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ABSTRACT

Objectives: While clinical laboratories report most test re-

sults as individual numbers, findings, or observations, clin-

ical diagnosis usually relies on the results of multiple tests.

Clinical decision support that integrates multiple elements

of laboratory data could be highly useful in enhancing la-

boratory diagnosis.

Methods: Using the analyte ferritin in a proof of concept,

we extracted clinical laboratory data from patient testing

and applied a variety of machine-learning algorithms to

predict ferritin test results using the results from other tests.

We compared predicted with measured results and reviewed

selected cases to assess the clinical value of predicted

ferritin.

Results: We show that patient demographics and results of

other laboratory tests can discriminate normal from abnor-

mal ferritin results with a high degree of accuracy (area

under the curve as high as 0.97, held-out test data). Case re-

view indicated that predicted ferritin results may sometimes

better reflect underlying iron status than measured ferritin.

Conclusions: These findings highlight the substantial infor-

mational redundancy present in patient test results and offer

a potential foundation for a novel type of clinical decision

support aimed at integrating, interpreting, and enhancing

the diagnostic value of multianalyte sets of clinical labora-

tory test results.

Clinical laboratories report most test results as indi-

vidual numerical or categorical values. However, individ-

ual tests results, viewed in isolation, are typically of

limited diagnostic value. To adequately use test results for

patient diagnosis and management, clinicians usually must

integrate many individual test results from a patient and

interpret them in the context of clinical data and medical

knowledge, judgment, and experience. While this manual

approach to test result interpretation is the current standard

in most cases, computational approaches to laboratory

data integration and analysis offer tremendous potential to

enhance diagnostic value.1 In particular, many patients

will have hundreds or thousands of these individual test re-

sults, often spanning years. As a consequence, busy clin-

icians can easily overlook key results or important patterns
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and trends within sets of laboratory data. Furthermore, im-

portant diagnostic information may sometimes be con-

tained within patterns across numerous data elements

that may be too subtle or complex to identify without the

aid of computational approaches.2 In addition, because

the human brain faces great challenges in simultan-

eously considering a large number of data points, even the

most experienced clinicians may be unable to extract all

the useful information from existing clinical and labora-

tory data.2

Electronic clinical decision support represents an im-

portant tool to improve test result interpretation and the effi-

ciency with which diagnostic data can be converted into

useful information. For example, we have developed and

implemented an algorithm within our laboratory informa-

tion system to identify and append an alert to creatinine

results that are trending upward and suggestive of acute

kidney injury.3 Likewise, we have demonstrated that we

can identify spurious elevations in plasma glucose results

using the results of other analytes measured on the same

sample.4

While rule-based and statistically based algorithms

can both provide a foundation for clinical decision support,

most currently used decision support relies on rule-based

approaches.5 Rule-based algorithms tend to be easier than

statistical algorithms to develop, validate, implement, and

explain and can often be adapted directly from guidelines

or literature.5 However, most rule-based algorithms

applied in clinical practice provide decision support based

on previously established knowledge. In contrast, statistic-

ally based approaches offer an opportunity to combine

knowledge discovery with knowledge application to pro-

vide decision support based on previously unknown

patterns.5

Here, we describe a novel framework for statistical in-

tegration of test results, and as a proof of concept, we apply

this framework to patients receiving ferritin testing. Ferritin

is a marker of iron stores and is used in the diagnosis of iron

deficiency6 but by itself can be misleading. For example,

ferritin is increased in inflammation,6 and iron-deficient pa-

tients undergoing inflammatory responses may have normal

ferritin values. In this article, we first posit and test the hy-

pothesis that ferritin test results can be predicted from the

results of other tests ordered on the same patient. We con-

firm this hypothesis, suggesting that the information pro-

vided by ferritin is often substantially redundant given other

tests performed alongside it. We then consider cases where

the ferritin and predicted ferritin are discrepant and show

that predicted ferritin may have diagnostic value in these

cases. Finally, we propose three strategies in which this stat-

istically based approach could be applied to clinical deci-

sion support.

Materials and Methods

Data

This study used data from testing performed at the

Massachusetts General Hospital (MGH), a 989-bed tertiary

care hospital in Boston, Massachusetts, collected with ap-

proval from our hospital’s institutional review board. The

data set included all outpatient ferritin results collected

over a 3-month period in 2013. Each ferritin result was

linked to the patient’s age, sex, and results for “predictor

tests” performed on the same collection (patient, date, time

combination). In rare cases, in which more than one result

for a test was reported on a patient at the same date and

time, the mean result was used. Due to limitations of our

data extraction strategy, laboratory results reported with a

value of 0 (with the exception of nucleated RBCs) were

excluded from analysis and treated as missing. The com-

plete list of predictor tests can be viewed in Table 1 .

