
Behav Res (2018) 50:160–181

DOI 10.3758/s13428-017-0860-3

Using machine learning to detect events in eye-tracking data

Raimondas Zemblys1,2
· Diederick C. Niehorster3,4

· Oleg Komogortsev5
·

Kenneth Holmqvist2,6

Published online: 23 February 2017

© Psychonomic Society, Inc. 2017

Abstract Event detection is a challenging stage in eye

movement data analysis. A major drawback of current event

detection methods is that parameters have to be adjusted

based on eye movement data quality. Here we show that

a fully automated classification of raw gaze samples as

belonging to fixations, saccades, or other oculomotor events

can be achieved using a machine-learning approach. Any

already manually or algorithmically detected events can be

used to train a classifier to produce similar classification of other

data without the need for a user to set parameters. In this

study, we explore the application of random forest machine-

learning technique for the detection of fixations, saccades,

and post-saccadic oscillations (PSOs). In an effort to show

practical utility of the proposed method to the applications

that employ eye movement classification algorithms, we

provide an example where the method is employed in an

eye movement-driven biometric application. We conclude

that machine-learning techniques lead to superior detection
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compared to current state-of-the-art event detection algo-

rithms and can reach the performance of manual coding.

Keywords Eye movements · Event detection · Machine

learning · Fixations · Saccades

Introduction

In eye movement research, the goal of event detection is

to robustly extract events, such as fixations and saccades,

from the stream of raw data samples from an eye tracker,

based on a set of basic rules and criteria which are appropri-

ate for the recorded signal. Until recently, researchers who

ventured to record eye movements were required to conduct

time-consuming manual event detection. For instance, Har-

tridge and Thomson (1948) devised a method to analyze eye

movements at a rate of 10000 s (almost 3 h) of analysis time

for 1 s of recorded data, and as Monty (1975) remarked: “It

is not uncommon to spend days processing data that took

only minutes to collect” (p. 331–332).

Computers have fundamentally changed how eye move-

ment data are analyzed. Today, event detection is almost

exclusively done by applying a detection algorithm to

the raw gaze data. For a long time, two broad classes

of algorithms were used: First, the velocity-based algo-

rithms that detect saccades and assume the rest to be

fixations. The most well-known is the I-VT algorithm of

Bahill, Brockenbrough, and Troost (1981) and Salvucci and

Goldberg (2000), but the principle can be traced back to

algorithms by Boyce from 1965 and 1967 as referred to by

Ditchburn (1973). The dispersion-based algorithms instead

detect fixations and assume the rest to be saccades. The

best known is the I-DT algorithm of Salvucci and Goldberg

(2000).

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-017-0860-3&domain=pdf
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Both the velocity-based and the dispersion-based algo-

rithms come with thresholds that the user needs to set. Both

classify data incorrectly if they are run on data with a sam-

pling frequency outside the intended range. Data containing

noise, post-saccadic oscillations and smooth pursuit also

result in erroneous classification (Holmqvist et al., 2011).

The velocity and dispersion algorithms only detect fixa-

tions and saccades and tell us nothing about other events.

The last decade has seen several improved event-detection

algorithms, as researchers have hand-crafted new measures

of properties of the eye-movement signal and hand-tuned

algorithms to exploit these measures for event detection.

For instance, Engbert and Kliegl (2003), Nyström and

Holmqvist (2010) and Mould, Foster, Amano, and Oakley

(2012) use adaptive thresholds to free the researcher from

having to set different thresholds per trial when the noise

level varies between trials. Nonetheless, these algorithms

still only work over a limited range of noise levels (Hessels,

Niehorster, Kemner, and Hooge, 2016). A very recent devel-

opment (Larsson et al., 2013, 2015) has enabled the auto-

matic detection of smooth pursuit and post-saccadic oscil-

lations in clean data recorded at a high sampling frequency

that contains these events intermixed with fixations and sac-

cades. Furthermore, Hessels et al. (2016) have presented a

novel largely noise-resilient algorithm that can successfully

detect fixations in data with varying noise levels, ranging

from clean data to the very noisy data typical of infant

research. These algorithms are designed to solve a specific

problem—smooth pursuit detection, or noise resilience—

using algorithmic rules and criteria specifically designed for

that problem. There are many other algorithms with specific

purposes, such as separating the slow and fast phase in nys-

tagmus, detecting microsaccades, online event detection for

use in gaze-contingent research, or removing saccades from

smooth pursuit data (Holmqvist et al., 2016, Chapter 7).

Most of these algorithms work well within the assump-

tions they make of the data. Examples of common assump-

tions are that the input must be high-quality data, or data

recorded at high sampling frequencies, and there is no

smooth pursuit in it. All algorithms come with overt settings

that users must experiment with to achieve satisfactory event

detection in their data set, or covert settings that users have

no access to. When the sampling frequency is too low, or

too high, or the precision of the data is poor, or there is data loss,

many of these algorithms fail (Holmqvist et al. 2012, 2016).

In this paper, we present a new technique for developing

eye-movement event detectors that uses machine learning.

More specifically, a random forest classifier is built to find

combinations of data description measures and detection

features (e.g., velocity, acceleration, dispersion, etc.) that

enable robust event detection. Through training with manu-

ally coded example data, the classifier automatically learns

to perform event detection based on these features in a

manner that generalizes to other previously unseen data. The

resulting event detector, which we name identification by

random forest (IRF), can simultaneously perform multiple

detection tasks, categorizing data into saccades, fixations,

and post-saccadic oscillation. Here we report that the perfor-

mance of the classifier constructed in this manner exceeds

that of the best existing hand-crafted event detection algo-

rithms, and approaches the performance of manual event

coding done by eye-movement experts. The classifier fur-

thermore provides event detection output that remains stable

over a large range of noise levels and data sampling frequen-

cies. An interesting auxiliary result of training the classifier

is that it provides insight into which detection features carry

the most information for classifying eye-movement data

into events.

When evaluating the performance of any event detection

method, it is important to recognize that the detected events

are in most cases only an intermediate step that enable

further analysis steps. These further steps may ultimately

provide evidence for or against a research hypothesis, or

may enable a practical application where eye movements

are being used. In this paper, we therefore analyze how the

distribution of selected fixation and saccades-based met-

rics change as a function of noise level and data sampling

frequency when event detection is performed by our IRF

algorithm. We furthermore examine whether the events

detected by our classifier can drive an eye-movement-driven

biometric application, and if it does so better than a com-

mon state-of-the-art hand-crafted event detection algorithm

(Nyström and Holmqvist, 2010). It is reasonable to expect

that more precise eye movement classification should result

in better biometric performance.

In summary, here we introduce an entirely new design

principle for event detection algorithms, where machine

learning does the job of choosing feature combinations and

selecting appropriate thresholds. We argue that this work is

the onset of a paradigm shift in the design of event detection

algorithms.

Methods

In this study, we use a similar approach as in Zemblys

et al. (2015). We use clean data recorded with a high-end

eye tracker and systematically resample and add increas-

ing levels of noise to simulate recordings from other eye

trackers. We then train a random forest classifier to pre-

dict eye-movement events from features used by existing

event detection algorithms, in conjunction with descrip-

tors of data quality. It was shown in Zemblys (2016) that

among ten tested machine-learning algorithms, Random for-

est resulted to the best eye-movement event classification

performance.
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Machine-learning models are known to suffer from over-

fitting. This happens when a model describes random error

or noise instead of the underlying relationship. Measures of

model fit are not a good guide to how well a model will gen-

eralize to other data: a high R2 does not necessarily mean a

good model. It is easy to over-fit the data by including too

many degrees of freedom. Machine-learning-based models

usually are very complex, can be non-linear and have a mul-

titude of parameters. Therefore it is common practice when

performing a (supervised) machine learning to hold out part

of the available data as a test set. This data-split some-

times is called cross-validation and is used to calculating

‘out-of-the-bag error’ i.e., evaluating how well the model

generalizes to completely unseen data.

Moreover, different machine-learning algorithms may

have a number of settings (known as hyperparameters) that

must be manually set. When evaluating different hyperpa-

rameters there is still a risk of over-fitting on the test set

because the parameters can be tweaked until the model per-

forms optimally. This way, knowledge about the test set

can “leak” into the model and evaluation metrics no longer

report on generalization performance. To solve this prob-

lem, yet another part of the dataset needs be held out as a

so-called validation set: training proceeds on the training

set, after which hyperparameters are adjusted and evaluation

is done on the validation set, and when the trained model

seems to be optimal, the final evaluation is performed on

the test set. This is how we conducted the development and

evaluation in this paper.

To train a classifier we use the random forest implemen-

tation in the Scikit-learn library (Pedregosa et al., 2011) and

the LUNARC1 Aurora computer cluster to speed up train-

ing. To visualize the result we use Seaborn; a python pack-

age developed for statistical data visualization (Waskom

et al., 2016). We also use the lme4 package (Bates et al.,

2015) in R to perform statistical analysis when compar-

ing the output of our classifier at different hyperparameter

settings.

Baseline dataset

Our baseline dataset consisted of eye movement record-

ings where five participants perform a simple fixate-saccade

task. We asked participants to track a silver 0.2◦ dot with

a 2 × 2 pixel black center that jumped between positions

in an equally spaced 7 × 7 grid, and showed for 1 s at

each point. PsychoPy (Peirce, 2007) was used to present

the dot on a black background. Stimulus targets changed

their position every second and were presented in the same

pseudo-random order for all participants, but with a random

1Lunarc is the center for scientific and technical computing at Lund

University. http://www.lunarc.lu.se/.

starting point in the sequence. Monocular eye movement

data were recorded at 1000 Hz using the EyeLink 1000 eye

tracker set up in tower mode. We chose to use data from this

eye tracker as it is known to exhibit low trackloss, and low

RMS noise that is more or less constant across the screen

(Holmqvist et al., 2015). The average noise level2 in the

dataset was 0.015 ± 0.0029 ◦ RMS.

