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ABSTRACT
◥

Purpose: Several biomarkers of response to immune checkpoint
inhibitors (ICI) show potential but are not yet scalable to the clinic.
We developed a pipeline that integrates deep learning on histology
specimens with clinical data to predict ICI response in advanced
melanoma.

ExperimentalDesign:Weused a training cohort fromNewYork
University (NewYork,NY) and a validation cohort fromVanderbilt
University (Nashville, TN). We built a multivariable classifier that
integrates neural network predictions with clinical data. A ROC
curve was generated and the optimal threshold was used to stratify
patients as high versus low risk for progression. Kaplan–Meier
curves compared progression-free survival (PFS) between the
groups. The classifier was validated on two slide scanners (Aperio
AT2 and Leica SCN400).

Results: The multivariable classifier predicted response with
AUC 0.800 on images from the Aperio AT2 and AUC 0.805
on images from the Leica SCN400. The classifier accurately
stratified patients into high versus low risk for disease pro-
gression. Vanderbilt patients classified as high risk for pro-
gression had significantly worse PFS than those classified as
low risk (P ¼ 0.02 for the Aperio AT2; P ¼ 0.03 for the Leica
SCN400).

Conclusions: Histology slides and patients’ clinicodemographic
characteristics are readily available through standard of care and
have the potential to predict ICI treatment outcomes. With pro-
spective validation, we believe our approach has potential for
integration into clinical practice.

Introduction
Immune checkpoint inhibitors (ICI) produce durable clinical

response for a subset of patients with advanced melanoma (1–4).
However, treatment is often complicated by immune-related tox-
icity, which may necessitate permanent discontinuation of immu-
notherapy or lead to lifelong secondary conditions (5). Thus, a
major challenge in the management of metastatic melanoma is
optimizing patient selection for checkpoint blockade. Several recent
attempts to predict ICI response showed potential, but rely on

biomarkers that lack scalability, demand high availability of
resources, or still require extensive validation of their utility for
clinical decision making (6–10).

Visual microscopic assessment of hematoxylin and eosin (H&E)-
stained tissue remains standard of care for diagnosing melanoma and
staging disease severity. Yet, despite the ready availability of histologic
specimens, conventional light microscopy plays a limited role in
prognosticating treatment outcomes (11–13). This could be due to
the practical constraint that human evaluations are time consuming
and highly subjective. More likely, the phenotypic information that
provides insight to drug responsiveness may be unapparent to human
observers. We asked whether machine learning algorithms could be
trained to identify prognostically important features of melanoma
tissue histology. Within the field of dermatopathology, deep convolu-
tional neural networks (DCNN) have proven efficacious at computer
vision tasks such as image classification (14, 15). This form of machine
learning distinguished malignant melanoma from benign nevi with a
level of accuracy comparable with that of a dermatologist (16). In a
separate investigation, our group developed a DCNN pipeline that
reliably discriminated between malignant and normal lung tissue and
accurately predicted the most commonly mutated genes found within
lung tumors (17).

In this study, we aim to develop a streamlined approach to pre-
treatment prognostication by leveraging information immediately
available through routine clinical care.We adapt ourmachine learning
framework to whole slide image (WSI) analysis of metastatic mela-
noma tissue. Our hypothesis is that a DCNN can learn to break down
WSIs into component features, detect nonobvious patterns, and
correlate those patterns with the likelihood of response to immuno-
therapy. We then integrate patient clinicodemographic variables to
create a multifactorial paradigm for accurately predicting immuno-
therapy response.
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Materials and Methods
Patient population

In this analysis, the training cohort consisted of 121 patients who
received treatment at New York University (NYU, New York, NY)
Perlmutter Comprehensive Cancer Center between 2004 and 2018.
The independent validation cohort included 30 patients who were
treated at Vanderbilt University Ingram Cancer Center (Nashville,
TN) between 2010 and 2017. TheNYUpatients had been prospectively
enrolled with written informed consent in the institutional review
board (IRB)-approved (#10362) Interdisciplinary Melanoma Coop-
erative Group (IMCG) database at NYU Langone Health (New York,
NY). The IMCG study maintains protocol-driven follow-up for
patients with melanoma treated at Perlmutter Comprehensive Cancer
Center and stores tissue specimens for research purposes, which are
connected with the clinicopathologic database.

