
systems and evaluate the effects of environmental factors on
the systems.

This research uses the data collected by a vehicle-based
IoT network that collects air temperature information along
major roads in and around large cities in the U.S. The col-
lected information is then preprocessed to eliminate outliers
and noise and aggregated hourly into approximately 150 m x
150 m grids. The high spatial and moderately high temporal
resolution provides us with a great opportunity to monitor air
temperature on a suburban scale.

B. MACHINE LEARNING TEMPERATURE PREDICTION
Air temperature prediction is one of the most critical as-
pects of climate study. Accurate temperature prediction can
provide crucial guidance for the decision-making process to
address environmental, ecological, or industrial problems.
Machine learning techniques have been used in air tem-
perature predictions based on the time series of historical
air temperature and possibly other input predictors, such as
humidity, wind speed and direction, and surface pressure.
Exemplary machine learning methods include support vector
machines (SVMs), artificial neural networks (ANNs), and,
more recently, convolutional neural networks (CNNs), geo-
graphically weighted neural networks, and long short-term
memory (LSTM) recurrent neural networks (RNNs). Some
works have explored the capability of using machine learning
methods to predict global temperature under climate change
for future decadal or longer time scales [18, 19, 20]. Most
of these studies demonstrated the impacts of CO2 emissions
on global temperature increases and compared the global
temperature predictions generated by machine learning meth-
ods with the Intergovernmental Panel on Climate Change
(IPCC) scenarios [18]. However, global temperature models
do not provide local or regional forecasts with fine-scaled air
temperature variability.

Other works have integrated observations from weather
stations into machine learning models for regional or local
air temperature forecasting on an hourly or daily basis. For
example, Smith et al. [21] used a Ward-style ANN with
historical 24-hour air temperatures, wind speed, precipita-
tion, relative humidity, and solar radiation to predict the air
temperature at one or multiple future hours in Georgia. Ward-
style ANNSs are single-layer feedforward neural networks that
utilize backpropagation and activation functions to optimize
weights and biases. The results showed an increasing error
when predicting a longer period in the future, with the
mean absolute error (MAE) ranging from 0.516 °C at the
one-hour horizon to 1.873 °C at the twelve-hour horizon.
Focusing on the same region, Chevalier et al. [22] com-
pared the support vector regression (SVR) and the single-
layer ANN to predict sudden changes in air temperature
and observed different capabilities of the two models in
predicting year-round and winter-only datasets. The results
showed that SVR was predicted more accurately for the year-
round dataset, whereas ANN generally outperformed SVR
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using the winter-only dataset. Adding more hidden layers,
Hossain et al. [23] trained a three-layer feedforward neural
network with historical 24-hour air temperature from weather
stations, barometric pressure, humidity, and wind speed to
predict the air temperature at a certain future hour. Expanding
from the geographically weighted regression (GWR), Du et
al [24] integrated GWR with neural networks to account
for nonstationary weight metrics that incorporate the spatial
distribution of the environmental observations. Similarly, Wu
et al. [25] expanded the GWRNN into both spatial and
temporal weighted regressions that account for spatiotem-
poral non-stationary dependencies within the environmental
observations to enhance the forecasting. Hewage et al. [26]
trained and compared two deep learning models (LSTM and
Convolution RNN) with surface temperature, pressure, wind,
precipitation, humidity, snow, and soil temperature that are
generated from numerical weather prediction models. Both
models are used to predict air temperature for a specific
future hour (one-step prediction), and both models are com-
posed of five hidden layers.

