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Abstract 

Photovoltaic (PV) technologies are expected to play an increasingly important role in future energy production. 

Meanwhile, machine learning is becoming increasingly widespread owing to a confluence of factors such as 

advancements in computational hardware, data collection and storage, and data-driven algorithms. With this backdrop, 

we provide a comprehensive review of machine learning techniques applied to PV systems. First, conventional 

methods for modeling PV systems are introduced from both electrical and thermal perspectives. Then, the application 

                                                           
1 Corresponding author; Email address: doranehg@ualberta.ca  (M.H. Doranehgard). 

 

Manuscript Click here to view linked References

mailto:doranehg@ualberta.ca
https://www.editorialmanager.com/jclepro/viewRCResults.aspx?pdf=1&docID=175498&rev=0&fileID=3816394&msid=3031e216-883c-4c4d-81d9-315dc2e24b54
https://www.editorialmanager.com/jclepro/viewRCResults.aspx?pdf=1&docID=175498&rev=0&fileID=3816394&msid=3031e216-883c-4c4d-81d9-315dc2e24b54


2 of 37 

of machine learning to analyses of PV systems is discussed. Focus is placed on reviewing the use of machine learning 

algorithms for performance prediction and fault detection of PV technologies, and on explaining how machine learning 

could help to achieve a cleaner environment in the push towards carbon neutrality around the world. This review also 

discusses the challenges and future perspectives of using machine learning to analyze PV systems. A key conclusion 

is that the use of machine learning for the analysis of PV systems is still in its infancy, with many small-scale PV 

technologies, such as building integrated photovoltaic thermal systems (BIPV/T), still yet to benefit significantly in 

terms of system efficiency and economic viability. The wider application of machine learning in PV systems could 

therefore create a more direct path towards cleaner, more sustainable energy production. 

Keywords: Machine learning; Fault detection; Accurate performance prediction; Cleaner aspect; Smart energy 

production;    

Nomenclature 

Symbols 

A  Area (m2) 

G Irradiance (W.m-2) 

Io Diode saturation current (A) 

Iph Photocurrent (A) 

Ns Number of cells connected in series 

P Power (W) 

Ro Parallel resistance (Ω) 

Rs Series resistance (Ω) 

T Temperature (K) 

Vt Thermal voltage of diode (v) 

Greek symbols 

  Temperature coefficient (
o -1%. C ) 

  efficiency (%) 
  

Power coefficient (
o -1%. W ) 

Subscripts  

amb ambient 

module module 

ref reference 

Abbreviations  

ANN Artificial neural network 

BPNNs Back-propagation neural networks 

KNN K-Nearest Neighbor 

MRE Mean relative error 

MR-ESN Multiple reservoirs echo state network 

PCA Principal Component Analysis  

PV Photovoltaic  

RKRF Reduced-Kernal Random Forest 

https://www.google.com/search?client=firefox-b-d&sxsrf=APq-WBttMgZGGW-f9KlVaOjssF0jteAHQQ:1646250797312&q=mean+relative+error&spell=1&sa=X&ved=2ahUKEwjogvCPmqj2AhUOx4UKHfmWB74QirwEKAB6BAgCEC8
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RMSE Root mean squared error 

STC Standard test condition 

SVM Support vector machine 

WT wavelet transform 

MAE Mean absolute error 

1. Introduction 

With the considerable growth in population all around the world, the need for higher energy 

production to meet people’s demands is progressively increasing [1]. This point, in addition to the 

serious environmental concerns and the necessity of using economically justifiable ways has 

motivated the governments and policy-makers to invest on developing renewable energy systems, 

especially the solar energy [2]. 

Among a variety of selections to utilize the received energy from the sun, photovoltaic (PV) 

technologies have a great contribution to the market, and there have been several development 

plans for them in various parts of the globe [3]. In a PV system, the solar energy is directly 

converted into the electricity, while a part of the dissipated heat by PV system could be also 

recovered and used for heating purpose like domestic hot provision [4].  

The place for installation of PV systems, especially in urban areas, are limited, and therefore, the 

appropriate design of them is necessary [5]. In addition, due to shading, and some other issues, the 

PV system might have some problems, which makes the necessity of choosing appropriate 

controlling and fault detection of them crystal clear [6]. Considering the challenges conventional 

methods have, and thanks to the huge progress in the computer science, machine learning 

prediction approaches are becoming popular in both design and operation control of PV 

infrastructure [7].   
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In designing a PV system, machine learning approaches have been employed to determine more 

accurate ways to obtain thermal and electrical behavior of system and covering the phenomena 

that are not covered by conventional modeling approaches [8]. In controlling PV systems, machine 

learning methods have been utilized for fault detection, while they could be also employed in 

trackers for defining a tracking strategy [9]. Such a great popularity of machine learning 

approaches has encouraged several researchers to conduct studies about them. A number of 

reviews have been also published during the recent years to cover the performed investigations. 

 As an example of such investigation, Akhter et al. [10] reviewed different methods for 

performance prediction of a PV module.  In that study, different aspects, including the time 

resolution of the employed data, were considered. In addition, a number of studies done in the 

range of 2007 to 2018 with the topic of using machine learning methods such as artificial neural 

network (ANN) and support vector machine (SVM) were covered.  Another review was also 

provided by Berghout et al. [11] to explain the application of machine learning approaches in 

monitoring the performance of PV systems. In [11], employing machine learning methods for 

detecting various fault in PV systems such as bridging, shading, and line to line problems, was 

investigated. An almost similar review paper was prepared by Kurukuru et al. [12], where the 

integration of thermal imaging and machine learning techniques was the topic. In addition, a 

review work was done by Yahya et al. [13] to review the work that have been done with the subject 

of PV module fault inspection using thermo-imaginary and machine learning ways. That study had 

a more focus on thermos-imaginary methods than machine learning. 

By investigation of the literature, it has been found that, most of the review studies have 

investigated utilization of machine learning approaches for fault detection of PV systems. The 

review works that have been published by Dhimish [14], Kumaradurai et al. [15], Li et al. [16], 
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Hwang et al. [17], Abdulmawjood et al. [18], Mellit et al. [19] could be given as some example of 

such works. Additionally, there have been some investigations, like Mosavi et al. [20], Tina et al. 

[21], de Freitas Viscondi et al. [22], Houssein et al. [23], Das et al. [24], Mosavi and Bahmani 

[25], and Ahmad et al. [26],  in which using machine learning methods for prediction the 

performance of PV modules have been reviewed. 

 Furthermore, another part of the review studies in the field of PV, have investigated the research 

works which utilized machine learning prediction approaches for solar irradiance prediction.  

Some of the conducted reviews have been performed by Darío Obando et al. [27], Zhou et al. [28], 

Ağbulut et al. [29], Bamisile et al. [30], Al-Hajj et al. [31], and Fan et al. [32].  

With the aim of providing a quick insight to available review works in the literature, Table (1) is 

provided in which some items have been checked for them. As it has been found from Table (1), 

there have been the following gaps in the review works: 

 In most of the studies, the review has been done by considering one of the possible 

applications of machine learning in PV systems, i.e., either performance prediction, or fault 

detection, and so on. Therefore, there is the lack of a review study in which different 

applications have been reviewed and discussed, and the future perspective is drawn by 

taking all the applications into account. 

 Another point is the conventional modeling approaches has not been investigated. 

Therefore, the review did not compare the conventional and machine learning approaches 

together to compare them in details. 

 The focus in the conducted investigation has been on the technical aspects, including the 

used technique, number of the employed training, and validation set, the type of fault 
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detections, and so on. Consequently, the drawn perspectives have been on the technical 

side, as well. It implies that the environmental perspective has been overlooked, and the 

outcome of the review could not help to achieve the environmental and sustainability goals. 

Consequently, the current review work is provided. Here: 

 Both works with the topic of performance prediction and fault detection, and not only 

one of the topics, have been reviewed. It results in providing a broader insight for 

researchers, policy-makers, and investors to application of machine learning 

approaches, state-of-art, current trends, barriers, and future perspectives. 

 In addition to the machine learning approaches, the conventional ways to analyze a PV 

system from both electrical and thermal aspects are also introduced and reviewed here. 

It leads to providing a framework for comparing the advantages and disadvantages of 

machine learning approaches in comparison to the conventional methods.  

 Moreover, separate from the technical sides of machine learning approaches utilization, 

the review gives insights about the cleaner aspect and achieving the sustainability 

objectives. Therefore, a map for reaching the drawn environmental targets is presented. 

Table (1): A list introducing the conducted review work in the field of application of machine learning 

for PV systems 

Study Year 

Did the review 

study consider 

application of 

machine learning 

in more than one 

application? 

Did the review 

investigate the 

conventional 

modeling 

approaches from 

both thermal and 

electrical sides? 

Did the review 

provide insights to 

the cleaner aspect 

and sustainable 

development? 