Results were included only for testing performed within

the main hospital laboratories; point-of-care test results

and results of testing performed in satellite laboratories at

affiliated health centers were excluded. In the final data

sets, collections were excluded if they did not contain at

least two predictor tests. The cases were split randomly

into training and test partitions in a 7:3 ratio for a final

training set of 3,590 cases and a test set of 1,538 cases.

Because the data set was quite large, we expected that ran-

dom selection alone would ensure an acceptable degree of

similarity between the training and test data sets, and we

did not perform any specific stratification. Supplemental

Figure 1 (all supplemental materials can be found at

American Journal of Clinical Pathology online) shows Q-

Q plots for ferritin values in the training and test data sets

and helps confirm that the distribution of ferritin values in

the training data set is quite similar to that in the test data.

Data Transformations

Many laboratory tests have results that closely follow a

lognormal distribution. In regression analysis, minimizing

the root mean square error is equivalent to the maximum

likelihood estimation, only under the assumption that the

target variable adopts a normal distribution.7 Thus, we

transformed ferritin values using a natural log transform-

ation: y¼ ln(1þ x), where y is the transformed ferritin value

and x is the original ferritin value. Supplemental Figure 2

shows Q-Q plots and demonstrates approximate lognormal

distributions for ferritin. We inverted this transformation on

predicted values of log ferritin (predictions as described

below) to calculate predicted values of ferritin in untrans-

formed units.
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Overview of Imputation and Prediction

Most of our analysis relies on a two-stage procedure. In

the first stage of this procedure, we imputed missing test re-

sults (tests not performed) for tests other than ferritin (“pre-

dictor tests”). Then, in the second stage, we used the

measured and imputed values for these predictor tests plus

age and sex to predict ferritin test results. In this second stage,

we predicted both numerical results for ferritin (“regression”)

and whether ferritin results would be normal or abnormal

(“classification”). Although no ferritin test results were actu-

ally missing from our data set per the inclusion criteria, we

assessed model performance and ferritin predictability by

masking ferritin results from a held-out test partition of our

data and then comparing predicted ferritin results with the

masked (measured) values. The masked-measured values

were treated as the “ground truth” in assessing model

performance.

The imputation stage was required because the predic-

tion algorithms used in the second stage of our procedure

could not directly accommodate missing data in predictors.

Our data set, like most clinical and laboratory data sets ob-

tained in clinical practice, contained many missing values,

which in our particular analysis represent tests not per-

formed. The imputation step allowed us to infer missing

Table 1
Description of Laboratory and Demographic Parameters

Abbreviation Description Missing, % Median (IQR) Reporting Units Adult Reference Range