Most of the works mentioned above focus on one-step
prediction instead of multistep prediction (prediction for
multiple specific future time steps). These studies have used
data collected from weather stations or numerical simulations
that generally have a coarse spatial resolution and cannot
provide street-level air temperature variability. There have
been various studies using IoT networks and machine learn-
ing techniques for air quality prediction [27, 28], agricul-
tural frost prediction [29], or building heating and cooling
demand prediction [30]. However, to the authors’ knowledge,
this is one of the first studies integrating traditional in situ
observations and IoT observations to improve the multistep
prediction capability of deep learning techniques.

lll. STUDY AREA AND DATA

In this study, we focus on exploring the air temperature in
NYC. Table 1 lists the sources and spatiotemporal resolutions
of the datasets used in this study. The IoT data are from the
GeoTab data platform, and the data availability ranges from
April 29, 2019, to May 1, 2020. For the same period, we
also downloaded the air temperature from discrete weather
stations in Weather Underground.

TABLE 1. Summary of data collections

Internet of Things (IoT) | Weather stations

sensor measurements

Data type

GeoTab
(https://data.geotab.com/)

Data source Weather Underground

Spatial and | 153 m x 153 m grids | Fixed sensor location for

temporal along the major roads for | every 60 minutes

resolutions every 60 minutes

Time range May 1, 2019 — Apr 30, | Jan 1,2015- Apr 30,2019
2020

Number of | 36,970 130

grids/stations

Value range [-12.20, 48.00] °C [-22.55, 36.94] °C

Missing data | [5.25%, 100%] 0.076%

ratio range
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A. GEOTAB

The GeoTab data platform provides ambient air tempera-
ture data collected from sensors mounted on vehicles. This
research uses data where anomalous data and outliers have
already been removed. The measurements are aggregated to
the 7-character geohash level (153 m x 153 m) every 60
minutes. GeoTab tracks over 900,000 vehicles and gener-
ates temperature data from over 250,000 vehicles per hour
throughout North America. This allows GeoTab to accumu-
late millions of temperature data points per hour near real-
time and generate a comprehensive, continuously updating
map of road temperatures.

B. WEATHER UNDERGROUND

To build a reliable temperature prediction model, a long-
term historical air temperature dataset pertaining to climate
patterns is required. However, the availability of GeoTab lasts
only one year, indicating that it is not sufficient to build the
prediction model with GeoTab alone. Contrary to GeoTab,
data collected from weather stations are generally archived
for a long period. The dataset we used in this study is the
hourly air temperature from Weather Underground (WU) in
2015-2019. WU is a network of weather stations that com-
bines authoritative observation systems and personal weather
stations. The authoritative observation systems include the
Automated Surface Observation System (ASOS) stations
located at airports throughout the country and the Meteoro-
logical Assimilation Data Ingest System (MADIS) managed
by the National Oceanic and Atmospheric Administration
(NOAA). The Federal Aviation Administration maintains
ASOS stations, and observations are updated hourly or more
frequently when adverse weather affecting aviation occurs
(such as low visibility and precipitation). Personal weather
stations (PWSs) results are contributed by volunteers who
purchase and install weather sensors in and around their
houses or workplaces. These PWS stations are put through
strict quality controls, and observations are updated as often
as every 2.5 seconds. There are 130 stations within the
bounding box of our study area, and the missing data rate
for all these stations is mostly less than 0.005. We directly
filled the data with nan for each station by their missing time
points.

To verify and cross-validate that GeoTab and WU both
represent the local air temperature in NY city, the correla-
tions between nearby (within 2km) GeoTab grids and WU
stations are calculated for the same time period as GeoTab
(May 2019-Apr 2020). Among the GeoTab grids and WU
stations, 11 pairs of nearby locations from the two sources are
identified, with different distances between each other within
the pair (Fig. 1). Both the longest distanced pair and the
shortest distanced pair show good correlations within each
other regarding air temperature (Fig. 1 b and d). The time
series comparisons also show good alignments (Fig. 1 ¢ and
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FIGURE 1. (a) GeoTab grids and their nearby WU stations within 2km. (b) and
(c) show the value distribution, correlation coefficient, and time series
comparison for the pair of GeoTab grid and WU station with the shortest
distance among the available pairs. Similarly, (d) and (e) show the pair with the
longest distance.