We included patients with metastatic disease who had lymph node
(LN) and/or subcutaneous tissue (ST) resected before treatment with
first-line anti-CTLA-4, anti-PD-1, or combination anti-CTLA-4 plus
anti-PD-1 therapy. Clinical decisions regarding the selection of a
treatment regimen were made independent of this study. Response
was assessed via imaging done in 3-month intervals following treat-
ment initiation or sooner as dictated by changes in clinical status.
Treatment outcomes were classified according to the revised RECIST
guideline version 1.1. Response was recorded as progression of disease
(POD) or “response,” which included complete response (CR) and
partial response (PR). We excluded patients with stable disease to
focus on extremes of outcome for this proof-of-principle study.
Progression-free survival was defined as the time from the first dose
of immunotherapy until disease progression or death. For the NYU
cohort, best response was noted at a median of 3.4 months after
treatment [interquartile range (IQR) ¼ 4.7]. Median overall follow-
up was 14.0 months (IQR ¼ 34.6). For Vanderbilt patients, best
response was noted at a median of 2.3 months (IQR ¼ 1.2). The
median overall follow-up was 28.5 months (IQR ¼ 32.5). We
adhered to the reporting recommendations for tumor marker
prognostic studies guidelines (18).

Image processing
Tissue was obtained through either excisional biopsy or surgical

resection of metastases. Formalin-fixed paraffin-embedded H&E-
stained slides were scanned with at least 20� magnification using an
Aperio AT2 slide scanner (Leica Microsystems). There were 302 slides

from NYU patients and 40 slides from Vanderbilt patients. For
validation purposes, we scanned 39 slides from 29 patients in the
Vanderbilt cohort using a Leica SCN400 machine (Leica Microsys-
tems). We partitioned the WSIs into nonoverlapping 299 � 299 pixel
tiles at 0.5 mm/pixel resolution (equivalent to 20� magnification) or
1 mm/pixel resolution (equivalent to 10�). Background coverage was
defined as pixels with an average gray level above 220 (8-bit coded
images). Tiles with >75% background coverage were removed.

DCNN architecture and development
In this study, we developed two DCNN classifiers, which we refer to

as the Segmentation Classifier and the Response Classifier (Supple-
mentary Fig. S1). We utilized the pipeline previously described by our
group (17), which relies on Tensorflow and the Inception v3 archi-
tecture developed by Google (19). Inception v3 served as a foundation
architecture and was fully retrained in this study. The jobs were run on
NYU Langone Health's distributed memory high-performance com-
puting cluster Big Purple using either Cray CS-Storm 500NX GPU
stations or Cray CS500 CPU stations (2.4 GHz, 384–768 GB/node),
where it takes approximately 5 seconds to preprocess 500 tiles and
another 5 seconds to obtain their probability from a trained network.

Segmentation Classifier
We aimed to predict clinical outcomes based on the analysis of

tumor regions within the sampled tissue. To do so, we first developed a
classifier that could selectively distinguish tumor from the surrounding
microenvironment. Given that our dataset included LN and ST, we
trained the classifier to identify connective tissue and extratumor
lymphocyte clusters in addition to tumor compartments. UsingAperio
ImageScope (Leica Biosystems), our board-certified pathologist
colleague manually annotated 153 slides from a subset of 72 NYU
patients. Themanual annotations of the three regions of interest (ROI)
served as labels for each tile within the delineated region. The labeled
slides were divided into training, validation, and test sets (70%, 15%,
and 15% of the data, respectively). To prevent overlaps between sets,
the slides from a given patient were kept together. The classifier
generated a set of three probabilities (normal, lymphocyte, tumor)
for each entire tile. During the segmentation step, each tile was
assigned the label with the highest probability. To determine perfor-
mance accuracy, the AUCwas calculated using segmentations done by
the pathologist as the ground truth. After the Segmentation Classifier
was trained and tested, we applied it to segment all of the remaining
tiles from the NYU and Vanderbilt datasets. In the NYU dataset, the
median area of tumor tiles per slide was 0.7 cm2 (IQR ¼ 1.0 cm2). In
the Vanderbilt dataset, the median area of tumor tiles per slide was
1.2 cm2 (IQR ¼ 0.8 cm2). The minimum amount of tissue used for a
patient in this study was 2.2 mm2 of tumor tiles.