%Baso Percent basophils 65 0.4 (0.3-0.7) % 0-3

%Lymph Percent lymphocytes 63 27.4 (20.5-35.15) % 22-44

%Mono Percent monocytes 63 7.9 (6.3-9.6) % 4-11

%Neut Percent neutrophils 63 60.0 (52.6-67.7) % 40-70

%NucRBC Percent nucleated RBCs 29 0 (0-0) /100 WBCs 0

AbsBaso Absolute basophil count 65 0.3 (0.2-0.4) � 103/mL 0.0-0.3

AbsEos Absolute eosinophil count 64 0.14 (0.08-0.23) � 103/mL 0.0-0.9

AbsLymph Absolute lymphocyte count 63 1.77 (1.30-2.38) � 103/mL 1.0-4.8

AbsMono Absolute monocyte count 63 0.52 (0.4-0.68) � 103/mL 0.2-1.2

AbsNeut Absolute neutrophil count 63 3.98 (2.92-5.33) � 103/mL 1.8-7.7

Age Age (y) NA 52 (36-67) NA NA

Albumin Albumin 51 4.5 (4.2-4.7) g/dL 3.3-5.0

AlkPhos Alkaline phosphatase 56 77 (61-99) U/L Female: 30-100; male: 45-115

ALT Alanine transaminase 54 18 (13-28) U/L Female: 7-33; male: 10-55

Anion Anion gap 47 13 (11-15) mEq/L 3-15

AST Aspartate transaminase 54 23 (18-30) U/L Female: 9-32; male: 10-40

B12 B12 59 604 (449-870) pg/mL >250

Bicarb Bicarbonate 47 25.0 (23.3-26.6) mmol/L 23.0-31.9

BUN Blood urea nitrogen 45 15 (11-20) mg/dL 8-25

Ca Calcium 46 9.4 (9.1-9.7) mg/dL 8.5-10.5

Cl Chloride 47 101 (99-103) mmol/L 100-108

Cr Creatinine 45 0.83 (0.7-1.0525) mg/dL 0.60-1.50

Eos Percent eosinophils 64 2.1 (1.2-3.4) % 0-8

Fe Iron 14 74 (50-100) mg/dL Female: 30-160; male: 45-160

FER Ferritin 0 67 (27-163) ng/mL Female: 10-200; male: 30-300

Gender Gender NA NA NA NA

Glob Globulin 56 2.6 (2.3-2.9) g/dL 2.3-4.1

Glu Glucose 46 90 (82-103) mg/dL 70-110

Hct Hematocrit 29 38.4 (35.1-41.4) % Female: 36.0-46.0; male: 41.0-53.0

Hb Hemoglobin 29 12.8 (11.5-13.9) g/dL Female: 12.0-16.0; male: 13.5-17.5

K Potassium 46 4.0 (3.7-4.3) mmol/L 3.4-4.8

MCH Mean cell hemoglobin 29 29.7 (27.7-31.2) pg/RBC 26.0-34.0

MCHC Mean cell hemoglobin concentration 29 33.2 (32.3-34.1) g/dL 31.0-37.0

MCV Mean cell volume 29 89 (84-93) fL Female: 80-100; male: 80-100

Na Sodium 46 139 (138-141) mmol/L 135-145

NucRBC Absolute nucleated RBCs 29 0 (0-0) � 103/mL 0

Plt Platelets 29 250 (202-301) � 103/mL 150-400

Prot Total protein 56 7.1 (6.8-7.4) g/dL 6.0-8.3

RBC RBC count 29 4.38 (3.98-4.73) � 106/mL Female: 4.00-5.20; male: 4.50-5.90

RDW RBC distribution width 29 13.8 (13-15.3) % 11.5-14.5

TBILI Total bilirubin 56 0.4 (0.3-0.6) mg/dL 0.0-1.0

TIBC Total iron-binding capacity 14 303.5 (264-347) mg/dL 230-404

WBC WBC count 29 6.7 (5.4-8.3) � 103/mL 4.5-11.0

IQR, interquartile range; NA, not applicable.
aShown are demographic and laboratory test parameters used in this study. The abbreviations in the leftmost column correspond to the row labels in Figure 1. Median and IQR

values represent the median and IQR for each analyte (when available) in the study data set.
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values by tapping into observed associations between results

from various tests (plus age and sex) and in turn to apply the

prediction methods used in the second stage to our data set.

More specifically, we applied four different imputation

methods and five different prediction (regression or classifi-

cation) methods. In addition, we trained and tested the per-

formance of each regression and classification model using

two different sets of predictors. The first predictor set con-

sisted of just patient demographics (age and sex) and labora-

tory test results and did not distinguish between measured

test results (tests performed) and imputed test results (tests

not performed). Like the first predictor set, the second pre-

dictor set also used demographics and test results but also

included a set of dichotomous variables describing whether

each test result was measured (test performed) or missing

(not preformed and thus requiring that the result be

imputed). We refer to models trained and tested with just

demographics and actual or imputed test results as using the

“predictor set without missingness.” We refer to models

trained and tested with demographics, actual or imputed test

results, and the dichotomous variables denoting whether re-

sults were measured or missing (imputed) as using the “pre-

dictor set with missingness.”

We paired each of the four imputation methods with

each of the five prediction methods across each of the two

predictor set types to generate a total of 40 sets (4*5*2) of

predicted ferritin test results. We describe the four imput-

ation and five prediction techniques below. When not other-

wise specified, we use the term impute (and imputation) to

refer to prediction of missing predictor test results, regres-

sion to refer to prediction of numerical ferritin results, and

classification to refer to prediction of whether ferritin results

would be normal or abnormal.

