
Using Low Precision Floating Point Numbers
to Reduce Memory Cost for MP3 Decoding

Johan Eilert, Andreas Ehliar, Dake Liu
Dept. of Electrical Engineering

Linköping University
S-581 83 Linköping, Sweden

Email: {je,ehliar,dake}@isy.liu.se

Abstract— The purpose of our work has been to evaluate if
it is practical to use a 16-bit floating point representation to
store the intermediate sample values and other data in memory
during the decoding of MP3 bit streams. A floating point number
representation offers a better trade-off between dynamic range
and precision than a fixed point representation for a given word
length. Using a floating point representation means that smaller
memories can be used which leads to smaller chip area and
lower power consumption without reducing sound quality. We
have designed and implemented a DSP processor based on 16-
bit floating point intermediate storage. The DSP processor is
capable of decoding all MP3 bit streams at 20 MHz and this has
been demonstrated on an FPGA prototype.

I. INTRODUCTION

MPEG-1 layer III [1], commonly referred to as MP3, is
well understood, both on desktop systems and in embedded
systems. Decoders for desktop systems can be implemented
using either fixed point or floating point arithmetic, whereas
embedded systems typically use fixed point arithmetic.

Embedded MP3 decoders usually have to use two 16-
bit memory words for each intermediate value to achieve
the required dynamic range and precision with fixed point
arithmetic. We have investigated the feasibility of using a 16-
bit floating point representation to reduce the memory cost
without sacrificing sound quality. This would halve the data
memory usage which would have a significant impact on
power consumption and chip area. Another advantage with
floating point arithmetic is that the hardware eliminates all
scaling operations associated with fixed point arithmetic which
leads to shorter firmware development time.

One drawback of floating point is the complexity of the
arithmetic units. However, for a given dynamic range, the
multiplier in a floating point data path is smaller than the
corresponding multiplier in a fixed point data path.

In order to evaluate our floating point approach, we have
used the MPEG audio compliance test [3]. In short, a decoder
can be classified as full precision, limited accuracy, or not
compliant depending on the difference between the provided
reference output and the decoded output. We have also con-
ducted informal listening tests since there are no formal criteria
for evaluating the quality of an MP3 decoder for an arbitrary
bit stream.

II. FLOATING POINT REQUIREMENTS

In order to design a system with floating point arithmetic,
two important design decisions of the system have to be made.
One is the floating point format which decides the range and
precision of all values that can be handled by the system.
The other decision is the arithmetic operations that should be
supported in hardware for a given target application.

A. The Floating Point Format

Although it is possible to analytically determine the maxi-
mum values encountered in an MP3 decoder, this information
is not really useful. For example, by setting the gain and scale
factors to their maximum values, it is possible to create a
synthetic MP3 bit stream where the final output samples are
magnitudes larger than the allowed output range. Because of
this, we did not try to perform any formal analysis of the
possible number ranges occurring in MP3 decoding.

Instead, we instrumented the ISO MP3 decoder [2] to
use our own custom floating point arithmetic library with
configurable mantissa and exponent widths. The library also
supported arithmetic with mixed precision in order to mimic
a processor with high precision data path but lower precision
memory. By keeping track of the smallest and largest values
encountered in the decoder, the library was used for determin-
ing the required dynamic range.

Our goal was to find an exponent configuration where all
MP3 bit streams could be decoded without having to saturate
any intermediate value. We did not consider hand-crafted bit
streams with extreme values but we tested more than 200
different music and speech bit streams.

We concluded that all normal bit streams could be decoded
successfully with an exponent size of 5 bits in data memory.
The exponent bias was selected to give a number range of
approximately 2−26 to 25 which would correspond to the
dynamic range of a 32-bit fixed point processor.

In order to simplify the hardware, we used the same bias for
register values, but we had to increase the exponent to 6 bits to
accommodate larger intermediate values. The register number
range is 2−42 to 221. The larger exponent of the registers
simplified software development.