The baseline dataset is then split into development and

testing sets by randomly selecting data from one subject

(i.e., 20 % of the data) to belong to the testing set. We do

so in order to calculate out-of-the-bag error and evaluate

how our algorithm generalizes to completely unseen data,

i.e., data from a different subject. Further, the development

set is split into training and validation sets by randomly

assigning 25 % of each trial to the validation sets and leav-

ing the remaining 75 % of the data in the training set. This

validation dataset will be used when tuning the classifier.

An expert with 9 years of eye-tracking experience (author

RZ) manually tagged raw data into fixations, saccades, post-

saccadic oscillations (PSOs) and undefined events, which

were used as baseline events. In the eye-tracking field, man-

ual event classification was the dominant option long into

the 1970s. Manual coding has also been used as a “golden

standard” when comparing existing algorithms (Andersson

et al., 2016) and when developing and testing new algo-

rithms, e.g., Munn et al. (2008), Larsson et al. (2013, 2015).

From this literature, we know that human coders agree with

each other to a larger extent than existing event detection

algorithms. We did not have multiple coders to analyze

inter-rater reliability, as this would open another research

question of how the coder’s background and experience

affect the events produced. Instead, the focus in this paper is

on how well we can recreate original events using machine

learning–irrespective of what coder produced those events.

A total of 560 fixations, 555 saccades and 549 PSOs were

tagged in the raw data. The total number of saccades and

other event in the dataset might seem very low, however

after the data augmentation step (which we describe next),

the total number of each event approaches 54,000. Fixation

durations ranged from 21 to 1044 ms, saccades had dura-

tions from 6 to 92 ms and amplitudes ranging from 0.1◦ to

29.8◦, while PSO durations were 2–60 ms. The durations

of the manually tagged fixations and saccades have a some-

what bimodal distributions (see swarmplots in Fig. 1). This

reflects a common behavior in the type of fixation-saccade

task we employed: a large amplitude saccade towards a new

target often undershoots and is followed by (multiple) fixa-

tions of short duration and small corrective saccades, which

are then finally followed by a long fixation while looking

2We used the method based on kernel density estimation to select

sample windows in the data for which the noise level was calculated

(Holmqvist et al., 2015).

http://www.lunarc.lu.se/
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Fig. 1 Tukey boxplots of manually tagged event durations. Red cir-

cles indicate means. Overlaid are the swarmplots, which show a

representation of the underlying distribution

at the target. Figure 2 shows the amplitude distribution of

all the saccades in the dataset. This distribution is less typi-

cal of psychological experiments, such as visual search and

scene viewing tasks, because of the many saccades with

amplitudes of less than 2◦ (Holmqvist et al., 2016, p. 466).

However, in reading research and fixate-saccade experi-

ments small saccades are abundant. Furthermore, small

saccades are harder to reliably detect as they easily drown

in noise, and small saccades have more prominent PSOs

(Hooge et al., 2015). Therefore, our dataset not only makes

a good basis for training an universal event detection algo-

rithm, but also provides a challenge for any event detection

algorithm.

Data augmentation

Our goal in this paper is to develop a universal classifier

that would be able to work with any type of eye-tracking

Fig. 2 Distribution of amplitudes of manually tagged saccades. Bin

size 1◦

data, i.e., recorded with any eye tracker and thus having very

different noise levels and sampling rates. Commercial eye-

trackers sample data starting from 30 Hz (the Eye Tribe, and

the first versions of the SMI and Tobii Glasses) and rang-

ing up to 2000 Hz (e.g., Eyelink 1000 and 1000 Plus, and

the ViewPixx TRACKPixx). In this study, we augment our

baseline dataset to simulate recordings of the most common

eye trackers on the market. First-order spline interpolation

is used to resample data to 60, 120, 200, 250, 300, 500,

and 1250 Hz. Before resampling, the data was low-pass fil-

tered using a Butterworth filter with cut-off frequency of

0.8 times the Nyquist frequency of the new data rate and a

window size of 20 ms.

Next, we systematically added white Gaussian noise to

the resampled dataset at each sampling frequency. More

specifically, for each recording in each data set, we added

a white Gaussian noise signal generated using the Box–

Muller method (Thomas et al., 2007), separately for the

horizontal and vertical gaze components. The choice to

use white Gaussian noise to model measurement noise is

motivated by recent findings that when recording from an

artificial eye (which has no oculomotor noise), eye track-

ers generally produce white noise (Coey et al., 2012; Wang

et al., 2016a). Both studies showed that the power spectrum

is in this case constant and independent of frequency.

However, it remains an open question what type of

measurement noise is found in recordings of human eye

movements. Next to inherent oculomotor noise (tremor

and drift), there are many possible eye tracker-dependent

sources of colored noise: filtering, fluctuations in lighting,

pupil diameter changes, head movements, etc. To account

for these additional noise sources, other studies modeled

the noise using other methods, e.g., an autoregressive pro-

cess Otero-Millan et al. (2014) or power spectral density

(PSD) estimation methods Wang et al. (2016b) and Hessels

et al. (2016), which model noise as a sum of oculomotor

and measurement noise. It is, however, questionable if it

is valid to add such noise to a signal of human origin that

already includes an oculomotor noise component. More-

over, it is unclear if using a noise model obtained from

real data and scaling it to create different noise levels is

valid. This assumes that oculomotor and measurement noise

always scale in the same ratio—it is more likely that oculo-

motor noise is relatively constant and that high noise in the

recording is mostly caused by the eye trackers. In this study,

we therefore chose to use white noise to model noise incre-

ments in our data as white noise transparently simulates well

understood reasons for different noise levels in eye-tracking

data: lower-quality sensors used in lower-quality eye track-

ers or lower pixel density eye image in remote eye trackers,

compared to tower mounted systems, where the eye is close
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to the camera sensor. Our baseline data set is recorded from

humans and already includes natural oculomotor noise, such

as microsaccades, and drifts. The color of the noise spec-

trum due to the oculomotor noise is inherited to all the

augmented data after adding white noise. At higher noise

levels, however, the oculomotor noise will drown in the data,

and the noise color disappears as the signal-to-noise ratio

gets lower and lower.

Holmqvist et al. (2015) show that for most of the eye

trackers, noise in the corners of the screen is up to three

times higher than in the middle of the screen. In the noise

we add to our datasets, we simulate this increase of noise

with distance from the middle of the screen by using a 2-D

Gaussian noise mapping function, which is minimal in the

middle and maximal in the corners. The standard deviation

of this Gaussian mapping function was chosen such that the

noise level at the corners of the stimulus plane at ±15◦ was

three times higher than in the middle of the screen.

We further scale the variance of the generated noise sig-

nal to ten levels starting from 0.005◦ RMS, where each

subsequent noise level is the double of the previous one.

This results in additive noise levels ranging from 0.005◦

to 2.56◦ RMS in the middle of the screen and three times

higher noise at the corners. Figure 3 shows distributions of

the resulting noise levels in part of our augmented dataset

(500 Hz), along with the noise level in the baseline data set.

Note how the resulting noise distributions overlap at each

level of added noise. Modeling the noise this way not only

represents the real case scenario with variable noise in each

of the recordings, but also covers the whole range of noise

from minimum 0.0083◦ to maximum 7.076◦ RMS in a con-

tinuous fashion. In comparison, the baseline data cover a

noise range from min 0.0058◦ to max 0.074◦ RMS.

Fig. 3 Tukey boxplots of measured noise level in ◦ RMS in our base-

line and augmented 500-Hz data, as a function of the amount of added

noise

After data augmentation, we have around 6.4 million

samples in our training set and more than 2.1 million

samples in both the validation and testing sets each.

Feature extraction

Right before feature extraction, we interpolate missing data

using a Piecewise Cubic Hermite Interpolating Polynomial.

This kind of interpolation preserves monotonicity in the data

and does not overshoot if the data is not smooth. At this

stage, there is no limit on the duration of periods of miss-

ing data, but later we remove long sequences of interpolated

data (see “Post-processing: Labeling final events”).

We then perform feature extraction on the raw data at

each sampling frequency and noise level. For each feature,

this process produces one transformed sample for each input

sample. For instance, the velocity feature is computed by

calculating the gaze velocity for each sample in the input

data. In this paper, we use the 14 features listed in Table 1,

yielding a 14-dimensional feature vector for each sample.

Most of these features are based on the local 100–200-ms

surroundings of each sample. The features we employ either

describe the data in terms of sampling frequency and preci-

sion, or are features that are used in common or state-of-the-

art hand-crafted event detection algorithms. Next to these,

we also propose several new features, which we hypothesize

are likely to be useful for the detection of the onset and off-

set of saccades: rms-diff, std-diff and bcea-diff. These new

features are inspired by Olsson (2007) and are calculated

by taking the difference in the RMS, STD, and BCEA pre-

cision measures calculated for 100-ms windows preceding

and following the current sample. Obviously, the largest dif-

ferences (and therefore peaks in the feature) should occur

around the onset and offset of the saccades. We expect that

many of the features used in this paper will be highly cor-

related with other features. This provides room to optimize

the computational complexity of our model by removing

some of the correlated features. In the next step, the 14-

dimensional feature vector produced by feature extraction

for each sample is fed to the machine-learning algorithm.