Imputation

The four imputation techniques used were the following:

mean, multiple imputation with chained equations–full

(MICE-full), multiple imputation with chained equations–

select (MICE-sel), and missForest. Mean imputation imputes

missing values as the mean of the available values for each

variable. MICE-full, MICE-sel, and missForest were per-

formed using the MICE8 and missForest9 R-packages (https://

cran.r-project.org/). These techniques are described in greater

detail in the supplemental methods. Training and test data

were combined into a single data set for imputation; however,

outcome ferritin results were excluded from the test cases prior

to imputation. This way, the imputation step could not “leak”

ferritin information from the test data set. Thus, overfitting

should not bias classification or regression performance on the

test data, and test data set evaluation should provide an un-

biased estimate of generalizable performance. MICE-full,

MICE-sel, and missForest are designed to provide nondeter-

ministic outputs intended to model the uncertainty in missing

values. To capture this uncertainty, we ran each of the imput-

ation algorithms 100 times with random initialization to gener-

ate 100 imputed data sets. The reported values for correlation

and area under the curve (AUC) and the plotted values for sen-

sitivity and specificity represent the mean of each statistic

across the 100 imputation runs. The numerical values of pre-

dicted ferritin as reported or plotted represent the median

across the 100 imputation runs.

Regression

The four regression techniques used were linear regres-

sion, Bayesian linear regression, random forest regression

(RFR), and lasso regression (lasso). We used the Scikit-learn10

Python package to implement them. (http://scikit-learn.org)

Additional technical detail regarding the imputation and re-

gression methods is provided in the supplemental methods.

Classification

Ferritin results were classified as normal (within the nor-

mal reference limits set by the MGH Core laboratory) or ab-

normal. The lower limit of normal for ferritin at MGH is

10 ng/mL in females and 30 ng/mL in males. Although fer-

ritin also has an upper reference limit (200 ng/mL in females

and 300 ng/mL in males), only low ferritin results were classi-

fied as abnormal since the goal was to identify iron defi-

ciency, which is indicated by a low ferritin. Classification

was performed using logistic regression as implemented in

the Python Scikit-learn package.10 Receiver operator charac-

teristic (ROC) curves were generated by varying the probabil-

ity threshold at which the logistic regression would classify

results as abnormal.

Univariate Analysis

To provide an assessment of the contribution of each

predictor laboratory test in predicting ferritin, we calculated

the correlation expressed as Pearson’s r between each ana-

lyte and log ferritin. We also calculated the percentage of

variance in log ferritin explained by each analyte (R2) and

the discriminative power of each analyte to distinguish nor-

mal from abnormal values of ferritin, expressed as the AUC

(c-statistic). The univariate analysis was based on pairwise

complete cases and was performed in R.

Case Review

We selected cases (as described in the Results section)

for detailed chart review. Each selected case was independ-

ently reviewed by two pathologists (J.M.B. and A.S.D.) to

assess the patient’s underlying iron status based on each pa-

tient’s electronic medical record, including physician notes
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and laboratory test results performed before, subsequent to,

and at the same time as the ferritin test under consideration.

Note that the pathologist review used information (including

future progression) not available to the computational algo-

rithms and was treated as a reference to which predicted fer-

ritin results could be compared.

Results

Ninety-seven percent of patient collections, including a

measured, outpatient ferritin result, were accompanied by at

least two other predictor tests and included in the final data

sets. This final data set, consisting of 5,128 test collections,

was randomly split into a training set of 3,590 results and a

test set of 1,538 results. Besides ferritin, each collection had a

median of 23 of the 40 other tests measured (interquartile

range [IQR], 11-31). Table 1 lists the predictor tests. For each

predictor test, Table 1 also lists the percentage of values that

were missing (and thus required imputation), the median and

interquartile range for the study population, and the adult ref-

erence range. Figure 1 describes the raw data and reveals

the relative correlations between ferritin and other tests.

We first present the extent to which ferritin can be pre-

dicted by examining the correlation statistics (all prediction

methods) and scatterplots (selected method) denoting the rela-

tionship between measured and predicted ferritin values. We

then present the ability of classification algorithms to predict

whether ferritin will be abnormal, with the quality of the predic-

tion measured by AUC. We next present data regarding the uni-

variate association between each predictor analyte and ferritin

and finally present results from chart review of select cases.

Predictability of Numerical Ferritin Results

(Regression)

We applied 16 different imputation-regression pairings

to the training and held-out test data partitions to identify

the best-performing methods. Supplemental Table 1 shows

the correlation between measured and predicted ferritin

(both log transformed) for each of the imputation-regression

pairings. The best performance on held-out test data in the

data set without missingness achieved a correlation of 0.