Akhter et al. [10] 2019 No No No 

Berghout et al. [11] 2021 No No No 

Kurukuru et al. [12] 2021 No No No 
Yahya et al. [13] 2022 No No No 

Dhimish [14] 2019 No No No 
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Kumaradurai et al. [15] 2019 No No No 

Hwang et al. [17] 2021 No No No 

Li et al. [16] 2021 No No No 

Abdulmawjood et al. [18] 2020 No No No 

Mellit et al. [19] 2018 No No No 

Mosavi et al. [20] 2019 No No No 

Tina et al. [21] 2021 No No No 

de Freitas Viscondi et al. 

[22] 
2019 

No No No 

Houssein et al. [23] 2019 No No No 

Das et al. [24] 2018 No No No 

Mosavi and Bahmani [25] 2019 No No No 

Ahmad et al. [26] 2020 No No No 

Darío Obando et al. [27] 2019 No No No 

Zhou et al. [28] 2021 No No No 

Ağbulut et al. [29] 2021 No No No 

Bamisile et al. [30] 2021 No No No 

Al-Hajj et al. [31] 2021 No No No 

Fan et al. [32] 2019 No No No 

The current work 2022 Yes Yes Yes  

2. The conventional performance prediction ways  

In general, the methods to estimate a PV system performance could be divided into two groups. 

One is the conventional ways which is referred to applications of either simple correlations or 

governing equations to analyze the performance of the system. Another is machine learning 

methods. Considering this point, in this part, the conventional ways to obtain electrical and thermal 

parameters of a PV module is discussed. 

 Thermal modeling 

The goal of thermal modeling is to obtain the working temperature of a solar module or other 

performance criteria related to that. 

 Nominal operating cell temperature (NOCT) 

The NOCT approach is the simplest way for predicting the working temperature of a PV module. 

It needs only the values of ambient temperature ( ambT ) and received solar radiation (G ). In NOCT 

approach, moduleT  is predicted based on Eq. (1): 
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, ( )module NOCT amb NOCT ref

ref

G
T T T T

G
  

  (1) 

NOCT temperature ( NOCTT ) is one of the available items in the catalogue of each module. The 

‘ref’ subscript denotes reference condition, as well. For the reference condition the temperature 

and irradiance values are 20 °C and 800 W.m-2, respectively. The reference condition is not the 

same as the standard test condition (STC), which is the two indicated indicators have the values of 

25 °C and 1000 W.m-2, respectively. 

 Correlation approaches 

Eq. (1) could be easily used for each solar module. However, it has some shortcomings, including: 

 The modules from the same product family usually have the identical values of NOCTT . 

Therefore, NOCT approach predicts the same value for all dimensions of a solar module 

product family. Due to changes in dimensions and consequently, the heat transfer rate, 

moduleT  is not equal for various module sizes from a product family when ambT  and G do not 

vary. 

 In addition to ambT  and G , wind velocity ( wV ) and relative humidity ( ) also affect moduleT

. Nonetheless, NOCT approach does not take them into account. 

Consequently, some other correlations have been also provided during the recent years based on 

the experimental data. Table (2) introduces some of the most important ones. As seen, different 

functions have been developed. Among them, nominal module operating temperature (NMOT) is 

one the widely-used methods. It was given in IEC number 61853–2 for PV rating.  

As another point, it is worth noting that, to the best of authors’ knowledge, in a large number of 

presented correlations, relative humidity is not considered. However, in some of the recent studies, 
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including Sohani et al. [33], the relative humidity has been also taken into account. In addition, it 

should be indicated that the used experimental data for adjusting the coefficients of a correlation 

should cover at least six months of a year, as mentioned in several references like [34]. Requiring 

long-term experimental data could be introduced as the most significant drawback of the 

correlation approaches, which is money and time consuming.  

Table (2): Introducing the most important correlations that have been provided to predict the 

temperature of a PV module  

Study Year 

Ambient 

temperature 

( ambT  ) 

Solar 

radiation 

(G  ) 

Wind 

speed 

( wV  ) 

Relative 

humidity 
(

 )
 

The provided function for working 

temperature prediction ( panelT
) 

Ross [35] 1976 Yes Yes No No
 

0.024panel ambT T G    

Scott [36] 1985 Yes Yes No No

 

1 0.028panel ambT T G     

Servant  [37] 1986 Yes Yes Yes No 
0.016 (1 0.030 )(1 0.085 )

panel amb

amb w

T T

G T V



  
 

 

Lasnier [38] 2017 Yes Yes No No

 

30.006 0.0175( 300)

1.14( 25)

panel

amb

T G

T

  

 
 

Chenni et al. 

[39] 
2007 Yes Yes Yes No

 0.0138 (1 0.031 )(1 0.042 )

panel

amb amb w

T

T G T V



  
 

Kurtz et al. [40] 2019 Yes Yes Yes No
 

( 3.473 0.0594 )wV

panel ambT T G e
 

   

Coskun et al. 

[41] 
2016 Yes Yes Yes No 

0.81.4 0.01( 500)panel amb wT T G V     
 

Skoplaki et al.  

[42] 
2008 Yes Yes Yes No

 

0.25

5.7 3.8
panel amb

w

T T G
V

 
   

 
 

Mondol et al. 

[43] 
2007 Yes Yes No No

 
0.031 0.058panel ambT T G    

Skoplaki et al. 

[44] 
2009 Yes Yes Yes No

 

0.32

8.91 2
panel amb

w

T T G
V

 
   

 
 

Almaktar et al. 

[45] 
2013 Yes No No No

 
1.411 6.414panel ambT T   

Risser and 

Fuentes [46] 
1984 Yes Yes Yes No

 
2

0.899 0.026175

0.00000754 1.30 3.8621

panel amb

w

T T G

G V

 

  
 

Muzathik et al. 

[47] 
2014 Yes Yes Yes No

 

0.943 0.0195

1.528 0.3529

panel amb

w

T T G

V
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Tselepis and 

Tripanagnostop

oulos [48] 

2016 Yes Yes No No

 

30 0.0175( 150)

1.14( 25)

panel

amb

T G

T

  

 
 

Coskun et al. 

[49] 
2017 Yes Yes Yes No

 

0.01632578

0.8 2.273

panel amb

w

T T G

V

 

 
 

Kalogirou [50]   2013 Yes Yes No No

 

1.14( )

0.0175( 300) 30

panel amb refT T T

G

 

  
 

Akyuz et al. 

[51] 
2012 Yes Yes Yes No

 

0.95 0.025 0.3 3.1panel amb wT T G V      

Mora Segado et 

al. [52] 
2015 Yes Yes Yes No

 

,0.79 ( 20)

1.52( )

panel amb

panel NOCT

ref

ref

T T

G
T

G

V V



 
  

  

 

 

King [53] 2009 Yes Yes Yes No

 

2(0.0712 2.411 32.96)

panel amb

w w

ref

T T

G
V V

G

 

 
 

PV rating IEC 

61853-2 [54] 
2009 Yes Yes Yes No

 
 ,

0 1

1
panel NMOT amb

w

T T G
u u V

 


 

Standard 61215 

[55] 
2015 Yes Yes No No

 

, ( )panel NOCT amb NOCT ref

ref

G
T T T T

G
    

Sohani et al. 

[33] 
2020 Yes Yes Yes Yes 1

( ) 273.15
3

panel

c e

amb w

ref

T

G
aT b d fV g

G




  
     

  

 

 One dimensional (1D) numerical approach 

In 1D numerical approach, a module is considered as a number of layers (Figure (1)). Then, for 

the whole points on a layer, the same temperature value is assumed, and by solving the governing 

equations, the temperature of each layer is determined. 
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Figure (1): The considered five layers of a PV module in 1D numerical modeling [56] 

In comparison to NOCT, NMOT, and other correlation approaches, 1D is more accurate due to the 

fact that it considers the governing equations. However, number of needed inputs is much more 

than the previously indicated approaches. The thickness of layers, as well as their isobaric heat 

capacities and densities are some of them. An overview of the studies in which 1D numerical 

modeling has been either developed or utilized is provided in Table (3). As this table indicates, the 

temperature dependency of the layers’ properties, including isobaric heat capacity and density have 

been neglected in most of the studies. Nonetheless, as it has been shown in [56], considering the 

indicated properties as a function of temperature could enhance the accuracy of modeling 

considerably. It is worth noting that number of the studies in which 1D numerical model has been 

employed is lower than other approaches. 

Table (3): An overview of the conducted investigations with the topic of 1D numerical modeling 

of a PV system  

  Authors Year The investigated system 
The conducted 

analysis 

Was temperature 

dependency of 

thermal properties 

considered?  

Tomar et al. [57] 2018 

Building integrated 

photovoltaic thermal (BIPVT) 

unit 

Parametric study No 
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Osma-Pinto and 

Ordonez-Plata [58] 
2020 

Photovoltaic thermal 

technology 

Parametric study No 

Singh et al. [59] 2019 
Photovoltaic thermal 

technology 

Parametric study No 

Gu et al. [60] 2019 Photovoltaic technology Parametric study No 

Shahsavar et al. [61] 2020 
Photovoltaic thermal 

technology 

Parametric study No 

Shahverdian et al. 