Algorithm

In this study, we use a random forest classifier to perform

the initial classification of each raw data sample. We then

apply heuristics to the output of the classifier, such as the

merging of nearby fixations and the removal of fixations

and saccades that are too short, to produce the final events.

No user-adaptable settings will result from these heuristics.

An advantage of using a random forest classifier instead of

other machine-learning algorithms is that we can use the 14
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Table 1 Features used to train random forest classifier

Feature Description

fs sampling frequency (Hz). As some features may provide different information at different sampling

rates (e.g., SMI BeGaze uses velocity for data sampled at 200 Hz and more and dispersion at lower

frequencies), providing the classifier with information about sampling frequency may allow it to

make better decision trees

rms root mean square (◦) of the sample-to-sample displacement in a 100-ms window centered on a

sample. The most used measure to describe eye-tracker noise (Holmqvist et al., 2011)

std standard deviation (◦) of the recorded gaze position in a 100-ms window centered on a sample.

Another common noise measure (Holmqvist et al., 2011)

bcea bivariate contour ellipse area (◦2). Measures the area in which the recorded gaze position in a 100-ms

window is for P % of the time (Blignaut and Beelders, 2012). P = 68

disp dispersion (◦). The most common measure in dispersion-based algorithms (Salvucci & Goldberg,

2000). Calculated as (xmax − xmin) + (ymax − ymin) over a 100-ms window

vel, acc velocity (◦/s) and acceleration (◦/s2), calculated using a Savitzky–Golay filter with polynomial

order 2 and a window size of 12 ms—half the duration of shortest saccade, as suggested by Nyström

and Holmqvist (2010)

med-diff distance (◦) between the median gaze in a 100-ms window before the sample, and an equally sized

window after the sample. Proposed by Olsson (2007)

mean-diff distance (◦) between the mean gaze in a 100-ms window before the sample, and an equally sized win-

dow after the sample. Proposed by Olsson (2007) and used in the default fixation detection algorithm

in Tobii Studio

Rayleightest a feature used by Larsson et al. (2015) that indicates whether the sample-to-sample directions in a

22-ms window are uniformly distributed

i2mc introduced by Hessels et al. (2016) to find saccades in very noisy data. We used the final weights

provided by the two-means clustering procedure as generated by the original implementation of the

algorithm. A window size of 200 ms, centered on the sample was used

rms-diff, std-diff, bcea-diff features inspired by Olsson (2007), but instead of differences in position, we take the difference

between noise measures calculated for 100-ms windows preceding and succeeding the sample

A minimum of three samples are used in case there are not enough samples in the defined window, as may happen for lower frequency data

features as they are. There is no need to scale, center, or

transform them in any way.

Random forest classifier

A random forest classifier works by producing many deci-

sion trees. Each tree, from its root to each of its leaves,

consists of a series of decisions, made per sample in the

input data, based on the 14 features that we provide the

classifier with. A tree could for instance contain a decision

such as “if around this sample, RMS is smaller than 0.1◦,

and the sampling frequency is less than 100 Hz, use disp,

else use i2mc”. Every tree node—equaling a singular log-

ical proposition—is a condition on a single feature, bound

to other nodes in a tree with if-then clauses, which brings

the algorithm closer to deciding whether the sample belongs

to e.g., a fixation or a saccade. These decisions are similar

to how traditional hand-crafted event detection algorithms

work. These also take a number of features (such as veloc-

ity, acceleration, noise level, etc.) as input and, by means of

rules and thresholds set on these features by the algorithm’s

designer, derive which event the sample likely belongs to.

A random forest is an ensemble method in the sense that

it builds several independent estimators (trees). For each

sample, it then either produces a classification by a majority

vote procedure (“this sample is part of a saccade, because

45 out of 64 trees classified it as such”), or it produces a

probabilistic classification (“the probability that this sam-

ple is part of a saccade is 45
64

= 70 %”). We use a fully

probabilistic approach, where the class probability of a sin-

gle tree is the fraction of samples of the same class in a

leaf and where individual trees are combined by averaging

their probabilistic prediction, instead of letting each clas-

sifier vote for a single class. Each of the decision trees in

the ensemble is built using a random subset of the fea-

tures and a random subset of training samples from the data.

This approach goes by the name of bootstrap aggregation,

known in the machine-learning literature as bagging. As the

result of bagging, the bias (underfitting) of the forest usu-

ally increases slightly but, due to averaging, its variance



166 Behav Res (2018) 50:160–181

(overfitting) decreases and compensates for the increase

in bias, hence yielding an overall better model (Breiman,

2001).

Training parameters

When training a random forest classifier, a few parameters

need to be set. Two important parameters are the number of

estimators, i.e., the number of trees in the forest, and the cri-

terion, i.e., a function used to measure the quality of a node

split, that is, a proposed border between saccade samples

and fixation samples. Selecting the number of trees is an

empirical problem and it is usually done by means of cross-

validation. For example, Oshiro, Perez, and Baranauskas

(2012) trained a classifier on 29 datasets of human medi-

cal data, and found that there was no benefit in using more

than 128 trees when predicting human medical conditions.

We chose to use 200 trees as a starting point, because ran-

dom forest classifiers do not overfit (Breiman, 2001). As a

function to measure the quality of a decision made by each

tree, we use the Gini impurity measure. It can be understood

as a criterion to minimize the probability of misclassifica-

tion. Another commonly used criterion is the information

gain which is based on entropy. Raileanu and Stoffel (2004)

found that these two metrics disagree about only 2 % of

decision made by the tree, which means it is normally not

worth spending time on training classifiers using different

impurity criteria. The Gini impurity criterion was chosen

because it is faster to calculate than the information gain

criterion.

To deal with our unbalanced dataset where most sam-

ples belong to fixations, we use the balanced subsample

weighting method.3 We further limit each tree in the ensem-

ble to use a maximum of three features, which is close to

the square root of the number of features we provide the

classifier with. This is one of the invisible hyperparameters

that makes random forests powerful. However, we do not

limit the depth of the tree, the minimum number of sam-

ples required to split an internal tree node nor the minimum

number of samples in newly created leaves.

Classifier optimization

After training the full classifier using all 14 features and 200

trees, we reduced the computational and memory require-

ments of the classifier by removing unimportant features

and reducing the number of trees. The procedure for both

these optimizations is described in this section.

3For a detailed description see http://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.RandomForestClassifier.html.

Machine-learning techniques for building a classifier

allow assessing feature importance. Feature importance

indicates how useful a given feature is for correctly clas-

sifying the input data. This can be used to help develop a

better understanding of how certain properties of the input

data affect event detection, such as whether sampling fre-

quency is important to the detection of saccades (which is

debated, see Holmqvist et al. 2011, p. 32). Measures of fea-

ture importance however also allow reducing the number of

features used by the classifier, which might improve gen-

eralizability of the classifier to unseen data and reduce the

computational and memory requirements for running the

classifier.

There are several measures of feature importance. A ran-

dom forest classifier directly gives an assessment of feature

importance in the form of the mean decrease impurity.

This number tells us how much each feature decreases

the weighted impurity in a tree. It should, however, be

noted that some of the features we use are highly cor-

related with each other (see Fig. 4), as expected. Highly

correlated features complicate assessing feature importance

with the mean decease of impurity method. When train-

ing a model, any of the correlated features can be used

as the predictor, but once one of them is used, the impor-

tance of the other highly correlated features is signifi-

cantly reduced since the other features provide little extra

information.

There are a number of other feature selection meth-

ods in machine learning, e.g., Correlation Criteria, Mutual

information and maximal information coefficient, Lasso

regression, etc., that each have their specific strengths and

weaknesses (Guyon & Elisseeff, 2003). In this study, in

addition to mean decrease impurity (MDI), we chose to

use two additional methods of assessing feature impor-

tance that are well suited for non-linear classifiers; mean

decrease accuracy (MDA) and univariate feature selec-

tion (UFS). Mean decrease accuracy directly measures the

impact of each feature on the accuracy of the model. After

training a model, the values of each feature are permuted

and we measure how much the permutation decreases the

accuracy (we use Cohen’s kappa to measure accuracy, see

“Sample-to-sample classification accuracy”) of the classi-

fier. The idea behind this technique is that if a feature is

unimportant, the permutation will have little to no effect

on model accuracy, while permuting an important feature

would significantly decrease accuracy. Univariate feature

selection, and more specifically single variable classifiers,

assesses feature importance by building a classifier using

only an individual feature, and then measure the perfor-

mance of each of these classifiers.

We optimize our model by performing recursive fea-

ture elimination using the following equation as a feature

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Fig. 4 Spearman’s rank correlation between the features in the training dataset

elimination criterion, which sums the squared feature

importances and then removes the one with the lowest value:

argmin
∀f eat

∑

∀mf eat

m2 (1)

where m is the MDI, MDA, and UFS measures of a feature’s

importance, normalized to [0-1] range.

Specifically, we train a classifier using all 14 features,

find the least important feature using Eq. 1, remove this fea-

ture and retrain the classifier using less and less features,

until there are only four left—one more than the maximum

number of features used in each tree.