6 7 8 9 10 11 12 13 14 15 16 17 18 19

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Register mantissa size (Implicit leading "1." not included)

Compliance results for different mantissa sizes

M
em

or
y 

m
an

tis
sa

 s
iz

e 
(Im

pl
ic

it 
le

ad
in

g 
"1

."
 n

ot
 in

cl
ud

ed
)

Not compliant Limited accuracy Full precision 

Fig. 1. A comparison of the compliance results for different mantissa sizes
in the ISO decoder.

While the choice of exponent influences the magnitude of
the floating point values, the size of the mantissa corresponds
to the number of significant digits in the calculations. A larger
mantissa leads to higher precision, but also larger memories
for intermediate storage. It is therefore important to determine
the minimal size that gives acceptable results. This can be
determined through listening tests, or numerical methods, such
as the one used for MP3 decoder compliance testing.

An MP3 decoder is tested by decoding a bit stream supplied
in the compliance test and comparing the output with a
supplied reference output. If the rms of the difference is less
than 8.8 · 10−6 and the absolute difference is less than 2−14

relative to full scale for all samples, the decoder is classified as
a full precision decoder. Otherwise, if the rms of the difference
is less than 1.4 · 10−4 regardless of the maximum absolute
difference, the decoder is classified as a limited accuracy
decoder. If the decoder fails to meet these criteria, the decoder
is not compliant.

The compliance level for different sizes of the mantissa was
investigated and the result is given in Fig. 1. The exponent
sizes used was 6 and 5 in registers and memory respectively.

B. Operations

An analysis of the ISO MP3 decoder shows that the follow-
ing floating point operations should be supported in hardware
to implement an efficient MP3 decoder.

• Add
• Subtract
• Multiply
• Round (Before saving to memory)
• Load floating point value
• Floating point to integer conversion

Register integer data type:

bit: 22 . . . 16 15 . . . 0
(unused) value

(signed or unsigned)

Register floating point data type:

bit: 22 21 . . . 16 15 . . . 0
sign exponent mantissa

(signed) (unsigned)

exponent ∈ [−32, 31], mantissa ∈ [0, 65535].
The number x = (−1)sign

· 2exponent−11
· (1 + mantissa

65536
),

except when exponent = −32 for which x = 0.

Memory floating point data type:

bit: 15 14 . . . 10 9 . . . 0
sign exponent mantissa

(signed) (unsigned)

exponent ∈ [−16, 15], mantissa ∈ [0, 1023].
The number x = (−1)sign

· 2exponent−11
· (1 + mantissa

1024
),

except when exponent = −16 for which x = 0.

Fig. 2. The main data types in our DSP.

These operations can be mapped to a floating point adder
and a floating point multiplier. All remaining operations can
be reduced to these primitives or implemented as table look-
ups. Because the memory and registers have different word
lengths it is necessary to convert between different floating
point formats. The round operation converts from the register
word length to the memory word length, and the floating point
load operation expands a memory word to a register word.

III. HARDWARE IMPLEMENTATION

As a proof of concept, we developed a simple pipelined
DSP core to prove the feasibility of the approach outlined
above. The DSP core is a load-store architecture with separate
program, data, and constant memories. The general idea was
to keep the hardware reasonably simple without making the
software unreasonably complex. In our experience, software
is generally easier to debug than hardware. The instruction
set was kept at a minimum and the hardware had no inter-
instruction dependency checking.

A. Data types

Each general purpose register can contain a 16-bit integer
or a 23-bit floating point value. In the former case, the upper
7 bits are unused. When a floating point value is loaded from
memory it is expanded from 16 to 23 bits. Before storing a
floating point value it is rounded to 16 bits. The data types
are summarized in Fig. 2.



The most important reason for using these values is to avoid
a configuration where the decoder barely meets the require-
ments for limited accuracy. Another reason is the convenience
of having a 16-bit wide memory.

B. Instruction Set

The instruction set basically consisted of load and store from
any of the general purpose registers, register to register integer
and floating point operations, and I/O operations.