[62] 
2021 

Photovoltaic thermal 

technology 
Optimization 

No 

Sohani et al. [56] 2021 Photovoltaic technology Parametric study 
Yes; all layers except 

for Tedlar layer 

In addition to higher number of needed input parameter to run, more run-time and requiring to 

have a background from to the governing equations are taken into account as the most serious 

challenges of 1D numerical approach. As the most remarkable drawback, 1D is not able to consider 

temperature distribution on the surface of module, which numerical models with higher 

dimensions do. 

 2 and 3 dimensional (2D and 3D) numerical techniques 

When 2D and 3D numerical techniques are employed, the temperature distribution on the module 

surface could be obtained. It is done by writing and solving the governing equations, including 

energy and momentum equations. List of the recent studies with the subject of 2D and 3D 

numerical modeling of a PV system is presented in Table (4). 

Table (4): List of the recent studies with the subject of 2D and 3D numerical modeling of a PV system 

Study Year Module type 
Modeling 

dimension 

The compared 

engineering 

methods 

Temperature 

distribution related 

criteria 

Zondag et al. 

[63] 
2002 

Poly crystalline 

(PC) 
1D, 2D, and 3D  N.A. N.A. 

Pierrick et al. 

[64] 
2015 

Mono 

crystalline 

(MC) 

3D  N.A. 
Module mean 

temperature 

Usama Siddiqui 

et al. [65] 
2012 MC 3D  NOCT 

Module mean 

temperature 

Paradis et al. 

[66] 
2017 MC 2D N.A. 

Module mean 

temperature 

Guarracino et al. 

[67] 
2016 MC 3D  N.A. N.A. 

Hosseinzadeh et 

al. [68] 
2018 MC 3D N.A. N.A. 
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Nasrin et al. [69] 2018 PC 3D N.A. 
Module mean 

temperature 

Amanlou et al. 

[70] 
2018 MC 3D N.A. 

Module mean 

temperature 

Yamamoto et al. 

[71] 
2018 MC 2D N.A. N.A. 

Fayaz et al. [72] 2019 PC 3D N.A. 
Module mean 

temperature 

Maadi et al. [73] 2019 PC 3D N.A. 
Module mean 

temperature 

Kazemian et al. 

[74] 
2019 MC 3D N.A. 

Module mean 

temperature 

Atsu and 

Dhaundiyal [75] 
2019 

Poly and mono 

crystalline, as 

well as 

amorphous thin 

film Si-based 

modules, 

2D NOCT N.A. 

Hu et al. [76] 2020 MC 2D N.A. N.A. 

Salari et al. [77] 2020 MC 3D N.A. 
Module mean 

temperature 

Abd El-Samie et 

al. [78] 
2020 PC 3D N.A. 

Module mean 

temperature 

Salameh et al. 

[79] 
2021 PC 3D NOCT 

Module mean 

temperature 

Sohani et al. 

[80] 
2021 MC and PC 1D, 2D, and 3D NOCT and NMOT 

Changes in 

prediction error by 

variation of σ 

Considering the fact that 2D and 3D numerical approaches solve the governing equations in a way 

that they provide the temperature distribution on the module surface, they are more accurate than 

1D numerical, NOCT and other correlation approaches. However, they impose more 

computational cost and time, while using them requires having the knowledge about a number of 

processes including heat and mass transfer. They also need more input parameters than others to 

run. 
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2.2. Electrical modeling 

The purpose of electrical modeling is to determine power as the main output of the system. Voltage 

and current are also other parameters which could be determined by electrical modeling. 

 Correlation approach 

In most of the studies, when the goal is to obtain the power, and not more electrical parameters 

like voltage and current, Eq. (2) is first employed to determine the efficiency. Then, in order to 

calculate power, efficiency ( ) is multiplied by the received solar radiation ( G ) and module area 

( moduleA ), which are known parameters: 

moduleP GA
  (2) 

 101 ( ) log ( )ref ref module refT T G      
  (3) 

moduleT  is a known parameter, which could be obtained from thermal modeling. In addition, ref  is 

the efficiency of module in the reference condition, while   stands for the coefficient for the 

condition with the maximum power. Both ref  and   are usually available in the module catalogue. 

 The equivalent circuit method 

In case more electrical parameters than power, e.g., are going to be determined, the equivalent 

circuit method could be utilized. In this method, the electrical performance of the module is 

described using an equivalent circuit which is composed of a number of diodes and resistances. 

Three important items in each equivalent circuit are: 

 Photocurrent (Iph): It describes the amount of current generated by the received solar 

radiation. 
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 Series resistance (Rs): A part of produced energy by the solar module is dissipated during 

passing the current through the semiconductor and connections that are made of metal. Rs 

is used to describe that. 

 Parallel resistance (RP): Parallel resistance, which is also known as shunt resistance, is used 

to cover a number of phenomena, such as passing the current from the module’s edges, 

crystal geometry holes and non-idealities.   

2.2.2.1. Single diode model 

Here, which is also called the one diode approach, an equivalent circuit like Figure (2a) is 

considered. As observed, this equivalent circuit is composed of a series resistance, a shunt 

resistance, and a current source that describes the produced photocurrent. In addition to the 

mentioned items, there is also a diode in the circuit. A part of the produced current by light goes 

into the diode, which decreases the received the voltage at terminals. Based on the electrical 

governing rules, in single-diode model, the relation between the current and voltage is [81]: 

0
1 1

exp( ( . )) 1 ( )s sph
t s p s

V V
I I I I R R I

V N R N

 
 
  

     
 (4) 

As observed, in addition to Iph, Rs, and RP, there are three other important parameters in the 

equations. They are [7]: 

Thermal voltage of diode (Vt): Thermal voltage of diode describes the thermal driving force of 

electrons in a semi-conductor to move. However, this movement is the opposite direction of 

photocurrent.  

Diode saturation current (I0): This parameter describes the movements of minority of charge 

carriers in a semi-conductor from neutral to depletion area. 
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Number of connected cells in series in a module (NS): A module is built by connecting a number 

of cells that are electrically in series.  

 
(a) 

 

(b)  

Figure (2): The diode equivalent circuit; (a) single diode approach; (b) double diode approach 

In addition to the voltage and current, other parameters in Eq. (4) are obtained from Eqs. (5) to (9): 
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 ), ,(T Tph ph STC module module STC
STC

G
I I

G
  

 (9) 

As seen, in order to determine the values at the investigated condition, the values at STC are 

required. The values of I0, Vt, and Iph at STC are calculated according to Eqs. (10) to (12) [82]: 
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sc,, STCph STCI I
 (12) 

The parameters on the right-hand side of Eqs. (10) to (12) are known. They are either the available 

module characteristics in the module catalogue (like sc,STCI , ,oc STCV ,  , and  ) or constant 

parameter (like gE  and K ). In addition, the value of series resistance at STC is computed by 

solving Eq. (13), in which this parameter is the only unknown variable: 
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 (13) 

The shunt resistance at STC could be also determined from Eq. (14): 
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     (14) 

2.2.2.2. Double diode model 

One of the effective factors in a PV module, which is similar to a diode, is the ideality factor. One 

the one hand, at lower voltage range, the ideality factor is close to 2 due to domination of junction 
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recombination. One the other hand, at higher range of voltage, the ideality factor approaches the 

unity since the dominant process is recombination by bulk area and surfaces of PV. In the single 

diode model, the ideality factor is considered constant. Nonetheless, by adding another diode in 

parallel with the available one in the single diode model, modeling gets more accurate in the double 

diode model (Figure (2b)). The equations for the double diode model is quite similar to the single 

diode with only some modifications because of adding the second diode. They could be found in 

the references, like the studies of Babu and Gurjar [83], Shannan et al. [84], Chennoufi et al. [85], 

and Sangeetha et al. [86]. 

2.3. Problems of the conventional approaches 

Despite being widely used, the conventional approaches suffer from some drawbacks. The first 

and foremost is the simple correlations for thermal modeling do not consider a number of effective 

parameters such as relative humidity, while they are mostly accurate for one module, and they 

could not be generalized [87]. In addition, in the more advanced thermal modeling approaches, 

like 1D, 2D, and 3D numerical approaches do not consider some issues like hot spots on the surface 

of module, which leads to high difference between the actual and predicted working temperature 

values. Moreover, there have been several challenges in parameter estimation of the equivalent 

circuit method. It makes using it with serious difficulties. As a result, machine learning approaches 

is being increasingly utilized for PV systems. Not only are they employed for performance 

prediction from both electrical and thermal sides, they are also utilized for fault detection, as it will 

be discussed in the next part. 
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3. Using machine learning approach for PV systems 

As it has just mentioned, machine learning approaches are being increasingly employed for PV 

systems. It is done with two purposes. One is the performance prediction, while fault detection is 

another usage of machine learning approaches for PV systems. 