The size of the classifier is further reduced by find-

ing the number of trees after which there is no further

improvement in classifier performance. For each of the dif-

ferent number of features, we trained classifiers with 1, 4,

8, up to 196 (with a step size of 4) trees. We then run

each of these reduced classifiers on the validation set and

assess their performance by means of Cohen’s kappa (see

“Sample-to-sample classification accuracy” below). We

then employ a linear mixed effects model (Bates, Mächler,

Bolker, and Walker, 2015) with number of trees and num-

ber of features as categorical predictors to test below which

number of features and trees the performance of the clas-

sifier as indicated by Cohen’s kappa starts to decrease

significantly compared to the full classifier using all features

and 200 trees. The linear mixed effects model included sub-

ject, sampling rate and added noise level as random factors

with random intercepts.

Post-processing: Labeling final events

After initial classification of raw data samples (Hessels et al.

2016 refers to it as a search rule), the next step is to produce

meaningful eye-tracking events (apply a categorization rule

according to Hessels et al. 2016). For each of the sam-

ples, our random forest classifier outputs three probabilities

(summing to 1), indicating how likely the sample belongs

to a fixation, a saccade or a PSO. This is done internally,

with no user-accessible settings. We first apply a Gaus-

sian smoother (σ = 1 sample) over time for each of the

three probabilities, then label each sample according to what

event it most likely belongs to, and then use the following

heuristics to determine the final event labels.

– mark events that contain more than 75 ms of interpo-

lated data as undefined.

– merge fixations which are less than 75 ms and 0.5◦

apart.

– make sure that all saccades have a duration of at least

three samples, expand if required, which means that

if we have a one sample saccade, we also label the

preceding and following samples as saccade.

– merge saccades that are closer together than 25 ms.

– remove saccades that are too short (<6 ms) or too long

(>150 ms).

– remove PSOs that occur in other places than directly

after a saccade and preceding a fixation.

– remove fixations shorter than 50 ms.

– remove saccades and following PSO events that sur-

round episodes of missing data as these are likely blink

events.

Removal of a saccade, PSOs or fixations means that the

sample is marked as unclassified, a fourth class. Unclassi-

fied samples also existed in the manual coding, but in the

below we do not compare agreement between the manual

coder and the algorithm on which samples are unclassi-

fied. While these parameters of heuristic post-processing are
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accessible to the user, they are designed to work with all

types of data that we use in this paper, and as such, we do not

expect that users would need to change these parameters.

Performance evaluation

We evaluate our identification by random forest (IRF) algo-

rithm, as optimized by the procedure detailed above, using

three approaches: sample-to-sample classification accuracy,

ability to reproduce ground truth event measures and fun-

damental saccadic properties (main sequence), and perfor-

mance in a eye-movement biometrics application. Currently,

there are only two other algorithms, which are able to

detect all the three events we concern ourselves with—

fixations, saccades, and PSOs. One of these is the algorithm

by Nyström and Holmqvist (2010)4 (hereafter NH) and

the other is the algorithm by Larsson et al. (2013, 2015)

(hereafter LNS). Unfortunately, an implementation of the

latter is not publicly available. Implementing it ourselves

is tricky and might lead to painting an incorrect picture of

this algorithm’s performance. In the following, we there-

fore only compare the performance of our algorithm to that

of Nyström and Holmqvist (2010). In order to ensure that

the NH algorithm performs optimally, we manually checked

the output of the algorithm and adjusted settings to best suit

the input data. We found that default initial velocity thresh-

old of 100◦/s works fine for data with average noise level

up to 0.5◦ RMS and increase it to 200–300◦/s for noisier

input. These initial thresholds then adapted (decreased) to

the noise in the data.

Sample-to-sample classification accuracy

To evaluate the performance of our algorithm, we com-

pare manual coding with the output of the algorithm using

Cohen’s kappa (K), which measures inter-rater agreement

for categorical data (Cohen, 1960). Cohen’s kappa is a num-

ber between -1 and 1, where 1 means perfect agreement and

0 means no agreement between the raters other than what

would be expected by chance. Scores above 0.8 are consid-

ered as almost perfect agreement. Using K as our evaluation

metric will allow to directly compare the performance of our

algorithm to that reported in the literature, because Cohen’s

kappa has previously been used in the eye-tracking field

to assess the performance of newly developed event detec-

tion algorithms (Larsson et al., 2013, 2015) and to compare

algorithms to manual coding (Andersson et al., 2016).

While there are a number of other metrics to assess

sample-to-sample classification accuracy, these methods

4A MATLAB implementation is available for download at

http://www.humlab.lu.se/en/person/MarcusNystrom/.

would be poor choices in our case because of our unbal-

anced data set with nearly 89 % of the samples tagged as

fixations, while only 6.8 and 4.3 %, respectively, are sac-

cade and PSO samples. Larsson et al. (2013, 2015), for

instance, also report sensitivity (recall) and specificity, and

in the machine-learning literature the F1 score is common.

For our dataset, where almost 90 % of the samples belong

to a fixation, a majority class classifier that indicates that all

samples are a fixation would result in a high score for these

measures. The advantage of using Cohen’s kappa in our case

is that the majority class model would result in a score of

0, correctly indicating that our classifier fails to provide us

with a meaningful classification.

Evaluation of event measures

To test whether our algorithm produces event measures that

are similar to those provided by the manual coder, we exam-

ine the durations and number of fixations, saccades and

PSOs produced by IRF, as well as main sequence param-

eters. The main sequence and amplitude-duration relation-

ships are fundamental properties of saccadic eye movements

that should be maintained by any classification algorithm.

To evaluate how well our algorithm reproduces the main

sequence compared to manually coded data, we first cal-

culated saccade amplitude vs. peak velocity and amplitude

vs. duration relationships on the high-quality manual data.

We used Vpeak = Vmax ∗ (1 − e− A
C ) to fit the amplitude-

peak velocity relationship, where Vpeak and A here are

saccade peak velocity and amplitude, while Vmax together

with C are parameters to be determined by the model fit

(Leigh & Zee, 2006, p. 111). For the amplitude vs. duration

relationship we used a linear function (Carpenter, 1988).

Next we parsed our augmented data (which were down-

sampled and had added noise) using our and the NH algo-

rithms. We then calculated saccade amplitudes from the

detected events and predicted saccade peak velocities and

saccade durations using the previously obtained parame-

ters for the main sequence relationship in the baseline data.

We assume that output data from a better performing clas-

sification algorithm (compared to a baseline) will lead to

estimated saccadic peak velocities and duration that closer

match those observed in the baseline data set. This allows

us to evaluate how well saccade parameters are preserved

when the data is degraded or different algorithms are used

to detect events. We use the coefficient of determination

(R2) as a metric for the goodness of fit. Note that R2 can

be negative in this context, because the predictions that are

compared to the corresponding measured data have not been

derived from a model-fitting procedure using those data, i.e.,

the fits from ground truth data can actually be worse than

just fitting a horizontal line to the data obtained from the

algorithm. We trim negative values to 0.

http://www.humlab.lu.se/en/person/MarcusNystrom/
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Eye-movement driven biometrics performance

Last, in an effort to show the practical utility of the IRF

algorithm to applications that employ eye movement clas-

sification algorithms, we provide an example where the

method is employed in an eye movement-driven biometric

application. A biometric application provides a good test-

ing ground because its performance can be expressed with a

single number that indicates the accuracy of person recog-

nition. This makes it possible to straightforwardly interpret

the effect of changes that occur in the components of the

biometric framework, such as the detected eye-movement

events that it consumes.

As an eye movement-driven biometric application, we

decided to use the complex eye movement extended (CEM-

E) biometrics approach (Rigas et al., 2016). The CEM-E

approach is an extension of the complex eye movement

patterns (CEM-P) (Holland & Komogortsev, 2013b) and

the complex eye movement behavior (CEM-B) (Holland &

Komogortsev, 2013a) approaches. It currently represents the

best performing eye-movement-driven biometrics approach

when such things as computational complexity and simplic-

ity of biometrics features and their fusion are taken into

account. In short, CEM-E consists of several fixation and

saccade-related features that together provide a biometric

fingerprint of a person. Fixation features are: onset, off-

set times, duration, and vertical and horizontal coordinates.

Saccade features are: onset, offset times, duration, verti-

cal and horizontal amplitudes, vertical and horizontal mean

and peak velocities, horizontal and vertical vigor, horizontal

and vertical mean acceleration, and horizontal and vertical

mean acceleration ratio. It is clear that the features described

here are directly affected by eye-movement classification

performance.

To test biometric performance when eye-movement clas-

sification is done by our algorithm, we have selected two

datasets of different levels of data quality. Each dataset

contains three different types of stimulus. The difference

in the dataset quality and employed stimulus is important

because it provides a variety of challenges to the classi-

fication algorithms. A detailed description of used stimuli

and those datasets are provided in Appendix A. While the

IRF and NH algorithms output fixations, saccades, and post-

saccadic oscillations, the CEM-E framework only employs

features that are fixation and saccade related. Post-saccadic

oscillations are not employed for biometrics in the current

implementation of CEM-E framework.

One of the core metrics describing biometric perfor-

mance is the equal error rate (EER). The EER metric is

employed in an authentication biometric scenario and it

is an operating point at which the false acceptance rate

(FAR) is equal to the false rejection rate (FRR) (Jain et al.,

2007). In short, the lower the EER number, the better is the

resulting operational performance of a biometric system in

an authentication scenario.

To calculate the biometric performance for each classifi-

cation algorithm, dataset, and stimulus, the recordings were

randomly partitioned into training and testing sets by sub-

ject, with each subject having an equal chance to be placed

in each set. Half of the subject pool was assigned to the

training set and half of the subject pool was assigned to the

testing set, with no overlap between them. Biometric algo-

rithm thresholds were selected on the training set and the

average EER was computed on the testing set over 100 such

random partitions.