There are 16 general purpose registers. This number was
decided upon after studying the algorithms used in MP3
decoding. It allowed us to keep all intermediate values in
registers for the most important algorithms.

There is a hardware stack for saving the program counter
during subroutine calls. Conditional branches are limited to
branch-if-zero, and branch-if-not-zero.

There are a few application specific instructions. The Huff-
man decoder part is accelerated by bit access instructions,
and some signal processing parts are accelerated with a MAC
(multiply-and-accumulate) instruction. The address generation
capabilities are in most cases limited to absolute or register
indirect, but the bit access instructions and the floating point
MAC instruction can use the single dedicated address register
with auto-increment and modulo addressing.

The integer pipeline has five pipeline stages, and the floating
point pipeline has eight stages. The pipelines share fetch,
decode, and write-back stages. In hindsight, the pipeline could
have been shorter.

RTL code for the DSP was written in VHDL and tested on
an FPGA prototype board. The estimated gate count, excluding
memories, is 32500 gates when synthesized for Leonardo
Spectrum’s sample SCL05u technology. There is room for
improvement in the RTL code, especially in the instruction
decoder.

IV. SOFTWARE IMPLEMENTATION

We decided to implement a new MP3 decoder from scratch
rather than building upon the ISO MP3 decoder. This was
done partly to learn as much as possible about MP3 decoding
and partly because we felt that the ISO MP3 decoder was too
complex and inefficient. This new decoder was then used as
our internal reference during the assembly code development
for the DSP.

A. Algorithms

In order to achieve high performance with a deep pipeline
and a limited instruction set, algorithms had to be carefully
written. Since the integer part of a register is used as the
mantissa in a floating point value, some operations can be ac-
celerated by manipulating the mantissa directly. For example,
integer shift and integer to floating point conversion can be
implemented by using the floating point subtract instruction.

The Huffman decoder uses a simple, one bit at a time, tree
traversal technique. This approach is memory inefficient but
reasonably fast since each tree node is one instruction.

The x
4/3 calculation in the sample dequantization can be

implemented with a large look-up table with more than 8000
entries. We used a fifth order polynomial approximation for
the mantissa and a table look-up for the exponent. Finally, a
look-up table was used for small values in the range [−15, 15]
to accelerate this common case.

The 36-point inverse modified DCT, IMDCT, was imple-
mented using a fast IMDCT algorithm [4] and the 12-point
IMDCT was implemented using 36 floating point multiply and
accumulate instructions.

The 32-point DCT used in the subband synthesis part
was implemented using Lee’s fast DCT algorithm [5]. With
careful scheduling, the 16-point kernel could be implemented
in registers only, without loading or storing temporary values
to memory.

B. Quality

According to the MP3 compliance test, our decoder is
classified as a limited accuracy MPEG-1 Layer III decoder.
The rms of the difference between our decoded output and
the reference provided with the compliance test is 3.2 · 10−5

which is well below the limit for limited accuracy, 1.4 · 10−4.
Even though our decoder is not a full precision layer

III decoder, informal listening tests could not discern files
decoded with our decoder from files decoded with the full
precision ISO MP3 decoder.

C. Memory Use

The final version of the decoder used approximately 6800
24-bit words for program memory, 900 23-bit words for the
constant memory, and 6100 16-bit words for data memory. We
have not spent any time trying to reduce the program memory
size. More than 40% of the program memory is used for the
Huffman tables.

D. Performance

In order to measure the performance of the decoder on a
typical MP3 bit stream we used a 44.1 kHz music bit stream,
with an average bit rate of 202 kbps. A profile of the decoder
is shown in Fig. 3.