C. MISSING DATA HANDLING

Despite the high spatiotemporal resolution, an obvious dis-
advantage of vehicle-based measurement is the missing data
issue due to the small (or even zero) number of vehicles
passing through the same location within that hour. The
aggregated air temperature for that spatiotemporal grid will
be of less quality or have missing data. Here, we demonstrate
the missing data rate of the GeoTab data. (Fig. 2a) shows the
spatial distribution of all 36,970 GeoTab grids. Note that a
particular grid may not have data since there might not be
enough vehicles traveling through that grid in a specific hour.
Thus, each grid has a different ratio of missing data, and
similarly, each hour has a different spatial distribution based
on the data available.

The missing data ratios for some GeoTab grids are rel-
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FIGURE 2. (a) Overall missing data ratio for each GeoTab grid, (b) spatial distribution of missing data ratio for the same subregion at 4:00 am local time (having the
maximum overall missing ratio), and (c) spatial distribution of missing data ratio for the same subregion at 8:00 am local time (having the minimum overall missing

ratio).

atively high compared to the WU dataset. To address this
problem, we processed the GeoTab data in two steps: 1)
select GeoTab grids along the major roads with a missing
data ratio less than a certain threshold (i.e., under 5.5%,
10%, 20%, ..., 50%), and 2) linearly interpolate the data of
each grid in time and then find the nearest 20 stations for
the average. We interpolated the missing data linearly for
each grid based on temporal dependencies. These grids are
distributed along major roads, which is reasonable since data-
collection is vehicle based. There are more vehicles on major
roads than on other secondary roads. This data characteristic
makes this study more specific, focusing on air temperature
prediction along major roads of NYC.

IV. METHODS
A. LSTM

Recurrent neural networks (RNNs) have been used to learn
sequential patterns in time series data. Taking the current and
the previous status, a hidden state at a time step t of an RNN
can take the memory forward to predict the next time step
(t+1). LSTM is a typical kind of RNN and can learn for a
more extended period than a simple RNN [31]. The hidden
state of LSTM can be controlled at the gates to avoid the
vanishing gradient and the exploding gradient problems that
are usually suffered by RNNs [32, 33].

The key to LSTM is the cell state, and adding or removing
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information to or from the cell state is achieved by gates,
which is composed of a sigmoid neural net layer and a point-
wise multiplication operation. The sigmoid layer’s output is
between 0 and 1, with O indicating letting no information
passing through, and 1 indicating all information. An LSTM
cell contains three gates: input gate, output gate, and forget
gate (Fig. 3a). Within each cell, the first step is to select
the cell state from the previous time step and retain part of
the information into the current time step using the forget
gate. The forget gate is described as Equation 1, where the
hidden state of the previous time step (h;—1) and the value
of the current time step (x;) are taken into account in the
sigmoid function o(-). The second step is to control the
inward information into the cell using the input gate. This
process is conducted using a sigmoid layer (Equation 2) that
determines which values of the cell state to update and a
tanh layer (Equation 3) that creates intermediate values (C’t)
to update the cell state (Equation 4). The last step is to
control the outward information from the cell. This process
is achieved by a sigmoid layer (Equation 5) that determines
which values of the cell state to output and a tanh layer that
standardizes the values of the cell state. The sigmoid layer
and the tanh layer are then multiplied to calculate the current
hidden state (Equation 6).

fr = oWy - [he—1, 2] + by) (D
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ir = (Wi - [hy_1, 2] + bi) 2)
Cy = tanh(We - [hi—1, 4] + be) (3)
Cy = fr % Cr_q +1iy % C; (4)

0y = a(Wy - [hi—1, 2] + bo) (5)
he = oy % tanh(Cy) (6)

In Equations 1-6, the sigmoid functions are calculated as
o(x) = 1/(1 4+ e~*) , the tangent function is calculated as
tanh(z) = (e —e ") /(e” + e 7)), Wi, Wi, We, W, are
the weight matrices, by, b;, bc, b, are the bias vectors, x;
is the current input, h;_; and h; are the hidden states of the
previous time step and the current time step.