Results

Model optimization

At the outset, our goal was to get the best possible clas-

sification performance with all 14 features. Therefore we

trained a classifier consisting of 200 decision trees and did

not limit tree depth or number of samples in newly cre-

ated leaves, which allowed it to fit the training data nearly

perfectly. This resulted in an extremely complex and large

classifier with large computational and memory require-

ments (see Appendix D). We will refer to this classifier as

the full classifier.

The average performance of this full classifier on the

validation dataset is impressive: K = 0.85. For compari-

son, the full classifier achieves an F1 score of 0.97 while

the majority class model gets F1 = 0.83 and K = 0.

Note that here we are examining what we will refer to as

raw performance, i.e., the performance of only the classifier

itself, before applying the heuristics described in the meth-

ods section to its output. The heuristics will only be applied

after we have optimized the classifier.

Next, after we have established the baseline performance

of the full classifier, we do model optimization by recur-

sively removing the least important features (see Eq. 1) and

limiting the number of trees. We do this by measuring the

raw performance of each of the simplified classifiers on the

validation dataset. This way, we assure that the performance

of the final classifier (in terms of detecting event candidates,

the “search rule”) we end up with after simplification is as

similar to the full classifier as possible.

Feature correlations

We first calculate Spearman’s rank correlation between the

features in the training dataset. Feature correlations are a

good first indicator of which features add little extra infor-

mation over the other features they are highly correlated

with. Correlations are calculated including all samples, i.e.,
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fixations, saccades, and PSO, over all sampling frequencies

and noise levels. As expected, features that describe simi-

lar properties of the data are highly correlated. For example,

all the measures of precision that we used, RMS, STD,

BCEA and disp, are highly correlated with each other (r =

0.88−0.99), which suggests that all precision measures pro-

vide very similar information. Unsurprisingly, the velocity

and acceleration measures are also highly correlated with

each other (r = 0.83) and with all four precision measures

(r = 0.82−0.87 for velocity and r = 0.76−0.86 for accel-

eration). The reason for such high correlations is probably

that all these measures describe the amount of sample-to-

sample movement or spatial spread of the raw data, be it

be noise or a saccade. The difference between positions of

a window preceding and succeeding the sample (mean-diff

and med-diff) also represent movement, but its value is only

large in the case of a real movement, i.e., it is largely unaf-

fected by noise. This is somewhat reflected in correlation

values: while mean-diff and med-diff are highly correlated

(r = 0.88), correlations between these two features and pre-

cision measures are lower—in the range of r = 0.42−0.78)

and between 0.33 − 0.53 when correlated to velocity and

acceleration.

Our newly proposed features rms-diff, std-diff, and bcea-

diff are correlated between each other almost to the same

degree as the precision measures from which they were

derived. However, the finding that the correlations of these

features with all other features are practically zero indicates

that these three new features hold some unique informa-

tion that is not reflected in any of the other features. The

Rayleightest and i2mc features are similar in that, although

they correlate a bit more with other features, they hold a

significant amount of unique information. If that unique

information indeed turns out to be useful for event detection,

such features are good candidates for surviving the feature

elimination procedure which we describe next.

Recursive feature elimination

First, univariate feature selection (UFS) scores are cal-

culated by training random forest classifiers using only

individual features. The largest Cohen’s kappa (K) results

from models which use med-diff and mean-diff features-

0.35 and 0.33, respectively (see Fig. 5), followed by stan-

dard deviation (std) and two recently proposed features in

eye-movement event detection, Rayleightest (Larsson et al.,

2015) and i2mc (Hessels et al., 2016).

Surprisingly, velocity-based features (vel, acc, and rms),

at least on their own, are not good features to predict

whether a sample belongs to a fixation, saccade, or PSO. It

is furthermore interesting to note that while velocity domain

features are known to work well with high-quality data, spa-

tial features apparently work better for our dataset that also

Fig. 5 Performance of classifiers trained using only individual

features

contains noisy and low sampling rate data. This is consis-

tent with the common practice to use algorithms based on

spatial features for noisy and low sampling rate data.

Figure 6 shows feature importances, calculated using

Eq. 1, which is the sum of the three feature importance mea-

sures introduced in the methods section, normalized such

that the largest value is 1. After training the full classifier,

we removed the least important feature, and retrained the

classifier using the remaining features, until a classifier with

only four features is left.

Surprisingly, sampling rate was the first feature we

removed, which indicates that it does not help in deciding

whether a sample belongs to, e.g., a fixation or saccade. This

may be because sampling frequency probably did not help

the classifier decide whether to use, e.g., the vel or the disp

feature for classification. Although it is not directly impor-

tant to the classifier, sampling rate is still implicitly used

when calculating other features. It for instance determines

the size of the windows (in terms of number of samples)

over which all other features are calculated.

Further analyzing Fig. 6 we can spot interaction between

highly correlated features. For example, after removing

Fig. 6 Normalized feature importances during recursive feature

elimination
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bcea-diff, the importance of std-diff increases (see Fig. 6,

when the number of features decreases from 8 to 7). This

indicates that, as expected, once a feature that is highly cor-

related with others is removed from the classifier, the other

features that were highly correlated with the removed fea-

ture now provide more unique information to the classifier,

making them more important. The most important features

in our classifier are med-diff, mean-dif, and std; the same

ones which resulted in the best performance for single-

feature classifiers (see Fig. 5). We have trained this classifier

multiple times, and each and every time it resulted in the

same feature ranking, suggesting that our feature elimina-

tion procedure is robust and repeatable, i.e., there is no much

variation in the feature importance scores.

Figure 7 shows the performance of the full classifier,

along with the classifiers resulting from recursive feature

elimination, on the validation set, as a function of sampling

rate. The figures in the plot are averages of K over all noise

levels. These results reveal that the performance of our clas-

sifier was stable down to 200 Hz, even when half of the

features of lesser importance are removed from the classi-

fier. For the full classifier, the average performance in data

sampled at 200–1250 Hz ranged from K = 0.86 to K =

0.83, and performance only slightly decreased to K = 0.81

when only six features remain in the classifier. Models with

less than six features performed considerably worse, as indi-

cated by an decrease in K to 0.7–0.74. As may be expected,

the performance of all classifiers also decreased when data

is sampled at 120 Hz or less.

An interesting anomaly in this data is that for 30Hz

data, classifiers trained with an intermediate number of

features (6–10) performed better (K = 0.51 − −0.53)

than the classifiers trained with more features, such as

the full classifier which scored K = 0.48. Looking at

Fig. 8 Performance as a function of the number trees used in the

classifier

which features are removed first from the full classifier

(Fig. 6) reveals a potential reason for this. For 30-Hz data,

the classifier starts performing better when some of the

velocity-related features—acceleration, rms and rms-diff—

are removed. This observation allows us to hypothesize that

the feature ranking would be different for a classifier trained

to deal with only 30-Hz data or data of a similarly low

sampling frequency, compared to the classifier presented

here. Most likely, all velocity-related features would be less

important, and would therefore be removed earlier in the

feature elimination procedure. In contrast, if we build a

classifier only for data sampled at higher rates, velocity-

related features would most likely be more important than

for the current classifier. In that sense, the features that are

found to be most important in our classifier likely provide

information for event detection at all sampling frequencies.

Fig. 7 Performance of classifiers for different sampling rates. Performance is measured using Cohen’s kappa K and the presented figures are

averages of K over all noise levels. Note that this is only the performance of classifier without post-processing step
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Extensive testing of this hypothesis is beyond the scope of

this paper, but we made a small test by training a specialist

classifier, using only high-quality data at 500–1000 Hz and

having an average noise level of up to 0.04◦ RMS. The four

most important features in such a specialist classifier were

velocity, std, acceleration, and bcea (see Appendix B).

Limiting the number of trees

All classifiers above were trained using 200 trees, which

is clearly too much according to, e.g., Oshiro et al. (2012)

and results in classifiers with large computational and mem-

ory requirements. To reduce the number of trees in each

of the trained models, we trained classifiers with 1, 4, 8,

up to 196 (with a step size of 4) trees, and used these

reduced classifiers to perform event detection. We then

computed performance of each of these trimmed random

forest classifiers using Cohen’s kappa.

As an example, Fig. 8 shows K as a function of the num-

ber of trees for 500-Hz data, for the full classifier along with

a subset of the reduced classifiers using a limited number of

features. It is very clear from this plot that at least in 500-Hz

data, there is no decrease in classification performance until

less than 8–16 trees are used. In the next section, we per-

form statistical analysis to find out to what extent the forest

can be trimmed until performance starts to decrease.

The final model

Linear mixed effect modeling confirms that there is no

significant decrease in performance compared to the full

classifier when using 16 trees or more trees (see Table 2).