Response Classifier
The NYU training cohort consisted of 1,265,166 tumor ROI tiles

from 302 slides. There were 173 slides from metastatic LN and 129
from metastatic ST. We included multiple slides per patient to
augment training by increasing the total number of tiles. Most patients
had either one or two slides included in the study (n¼ 57 and n¼ 31,
respectively). To mitigate skewed training, we limited the number of
slides to ≤10 per patient. We optimized the Response Classifier using a
5-fold cross validation approach that involved randomly splitting the
full set of tiles labeled as tumor ROI into five balanced subsets. Four of
the subsets (80%) were used as a training set and the remaining 20%
were used for testing (Supplementary Fig. S2). We repeated this
process five times until all tiles were used in the test set once

Translational Relevance

We present a computational method that integrates deep learn-
ing on histology specimens with clinicodemographic variables to
predict treatment outcomes in advanced melanoma. Using hema-
toxylin and eosin–stained slides of metastatic lymph node and
subcutaneous tissue, we trained a neural network classifier to
identify whether individuals responded to checkpoint blockade
or suffered disease progression. We then developed a logistic
regression classifier that combines neural network output with
clinicodemographic variables to generate predictions with
enhanced accuracy. Our approach is time efficient, reproducible,
and requires minimal resource allocation, thus overcoming mul-
tiple common barriers to generalizability for contemporary
biomarkers.
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(Supplementary Table S1). During the 5-fold cross-validation runs, we
noted that color normalization with Reinhard method led to higher
and more consistent average AUC than normalization with Vahadane
method or with no normalization (20, 21). After identifying additional
optimal hyperparameters through the 5-fold cross-validation, we
retrained on the full NYU dataset using those same parameters, which
were as follows: color normalized tiles, batch size of 400, 15 epochs per
decay (num_epochs_per_decay parameter in Inception v3), and train-
ing for 175,000 iterations. Data augmentation is integrated into
Inception v3 (see distort_image function in image_processing.py),
and includes color distortion, image distortion, and flipping. Since
training is a stochastic process and to further check themagnitude of its
uncertainty, the final network was trained a total of five times.We then
tested the fully trained model on the independent cohort from
Vanderbilt. Importantly, the Vanderbilt dataset was balanced with
only one to two slides per patient thus mitigating the possibility of
performance inflation.

To analyze features used by the classifier to make its decisions, we
followed the protocol developed by Kim and colleagues (2020; ref. 22).
First, we performed class activation mapping (CAM) to identify
regions within each tile that the neural network uses to generate
predictions (23, 24). To do this, we analyzed a set of tiles that were
classified as POD with high probability (POD probability above 0.75;
136,109 “POD” tiles) and another set of tiles classified as Responsewith
high probability (POD probability below 0.25; 51,220 “Response”
tiles). The results of our CAM analyses suggested that cell nuclei are
important to the algorithm's predictions. We then used CellProfiler to
identify whether there is variation in the characteristics of the nuclei
assigned POD versus Response. We started by segmenting the nuclei,
then measured the shape and quantity of the segmented objects, and
then analyzed whether these features were associated with the pre-
diction assigned to the tile.

Statistical analysis
The DCNN yielded a probability value for each tile for every class of

interest. For the Segmentation Classifier, the classes were tumor,
lymphocyte, and connective tissue compartments. For the Response
Classifier, the classes were response and POD. We averaged the
probabilities of each tile from the patients’ slides to assign a final
probability to each patient. We investigated the relationship between
per slide performance accuracy and the amount of time between tissue
resection and treatment initiation. We also evaluated the relationship
between per slide performance accuracy and the number of tumor tiles.
For both, the mean squared error of the DCNN prediction was used as
a measure of accuracy. We then performed the Shapiro test for
normality and calculated Spearman correlation coefficient and its
significance. For our CellProfiler analyses, Student t test was used to
compare the area, density, and eccentricity of cell nuclei in tiles labeled
POD versus Response. We then performed multivariable logistic
regressions that combined the Response Classifier output with con-
ventional clinical characteristics to predict treatment outcomes for the
NYU training cohort. The candidate predictors included age, gender,
histologic subtype, treatment category, disease stage, lactate dehydro-
genase, Eastern Cooperative Oncology Group (ECOG) performance
status, the number of metastatic sites, and the log-transformed tumor
mutation burden (TMB). TMB was defined as the total number of
nonsynonymous somatic mutations and synonymous mutations
(single-nucleotide variants and small insertions/deletions) per
megabase of the coding regions examined. The mutation count
was calculated using customized pipelines based on the LoFreq
assay (25). The results of univariable analyses are shown in Sup-

plementary Table S2. We performed backward stepwise selection to
select the final multivariable model. The least significant variables
were removed one at a time until all of the variables left in the model
were significant. The linear combination of the selected model
predictors weighted by regression coefficients was defined as the
risk score and applied to the Vanderbilt test cohort. The overall
function is:

Logit(p)¼�0.4970þ (2.0966�DCNNoutput)þ (1.2522�ECOG) –
(1.8908�Anti-CTLA-4 and Anti-PD-1 status) – (1.2013�Anti-PD-1
status).

The probabilities calculated by the neural network and logistic
regression classifiers were used to generate ROC curves. Prognostic
potential was reported as AUC values with corresponding 95%
confidence intervals (CI). Using AUC as the metric, we compared
the ability of each variable and combination of variables with dis-
criminate outcomes. We also compared the value importance of the
variables using the absolute value of their Z-scores. After validation
of the DCNN and logistic regression models on the Vanderbilt
dataset, we identified the coordinates for the optimal threshold
on the ROC curves from the NYU training dataset. We then deter-
mined the corresponding prediction probability scores, which were set
as the assay cut-off value. Vanderbilt patients who scored above the
cut-off point were classified as high risk for progression; those
who scored below the cut-off point were classified as low risk.
We generated Kaplan–Meier curves to compare progression-free
survival of the high- and low-risk groups. The level of significance
was set at P < 0.05. Analyses were performed using R software
(http://www.R-project.org/) or scikit-learn.

Data availability
Data are available from the authors upon request but may require

data transfer agreements. No personalized health information will be
shared.

Code availability
The code for the neural network and logistic regression classifiers

is available on GitHub at the following location: https://github.
com/ncoudray/DeepPATH/tree/master/DeepPATH_code. The Cell-
Profiler pipeline is available at: https://github.com/sofnom/Histo
PathNCA_ pipeline

Results
Patient characteristics

Baseline demographic characteristics were generally well balanced
between the training cohort fromNYUand the independent validation
cohort from Vanderbilt (Table 1). However, there were differences in
the treatments and outcomes of the two cohorts. The majority of the
NYU population received anti-CTLA-4 monotherapy whereas most
patients from Vanderbilt were treated with anti-PD-1 agents (63.6%
and 53.3%, respectively). Compared with the NYU cohort, a lower
proportion of patients from Vanderbilt suffered POD (50% vs. 64.5%,
respectively). Deidentified clinical and demographic characteristics for
each patient are shown in Supplementary File 1.

Training and validation of the tissue Segmentation Classifier
The neural network distinguished tumor, lymphocyte, and con-

nective tissue compartments with robust accuracy. In metastatic LNs,
the Segmentation Classifier identified tumor ROI with AUC 0.961
(95% CI, 0.959–0.963), lymphocyte ROI with AUC 0.962 (95% CI,
0.960–0.965), and connective tissue ROI with AUC 0.969 (95% CI,
0.967–0.971). In metastatic ST, the Segmentation Classifier identified
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tumor ROI with AUC 0.957 (95% CI, 0.950–0.963), lymphocyte
ROI with AUC 0.886 (95% CI, 0.867–0.904), and connective tissue
ROI with AUC 0.984 (95% CI, 0.977–985). ROC curves are shown
in Fig. 1A, and B shows representative images of segmentations done
by our pathologist coinvestigator and the neural network classifier.

Development of predictive models for immunotherapy
response using a DCNN

While developing the Response Classifier, we identified the optimal
learning conditions through a series of 5-fold cross-validations. Using
this approach, the selected model predicted response with micro AUC
0.685 (95%CI, 0.593–0.777) and averagemacroAUCof 0.721 (95%CI,
0.468–0.9331) on the five NYU subsets left aside for testing (Supple-
mentary Fig. S2). After validating the model with optimal parameters,
we retrained using the entire NYU cohort as the training dataset. The
fully trained model performed with AUC 0.691 (95% CI, 0.597–0.786;
Supplementary Fig. S3). Next, we tested the fully trained classifier on
the Vanderbilt cohort. The validation process was independently
repeated five times to check the impact of the stochastic process of
learning (Supplementary Tables S3 and S4). The model performed
with an average AUC of 0.707 (95% CI, 0.518–0.896) on the test slides
scanned with the Aperio AT2. When applied to the test slides scanned
with the Leica SCN400, the model performed with an average AUC of
0.667 (95% CI, 0.463–0.870; Fig. 2). Of note, neural network predic-
tions were better when applied to LN than soft tissue. For Aperio AT2
stained slides, the neural network had AUC 0.857 (95% CI, 0.654–
1.060) on LN and 0.583 (95% CI, 0.312–0.855) on ST. For Leica
SCN400 scanned slides, the DCNN had AUC 0.738 (95% CI, 0.464–
1.012) on LN and AUC 0.609 (95% CI, 0.326–0.893) on ST (Supple-
mentary Table S5).