LSTM models are a natural fit for our problem due to the
following two reasons. First, LSTM is capable of handling
long sequential data processing because the design of gates
allows intact memory propagation, shown as the state pass-
ing, which avoids, to some extent, the gradient vanishing and
exploding issues. Second, comparing to conventional RNN,
LSTM is relatively insensitive to the “gap” length, i.e., the
“interval’ between two adjacent cells. Temperature data have
a similar characteristic because extreme weather may break
the internal pattern existed in temperature. The gates design
is extremely useful to eliminate the outlier data when finding
the interior pattern of the time-series data. For example,
the forget gate has the capacity to fully block the cell state
memory passed from the previous time step.

The LSTM architecture used in this study is a conventional
LSTM neural network for temperature prediction, which con-
sists of N number of LSTM layers and one fully connected
(FC) layer (Fig. 3b). The input data is feature vector of
surface temperature observed for the past time series. The
input data is fed into the stacked N layers of LSTM cells,
where N is a tunable hyperparameter. The output of LSTM
cells can be stacked into a matrix as input of the next layer.
An LSTM layer is comprised of a set of M hidden nodes,
where M is another tunable hyperparameter. When a single
sequence of length sl;n is passed into the network, each
individual element of the sequence is passed through each
and every hidden node. Each hidden node gives a single
output for each input it sees, which results in an overall output
from the hidden layer of shape (sl;n, M). After the set of
LSTM layers, a FC layer is added to the network for final
output. The input size of the final FC layer is equal to the
number of hidden nodes in the LSTM layer that precedes it.
The output of this final FC layer is dependent on the output
sequence length, sl,ut, that the model will predict. For the
multi-step temperature prediction, we used the Mean Squared
Error (MSE) loss and the Adam optimizer.

6

B. PERFORMANCE EVALUATION

To evaluate the model performance, we used the root mean
square error (RMSE) and bias error (bias). RMSE and bias
are on the same scale as the data and are calculated as:

RMSE = @)

Bias = g; — y; (8

where y; is the prediction and y; is the ground truth for data
sample ¢. Note that each data sample ¢ contains a vector with
a length of 24. RMSE and bias are calculated for each station
and each test sample, and the predicted sequence is evaluated
as a single entity. Specifically, bias is calculated as the mean
bias for the predicted sequence.

C. TRAINING PROCEDURE

To demonstrate the capability of the LSTM architecture,
the model is trained using 90% and validated using 10%
GeoTab dataset and WU dataset. The model is tested using 27
randomly selected time series of continuous 72 (previous 48
+ targeting 24) for GeoTab stations with up to 5.5% missing
data ratio. The 27 different days within the time range of
the GeoTab observations are between May 1, 2019 and April
30, 2020 under different weather conditions. In the selected
testing data, the temperature difference within the targeting
24 hours ranges from 5 to 20 °C, which well represents
the whole data. In addition, we ensure that the training and
testing data are across all available months so that there is no
bias or difference in the difficulty of predicting the test data.
All experiments conducted use the same testing days for a
fair comparison. The GeoTab grids used in the testing data
have up to 5.5% missing data, where the values are the least
interpolated.

D. HYPERPARAMETER TUNING

The effect of different combinations of the numbers of LSTM
layers, hidden nodes, and other hyperparameters on the pre-
diction accuracy is investigated by changing the LSTM layers
from 1 to 3, hidden nodes from 24 to 72, and the learning rate
from 0.1 to 0.005. The RMSESs and training time are recorded
in (Fig. 4). While tuning the hyperparameters, we observed
the following characteristics:

o When the learning rate decreases from 0.05 to 0.005,
the training process takes longer but persists for more
training epochs before the model overfits. The model
trained with a learning rate of 0.05 has the largest RMSE
and increasing the learning rate to 0.1 results in a 3%
decrease in RMSE, while decreasing the learning rate to
0.005 results in a 10% decrease in RMSE.

e The LSTM architecture with three layers outperforms
the one with two layers by 20%, given that the hidden
node size is set to 24.