3.1. Performance prediction 

Performance prediction is one of the most important applications of machine learning approaches 

for PV installations. It could be done with the aim of determination of one or more than one 

parameter from the following list (Figure (3)): 

 Working temperature, 

 Voltage, 

 Current, 

 Power. 

The input parameters of those models have been usually the meteorological parameters, as well as 

a number of module specifications [88]. As an example of the conducted investigations, Han et al. 

[89]  considered a ELM-based multi system to predict the power generated at a photovoltaic plant 

in Beijing, China. Using the developed prediction tool, the mean absolute errors were 1.70% in 

hot season and 2.13% in spring, but using the single model, the corresponding values were 1.81% 

and 2.43%, respectively. Therefore, the developed prediction tool estimated the power more 

accurately. 
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(a) 

 

(b) 

Figure (3): Showing the input parameters of machine learning methods for performance prediction of a 

PV power production system; (a) input parameters; (b) outputs 

In [90], a model which had been developed using multiple reservoirs echo state network was used 

to predict photovoltaic power. In this model, which was briefly called MR-ESN, the reservoir 

parameters were optimized by the quasi-Newton algorithm. According to the results, the MAPE 

value was 0.00195%, which is very close to zero. This model was more accurate than others such 
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as conventional neural networks, like BPNN, wavelet transform (WT), support vector machines 

(SVM), and support vector regression (SVR-ANN). 

Al-Dahidi et al. [91] used an ELM algorithm to use in the MLP network to predict the power of a 

PV power plant in Amman, Jordan. With this method, the lowest mean absolute error was 1.08% 

in June and the highest mean absolute error was 18.83% in February and March. 

In order to predict the performance of a Chinese photovoltaic power production system which was 

located in Beijing, SVM and MLP methods are used [92]. Based on this research, the model used 

is very useful, especially for different circumstances with mist and fog. Air temperature and 

relative humidity were among the inputs of the model. 

A new method based on satellite and NWP data was developed to forecast the generated electricity 

of a photovoltaic power production sytem installed in Italy [93]. The verification was done with a 

small-scale photovoltaic solar power production in Tyrol, Italy. For a 4-hour time horizon, the 

RMSE was between 5% and 7% and for one day, it was in the range of [7% -7.5%]. Leva et al. 

[94] provided an MLP-based model for predicting photovoltaic performance using weather data. 

This method worked better on sunny days than on cloudy days. Das et al. [95] used a SVM-based 

model to predict photovoltaic power generation. In Malaysia, this model was validated in different 

weather conditions including clear, cloudy and rainy. The mean absolute error was 34.57%. 

Paulescu et al. [96] predicted the electricity production of 2 photovoltaic production systems in 

Catania and Milan in Italy using a fuzzy logic based approach. The average absolute errors were 

0.64 and 0.56 kW for Milan and Catania, respectively. In that study, the studied model had better 

accuracy in the hot season than the cold time of the year. 
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A fuzzy T-S method was presented in [97] to predict the photovoltaic approach. The inputs to this 

method were meteorological parameters. The comparison of the found prediction tool was done 

with other methods. According to the results, the provided prediction tool had the lowest absolute 

error in summer and the highest average error in spring, which is 9.77% and 30%, respectively. 

Li et al. [98] used a hierarchical approach to achieve system performance. Various parameters such 

as power and system geometry were used as inputs. The methods based on ANN and SVR were 

more accurate than other methods. In addition, Sohani et al. [99] employed ANN to predict the 

electrical characteristics of 2 PV modules. One poly and one mono crystalline module were 

considered, with almost the identical dimensions. Each of them had the capacity of 50 W. Relative 

humidity was one of the inputs for ANN. A parametric study was then conducted using ANN to 

discover the sole impact of relative humidity on the system operation. 

A quick summary of the most important items of the indicated studies for performance prediction 

of PV modules is presented in Table (5). 

Table (5): A quick summary of the most important items of the indicated studies 

study Year Method Accuracy 

Li et al. [98] 2016 ML-H 
Mean absolute error = 128.77 

kWh 

Leva et al. [94] 2017 ANN Mean absolute error < 15% 

Das et al. [95] 2017 SVM 
Average mean absolute error 

= 34.57% 

Liu et al.[92] 2018 ANN and SVM 
Mean regression error = 

11.61% 

Liu et al. [97] 2017 FL 
Mean absolute error= 0.56 

and 0.64 kW 

Al-Dahidi et al. [91] 2018 ANN-ELM Mean absolute error = 1.08% 

Han et al. [89] 2019 ELM Mean absolute error = 2.13% 

Yao et al. [90] 2019 ESN 
Mean absolute prediction 

error = 0.00195% 

Sohani et al. [99]  2021 ANN Mean absolute error = 3.21% 

Pierro et al. [93] 2017 ANN 

Root mean square error = 

five to seven percent for one 

to four hours 
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Root mean square error = 

seven to seven and a half for 

one to two days 

Paulescu et al. [96] 2017 FL MAE = 9.77% 

3.2. Fault detection and solving that 

According to the information provided in several references such as Sabbaghpur et al. [100], and 

Berghout et al. [101], from different possible faults for a PV system, six items are more important. 

They are (Figure (4)): 

 Shading, 

 Degradation, 

 Bypass diode, 

 Line to line, 

 Open circuit, 

 Bridging 

In this part, the explanation about each item is given briefly, and then, some machine learning 

based solution that have been provided in the literature are introduced. 
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Figure (4): Different common faults in a PV system 

 Shading 

The performance of a PV system has a direct relationship with the received solar radiation. 

Therefore, when there is shading on a part or the whole module, its generated power goes down. 

Shading could originate from different things, including the soil and dirt, or the objects such as 

trees, the buildings in surroundings, or even other panels. 

One of the solutions that could be employed to solve the shading problem is diode bypassing. 

Diode bypassing refers for isolation of modules with shading from other ones. Another way is 

controlling the modules orientation to have the least shadow level and highest energy production, 

while finding the foremost arrangement (number of series and parallel modules) is taken into 

account as another way to deal with the issue. 
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As an example of the studies in which shading detection has been done and a solution for dealing 

with has been presented, Huang et al. [102] provided an ANN that was composed of 1 hidden 

layer. Extreme machine learning was the training algorithm, in which the Bee Colony method was 

used. The found ANN was then utilized to detect shading come from dust and dirt. Another 

investigation in the field was carried out by Maaløe et al. [103], where Bayes Theorem was utilized 

for clustering various types of faults that originate from shading. The developed simulation 

procedure took advantage of I-V characteristics to find the difference between several operating 

modes. It has been typical to investigate the degradation in addition to the shading faults in the 

studies. 

 Degradation 

Like any other device, the performance of a PV system declines. This process, which is called 

degradation, comes from different issues in a solar module, such as breaking the glass, hot spots, 

bubbles, encapsulant discoloration, delamination, ribbon discoloration, and so on. In general, it is 

estimated that, on average, around 0.8% reduction in the performance of a solar module is seen 

every year [104]. According to the information provided in [104], among the indicated items, hot 

spots have the highest contribution (33%) to the degradation. Not only do hot spots have negative 

effect on the performance, they also cause difference between the model prediction and reality, as 

completely discussed in the previous parts. Ribbon discoloration is taken into account as the 

second significant factor, with 12%. Breaking glass and encapsulant discoloration are in the third 

and fourth places, respectively. They are responsible for 10 and 9% of degradation, respectively.  

 Ali et al. [105] conducted a study with the aim of investigation of hot spots effects on a PV module 

operation. In that study, photos taken by an infrared camera were employed, while a number of 

methods for parameters specifications, as well as a variety of image processing techniques, 
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including texture, RGB, OGH, and LBP were examined. Evaluation of different methods using a 

number of datasets had shown that the support vector machine (SVM) was superior to the other 

machine learning approaches in prediction. Another similar work was done by Dhimish [106] a 

more advanced method that is called discriminate classifiers had also a higher capability of 

accurate prediction that the conventional machine learning approaches like SVM. 

 Open circuit 

If a wire in a PV system does not transfer the current, the open circuit happens. Open circuit comes 

from different issues such as fuse blowing, terminal problems, connection faults, and cutting a 

wire [107]. As indicated in several references, such as [108] of the open-circuit has more harmful 

effects than the short-circuit condition due to the increasing growth in the amperage flow. 

However, reviewing the literature has demonstrated that machine learning approaches has been 

rarely employed for open-circuit fault detection. In the few studied cases, it was not studied 

separately, and it was investigated beside some other types of faults. 

For instance, Dhibi et al. [109] employed a number of machine learning approaches, including 

KNN, PCA, and Reduced-Kernal Random Forest (RKRF) to provide a means for detecting a 

number of faults in a PV system, such as open-circuit. Data collection was done by installation of 

9 sensors to capture current and voltage. The study covered the shading and line to line faults in 

addition to the open-circuit one, as well. 