Of note, the predictions reported above were made by analysis
of images scanned at 20� magnification. Performance was com-
parable with predictions made on the same images scanned at 10�
magnification (Supplementary Table S6). In the training dataset, we
observed a weak negative association between prediction accuracy
and the amount of time from tissue resection to treatment initiation
(r ¼ �0.16; P ¼ 0.01). When we applied our model to the test
cohorts, we found that there was a weak positive, but insignificant
association between prediction accuracy and the amount of time
between tissue resection and initiation of treatment (for slides
scanned with Aperio AT2, r ¼ 0.17 and P ¼ 0.28; for slides scanned
with the Leica SCN400, r ¼ 0.08 and P ¼ 0.62). Finally, we found
that there was a weak negative, but insignificant association between
DCNN prediction accuracy and the number of tiles used (for the
NYU dataset, r ¼ �0.07 and P ¼ 0.23; for slides scanned with
the Aperio AT2, r ¼�0.04 and P ¼ 0.83; for slides scanned with the
Leica SCN400, r ¼ �0.17 and P ¼ 0.30). The results of CAM are
shown in Supplementary Fig. S4. Overlaying the original tile
images with the image of the CAM analyses revealed that cell
nuclei play an important role in the decision to classify POD or
response. The results of our CellProfiler analyses are shown in
Supplementary Fig. S5 (22). Tiles labeled POD appear to be denser
in number of nuclei and with larger nuclei than tiles labeled as
Response (P < 0.0001 for both).

Multivariable logistic regression incorporating clinical variables
augments prediction accuracy

To select from the candidate predictors, we performedmultivariable
logistic regressions that combined the neural networks’ outputs with
conventional clinical characteristics. Among all of the parameters

Table 1. Baseline clinical and demographic characteristics of the patients.

NYU Vanderbilt

n 121 30
Age Mean (SD) 59.82 (15.46) 60.12 (12.8)
Gender Male n (%) 80 (66.1) 21 (70.0)

Female n (%) 41 (33.9) 9 (30.0)
ECOG score 0 n (%) 87 (71.9) 11 (36.6)

1 n (%) 23 (19.0) 17 (56.7)
2 n (%) 5 (4.1) 1 (3.3)
3 n (%) 0 (0) 1 (3.3)
Unknown n (%) 6 (5.0) 0 (0.0)

Histologic type Superficial spreading n (%) 17 (14.0) 11 (36.6)
Nodular n (%) 39 (32.2) 8 (26.7)
Other n (%) 15 (12.4) 3 (10.0)
Unclassified n (%) 50 (41.3) 8 (26.7)

Stage at treatment initiation Stage IIIB n (%) 5 (4.1) 0 (0)
Stage IIIC n (%) 14 (11.6) 0 (0)
Stage IV n (%) 102 (84.3) 30 (100.0)

Immunotherapy treatment category Anti-CTLA-4 n (%) 77 (63.6) 4 (13.3)
Anti-PD-1 n (%) 26 (21.5) 16 (53.3)
Combination n (%) 18 (14.9) 10 (33.3)

Best response CR n (%) 24 (19.8) 5 (16.7)
PR n (%) 19 (15.7) 10 (33.3)
POD n (%) 78 (64.5) 15 (50.0)

Time to best response (months) Median (IQR) 3.4 (4.7) 2.3 (1.2)
Alive status Alive n (%) 56 (46.3) 16 (53.3)

Dead n (%) 65 (53.7) 14 (46.7)
Time to last follow-up (months) Median (IQR) 14.0 (34.6) 28.5 (32.5)