« Increasing the hidden size from 24 to 48 using the two-
layer LSTM architecture can achieve similar accuracy to
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three layers but 24 nodes, but the two-layer architecture
is more efficient than the three-layer architecture.

o Continuously increasing the number of hidden nodes

from 48 to 72 and the number of hidden layers from 2 to
3 does not significantly improve accuracy. Nevertheless,
the training time is three to five times longer than that
with 48 nodes and two layers.

Based on the characteristics discussed above, the hyper-
parameters used in the experiments are listed below. The
number of hidden layers is selected as 2. The number of
hidden nodes is selected as 48, with a learning rate of 0.005
to balance model accuracy and training efficiency.

The number of epochs is determined by initiating a suf-
ficiently large best loss and updating it at each epoch and
applying the early stopping technique to avoid overfitting.
Comparing each epoch’s running loss with the best loss
recorded, if the running loss is ten times larger than the best
loss, the training process will be terminated. We also found
that the number of batches between 5 and 10 for each station
can avoid overfitting too fast in very few epochs. Thus,
the batch size is set as 500 and 5,000 for the GeoTab grid
and WU station, respectively. These batch sizes correspond
proportionally to the number of training samples for each
GeoTab grid, and the WU station is approximately 4,000 and
40,000.

V. EXPERIMENT RESULTS

To demonstrate the prediction capability of the proposed
approach, we compared the model performance with other
commonly used time series forecasting methods. The lengths
of the input sequence and output sequence are 48 hours
and 24 hours, respectively, in the experiment. To understand
the impact of missing data on our proposed approach’s pre-
dictability, we also conducted a sensitivity experiment by
changing the missing data ratio from 5.5% to 50%. To under-
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stand the impact of adding historical WU data to the training,
a comparison experiment was conducted to examine whether
and how the historical WU data can improve local weather
predictions. Models were implemented using PyTorch 1.5,
and experiments were conducted on a 64-bit Dell desktop
with an NVIDIA GeForce RTX 2070, 32 GB RAM and Intel
(R) Core 19-9900 CPU.

A. OVERALL PERFORMANCE OF THE PREDICTORS IN
COMPARISON

Performance is compared between Persistence Model, His-
torical Average, AutoRegressive Integrated Moving Aver-
age (ARIMA), Feedforward Neural Network (FNN), LSTM
(GeoTab), and LSTM (GeoTab+WU). We selected the base-
line models that are widely accepted by literature such as
Hyndman and Athanasopoulos [34], Du et al. [35], and Lyu et
al. [36], and they each represent a different type of time series
forecasting model. All models are tested on the same GeoTab
grids with a missing data ratio of up to 5.5% to predict the
24-hour surface temperature for the predetermined 27 testing
days, given 48-hour previous observations.

o The persistence model is one of the simplest meth-
ods for predicting the future behavior of a time series.
Persistence implies that future values of the time series
are calculated on the assumption that conditions remain
unchanged between “current” time and future time t +
TH [37].

o The historical average is calculated as the average
value of the previous two days.

o ARIMA is a class of models that explains data using
time series data on its past values and uses linear re-
gression to make predictions. Assuming that data have
an autoregression relationship with their past values, the
ARIMA model uses the dependent relationship between
the current value and the past values within the time
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series. ARIMA is also a moving average model, where
the model’s forecast depends linearly on its past values.
To achieve the best performance of the ARIMA model,
we used Auto ARIMA without tuning the required
parameters of the ARIMA. The Auto ARIMA model
generates the optimal p, d, and q values suitable for the
dataset to provide better forecasting.