The time spent in the Huffman decoding and sample de-
quantization is data dependent. A bit stream was constructed to
trigger worst case execution time in the data dependent parts.
In our case, this consisted of a 48 kHz bit stream using only
short blocks and joint-stereo. By selecting the right Huffman
table, a maximum number of big values could be fitted into a
frame to stress the sample dequantization. The resulting worst
case execution path requires 19.6 MIPS to sustain a real time
decoding process. The worst case profile is shown in Fig. 4



0 0.5 1 1.5 2 2.5 3 3.5 4

Misc

Output PCM

Windowing

DCT

Frequency inversion

IMDCT

Aliasing reduction

Reorder samples

Calculate stereo

Restore samples

Read samples

Bitstream parsing

Typical execution profile

MIPS

Floating point instructions
Floating point MAC
Huffman instructions
Integer, control flow, I/O, etc

Fig. 3. Profiling of the decoder while decoding a typical MP3 bit stream.
(14.6 MIPS in total.)

0 0.5 1 1.5 2 2.5 3 3.5 4

Misc

Output PCM

Windowing

DCT

Frequency inversion

IMDCT

Aliasing reduction

Reorder samples

Calculate stereo

Restore samples

Read samples

Bitstream parsing

Worst case execution profile

MIPS

Floating point instructions
Floating point MAC
Huffman instructions
Integer, control flow, I/O, etc

Fig. 4. Profiling of the decoder while decoding the worst case MP3 bit
stream. (19.6 MIPS in total.)

V. FUTURE WORK

The focus of this work has so far been on the effects of
using floating point arithmetic. Therefore, we have not put very
much effort in optimizing the instruction set beyond what is
needed to support the required floating point operations. Future
improvements could include hardware assisted loops, and
better address generation such as general support for pointer
auto-increment. It would be relatively easy to implement a
simple Huffman accelerator unit that would both significantly
reduce the size of the Huffman tables as well as speed up the
Huffman decoder.

We investigated the word lengths required for full precision,
but only in the ISO MP3 decoder, as shown in Fig. 1. It would
be interesting to verify that full precision can be achieved also
in our MP3 decoder by increasing the width of the floating
point data types.

Program memory 6800 words (24-bit)
Data memory 6100 words (16-bit)
Constant memory 900 words (23-bit)
Clock frequency 20 MHz
Gate count 32500
MIPS cost (worst case) 19.6 MIPS
MIPS cost (typical) 14.6 MIPS
Compliance Limited accuracy

(rms is 3.2 · 10−5)

Fig. 5. Performance of our MP3 decoder.

Finally, it would be very interesting to know if anything
could be gained by implementing an MP3 encoder or other
audio coding standards such as Ogg Vorbis and AAC using a
similar floating point scheme.

VI. CONCLUSIONS

Our MP3 decoder stores intermediate data in a 16-bit
floating point format to limit memory usage. It is classified as a
limited accuracy ISO/IEC 11172-3 MPEG-1 layer III decoder.

The hardware has been implemented in VHDL and it has
been tested on an FPGA prototype board. The gate count,
excluding memories, is 32500 gates when synthesized for
Leonardo Spectrum’s sample SCL05u technology. A clock
frequency of 20 MHz is enough to decode all bit streams.

The performance of the decoder is summarized in Fig. 5.
We see some possible improvements that could reduce the
program memory size and increase the performance.

REFERENCES

[1] ISO/IEC, “Information Technology — Coding of Moving Pictures and
Associated Audio for Digital Storage Media at up to About 1.5Mbit/s,
Part 3: Audio,” 1993

[2] “ISO MP3 sources (dist10),”
ftp://ftp.tnt.uni-hannover.de/pub/MPEG/audio/mpeg2/software/
technical report/dist10.tar.gz

[3] ISO/IEC, “Information Technology — Coding of Moving Pictures and
Associated Audio for Digital Storage Media at up to About 1.5Mbit/s,
Part 4: Compliance Testing,” 1995

[4] Lee, S.-W., “Improved algorithm for efficient computation of the forward
and backward MDCT in MPEG audio coder,” Circuits and Systems II:
Analog and Digital Signal Processing, IEEE Transactions on, Vol. 48,
Iss. 10, Oct 2001

[5] Lee, B., “A new algorithm to compute the discrete cosine Transform,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 32,
Iss. 6, Dec 1984