 Line to line 

When the ions content in the air reaches a threshold value, or when an accident contact between 

lines occurs, the line to line fault happens. It leads to providing a path with small impedance for 

passing the current thorough, and it may cause serious harmful effects [110]. According to the 
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explanations available in [111], three are three methods for detection of this fault, which are 

processing signals, machine learning, and combined approaches. Reviewing the literature has 

demonstrated that number of studies which have utilized machine learning techniques for detection 

of this fault, is more than other ones.   

The investigation done by Eskandari et al. [112] could be given as an example of such studies, in 

which a number of different techniques for finding a suitable prediction way, such as SVM, KNN, 

and Naive Bayes were employed. In addition, in another similar study, Eskandari et al. [113] 

evaluated some more methods with higher accuracy for detection of this type of fault. Gao et al. 

[114] also used CNN to select fault from 10 defined modes, including the shading and line to line 

types. Their method was developed in a way that it has the ability of training in an online way. 

 Bridging  

If there were some problems in the PV system structure or wiring, the resistance between two 

points might be low, and it leads to short circuit and harms the PV system [115]. This fault is 

usually detected by analyzing power voltage characteristic curves [116]. Like line to line fault, 

number of the studies in which bridging fault is found and analyzed by machine learning 

approaches has been considerably lower than ones. The work done by Harrou et al. [117] is an 

example of such investigations. In that reference, a variety of machine learning methods, like 

Gaussian process regression, SVM, and kernel mapping method had been examined for 

identification of six types of faults, including bridging. 

 Bypass diode 

As explained, when there is shadow on a number of modules, the performance of them declines 

considerably, which affect the whole PV system performance. By installing bypass diodes, this 
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problem could be solved, and the modules or cells with the shadow will be put aside [118]. If these 

diodes had a problem, the system performance would reduce.  

In contrast to shading and degradation which are the common investigated types of faults, bypass 

diode fault detection has been rarely done. The reference [117] is one of such research works. 

Table (6) provides a brief summary of the recent conducted studies with the topic of fault detection 

in PV systems.  

Table (6): a brief summary of the recent conducted studies with the topic of fault detection in PV 

systems 

Study Year Number of faults 
Type of 

considered faults 

The employed 

machine learning 

approaches 

Bakdi et al. [119] 2021 Sixteen 
Open-circuit and 

shading 

Kullback–Leibler 

Divergence, PCA, and 

Recursive Smooth 

Kernel Density 

Maaløe et al. [103] 2020 Ten Shading Bayes’ theorem 

Li et al. [120] 2019 Five 
Shading and 

degradation 

SVM and 

Convolutional neural 

Networks (CNN) 

Rahman et al. [121] 2020 Two Degradation 
SVM, Naive Bayes, 

and KNN 

Dhibi et al. [109] 2020 Two Degradation 

PCA, Reduced-Kernal 

Random Forest, and 

KNN 

Pierdicca et al. [122] 2020 Three Degradation CNN 

Eskandari et al. [112] 2020 Two Line to line 
Naive Bayes, KNN, 

and SVM 

Edun et al. [123] 2020 N.A. Line to line SVD 

Ali et al. [105] 2020 Two 
Degradation and 

shading 
SVM 

Venkatesh et al. 

[124] 
2021 Five Degradation CNN 
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4. Role of machine learning approaches in achieving cleaner aspect and environmental 

targets 

More accurate prediction of power produced by PV system leads to more precise sizing of the 

system. Moreover, when working temperature of a module is found more accurately, better thermal 

management way could be suggested to decrease the system performance. As a result, a constant 

value of power could be supplied by a lower PV module area and higher efficiency. As a result, 

the PV environmental PV impact during its life time goes down considerably, while the goal to 

achieve higher efficiency energy systems is achieved. It should be noted that since a large part of 

the produced environmental emission of a PV system comes from its production and disposal, the 

major studies in the field of environmental assessment of PV technologies to have a cleaner 

performance have employed life-cycle assessment (LCA) method for this purpose. LCA has been 

utilized in several studies, including the research works of Saedpanah et al. [125], Fardi Asrami et 

al. [126], Sumper et al. [127], and Azzopardi and Mutale [128]. Moreover, there are some good 

review works that have covered application of machine learning approaches for PV systems, 

including Parida et al. [129] and Hussien Rabaia et al. [130].  

Additionally, machine learning approaches could help to better operation of PV technologies, and 

less degradation of them. Moreover, the time of being a PV system in operation goes up by 

applying suitable fault detection methods in which machine learning methods are utilized. 

Consequently, the need for producing power in fossil-fuel based power plants and number of 

modules should be replaced during the life span decline. Therefore, both life-cycle emission and 

electrical energy production have upward trends. Therefore, using machine learning methods could 

much effectively help to achieve the energy and environmental milestones. 
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5. The future perspective: challenges and outlook 

The conducted literature review has demonstrated that machine learning techniques are being 

employed for both performance prediction and fault detection of PV systems more and more. As 

observed, the neural network-based methods have been the dominant ones, whereas some other 

techniques like SVM is also taken into account as effective widely-used means. 

One of the serious challenges about machine learning approaches is overfitting. The overfitting is 

the appropriate operation withing a limited range of data and not having a suitable performance 

outside the range. In order to solve the issue, number of the input data could increase, while the 

range of the effective parameters should be extended as far as possible. For the cases which could 

not be by the experimental data, simulators, or appropriate simulation ways could would be 

suggested. 

Another challenging point about using machine learning prediction tools is connection among 

different parts, as well as the employed infrastructure. Based on the huge development in the 

Internet of Things (IoT), the sensors and systems based on them would have a greater contribution 

in the field. In addition, using wireless networks and connection to the robots which are responsible 

for cleaning the module surface is becoming more popular. The imposed cost of infrastructure, 

including the computational parts and other devices could be made up using the enhancement in 

the energy and environmental benefits of the system. This would accelerate by reduction in the 

cost of PV system in the future, as predicted in several references like [131]. The indicated great 

positive impacts will lead to extension of using machine learning approaches from the PV solar 

farms on the big-scales to the small-scale PV installations, such as rooftop and BIPV/T systems.  

References 

 



31 of 37 

[1] M. Abdel-Basset, H. Hawash, R.K. Chakrabortty, M. Ryan. PV-Net: An innovative deep learning 

approach for efficient forecasting of short-term photovoltaic energy production. Journal of Cleaner 

Production. 303 (2021) 127037. 

[2] A. Gagliano, G.M. Tina, S. Aneli, S. Nižetić. Comparative assessments of the performances of PV/T 

and conventional solar plants. Journal of Cleaner Production. 219 (2019) 304-15. 

[3] U. Akyol, D. Akal, A. Durak. Estimation of power output and thermodynamic analysis of standard and 

finned photovoltaic panels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.  

(2021) 1-20. 

[4] Ü. Ağbulut, A.E. Gürel, A. Ergün, İ. Ceylan. Performance assessment of a V-trough photovoltaic system 

and prediction of power output with different machine learning algorithms. Journal of Cleaner Production. 

268 (2020) 122269. 

[5] M. Ayan, H. Toylan. Estimating the power generating of a stand-alone solar photovoltaic panel using 

artificial neural networks and statistical methods. Energy Sources, Part A: Recovery, Utilization, and 

Environmental Effects. 43 (2021) 2496-508. 

[6] M. Pan, C. Li, R. Gao, Y. Huang, H. You, T. Gu, et al. Photovoltaic power forecasting based on a 

support vector machine with improved ant colony optimization. Journal of Cleaner Production. 277 (2020) 

123948. 

[7] S. Nižetić, M. Jurčević, D. Čoko, M. Arıcı. A novel and effective passive cooling strategy for 

photovoltaic panel. Renewable and Sustainable Energy Reviews. 145 (2021) 111164. 

[8] Z.-F. Liu, L.-L. Li, M.-L. Tseng, M.K. Lim. Prediction short-term photovoltaic power using improved 

chicken swarm optimizer - Extreme learning machine model. Journal of Cleaner Production. 248 (2020) 

119272. 

[9] G.-Q. Lin, L.-L. Li, M.-L. Tseng, H.-M. Liu, D.-D. Yuan, R.R. Tan. An improved moth-flame 

optimization algorithm for support vector machine prediction of photovoltaic power generation. Journal of 

Cleaner Production. 253 (2020) 119966. 

[10] M.N. Akhter, S. Mekhilef, H. Mokhlis, N.M. Shah. Review on forecasting of photovoltaic power 

generation based on machine learning and metaheuristic techniques. IET Renewable Power Generation. 13 

(2019) 1009-23. 

[11] T. Berghout, M. Benbouzid, X. Ma, S. Djurović, L.-H. Mouss. Machine Learning for Photovoltaic 

Systems Condition Monitoring: A Review. IEEE. pp. 1-5. 

[12] V.S.B. Kurukuru, A. Haque, M.A. Khan, A.K. Tripathy. Fault classification for photovoltaic modules 

using thermography and machine learning techniques. IEEE. pp. 1-6. 

[13] Z. Yahya, S. Imane, H. Hicham, A. Ghassane, E. Bouchini-Idrissi Safia. Applied imagery pattern 

recognition for photovoltaic modules’ inspection: A review on methods, challenges and future 

development. Sustainable Energy Technologies and Assessments. 52 (2022) 102071. 