o FNN is a multilayer perceptron with additional hidden
nodes between the input and output layers. In this net-
work, data move in the only forward direction without
any cycles or loops [38]. This research aims to produce
multistep time-series predictions, so it is essential to de-
sign an FNN with multiple outputs. Each neuron in the
output layer focuses on the prediction of the considered
variable at a different time step. The main issue with this
architecture is that it does not take into account that the
outputs are sequential (i.e., the same variable at different
time steps). In fact, the model would act in the same way
if the outputs were to predict different system variables
simultaneously.

o The LSTM (GeoTab) model was trained using only
GeoTab data, and the LSTM (GeoTab +WU) model
was trained using both GeoTab and WU data. The two
LSTM models used same-size networks to predict on
the testing dataset.

Table 2 shows that our proposed method - LSTM
(GeoTab+WU) model - achieves the best performance in
RMSE. Historical Average achieves the second-best perfor-
mance out of all considered models, especially better than
LSTM (GeoTab). There is the possibility that the short-term
availability of GeoTab dataset limited the capability of the
LSTM architecture. All the considered models achieve a
mean RMSE within the range of 3-4°C, indicating that using
the previous 48 hours to predict the future 24 hours on fine-
scale GeoTab stations is not an easy task.
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TABLE 2. Performance comparison

RMSE Bias

(min/mean/max) (min/mean/max)
Persistence model 3.24/3.80/4.20 1.56/2.26/2.65
Historical average 3.36/3.71/4.03 0.4/0.49/0.61

ARIMA 3.29/3.98/4.56 0.34/0.92/1.52
FNN 3.59/3.86/4.13 0.67/095/1.2
LSTM (GeoTab) 3.49/3.77/4.02 0.22/0.55/1.1
LSTM (GeoTab + WU) | 2.71/2.99/3.31 0.19/0.57/0.97

The RMSE and bias scores for each predicting hour
during testing are reported in (Fig. 5). The Persistence
Model, Historical Average, and ARIMA showed similar
sine wave patterns due to the diurnal change of surface
temperature, where the largest overestimating error occurs
at the 11th predicting hour (i.e., local noontime), and the
largest underestimating error occurs at the 19th predicting
hour (i.e., local 8 pm). In contrast, the performance of the
three neural networks—FNN, LSTM (GeoTab), and LSTM
(GeoTab+WU)—decays with the prediction of future hours.
These three neural architectures are able to learn and predict
diurnal changes successfully and seem to show relatively
similar predictive power, with the FNN predictor providing
the most unsatisfactory performance. The biases of FNN after
hour 13 are lower than the ones of LSTM (GeoTab+WU)
by less than 1 °C, and the RMSEs of FNN are more than
1 °C higher than LSTM (GeoTab+WU) and become in-
creasingly higher starting from hour 8. One possibility of
the poor performance of FNN is that the FNN architecture
explicitly used in this study is a multioutput network, with
each output neuron irrelevant to other output neurons. In
contrast, the LSTM models, including LSTM (GeoTab) and
LSTM (GeoTab+WU), propagate the information through
time, remembering past inputs and reproducing the nonlinear
function. The results show that training the LSTM predictors
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strongly mitigates this issue, supporting our hypothesis that
this training method allows proper information flow over
subsequent time steps. The LSTM (GeoTab+WU) model
showed a similar overall trend over the predicting hours to
the LSTM (GeoTab) model, with progressively decreasing
RMSE errors.
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FIGURE 5. RMSE and bias scores obtained with the six predictors.
Performance computed on the test dataset.