Abbreviation: IQR, interquartile range.
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considered, the optimal multivariable logistic regression classifier
combined the Response Classifier prediction with patients’ ECOG
performance status (as a linear continuous score) and immunotherapy
treatment (as a categorical variable; Supplementary Table S7). Other
candidate predictors including TMB did not have significant prog-
nostic value in the multivariable analysis (results of univariable
analysis are shown in Supplementary Table S2). The multivariable
classifier achieved AUC 0.793 (95% CI, 0.713–0.874) on the NYU
training cohort used to establish the regressionmodel (Supplementary
Fig. S3). When tested on the Vanderbilt dataset, the classifier achieved

an average AUC of 0.800 (95% CI, 0.634–0.967) on images from the
Aperio AT2 scanner and an average AUC of 0.805 (95% CI, 0.638–
0.971) on images from the Leica scanner (Fig. 2). Model performance
was better when applied to LN versus soft tissue. For Aperio AT2
scanned slides, the multivariable classifier performed with AUC 0.929
(0.787–1.070) on LN and AUC 0.708 (0.450–0.966) on ST. For Leica
SCN400 scanned slides, the classifier performed with AUC 0.881
(0.693–1.069) on LN and AUC 0.734 (0.468–1.001) on ST. Model
performance was consistent across five independent test runs for
images scanned with each of the Aperio AT2 and Leica SCN400

Figure 1.

Training of a Segmentation Classifier
to distinguish tumor, lymphocyte,
and connective tissue compartments.
A, Performance of the classifier was
measured in terms of AUC of the ROC
curve. The model performed with
robust accuracy and was equally effi-
cacious when applied to LN and ST
samples. B, Representative images of
the computational workflow. In the
first row, there are two WSIs of H&E-
stained tissue from LNs infiltratedwith
melanoma. In the subsequent rows,
the images show manual annotation
for the three ROI by our pathologist
coinvestigator, then training of the
neural network classifier on the anno-
tated regions, and finally, application
of the classifier to the WSIs.
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scanners (Supplementary Tables S3 and S4). There was a trend toward
higher AUC with the addition of each variable to the model, although
the confidence intervals overlapped (Supplementary Table S8). The
variable importance values were 1.99 for the DCNN, 2.25 for baseline
ECOG, 2.39 for treatment with anti-PD-1, and 3.03 for treatment with
anti-CTLA-4 plus anti-PD-1 (Supplementary Fig. S6; Supplementary
Table S9).

An integrated approach can be used to stratify patients into
high versus low risk for disease progression

After validating the DCNN and multivariable logistic regression
models on the independent dataset from Vanderbilt, we identified
the coordinates for the optimal threshold on the ROC curves from
the NYU training set. The prediction probability score at the
optimal threshold point was then set as a cutoff for stratifying
Vanderbilt patients into two groups: high risk for disease progres-
sion or low risk for progression. For the multivariable classifier, the
sensitivity and specificity at the optimal threshold were 64% and
84%, respectively. When using the predictions generated by the
multivariable classifier, Vanderbilt patients were stratified into
groups with significantly different progression-free survival out-
comes (P ¼ 0.02 for Aperio AT2 scanned slides; P ¼ 0.03 for Leica
SCN400 scanned slides; Fig. 3). The confusion matrices are shown
in Supplementary Tables S10 and S11. For Aperio scanned slides,
the model performed with a sensitivity and specificity of 73% and
80%. For Leica scanned slides, the model performed with a sensi-
tivity and specificity of 79% and 80%.

Discussion
Immune checkpoint blockade has fundamentally changed the

treatment landscape for advanced melanoma, but many individuals
do not achieve long-term clinical benefit. Oncologists urgently need
predictors of response to immunotherapy, but the models proposed to
date have myriad limitations. Although PD-L1 expression is a widely
implemented assay, its expression is inducible and can change after
treatment initiation, which precludes its utility as a predictor of long-
term response (26). Chen and colleagues (2018) showed that changes
in exosomal PD-L1 expression predict immunotherapy response with
AUC 0.9184, but this approach requires purification of exosomes,
which limits its generalizability (9). Several other robust prediction
models were recently constructed using transcriptome expression
profiles of immune checkpoint or T-cell activity. These perform with
AUC approximately 0.8, but utilize RNA sequencing and thus are not
yet scalable to clinics outside of academic centers (7, 8). Recent
evidence supports TMB as another potential predictor for ICI efficacy.
Samstein and colleagues (2019) found that higher somatic mutation
loadwas associatedwith better overall survival (OS;HR 0.52;P¼ 1.6�
10�6) among 1,662 patients with advanced cancer who received
immunotherapy. However, for the subset of patients with melanoma
in their study, the association between higher TMB and better OS was
not statistically significant (P ¼ 0.067; ref. 10). Tumor mutation load
was not associated with treatment response in our analysis either,
which adds to the ongoing debate regarding whether and to what
degree TMB has prognostic value in melanoma.