732, using MICE-sel imputation and RFR. Lasso regression

following missForest imputation performed almost as well

(correlation¼ 0.729 in test data, predictor set without miss-

ingness). We selected the lasso-missForest pairing as the

basis for additional evaluation, including subsequently

described case studies.

Regression and bias plots for the lasso-missForest pair-

ing are shown in Figure 2 and demonstrate the substantial

predictability of ferritin.

Predictability of Ferritin Classifications

In clinical decision making, a key consideration in in-

terpreting numerical laboratory results is often just whether

the results fall within the normal reference range.

Accordingly, we sought to determine if we could accurately

predict whether results would be within this normal range.

Figure 3 provides ROC curves showing the predictability

of abnormal ferritin classifications on the independent test

data, using logistic regression following imputation by each

of the four methods. MissForest imputation performed best

overall. This technique, when paired with logistic regres-

sion, achieved AUCs of 0.96 and 0.97, respectively, in clas-

sifying ferritin results using the predictor sets with and

without missingness. As in the case of regression, the add-

itional information provided in the predictor set with miss-

ingness added little or no value. As a negative control,

classification was performed on both predictor set types

with ferritin results randomly reshuffled between patient

cases of predictor data. ROC curves for the reshuffled data

sets are shown in Supplemental Figure 3 and, as expected,

demonstrate AUC values of approximately 0.5.

Contributions of Individual Analytes

Regression coefficients for individual analytes from the

imputation-regression analysis are difficult to interpret, be-

cause the regression used a combination of measured and

imputed values, and thus the coefficients for each analyte

will not be based just on the measured values for that ana-

lyte. Furthermore, colinearity and regularization are likely

to further distort regression coefficients. Thus, to assess po-

tential contributions of individual analytes in predicting fer-

ritin, we performed a series of univariate analyses, as shown

in Table 2 . Here, we present the pairwise correlation be-

tween nonmissing values for each individual analyte and

ferritin (log transformed). Likewise, to assess the ability of

each individual analyte to distinguish normal from low fer-

ritin results, Table 2 lists the univariate AUC (c-statistic) for

each analyte. Not surprisingly, total iron-binding capacity,

mean cell hemoglobin, and mean cell hemoglobin concen-

tration were the most informative analytes with respect to

both classification and regression.

Selected Case Review

Hypothesizing that in some cases, predicted ferritin

may be more representative of patient iron status than meas-

ured ferritin, as shown in Figure 4 , we identified 26 (1.7%)

cases in our held-out test data set in which the predicted fer-

ritin and actual ferritin were highly discrepant. For this pur-

pose, we defined highly discrepant to mean that actual and

predicted ferritin differed by a factor of 10 or more, when

predictions were made using missForest imputation

Luo et al / MACHINE LEARNING TO PREDICT LABORATORY RESULTS

782 Am J Clin Pathol 2016;145:778-788 © American Society for Clinical Pathology
782 DOI: 10.1093/ajcp/aqw064

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcp/article/145/6/778/2836697 by guest on 16 August 2022

Deleted Text: prior to
Deleted Text: utilized
Deleted Text: 97&hx0025; 
Deleted Text: -
Deleted Text: [
Deleted Text: 11-31, 
Deleted Text: (
Deleted Text: )
http://www.oxfordjournals.org/
http://www.oxfordjournals.org/
Deleted Text:  
Deleted Text: area under the ROC curve (
Deleted Text: )
Deleted Text:  
http://ajcp.oxfordjournals.org/lookup/suppl/doi:10.1093/ajcp/aqw064/-/DC1
Deleted Text: random forest regression (
Deleted Text: )
Deleted Text: L
Deleted Text: A
http://www.oxfordjournals.org/
http://www.oxfordjournals.org/
Deleted Text: T
Deleted Text: O
Deleted Text:  
http://www.oxfordjournals.org/
http://www.oxfordjournals.org/
Deleted Text: or no 
Deleted Text: -
http://ajcp.oxfordjournals.org/lookup/suppl/doi:10.1093/ajcp/aqw064/-/DC1
Deleted Text: -
Deleted Text: preformed
http://www.oxfordjournals.org/
http://www.oxfordjournals.org/
Deleted Text: -
Deleted Text: -
Deleted Text: TIBC
Deleted Text: MCH
Deleted Text: MCHC
http://www.oxfordjournals.org/
http://www.oxfordjournals.org/
Deleted Text: cases 
Deleted Text: &hx201C;
Deleted Text: &hx201D;