B. SENSITIVITY OF GEOTAB MISSING DATA RATIO

To understand the impact of missing data on our proposed
approach’s predictability, a sensitivity experiment was con-
ducted by training the model with GeoTab grids having
a missing data ratio up to between 5.5% and 50%, with
5% as the increment (Fig. 6). There are 455 GeoTab grids
with 5.5% missing data, 1650 GeoTab grids with less than
10% missing data, and 4689 GeoTab grids with less than
50% missing data. Statistics of GeoTab grids with different
missing data ratio were displayed in in Fig. 6, including
the count of GeoTab grids in Fig. 6¢, and the minimum,
maximum, and median values of daily differences in air
temperature in Fig. 6d. With a higher missing data ratio, daily
temperature differences remain similar for the minimum,
maximum, and median values, indicating that the data with
5.5% missing data ratio generally represents the whole data,
with an increasing number of outlying high daily temperature
differences. For the model trained by GeoTab only and the
model trained by GeoTab+WU, integrating GeoTab grids
with more missing data, the testing errors generally increase
with noticeable fluctuations. The errors are primarily caused
by spatiotemporal interpolation while estimating the values
for inconsistent missing data. The fluctuating pattern might
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impact cutting off GeoTab grids using the missing data ratio
without considering the spatial continuity of GeoTab grids.

In addition, models trained by GeoTab showed less fluc-
tuation than those trained by GeoTab+WU in RMSE er-
rors, indicating that models are less sensitive to the in-
creasing missing data ratio. In contrast, models trained by
GeoTab+WU showed more obvious fluctuations and larger
increases in RMSE errors, indicating that models are more
sensitive to the increasing missing data ratio. One possible
reason is that the WU dataset is not interpolated, and it
represents real-world observations. By adding more GeoTab
grids with a higher interpolation rate whose observations
are smoothed, the model started to negotiate with both
WU and IoT to learn the smoothed pattern, which leads to
greater fluctuations. Another possible reason for the different
impacts on the two types of models is that GeoTab and
WU have different value ranges of surface temperature, and
GeoTab shows a larger spatiotemporal variability of surface
temperature. When training the models with historical WU
data and GeoTab, the models are impacted by the historical
WU data more than GeoTab data, where WU had a longer
period and a more constrained spatiotemporal variability.
Involving GeoTab grids with more missing data downgraded
the performance of the models trained primarily by WU.

C. IMPACT OF ADDING HISTORICAL WU IN TRAINING
To understand the impact of adding historical WU data to
the training, a comparison experiment was conducted to ex-
amine whether the historical data can improve local weather
predictions. Fig. 7 shows the performance of models trained
on GeoTab and GeoTab+WU. It is clear that when the WU
dataset is added to the training, the RMSE is improved ~20%
(mean value: 3.1 vs. 3.8 °C), and the overestimating bias
is reduced for most of the experiments except for the one
trained using 5.5% missing data. To investigate the spatial
distribution of performance, another comparison experiment
was conducted to train and test the LSTM model with
GeoTab or GeoTab+WU on GeoTab grids with different
missing data ratios. Fig. 7 shows that LSTM (GeoTab) and
LSTM (GeoTab+WU) have similar spatial patterns of mean
RMSE, whereas adding historical WU data in training sig-
nificantly reduced the RMSEs for most of the GeoTab grids,
except for the isolating GeoTab grids. Note that a few GeoTab
grids along the river showed worse results for the 15% set
when using GeoTab +WU. This effect occurs because these
GeoTab grids are located next to the river, far from other
GeoTab grids, and are very sparsely distributed in space.
This problem is solved when we increase the GeoTab grids
to 20%; when more GeoTab grids along the river in those
regions are selected for training, the network learned their
patterns successfully.

VI. DISCUSSIONS

A. LIMITATION

One limitation of this study is that it can only predict a
certain location where past measurements of air temperature
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are available. Compared to WU, the GeoTab air tempera-
ture data are densely distributed grids along major roads,
providing better spatial coverage and a higher spatial res-
olution. Experimental results showed that combining two
observational datasets with a longer training period provides
a better prediction accuracy. Therefore, the trained model can
be used to retrain for the same area given that there are more
new sensors deployed and more of the latest measurements
retrieved.