Figure 2.

Performanceof the neural network and logistic regression classifierswasmeasured in terms ofAUCof theROC curve. Validationwas done on the independent cohort
fromVanderbilt University (Nashville, TN). Slideswere scannedwith two different scanners as an additional validationmeasure. ROC curves are shown for prediction
of best response on slides scanned with the Aperio AT2 (A) and Leica SCN400 (B) scanners.
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In two recent studies, neural network–based analyses of WSIs
proved to be an effective tool for prognosticating survival outcomes
in patients with melanoma (27, 28). Given the success of these and
other computer vision models, there is growing interest in whether
neural networks can be used to predict response to treatments. In 2019,
Harder and colleagues proposed a workflow for predicting response to
ipilimumab that relies on DCNNs to robustly segment cell nuclei and
classify CD3þ, CD8þ, and melanin objects of interest (29). Here, we
present an approach to predicting treatment response that similarly
draws upon the automated assessment of digital histology images. The
neural network component to our model offers several capabilities
with immediate translational relevance. It assesses routine H&E slides
and thus utilizes data collected as a part of standard clinical care, which
would ultimately facilitate swift clinical decision making. Moreover,
we do not restrain the neural network's prediction to specific geometric
features from select cells. Instead, our DCNN independently analyzes
entire tumor regions to generate its predictions. As such, our method
only requires H&E-stained tissue as opposed to also needing CD3þ

and CD8þ staining data; thus, it is less time and resource intensive. In
addition, there was minimal relationship between the accuracy of our
classifier and the amount of time between tissue resection and treat-
ment initiation. As applied to the clinical setting, this means that
patients who underwent remote biopsy could potentially be spared
repeat procedural interventionwithout compromising the utility of the
assay, which would in turn mitigate delays in starting treatment. We
also found that performance accuracy was minimally associated with

the number of tiles used to generate the prediction. In practice, this
means that a lower number of tiles from smaller tissue samples would
not preclude accurate predictions, which would similarly obviate the
need for repeat procedures. This also suggests that tissue from
excisional, incisional, and core biopsies can be used because all provide
an adequate amount of tissue for our model. Finally, our neural
network also performs consistently when applied to WSIs from
different slide scanners. This has important implications for clinical
practice as it would allow smaller facilities to send digital pathology
data to centers with the computing ability to run DCNN classifiers.
Given the size of our validation dataset and concomitant possibility of
underpowering, these findings should be verified in additional insti-
tutional datasets to confirm that our approach is consistent regardless
of biopsy date, amount of tumor tissue, and slide scanner.

Using multiple logistic regression to merge our Response Classifier
output with known clinical predictors was crucial to generate a model
with enhanced accuracy. In prior studies, ECOG performance status
predicted survival and response to immunotherapy in patients with
melanoma (30, 31). We too found that the incorporation of perfor-
mance status augmented prediction accuracy, likely because it
accounts for critical patient information not necessarily reflected in
tissue histology. Prediction accuracy further improved by incorporat-
ing the patients’ treatment regimen to account for the heterogeneity of
patients’ responses to various choices of ICI. However, there was no
significant interaction effect between the Response Classifier and
ECOG score or treatment regimen, which suggested that the

Figure 3.