[14] M. Dhimish. Assessing MPPT techniques on hot-spotted and partially shaded photovoltaic modules: 

Comprehensive review based on experimental data. IEEE Transactions on Electron Devices. 66 (2019) 

1132-44. 

[15] A. Kumaradurai, Y. Teekaraman, T. Coosemans, M. Messagie. Fault Detection in Photovoltaic 

Systems Using Machine Learning Algorithms: A Review. IEEE. pp. 1-5. 

[16] B. Li, C. Delpha, D. Diallo, A. Migan-Dubois. Application of Artificial Neural Networks to 

photovoltaic fault detection and diagnosis: A review. Renewable and Sustainable Energy Reviews. 138 

(2021) 110512. 

[17] H.P.-C. Hwang, C.C.-Y. Ku, J.C.-C. Chan. Detection of Malfunctioning Photovoltaic Modules Based 

on Machine Learning Algorithms. IEEE Access. 9 (2021) 37210-9. 

[18] K. AbdulMawjood, S.S. Refaat, W.G. Morsi. Detection and prediction of faults in photovoltaic arrays: 

A review. IEEE. pp. 1-8. 

[19] A. Mellit, G.M. Tina, S.A. Kalogirou. Fault detection and diagnosis methods for photovoltaic systems: 

A review. Renewable and Sustainable Energy Reviews. 91 (2018) 1-17. 



32 of 37 

[20] A. Mosavi, M. Salimi, S. Faizollahzadeh Ardabili, T. Rabczuk, S. Shamshirband, A.R. Varkonyi-

Koczy. State of the art of machine learning models in energy systems, a systematic review. Energies. 12 

(2019) 1301. 

[21] G.M. Tina, C. Ventura, S. Ferlito, S. De Vito. A state-of-art-review on machine-learning based 

methods for PV. Applied Sciences. 11 (2021) 7550. 

[22] G. de Freitas Viscondi, S.N. Alves-Souza. A Systematic Literature Review on big data for solar 

photovoltaic electricity generation forecasting. Sustainable Energy Technologies and Assessments. 31 

(2019) 54-63. 

[23] E.H. Houssein. Machine learning and meta-heuristic algorithms for renewable energy: a systematic 

review. Advanced Control and Optimization Paradigms for Wind Energy Systems.  (2019) 165-87. 

[24] U.K. Das, K.S. Tey, M. Seyedmahmoudian, S. Mekhilef, M.Y.I. Idris, W. Van Deventer, et al. 

Forecasting of photovoltaic power generation and model optimization: A review. Renewable and 

Sustainable Energy Reviews. 81 (2018) 912-28. 

[25] A. Mosavi, A. Bahmani. Energy consumption prediction using machine learning; a review.  (2019). 

[26] T. Ahmad, H. Chen. A review on machine learning forecasting growth trends and their real-time 

applications in different energy systems. Sustainable Cities and Society. 54 (2020) 102010. 

[27] E.D. Obando, S.X. Carvajal, J.P. Agudelo. Solar radiation prediction using machine learning 

techniques: a review. IEEE Latin America Transactions. 17 (2019) 684-97. 

[28] Y. Zhou, Y. Liu, D. Wang, X. Liu, Y. Wang. A review on global solar radiation prediction with 

machine learning models in a comprehensive perspective. Energy Conversion and Management. 235 (2021) 

113960. 

[29] Ü. Ağbulut, A.E. Gürel, Y. Biçen. Prediction of daily global solar radiation using different machine 

learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews. 135 (2021) 

110114. 

[30] O. Bamisile, A. Oluwasanmi, C. Ejiyi, N. Yimen, S. Obiora, Q. Huang. Comparison of machine 

learning and deep learning algorithms for hourly global/diffuse solar radiation predictions. International 

Journal of Energy Research.  (2021). 

[31] R. Al-Hajj, A. Assi, M. Fouad. Short-term prediction of global solar radiation energy using weather 

data and machine learning ensembles: A comparative study. Journal of Solar Energy Engineering. 143 

(2021). 

[32] J. Fan, L. Wu, F. Zhang, H. Cai, W. Zeng, X. Wang, et al. Empirical and machine learning models for 

predicting daily global solar radiation from sunshine duration: A review and case study in China. 

Renewable and Sustainable Energy Reviews. 100 (2019) 186-212. 

[33] A. Sohani, H. Sayyaadi. Employing genetic programming to find the best correlation to predict 

temperature of solar photovoltaic panels. Energy Conversion and Management. 224 (2020) 113291. 

[34] P. Sánchez-Palencia, N. Martín-Chivelet, F. Chenlo. Modeling temperature and thermal transmittance 

of building integrated photovoltaic modules. Solar Energy. 184 (2019) 153-61. 

[35] R.G. Ross Jr. Interface design considerations for terrestrial solar cell modules. pvsp.  (1976) 801-6. 

[36] T. Schott. Operation temperatures of pv modules: a theoretical and experimental approach. pp. 392-6. 

[37] J.-M. SERVANT. Calculation of the cell temperature for photovoltaic modules from climatic data. 

Intersol Eighty Five. Elsevier1986. pp. 1640-3. 

[38] F. Lasnier. Photovoltaic engineering handbook. Routledge2017. 

[39] R. Chenni, M. Makhlouf, T. Kerbache, A. Bouzid. A detailed modeling method for photovoltaic cells. 

Energy. 32 (2007) 1724-30. 

[40] S. Kurtz, K. Whitfield, D. Miller, J. Joyce, J. Wohlgemuth, M. Kempe, et al. Evaluation of high-

temperature exposure of rack-mounted photovoltaic modules. IEEE. pp. 002399-404. 

[41] C. Coskun, N. Koçyiğit, Z. Oktay. ESTIMATION OF PV MODULE SURFACE TEMPERATURE 

USING ARTIFICIAL NEURAL NETWORKS. Mugla Journal of Science and Technology. 2 (2016) 15-8. 

[42] E. Skoplaki, A. Boudouvis, J. Palyvos. A simple correlation for the operating temperature of 

photovoltaic modules of arbitrary mounting. Solar Energy Materials and Solar Cells. 92 (2008) 1393-402. 



33 of 37 

[43] J.D. Mondol, Y.G. Yohanis, B. Norton. Comparison of measured and predicted long term performance 

of grid a connected photovoltaic system. Energy Conversion and Management. 48 (2007) 1065-80. 

[44] E. Skoplaki, J.A. Palyvos. Operating temperature of photovoltaic modules: A survey of pertinent 

correlations. Renewable Energy. 34 (2009) 23-9. 

[45] M. Almaktar, H.A. Rahman, M.Y. Hassan, S. Rahman. Climate-based empirical model for PV module 

temperature estimation in tropical environment. Applied Solar Energy. 49 (2013) 192-201. 

[46] V.V. Risser, M.K. Fuentes. Linear regression analysis of flat-plate photovoltaic system performance 

data. pvse.  (1984) 623-7. 

[47] A.M. Muzathik. Photovoltaic modules operating temperature estimation using a simple correlation. 

International Journal of Energy Engineering. 4 (2014) 151. 

[48] S. Tselepis, Y. Tripanagnostopoulos. Economic analysis of hybrid photovoltaic/thermal solar systems 

and comparison with standard PV modules. 11 ed. 

[49] C. Coskun, U. Toygar, O. Sarpdag, Z. Oktay. Sensitivity analysis of implicit correlations for 

photovoltaic module temperature: A review. Journal of Cleaner Production. 164 (2017) 1474-85. 

[50] S.A. Kalogirou. Solar energy engineering: processes and systems. Academic Press2013. 

[51] E. Akyuz, C. Coskun, Z. Oktay, I. Dincer. A novel approach for estimation of photovoltaic exergy 

efficiency. Energy. 44 (2012) 1059-66. 

[52] P. Mora Segado, J. Carretero, M. Sidrach‐ de‐ Cardona. Models to predict the operating temperature 

of different photovoltaic modules in outdoor conditions. Progress in Photovoltaics: Research and 

Applications. 23 (2015) 1267-82. 

[53] D.L. King. Photovoltaic module and array performance characterization methods for all system 

operating conditions. 1 ed. American Institute of Physics. pp. 347-68. 

[54] P. CODE, C. PRIX. Photovoltaic (PV) module performance testing and energy rating–Part 1: 

Irradiance and temperature performance measurements and power rating Essais de performance et 

caractéristiques assignées d'énergie des modules photovoltaïques (PV)–. 

[55] I.J.D.q. Standard, t. approval. 61215," Crystalline silicon terrestrial photovoltaic (PV) modules. 2. 

[56] A. Sohani, H. Sayyaadi, M.H. Doranehgard, S. Nizetic, L.K.B. Li. A method for improving the 

accuracy of numerical simulations of a photovoltaic panel. Sustainable Energy Technologies and 

Assessments. 47 (2021) 101433. 