B. COMPARISON WITH HRRR

To compare the air temperature predictions between the
proposed approach and the numerical simulation, we down-
loaded the high-resolution rapid refresh (HRRR) predictions.
The HRRR model is a 3 km resolution, hourly updated
atmospheric model. Radar data are assimilated in the HRRR
every 15 minutes over a 1-hour period. The dataset used in
this study is downloaded from the University of Utah HRRR
archive [39]. Fig. 8a shows the spatial locations of the HRRR
grid points, and each HRRR grid point is compared with a
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each testing station. Comparison of models trained by GeoTab only and
GeoTab + WU.

GeoTab grid within 2 km. Each pair of HRRR and GeoTab
grids are linked with a black line. The RMSEs are color-
coded in Fig. 8a, with the RMSEs of HRRR predictions vi-
sualized on each HRRR grid point and the RMSEs of LSTM
(GeoTab+WU) predictions visualized on each GeoTab grid
point. The RMSEs shown in this figure are the mean RMSE
throughout the testing days. A remarkable observation is
that LSTM (GeoTab+WU) predicted an approximately 30%
lower RMSE than HRRR (mean RMSE: 3.64 vs. 4.61 °C).

The performance is also decomposed into the 24 prediction
hours in Fig. 8b and Fig. 8c. The HRRR predictions showed
the diurnal change of predicting error in a sine wave pattern,
and the amplitude of the sine wave during the local afternoon
time was larger than that in the local morning, partly due to
the propagating error of the prediction (Fig. 8b). The bias
values of HRRR predictions showed overestimations during
the morning and underestimations during the afternoons.
The LSTM (GeoTab+WU) predictions showed an increasing
RMSE over the 24 prediction hours, but the increase stopped
around hour 18. In addition, LSTM (GeoTab+WU) predic-
tions generally overestimate the surface temperature, but the
overestimation is generally lower or approximately 1 °C (Fig.
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C. EXTREME CASES

We further investigated the model performance of LSTM
(GeoTab+WU) over different testing days. For the 27 testing
days, the overall average RMSE is 2.99 °C. However, the
RMSEs of some selected days are much higher than others.
Fig. 9a shows the histogram of the average RMSE over
1,650 GeoTab grids for each selected day. The trained model
performed well for most days with an average RMSE under
4, and Fig. 9 7b represents one example. There are three
selected days, May 15, 2019, November 1, 2019, and January
13, 2020, when the model failed to predict well, and these
days were confirmed to have rapidly changing weather based
on the records from the weather stations (Fig. 9¢c, Fig. 9d,
and Fig. 9e). These three days have temperature patterns
distinct from those of the previous two days. Note that the
performance is highly related to the lengths of the time series
used as previous values and target values, i.e., 48 and 24
hours. Possible improvements can be made by integrating
regional weather forecasts for long-term weather projections.

VIl. CONCLUSIONS
In this paper, we proposed a framework by integrating long-
term historical in situ observations and IoT observations to
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train a LSTM network for air temperature prediction within
the city of New York. We compared the proposed framework
with other time series prediction methods, specifically the
persistence model, historical average, ARIMA, and FNN.
The LSTM network was trained in two different ways: 1)
LSTM (GeoTab), which used the IoT observations alone, and
2) LSTM (GeoTab+WU), which used the IoT observations
and the historical records from weather stations. The results
showed that our proposed framework of integrating historical
weather observations significantly improved the predictive
performance of the LSTM network and outperformed the
other statistical and deep learning-based time series predic-
tion methods. By leveraging the historical air temperature
data from in situ observations, the LSTM model can be
exposed to more historical patterns that might not be present
in the IoT observations. Meanwhile, by using IoT observa-
tions, the spatial resolution of air temperature predictions is
significantly improved.
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