Table 2 Linear mixed-effect model fit for raw performance, measured as Cohen’s kappa (K)

Fixed effects:

Estimate Std. error df t value Pr(>|t|)

(Intercept) 7.76e–01 4.58e–02 2.40e+01 16.928 5.11e–15 ***

ntrees1 −3.25e–02 1.12e–03 7.84e+04 −29.022 <2e–16 ***

ntrees4 −9.40e–03 1.12e–03 7.84e+04 −8.383 <2e–16 ***

ntrees8 −4.07e–03 1.12e–03 7.84e+04 −3.626 0.000288 ***

ntrees12 −2.76e–03 1.12e–03 7.84e+04 −2.462 0.013806 *

ntrees16 −1.41e–03 1.12e–03 7.84e+04 −1.26 0.207644

ntrees20 −1.77e–03 1.12e–03 7.84e+04 −1.58 0.114205

ntrees24 −1.53e–03 1.12e–03 7.84e+04 −1.367 0.171585

...

nfeat4 −1.33e–01 8.76e–04 7.84e+04 −151.369 <2e–16 ***

nfeat5 −9.49e–02 8.76e–04 7.84e+04 −108.276 <2e–16 ***

nfeat6 −1.43e–02 8.76e–04 7.84e+04 −16.333 <2e–16 ***

nfeat7 −8.98e–03 8.76e–04 7.84e+04 −10.244 <2e–16 ***

nfeat8 −1.16e–03 8.76e–04 7.84e+04 −1.323 0.185882

nfeat9 1.78e–03 8.76e–04 7.84e+04 2.032 0.042207 *

nfeat10 2.89e–03 8.76e–04 7.84e+04 3.297 0.000979 ***

nfeat11 −7.95e–06 8.76e–04 7.84e+04 −0.009 0.992766

nfeat12 −2.73e–04 8.76e–04 7.84e+04 −0.312 0.755049

nfeat13 −2.07e–04 8.76e–04 7.84e+04 −0.236 0.813646

Random effects:

Groups Name Variance Std.Dev.

noise (Intercept) 0.0062052 0.07877

fs (Intercept) 0.0126143 0.11231

sub (Intercept) 0.0005378 0.02319

Residual 0.0027374 0.05232

The intercept represents a predicted K of a classifier with 200 trees and using all 14 features. Subject (sub), sampling rate (f s), and noise level

(noise) are modeled as random factors. t tests use Satterthwaite approximations to degrees of freedom

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Number of obs: 78408, groups: 11 noise levels (noise); 9 sampling frequencies (fs); 4 subjects (sub)
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Using only 16 trees reduces the classifier computational

requirements and makes it possible to easily run it on a

regular laptop (see Appendix D).

An interesting finding is that using all features does not

lead to the best classifier. Instead, the linear mixed effects

analysis shows that classification performance is signifi-

cantly better when using nine or ten features, compared to

the full classifier with 14 features. In previous analyses, we

saw this effect in data sampled at 120 and 30 Hz when

analyzing the performance over sampling rates (Fig. 7).

For other sampling frequencies, the performance always

decreases slightly when the number of features is reduced.

However, in this study, we are interested in building an uni-

versal algorithm, that works optimally for any kind of data,

finding the events that are possible to find, given the lim-

its posed by sampling frequency and noise level. Therefore

in our final model we reduce the number of features to ten.

This also makes our classifier even less computationally

expensive.

Analysis of the random effects in the LMER model

showed that most of the variance in our classifier’s perfor-

mance is due to data sampling rate, but not noise level or

subject. This indicates that the classifier generalizes well

over individual differences and varying amounts of noise

in the data, whereas dealing with lower sampling rate data

could still be improved.

Performance

Next, we assess the performance of the final classifier

on the testing dataset, i.e., data that the algorithm has

never seen before, in terms of sample-to-sample classifi-

cation accuracy, the number, distribution and properties of

the detected fixations and saccades, and performance in a

biometric authentication application. Here we examine the

performance of the full IRF algorithm, including both the

classifier we built above, and the post-processing heuristics

detailed in the methods section.

Figure 9 shows an example of 500-Hz data with ground

truth (hand-coded) events and events detected by our algo-

rithm and the NH algorithm. It is clear from the plot that the

output from the IRF algorithm is closer to the hand-coded

ground truth—our algorithm detects all saccades and sub-

sequent PSOs, while in this example NH algorithm misses

two out of three PSOs and tags them as part of the preced-

ing saccades. The IRF algorithm accurately tags saccades,

but has issues finding the exact offsets of PSO (when com-

pared to our manually coded data). Andersson et al. (2016)

report that even two expert coders do not agree when tag-

ging PSO samples, suggesting that PSOs are actually very

difficult events to reliably find in raw data.

Fig. 9 Example of 500-Hz data with ground truth (hand-coded) events

and events detected by our (IRF) and NH (Nyström & Holmqvist,

2010) algorithms

Sample-to-sample classification performance

Figure 10 shows the performance of the IRF algorithm on

the testing dataset. IRF’s performance on the testing dataset,

containing data that our algorithm has never seen before, is

a bit worse compared to the validation dataset. K , averaged

over all noise levels, for all three events (Fig. 10a) is around

0.77 in data down to 200 Hz and gradually drops from 0.72

to 0.51 and to 0.36 in data sampled at 120 Hz, 60 Hz,

and 30 Hz, respectively. Overall, average performance on

the validation dataset (K = 0.75) is 7 % better com-

pared to the testing dataset (K = 0.7), indicating that our

classifier slightly overfits the data. Slight overfitting is not

unusual in machine learning, and is also seen when devel-

oping hand-crafted event detection algorithms. For instance,

Larsson et al. (2013) reports 9 % better performance on a

development dataset compared to a testing dataset.

Higher noise levels (above 0.26◦ RMS on average) starts

minimally affecting the performance of our IRF algorithm.

Only when the noise level equals or exceeds 0.519◦ RMS on

average, does performance start to degrade noticeably. For

data sampled at 120 Hz and more, K gets as low as 0.56 in

extremely noisy data, while the effect of noise is less vis-

ible in data sampled at 60 and 30 Hz. The performance in

data sampled at 120 Hz and above is just a bit worse com-

pared to what the NH algorithm achieves in the same, but

clean, 500-Hz data (K = 0.604, see Table 3). Compared to

the other state-of-the art algorithm by Larsson et al. (2013,

2015) which achieves K = 0.745, IRF outperforms it even

when the data has an average noise level of up to 1◦ RMS.

Figure 10b shows the performance, averaged over all

noise levels, in detecting each of the three eye-movement

events that our algorithm reports. This data reveals that IRF
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a b

Fig. 10 Performance of our algorithm on the testing dataset. Left side

a shows performance for all events, with blue lines showing perfor-

mance at different noise levels, while the red line depicts performance

averaged across all noise levels. On the right side b, we separate data

for the three events our algorithm reports

algorithm is best at correctly labeling saccades, while the

performance of detecting PSO is considerably poorer. This

replicates the previous findings of Andersson et al. (2016),

who found that expert coders are also best at finding sac-

cades, and agree less with each other when it comes to

indicating PSOs. It may very well be that the performance of

our classifier is worse at detecting PSOs because of poten-

tially inconsistently tagged PSOs samples in the training

data set. The classifier thus either learns less well as it tries

to work from imprecise input, or sometimes correctly report

PSOs that the expert coder may have missed or tagged incor-

rectly. We can see from the Fig. 9 that it is really hard to tell

the exact offset of a PSO.

Table 3 shows that IRF outperforms two state-of-the-art

event detection algorithms that were specifically designed

to detect fixations, saccades and PSOs, and approaches the

performance of human expert coders. We compare the per-

formance on 500-Hz clean data (average noise level 0.042◦

Table 3 Comparison of Cohen’s kappa in clean data, sampled at 500 Hz

All events Fixations Saccades PSO

IRF 0.829 0.854 0.909 0.697

IRF (specialist) 0.846 0.874 0.905 0.746

Expert (Andersson et al., 2016) 0.92 0.95 0.88

Expert (Larsson et al., 2015) 0.834

LNS (Andersson et al., 2016) 0.81 0.64

LNS (Larsson et al., 2013) 0.745

NH 0.604 0.791 0.576 0.134

NH (Andersson et al., 2016) 0.52 0.67 0.24

NH (Larsson et al., 2013) 0.484

IRF - our algorithm, LNS - algorithm by Larsson et al. (2013, 2015),

NH - algorithm by Nyström and Holmqvist (2010)

RMS), because this is the kind of data these two algorithms

were tested on by Larsson et al. (2013) and Andersson

et al. (2016). Table 3 also includes performance of special-

ist version of the IRF classifier, which was trained using

only high-quality data—500–1000 Hz and having average

noise level up to 0.04◦ RMS. The largest performance gain

is obtained in PSO classification—the specialist classifier

is around 7 % better at detecting these events than the

universal classifier. Overall performance of this specialist

classifier is around 2 % better compared to the univer-

sal classifier, and marginally outperforms the expert coders

reported by Larsson et al. (2015).

Event measures

Raw sample-to-sample performance, i.e., only that of classifiers

itself, before applying heuristics, is around 5.5 % better than

that after heuristic post-processing, meaning that there is

still room for improvement in the design of our heuris-

tics. For instance, our post-processing step removes all saccades

with amplitudes up to 0.5◦, because of our choice to merge

nearby fixations (see “Post-processing: Labeling final

events”). This is reflected in the number of fixations and

average fixation duration as reported by the IRF algorithm

(see the offsets between the manual coding results and those

of our algorithm in clean data in Figs. 11 and 12). These fig-

ures show that compared to ground truth (manual coding),

our algorithm misses around 10 % of the small saccades and

the same percentage for fixations. This causes an overes-

timation in the average fixation duration of approximately

60 ms, as two fixations get merged into one. When the noise

increases over 0.26◦ RMS, more and more smaller saccades

are missed. The number of detected fixations therefore starts

decreasing, while the mean fixation duration increases. This

behavior is consistently seen in the output of our algorithm

down to a sampling rate of 120 Hz. Similar analyses for
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Fig. 11 Number of detected fixations in the testing dataset. Green -

ground truth (handcoded), blue - our algorithm. Different intensities of

blue show results for different sampling rates

the number and duration of detected saccades and PSOs are

presented in Appendix C.