[57] V. Tomar, G.N. Tiwari, T.S. Bhatti, B. Norton. Thermal modeling and experimental evaluation of five 

different photovoltaic modules integrated on prototype test cells with and without water flow. Energy 

Conversion and Management. 165 (2018) 219-35. 

[58] G. Osma-Pinto, G. Ordóñez-Plata. Dynamic thermal modelling for the prediction of the operating 

temperature of a PV panel with an integrated cooling system. Renewable Energy. 152 (2020) 1041-54. 

[59] I. Singh, D. Singh, M. Singh. Thermal Modeling and Performance Evaluation of Photovoltaic Thermal 

(PV/T) Systems: A Parametric Study. International Journal of Green Energy. 16 (2019) 483-9. 

[60] W. Gu, T. Ma, L. Shen, M. Li, Y. Zhang, W. Zhang. Coupled electrical-thermal modelling of 

photovoltaic modules under dynamic conditions. Energy. 188 (2019) 116043. 

[61] A. Shahsavar, M. Eisapour, P. Talebizadehsardari. Experimental evaluation of novel 

photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, 

triangular and rectangular. Energy. 208 (2020) 118409. 

[62] M.H. Shahverdian, A. Sohani, H. Sayyaadi, S. Samiezadeh, M.H. Doranehgard, N. Karimi, et al. A 

dynamic multi-objective optimization procedure for water cooling of a photovoltaic module. Sustainable 

Energy Technologies and Assessments. 45 (2021) 101111. 

[63] H.A. Zondag, D.W. de Vries, W.G.J. van Helden, R.J.C. van Zolingen, A.A. van Steenhoven. The 

thermal and electrical yield of a PV-thermal collector. Solar Energy. 72 (2002) 113-28. 

[64] H. Pierrick, M. Christophe, G. Leon, D. Patrick. Dynamic numerical model of a high efficiency PV–

T collector integrated into a domestic hot water system. Solar Energy. 111 (2015) 68-81. 

[65] M. Usama Siddiqui, A.F.M. Arif, L. Kelley, S. Dubowsky. Three-dimensional thermal modeling of a 

photovoltaic module under varying conditions. Solar Energy. 86 (2012) 2620-31. 



34 of 37 

[66] P.-L. Paradis, D.R. Rousse, L. Lamarche, H. Nesreddine. A 2-D transient numerical heat transfer model 

of the solar absorber plate to improve PV/T solar collector systems. Solar Energy. 153 (2017) 366-78. 

[67] I. Guarracino, A. Mellor, N.J. Ekins-Daukes, C.N. Markides. Dynamic coupled thermal-and-electrical 

modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors. Applied Thermal Engineering. 

101 (2016) 778-95. 

[68] M. Hosseinzadeh, A. Salari, M. Sardarabadi, M. Passandideh-Fard. Optimization and parametric 

analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental 

validation. Energy Conversion and Management. 160 (2018) 93-108. 

[69] R. Nasrin, N.A. Rahim, H. Fayaz, M. Hasanuzzaman. Water/MWCNT nanofluid based cooling system 

of PVT: Experimental and numerical research. Renewable Energy. 121 (2018) 286-300. 

[70] Y. Amanlou, T. Tavakoli Hashjin, B. Ghobadian, G. Najafi. Air cooling low concentrated 

photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV 

plate. Applied Thermal Engineering. 141 (2018) 413-21. 

[71] T. Yamamoto, D. Wagi, I. Nanno. New coupled model for prediction of the temperature distribution 

in a PV cell with a hot spot induced by partial shading. IEEE. pp. 933-7. 

[72] H. Fayaz, N.A. Rahim, M. Hasanuzzaman, A. Rivai, R. Nasrin. Numerical and outdoor real time 

experimental investigation of performance of PCM based PVT system. Solar Energy. 179 (2019) 135-50. 

[73] S.R. Maadi, M. Khatibi, E. Ebrahimnia-Bajestan, D. Wood. Coupled thermal-optical numerical 

modeling of PV/T module – Combining CFD approach and two-band radiation DO model. Energy 

Conversion and Management. 198 (2019) 111781. 

[74] A. Kazemian, A. Salari, A. Hakkaki-Fard, T. Ma. Numerical investigation and parametric analysis of 

a photovoltaic thermal system integrated with phase change material. Applied Energy. 238 (2019) 734-46. 

[75] D. Atsu, A. Dhaundiyal. Effect of Ambient Parameters on the Temperature Distribution of 

Photovoltaic (PV) Modules. Resources. 8 (2019) 107. 

[76] M. Hu, B. Zhao, X. Ao, X. Ren, J. Cao, Q. Wang, et al. Performance assessment of a trifunctional 

system integrating solar PV, solar thermal, and radiative sky cooling. Applied Energy. 260 (2020) 114167. 

[77] A. Salari, A. Parcheforosh, A. Hakkaki-Fard, A. Amadeh. A numerical study on a photovoltaic thermal 

system integrated with a thermoelectric generator module. Renewable Energy. 153 (2020) 1261-71. 

[78] M.M.A. El-Samie, X. Ju, Z. Zhang, S.A. Adam, X. Pan, C. Xu. Three-dimensional numerical 

investigation of a hybrid low concentrated photovoltaic/thermal system. Energy. 190 (2020) 116436. 

[79] T. Salameh, M. Tawalbeh, A. Juaidi, R. Abdallah, A.-K. Hamid. A novel three-dimensional numerical 

model for PV/T water system in hot climate region. Renewable Energy. 164 (2021) 1320-33. 

[80] A. Sohani, H. Sayyaadi, M.H. Moradi, B. Nastasi, D. Groppi, M. Zabihigivi, et al. Comparative study 

of temperature distribution impact on prediction accuracy of simulation approaches for poly and mono 

crystalline solar modules. Energy Conversion and Management. 239 (2021) 114221. 

[81] S. Nižetić, M. Jurčević, D. Čoko, M. Arıcı, A.T. Hoang. Implementation of phase change materials for 

thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches. Energy. 

228 (2021) 120546. 

[82] M. Raju, R.N. Sarma, A. Suryan, P.P. Nair, S. Nižetić. Investigation of optimal water utilization for 

water spray cooled photovoltaic panel: A three-dimensional computational study. Sustainable Energy 

Technologies and Assessments. 51 (2022) 101975. 

[83] B.C. Babu, S. Gurjar. A novel simplified two-diode model of photovoltaic (PV) module. IEEE journal 

of photovoltaics. 4 (2014) 1156-61. 

[84] N.M.A.A. Shannan, N.Z. Yahaya, B. Singh. Single-diode model and two-diode model of PV modules: 

A comparison. IEEE. pp. 210-4. 

[85] K. Chennoufi, M. Ferfra, M. Mokhlis. An accurate modelling of Photovoltaic modules based on two-

diode model. Renewable Energy. 167 (2021) 294-305. 

[86] R.S. Sangeetha, M.V. Jayan, M. Pradish. An improved technique for predicting characteristics of two-

diode based pv model. Energy Procedia. 117 (2017) 870-7. 



35 of 37 

[87] M.H. Shahverdian, A. Sohani, H. Sayyaadi. Water-energy nexus performance investigation of water 

flow cooling as a clean way to enhance the productivity of solar photovoltaic modules. Journal of Cleaner 

Production. 312 (2021) 127641. 

[88] M. Jurčević, S. Nižetić, I. Marinić-Kragić, D. Čoko, M. Arıcı, E. Giama, et al. Investigation of heat 

convection for photovoltaic panel towards efficient design of novel hybrid cooling approach with 

incorporated organic phase change material. Sustainable Energy Technologies and Assessments. 47 (2021) 

101497. 

[89] Y. Han, N. Wang, M. Ma, H. Zhou, S. Dai, H. Zhu. A PV power interval forecasting based on seasonal 

model and nonparametric estimation algorithm. Solar Energy. 184 (2019) 515-26. 

[90] X. Yao, Z. Wang, H. Zhang. A novel photovoltaic power forecasting model based on echo state 

network. Neurocomputing. 325 (2019) 182-9. 

[91] S. Al-Dahidi, O. Ayadi, J. Adeeb, M. Alrbai, B.R. Qawasmeh. Extreme learning machines for solar 

photovoltaic power predictions. Energies. 11 (2018) 2725. 

[92] W. Liu, C. Liu, Y. Lin, L. Ma, F. Xiong, J. Li. Ultra-short-term forecast of photovoltaic output power 

under fog and haze weather. Energies. 11 (2018) 528. 

[93] M. Pierro, M. De Felice, E. Maggioni, D. Moser, A. Perotto, F. Spada, et al. Data-driven upscaling 

methods for regional photovoltaic power estimation and forecast using satellite and numerical weather 

prediction data. Solar Energy. 158 (2017) 1026-38. 

[94] S. Leva, A. Dolara, F. Grimaccia, M. Mussetta, E. Ogliari. Analysis and validation of 24 hours ahead 

neural network forecasting of photovoltaic output power. Mathematics and computers in simulation. 131 

(2017) 88-100. 