Prognostic potential of themultivariable classifier is demonstrated on slides from the independent test cohort thatwere scannedwith anAperio AT2 scanner (A) and
Leica SCN400 scanner (B). PFS, progression-free survival.
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prediction from the Response Classifier was significant, independent
of ECOG score and choice of treatment. Ultimately, the final model
accurately stratified patients into groups with significantly different
progression-free survival, which, when applied to clinical practice,
could help optimize patient selection for treatment with immuno-
therapy. Importantly, the sensitivity and specificity of the final model's
prediction of response versus POD were comparable with those for
PD-L1 IHC. For determining objective response rate, which is the
proportion of patients with CR or PR, the Dako 22C3 bioassay for
pembrolizumab is reported to have a sensitivity of 80% and specificity
of 60% at a stain cutoff of 1%.Dako 28–8 has a stain cutoff of 5%; at this
point, the sensitivity and specificity are 58% and 49% for nivolumab
monotherapy, and 57% and 54% for combination ipilimumab and
nivolumab therapy (32). In contrast, the sensitivity and specificity of
our multivariable classifier are 64% and 84%, respectively. However,
the comparison of these two assays is limited by the fact that the
majority of our training cohort received ipilimumab monotherapy.

It is noteworthy that our model performed consistently despite
being trained on a cohort who primarily received anti-CTLA-4 therapy
and tested on a cohort who mostly received anti-PD-1 therapy. One
recent study showed that biomarkers derived from anti-CTLA-4
response datasets have limited applicability to patients treated with
anti-PD-1 agents (33). However, several other studies introduce
predictive models that perform equally well when applied to patients
who receive anti-CTLA-4 or anti-PD-1 therapy (7, 8). Taken together,
these mixed data suggest that some biomarkers are not necessarily
specific to checkpoint target. On the basis of our CAM analyses, the
DCNN appears to predict disease progression based on regions where
nuclei are larger and more numerous. This could reflect an apprecia-
tion for greater ploidy, which has been shown to be associated with
immunotherapy response (34). Genome instability and higher cancer
neoantigen load can inform likelihood of an immune response irre-
spective of checkpoint target, which could explain why our algorithm
performs well when applied to different treatments. Notwithstanding
the above, CTLA-4 and PD-1 blockade have different response rates
and patients who do not respond to one regimen might have
responded to another. Although we controlled for different therapies
in our multivariable analyses, larger studies would enable the con-
struction of classifiers specific to each treatment modality.

This proof-of-principle study has several other limitations. First, as
mentioned above, we were constrained by the limited amount of
available data, which comes from 151 patients in total. This created
a ceiling for peak neural network accuracy because the weights and
biases within a DCNN are fine tuned through back propagation, so
more data naturally allows for more training epochs. In fact, recent
research suggests that larger datasets with thousands of WSIs are
necessary to achieve a level of tissue classification performance accept-
able for clinical implementation (35). Second, we found that both the
neural network and multivariable classifiers generated more accurate
predictions on LN than on soft tissue. Performance on soft tissue may
be worse because there were fewer soft-tissue slides in the training set,
or because segmentation of soft tissue is worse, or because of other
unspecified inherent features of soft-tissue samples that make it
difficult to generate predictions of response. Future studies with larger
datasets should train and test the efficacy of models on selectively LN
or soft tissue. Third, we found that, despite color normalization, the
Response Classifier was sensitive to differences in staining, which can
be a consequence of both different staining procedures as well as
variability in the age of the slides. In this study, we tested the algorithm
against two different staining protocols that use variable amounts of
hematoxylin. Knowing that hematoxylin stains nucleic acids, it follows

that protocols which use more hematoxylin could compromise the
neural network's ability to differentiate the density of nuclei. For this
study, we therefore concentrated on using a single staining protocol for
the training and test sets, but in the future, training the algorithm to
adapt for differences in slide appearance will be requisite to improve
the generalizability of the assay. To make it work on a broad range of
stains will require training on larger datasets that include slides stained
with different protocols.

In conclusion, we demonstrate the feasibility of predicting immu-
notherapy response by combining neural network classification on
histology slides with clinicodemographic information. Our proposed
model overcomes the limitations of the temporal and spatial hetero-
geneity that impede the performance of PD-L1 as well as the resource
scarcity that precludes using RNA sequencing, while simultaneously
maintaining its validity across multiple slide scanners. With further
optimization of the model using larger datasets, and following pro-
spective validation in the clinical trial setting, we believe this compu-
tational approach has the potential for integration into clinical prac-
tice. This could help oncologists identify patients who are at high
versus low risk for progression through immunotherapy. Going
forward, it will be interesting to test the model's efficacy when applied
to primary melanoma tissue as well as to tissue from other cancers.
Ultimately, we suspect that a combination of methods will be used to
predict immunotherapy response. In this setting, our fast and readily
available approach could provide rapid first assessments to preselect
candidates for treatment or identify those who require further analysis
using complementary predictive models.
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