Figure 13 shows an analysis of the main sequence fits.

Note that negative R2 were clipped to 0. Ground truth sac-

cade amplitude-peak velocity fit had parameters Vmax =

613.76 and C = 6.74 (R2 = 0.96), while the amplitude-

duration relationship was best fitted by the line 0.0124 +

0.00216 ∗ A (R2 = 0.93). Interestingly, the slope of the

amplitude-duration relationship resembles that of Carpenter

(1988), but the intercept is only a bit more than half, indicat-

ing that our manually coded saccades have shorter durations

(by on average 9 ms) for the same amplitude than his. That

is probably because Carpenter used older data from Yarbus

and Robinson, recorded with corneal reflection eye trackers

and coils, which do not record PSOs (Hooge et al., 2016;

Frens and Van Der Geest, 2002). The signal from such eye

trackers contain saccades that are known to be longer than

saccades from a pupil-CR eye tracker (Hooge et al., 2016).

Fig. 12 Mean fixation duration in the testing dataset. Green - ground

truth (handcoded), blue - our algorithm. Different intensities of blue

show results for different sampling rates

Fig. 13 Performance of our (blue) and NH (red) algorithms in terms

of reproducing ground truth main sequence

Saccade peak velocities (and therefore main sequence)

cannot be reliably calculated for low sampling frequencies

(Holmqvist et al., 2011, p. 32) and therefore reproduction

of the main sequence relationship fails completely at 30 and

60 Hz. For higher sampling rate data, our algorithm repro-

duces the main sequences nearly perfectly for data with

noise level up to 1◦ RMS – R2 ranges from 0.96 to 0.87.

In comparison, the NH algorithm (Fig. 13, red line) per-

forms considerably worse, except in data with a noise level

between 0.07–0.13◦ RMS. According to our hypothesis, a

better performing classification algorithm will have a higher

R2 for the degraded data, because it will have less outliers in

the data (saccade amplitudes and peak velocities). The NH

algorithm detects approximately twice as many saccades

in clean data than the ground truth, thus leading to more

outliers in the main sequence fit. We believe that the prob-

lem with the NH algorithm lies in its adaptive behavior: in

very clean data, the velocity threshold becomes so low, that

many PSO events are classified as saccades. As the noise

increases, the adaptive threshold also increases causing only

actual saccades to be detected, which results in near perfect

reproduction of the main sequence relationship.

As for the amplitude–duration relationship, the NH algo-

rithm is not very good at detecting the precise location of

saccade onsets and offsets. To further investigate this, we

fitted the amplitude-duration relationship to the output of

the NH algorithm when provided with 500-Hz clean data.

This revealed that the intercept of this relationship is 0.044

s, almost four times the intercept of 0.012 for the manually

coded data. This indicates that the NH algorithm produces

considerably longer saccades. Slope of this fit was close

to ground truth—0.0025 s. The IRF algorithm on the other

hand reproduces the ground truth relationship quite well.

Results for amplitude–duration fit look largely the same as

in Fig. 13—in data sampled at 120 Hz and above and hav-

ing average noise level up to 1◦ RMS, R2 ranges from 0.95

to 0.69, and gets lower in more noisy data.
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Biometric results

Results for the biometric performance are presented in

Table 4. As a lower EER indicates better performance,

the results indicate that the events detected by IRF allow

the biometric application to have better performance in

authentication scenario than the events detected by the NH

algorithm.

Separate 2×3 fixed-effects ANOVAs for the two datasets

revealed that EER was lower for both datasets when the

events fed to the biometric procedure were detected by

IRF than when they were detected by NH (F(1,594)<72,

p<0.001). For both datasets, there also were differences in

EER between the three tasks (F(2,594)<38, p<0.001) and

significant interactions between event detection algorithm

and task (F(1,594)<3.8, p<0.023). For both datasets, Tukey

HSD post-hoc tests confirmed that the EER rate was lower

for IRF than for NH for all tasks (p<0.0005).

Discussion

Our data show that the machine-learning algorithm we

have presented outperforms current state-of-the-art event

detection algorithms. In clean data, performance almost

reaches that of a human expert. Performance is stable down

to 200 Hz, and the algorithm performs quite well even

at lower sampling frequencies. Classification performance

slowly degrades with increasing noise. Biometric testing has

indicated that the IRF algorithm provides superior authenti-

cation performance as indicated by lower Equal Error Rates

(EER) when compared to the algorithm by Nyström and

Holmqvist (2010).

The full random forest classifier, containing 14 features

and 200 trees, takes up 800 MB of storage space and over

8 GB of RAM memory to run. Optimization allowed us to

obtain a final classifier whose classification performance is

virtually indistinguishable from the full classifier. Our final

classifier has 16 trees and ten features (med-diff, mean-diff,

std, vel, rayleightest, std-diff, i2mc, disp, bcea-diff, bcea).

Table 4 The EER performance for each dataset, stimulus, and classi-

fication algorithm

Medium quality dataset

HOR RAN TEX

Stimulus

IRF 22.30 % 21.00 % 21.80 %

NH 23.30 % 24.60 % 28.00 %

High-quality dataset

IRF 17.80 % 18.40 % 12.40 %

NH 20.00 % 20.80 % 13.40 %

This optimized algorithm can be run on a laptop and is

what we recommend for users to process their data with. It

takes around 100 ms to classify 1 min of 1000-Hz data, in

addition to around 600 ms to extract features and 50 ms to

post-process predictions.

A limitation of our approach is that heuristics are needed

to produce meaningful events. This is because the classi-

fication of each sample is independent from the context

of the surrounding samples. For instance, our classifier is

not aware that a PSO can only follow a stream of saccade

samples, nor that fixation samples might only occur after

a saccade or PSO and need to last for a minimum amount

of time. The post-processing step provides this context, but

we expect that it can be avoided by using other machine-

learning algorithms and paradigm known as end-to-end

training, where the algorithm learns also the sequence and

context information directly from the raw data and produces

the final output without the need for any post-processing.

Previously, researchers carefully hand-crafted their eye-

movement event detection algorithms by assembling sim-

ilarly hand-crafted signal processing features in a specific

order with many specific settings that may or may not

be accessible to the user (e.g., Engbert & Kliegl, 2003;

Nyström & Holmqvist, 2010; Larsson et al., 2015; Hessels

et al., 2016). We propose that the time has come for a

paradigm shift in the research area of developing event

detection algorithms. When using random forests and sim-

ilar classifiers, the designer still needs to craft a collection

of data descriptors and signal processing features, but the

assembly of the algorithm and the setting of thresholds

is done using machine learning. Training a classifier on a

wide variety of input data allows a machine-learning-based

algorithm to generalize better than hand-crafted algorithms.

In this paper, we have shown that the machine-learning

approach leads to better classification performance than

hand-crafted algorithms while it is also computationally

inexpensive to use.

Further supporting the notion that a paradigm shift in

event detection algorithm design is happening is that shortly

after we presented the IRF algorithm at the Scandina-

vian Workshop of Applied Eye Tracking in June 2016,

Anantrasirichai et al. (2016) published a machine-learning-

based algorithm designed to work with 30-Hz SMI mobile

eye-tracker data. In that paper, the authors employ temporal

characteristics of the eye positions and local visual features

extracted by a deep convolutional neural network (CNN),

and then classify the eye movement events via a support

vector machine (SVM). It is not clear from the paper what

was used as ground truth, but the authors report that their

algorithm outperformed three hand-crafted algorithms.

Using our approach, classifiers can also be built that are

not aimed to be general and to apply to many types of data,

but that instead are trained to work with a specific type of
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data. One can imagine specialist classifiers, trained to work

only on Eyelink, SMI, or Tobii data. The only thing that

is needed is a representative dataset and desired output—

whether it be manual coding or events derived by any other

method. Our results show that such specialized machine-

learning-based algorithms have the potential to work better

than hand-crafted algorithms. Feeding the machine-learning

algorithm with event data from another event detector raises

other possibilities. If the original event detector is com-

putationally inefficient but results in good performance,

its output can be used to train a machine-learning algo-

rithm that has the same performance but is computationally

efficient.

But the real promise of machine learning is that in the

near future we may have a single algorithm that can detect

not only the basic five eye-movement events (fixations, sac-

cades, PSOs, smooth pursuit, and blinks), but distinguish

between all 15–25 events that exist in the psychological

and neurological eye-movement literature (such as different

types of nystagmus, square-wave jerks, opsoclonus, ocular

flutter, and various forms of noise). All that is needed to

reach this goal is a lot of data, and time and expertise to

produce the hand-coded input needed for training the clas-

sifier. Performance of this future algorithm is not unlikely

to be comparable to or even better than any hand-crafted

algorithm specifically designed for a subset of events.

The shift toward automatically assembled eye-movement

event classifiers exemplified by this paper mirrors what has

happened in the computer vision community. At first, anal-

ysis of image content was done using simple hand-crafted

approaches, like edge detection or template matching. Later,

machine-learning approaches such as SVM (support vec-

tor machine) using hand-crafted features such as LBP (local

binary pattern) and SIFT (scale-invariant feature transform)

(Russakovsky et al., 2015) became popular. Starting in

2012, content-based image analysis quickly became domi-

nated by deep learning, i.e., an approach where a computer

learns features itself using convolutional neural networks

(Krizhevsky et al., 2012).

Following the developments that occurred in the com-

puter vision community and elsewhere, we envision that

using deep learning methods will be the next step for

eye-movement event detection algorithm design. Such

methods—which are now standard in content-based image

analysis, natural language processing and other fields—

allow us to feed the machine-learning system only with data.