[95] U.K. Das, K.S. Tey, M. Seyedmahmoudian, M.Y. Idna Idris, S. Mekhilef, B. Horan, et al. SVR-based 

model to forecast PV power generation under different weather conditions. Energies. 10 (2017) 876. 

[96] M. Paulescu, M. Brabec, R. Boata, V. Badescu. Structured, physically inspired (gray box) models 

versus black box modeling for forecasting the output power of photovoltaic plants. Energy. 121 (2017) 792-

802. 

[97] F. Liu, R. Li, Y. Li, R. Yan, T. Saha. Takagi–Sugeno fuzzy model-based approach considering multiple 

weather factors for the photovoltaic power short-term forecasting. IET Renewable Power Generation. 11 

(2017) 1281-7. 

[98] Z. Li, S.M. Rahman, R. Vega, B. Dong. A hierarchical approach using machine learning methods in 

solar photovoltaic energy production forecasting. Energies. 9 (2016) 55. 

[99] A. Sohani, M.H. Shahverdian, H. Sayyaadi, D.A. Garcia. Impact of absolute and relative humidity on 

the performance of mono and poly crystalline silicon photovoltaics; applying artificial neural network. 

Journal of Cleaner Production. 276 (2020) 123016. 

[100] M. Sabbaghpur Arani, M.A. Hejazi. The comprehensive study of electrical faults in PV arrays. 

Journal of Electrical and Computer Engineering. 2016 (2016). 

[101] T. Berghout, M. Benbouzid, T. Bentrcia, X. Ma, S. Djurović, L.-H. Mouss. Machine Learning-Based 

Condition Monitoring for PV Systems: State of the Art and Future Prospects. Energies. 14 (2021) 6316. 

[102] J.-M. Huang, R.-J. Wai, G.-J. Yang. Design of hybrid artificial bee colony algorithm and semi-

supervised extreme learning machine for PV fault diagnoses by considering dust impact. IEEE Transactions 

on Power Electronics. 35 (2019) 7086-99. 

[103] L. Maaløe, O. Winther, S. Spataru, D. Sera. Condition monitoring in photovoltaic systems by semi-

supervised machine learning. Energies. 13 (2020) 584. 

[104] J. Kim, M. Rabelo, S.P. Padi, H. Yousuf, E.-C. Cho, J. Yi. A review of the degradation of photovoltaic 

modules for life expectancy. Energies. 14 (2021) 4278. 

[105] M.U. Ali, H.F. Khan, M. Masud, K.D. Kallu, A. Zafar. A machine learning framework to identify the 

hotspot in photovoltaic module using infrared thermography. Solar Energy. 208 (2020) 643-51. 

[106] M. Dhimish. Defining the best-fit machine learning classifier to early diagnose photovoltaic solar 

cells hot-spots. Case Studies in Thermal Engineering. 25 (2021) 100980. 

[107] D.R. Espinoza Trejo, E. Bárcenas, J.E. Hernández Díez, G. Bossio, G. Espinosa Pérez. Open-and 

short-circuit fault identification for a boost dc/dc converter in PV MPPT systems. Energies. 11 (2018) 616. 



36 of 37 

[108] S. Daliento, A. Chouder, P. Guerriero, A.M. Pavan, A. Mellit, R. Moeini, et al. Monitoring, diagnosis, 

and power forecasting for photovoltaic fields: A review. International Journal of Photoenergy. 2017 (2017). 

[109] K. Dhibi, R. Fezai, M. Mansouri, M. Trabelsi, A. Kouadri, K. Bouzara, et al. Reduced kernel random 

forest technique for fault detection and classification in grid-tied PV systems. IEEE Journal of 

Photovoltaics. 10 (2020) 1864-71. 

[110] M. Padilla, B. Michl, B. Thaidigsmann, W. Warta, M.C. Schubert. Short-circuit current density 

mapping for solar cells. Solar energy materials and solar cells. 120 (2014) 282-8. 

[111] A. Prasad, J.B. Edward, K. Ravi. A review on fault classification methodologies in power 

transmission systems: Part—I. Journal of electrical systems and information technology. 5 (2018) 48-60. 

[112] A. Eskandari, J. Milimonfared, M. Aghaei. Line-line fault detection and classification for 

photovoltaic systems using ensemble learning model based on IV characteristics. Solar Energy. 211 (2020) 

354-65. 

[113] A. Eskandari, J. Milimonfared, M. Aghaei. Fault detection and classification for photovoltaic systems 

based on hierarchical classification and machine learning technique. IEEE Transactions on Industrial 

Electronics. 68 (2020) 12750-9. 

[114] W. Gao, R.-J. Wai. A novel fault identification method for photovoltaic array via convolutional neural 

network and residual gated recurrent unit. IEEE access. 8 (2020) 159493-510. 

[115] M.M.R. Paul, R. Mahalakshmi, M. Karuppasamypandiyan, A. Bhuvanesh, R.J. Ganesh. Fault 

Identification and Islanding in DC Grid Connected PV System. Circuits and Systems. 7 (2016) 2904. 

[116] A. Ul-Haq, R. Alammari, A. Iqbal, M. Jalal, S. Gul. Computation of power extraction from 

photovoltaic arrays under various fault conditions. IEEE Access. 8 (2020) 47619-39. 

[117] F. Harrou, A. Saidi, Y. Sun, S. Khadraoui. Monitoring of photovoltaic systems using improved 

kernel-based learning schemes. IEEE Journal of Photovoltaics. 11 (2021) 806-18. 

[118] M. Mansoor, A.F. Mirza, Q. Ling. Harris hawk optimization-based MPPT control for PV systems 

under partial shading conditions. Journal of Cleaner Production. 274 (2020) 122857. 

[119] A. Bakdi, W. Bounoua, A. Guichi, S. Mekhilef. Real-time fault detection in PV systems under MPPT 

using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL 

divergence. International Journal of Electrical Power & Energy Systems. 125 (2021) 106457. 

[120] X. Li, W. Li, Q. Yang, W. Yan, A.Y. Zomaya. An unmanned inspection system for multiple defects 

detection in photovoltaic plants. IEEE Journal of Photovoltaics. 10 (2019) 568-76. 

[121] M.R.U. Rahman, H. Chen. Defects inspection in polycrystalline solar cells electroluminescence 

images using deep learning. IEEE Access. 8 (2020) 40547-58. 

[122] R. Pierdicca, M. Paolanti, A. Felicetti, F. Piccinini, P. Zingaretti. Automatic Faults Detection of 

Photovoltaic Farms: solAIr, a Deep Learning-Based System for Thermal Images. Energies. 13 (2020) 6496. 

[123] A.S. Edun, C. LaFlamme, S.R. Kingston, H.V. Tetali, E.J. Benoit, M. Scarpulla, et al. Finding faults 

in PV systems: Supervised and unsupervised dictionary learning with SSTDR. IEEE Sensors Journal. 21 

(2020) 4855-65. 

[124] S.N. Venkatesh, V. Sugumaran. Fault Detection in aerial images of photovoltaic modules based on 

Deep learning. 1 ed. IOP Publishing. p. 012030. 

[125] E. Saedpanah, R.F. Asrami, A. Sohani, H. Sayyaadi. Life cycle comparison of potential scenarios to 

achieve the foremost performance for an off-grid photovoltaic electrification system. Journal of Cleaner 

Production. 242 (2020) 118440. 

[126] R.F. Asrami, A. Sohani, E. Saedpanah, H. Sayyaadi. Towards achieving the best solution to utilize 

photovoltaic solar panels for residential buildings in urban areas. Sustainable Cities and Society. 71 (2021) 

102968. 

[127] A. Sumper, M. Robledo-García, R. Villafáfila-Robles, J. Bergas-Jané, J. Andrés-Peiró. Life-cycle 

assessment of a photovoltaic system in Catalonia (Spain). Renewable and Sustainable Energy Reviews. 15 

(2011) 3888-96. 

[128] B. Azzopardi, J. Mutale. Life cycle analysis for future photovoltaic systems using hybrid solar cells. 

Renewable and Sustainable Energy Reviews. 14 (2010) 1130-4. 



37 of 37 

[129] B. Parida, S. Iniyan, R. Goic. A review of solar photovoltaic technologies. Renewable and Sustainable 

Energy Reviews. 15 (2011) 1625-36. 

[130] M.K.H. Rabaia, M.A. Abdelkareem, E.T. Sayed, K. Elsaid, K.-J. Chae, T. Wilberforce, et al. 

Environmental impacts of solar energy systems: A review. Science of The Total Environment. 754 (2021) 

141989. 

[131] U. Jahn, D. Mayer, M. Heidenreich, R. Dahl, S. Castello, L. Clavadetscher, et al. International Energy 

Agency PVPS Task 2: Analysis of the operational performance of the IEA Database PV systems. 

Routledge. pp. 2673-7. 

 



Declaration of interests 
  
☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
  
☐ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 
 

 
  
  
  
 

Declaration of Interest Statement