It develops the features itself, and finds appropriate weights

and thresholds for sample classification, even taking into

account the context of the sample. Since such deep-learning-

based approach works well in image content analysis,

where the classifier needs to distinguish between thou-

sands of objects, or in natural language processing, where

sequence modeling is the key, we expect that classifying the

maximum 25 types of eye-movement events will be possi-

ble too using this approach. The very recent and, to the best

of our knowledge, the very first attempt to use deep learn-

ing for eye movement detection is the algorithm by Hoppe

(2016). This algorithm is still not entirely end-to-end as it

uses hand-crafted features—input data needs to be trans-

formed into the frequency domain first, but as authors write:

“it would be conceptually appealing to eliminate this step

as well”. Hoppe (2016) show that a simple one-layer con-

volutional neural network (CNN), followed by max pooling

and a fully connected layer outperforms algorithms based on

simple dispersion and velocity and PCA-based dispersion

thresholding.

If deep learning with end-to-end training works for event

detection, there will be less of a future for feature devel-

opers. The major bottle neck will instead be the amount

of available hand-coded event data. This is time-consuming

and because it requires domain experts, it is also expensive.

From the perspective of the machine-learning algorithm,

the hand-coded events are the goal, the objective ground

truth, perchance, that the algorithm should strive towards.

However, we know from Andersson et al. (2016) that hand-

coded data represent neither the golden standard, nor the

objective truth on what fixations and saccades are. They

show that agreement between coders is nowhere close to

perfect, most likely because expert coders often have dif-

ferent conceptions of what a fixation, saccade, or another

event is in data. If a machine-learning algorithm uses a

training set from one expert coder it will be a different algo-

rithm than if a training set from another human coder would

have been used. The event detector according to Kenneth

Holmqvist’s coding will be another event detector compared

to the event detector according to Raimondas Zemblys’ cod-

ing. However, it is very likely that the differences between

these two algorithms will be much smaller than the dif-

ferences between previous hand-crafted algorithms, given

that Andersson et al. (2016) showed that human expert

coders agree with each other to a larger extent than existing

state-of-the-art event detection algorithms.

We should also note that the machine-learning approach

poses a potential issue for reproducibility. You would need

the exact same training data to be able to reasonably repro-

duce a paper’s event detection. Either that, or authors need

to make their trained event detectors public, e.g., as supple-

mental info attached to a paper, or on another suitable and

reasonably permanent storage space. To ensure at least some

level of reproducibility of the work, future developers of

machine-learning-based event detection algorithms should

report as many details as possible: the algorithms and pack-

ages used, hyperparameters, source of training data, etc.

We make our classifier and code freely available online5

5https://github.com/r-zemblys/irf.

https://github.com/r-zemblys/irf


178 Behav Res (2018) 50:160–181

and strive to further extend the classifier to achieve good

classification in noisy data and data recorded at a low sam-

pling rates. Future work will furthermore focus on detecting

other eye-movement events (such as smooth pursuit and

nystagmus) by including other training sets and using other

machine-learning approaches.
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Appendix A

Description of stimuli and datasets used when assessing the

biometrics performance of our IRF algorithm.

Presented stimulus

– Horizontal stimulus (HOR) was a simple step-stimulus

with a small white dot making 30◦ jumps back and

forth horizontally 50 times across a plain black back-

ground. In total, 100 dots were presented to each

subject. For each subject and for each recording ses-

sion of the same subject the sequence of dots was the

same. The subjects were instructed to follow the dot

with their eyes. The goal of this stimulus was to elicit

a large number of purely horizontal large amplitude

saccades.

– The random stimulus (RAN) was a random step-

stimulus with a small white dot jumping across a plain

black background of the screen in a uniformly dis-

tributed random pattern. One hundred dot movements

were presented to each subject. The subjects were

instructed to follow the dot with their eyes. For each

subject and for each recording session of the same sub-

ject the sequence of presented dots was completely

random. The goal of this stimulus was to elicit a large

number of oblique saccades with various points of

origin, directions, curvatures, and amplitudes.

– The textual stimulus (TEX) consisted of various

excerpts from Lewis Carroll’s “The Hunting of the

Snark.” The selection of this specific poem aimed to

encourage the subjects to progress slowly and carefully

through the text. An amount of text was selected from

the poem that would take on average approximately 1

min to read. Line lengths and the difficulty of the mate-

rial was consistent, and content-related learning effects

were not found to impact subsequent readings. Each

recording session contained a different part of the poem

text.

Datasets

– Medium-quality (MQ) dataset consisted of records

from 99 subjects among which were 70 males and 29

females. The ages of the subjects were in the range

between 18 and 47. The average age was 22 (SD = 4.8).

All 99 subjects participated in two recording sessions,

which were timed such that there were approximately

20 min between the first and the second presentation

of each stimulus. The MQ dataset was recorded using

a PlayStation Eye Camera driven by modified version

of the open-source ITU Gaze Tracker software (San

Agustin et al., 2009). The sampling rate of the recording

was 75 Hz and average spatial accuracy was 0.9◦ (SD =

0.6◦) as reported by the validation procedure performed

after the calibration. Because none of the data samples

are marked as invalid by ITU Gaze Tracker software,

we are unable to report the amount of data loss for this

dataset. Stimuli were presented on a flat screen monitor

positioned at a distance of 685 mm from each subject.

The dimensions of the monitor were 375 × 302 mm.

The resolution of the screen was 1280 × 1024 pixels.

The records from the dataset can be downloaded from

Komogortsev (2016).

– High-quality (HQ) dataset consisted of records from 32

subjects among which were 26 males and six females.

The ages of the subjects were in the range between 18

and 40. The average age was 23 (SD = 5.4). Twenty-

nine of the subjects performed four recording sessions

each, and three of the subjects performed two recording

sessions each. The first and second recording sessions

were timed such that there were approximately 20 min

between the first and the second presentation of each

stimulus. For each subject, the 3rd and 4th sessions

were recorded approximately 2 weeks after the first two

sessions. Similar to the first two sessions, the time inter-

val between the 3rd and 4th sessions was timed such

that there were approximately 20 min between the first

and the second presentation of each stimulus. The data

was recorded with an EyeLink 1000 eye-tracking sys-

tem at 1000 Hz and spatial accuracy as reported by

the validation procedure performed after the calibra-

tion was 0.7◦ (SD = 0.5◦). The average amount of data

loss was 5 % (SD = 5 %). Stimuli were presented on

a flat screen monitor positioned at a distance of 685

mm from each subject. The dimensions of the monitor

were 640 × 400 mm. The resolution of the screen was

2560 × 1600 pixels. The records from the dataset can

be downloaded from Komogortsev (2011).
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Fig. 14 Normalized feature importances during recursive feature

elimination in the specialist model

Appendix B

Figure 14 shows feature importances, obtained when train-

ing the specialist classifier. This classifier was trained using

only high-quality data at 500–1000 Hz with an average

noise level below 0.04◦ RMS. As before, after training

the classifier, we removed the least important feature, and

retrained the classifier using the remaining features, until a

classifier with only four features was left.

Appendix C

Analyses for the number and duration of detected saccades

and PSOs using the IRF algorithm. Green stippled line -

ground truth (hand coded), blue - our algorithm. Different

intensities of blue show results for different sampling rates

(Figs. 15, 16, 17, and 18).

Fig. 15 Number of detected saccades in the testing dataset

Fig. 16 Number of detected PSO in the testing dataset

Appendix D

Computational performance of IRF algorithm

To test computational performance of our classifier we used

a desktop computer with four Intel Core i7 CPUs @ 3.6

GHz, 16GB RAM and a Seagate 2TB 7200 RPM HDD disk

drive, running on Linux Mint 17.3 Cinnamon 64-bit OS

and Dell e5530 laptop with Intel Core i5-3360M dual-core

CPU @ 2.80 GHz, 4 GB RAM, 7200 rpm HDD, running on

Debian 7 OS.

The exact figures would depend on a number of factors,

such as the way of saving the trained forest, the computer

storage and memory type, operating system, etc. In our spe-

cific case, the full classifier takes almost 800 MB when

stored on a computer drive, takes around 80 s to load and

fills over 8 GB of RAM memory when loaded. However,

when loaded it works quite fast—it takes around 0.5 s to

classify 1 min of 1000-Hz data on both desktop and laptop

PCs tested. Optimized classifier requires less than 400 MB

of RAM memory, loads in 1.2 s and takes around 100 ms to

classify 1 min of 1000-Hz data.

Fig. 17 Mean saccade duration in the testing dataset
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Fig. 18 Mean PSO duration in the testing dataset

In addition, the final IRF algorithm takes around 600 ms

to extract features and 50 ms to post-process predictions and

only somewhat more when a simpler laptop is used.

References

Anantrasirichai, N., Gilchrist, I. D., & Bull, D. R. (2016). Fixa-

tion identification for low-sample-rate mobile eye trackers. In

2016 IEEE international conference on image processing (ICIP),

(pp. 3126–3130). IEEE.

Andersson, R., Larsson, L., Holmqvist, K., Stridh, M., & Nyström, M.

(2016). One algorithm to rule them all? An evaluation and discus-

sion of ten eye movement event-detection algorithms. Behavior

Research Methods, 1–22. doi:10.3758/s13428-016-0738-9

Bahill, A. T., Brockenbrough, A., & Troost, B. T. (1981). Variabil-

ity and development of a normative data base for saccadic eye

movements. Investigative Ophthalmology & Visual Science, 21(1),

116–125.
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