followed by lasso regression (using the model coefficients

trained on the training data as described previously). In four

of these 26 cases, predicted ferritin was less than 30 ng/mL,

and the measured ferritin was more than an order of magni-

tude higher. Thus, in these four cases, the predicted ferritin

was concerning for iron deficiency while the actual ferritin

was not, and we reviewed these cases in detail. In the other

22 of the 26 cases, the predicted ferritin was greater than 30

ng/mL, so the discrepancy was less likely to indicate a

falsely reassuring measured ferritin result, and so we

focused our review on the four cases in which the predicted

ferritin was less than 30 ng/mL.

One of these four patients (patient 1; see supplemental

case studies for additional case information for all four pa-

tients) almost certainly had iron deficiency based on review

of the medical record by two pathologists, despite having a

measured ferritin well within the normal range. In this case,

the predicted ferritin was almost certainly more reflective of

the patient’s iron status. In one other case (patient 2), the pa-

tient had recently completed a course of intravenous iron in-

fusions and was recovering from iron deficiency. In this

case, the predicted ferritin may have better reflected the pa-

tient’s irons stores or may have at least provided an indica-

tion that the patient’s underlying iron status was not entirely

normal. The third patient (patient 3) had only two predictor

tests available, and thus the algorithms had limited data to

use in prediction. Patients lacking sufficient predictive in-

formation, such as patient 3, would likely be excluded from

future decision support algorithms. The fourth patient (pa-

tient 4) had a history of iron deficiency and, although most

likely was not iron deficient at the time of the testing, had a

complex hematologic picture (see case description in the

supplement). Thus, even in this fourth case where the meas-

ured ferritin probably better reflected the patient’s current
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iron status, the predicted ferritin may have provided an im-

portant indication that the case was more complex and

deserved more consideration than the measured ferritin

alone might have suggested.

Discussion

These findings support our hypothesis that in most

cases, ferritin provides information that is substantially re-

dundant given other available test results. In particular, we

find that coexisting data can discriminate normal from ab-

normal ferritin results with a high degree of accuracy with

AUCs as high as 0.97. Predictions of numerical ferritin re-

sults were moderately accurate. We show that in at least cer-

tain cases, predicted ferritin may better represent a patient’s

underlying iron deficiency status. Further clinical validation

of predicted ferritin with a larger case review will also be an

important consideration for future research.

While our approach provides the potential to discover

previously unsuspected or unknown associations between

disparate elements of laboratory data, the predictability of

ferritin was largely unsurprising. As an acute phase reactant,

ferritin is known to increase with other inflammatory

markers.6 Likewise, ferritin will decrease with other

markers of iron deficiency such as mean cell volume. More
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Figure 2 Regression and bias plots for predicted ferritin on

held-out test data. Shown are regression (male patients,

A; female patients, B) and bias (C) plots for ferritin predic-

tions made using missForest imputation followed by lasso

regression (predictor set without missingness) on held-out

test data. Dark horizontal and vertical lines in the regression

plots represent the lower limit of normal. Note that the axes

are on a logarithmic scale or plot log-transformed data.
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generally, our results most likely reflect that fact that vari-

ous physiologic and pathologic states tend to affect (and

thus be reflected by) multiple analytes. However, traditional

“manual” approaches to test result interpretation lack a

method for quantitatively applying this knowledge. Thus,

much of the value of our approach lies in the framework it

offers for the automated application of such knowledge to

test result integration. Nonetheless, our statistical techniques

also offer value in identifying subtle and previously un-

known associations between analytes and incorporating

these into test result integration models.

We anticipate several potential applications of these

findings to novel types of clinical decision support. The first

application would be to use predicted ferritin to flag patient

ferritin results that are anomalous or otherwise misrepresen-

tative of a patient’s underlying iron status. In particular, our

case analysis suggests that at least some ferritin results that

are much higher than predicted may not accurately reflect

patient iron status. We are currently planning work to evalu-

ate and validate options for decision support flags that

would append a comment to certain ferritin results that are

substantially higher than predicted. In cases such as patient

1, this type of flag may lead to more timely identification of

iron deficiency. Since iron deficiency can be a sign of ser-

ious underlying illness such as gastrointestinal cancer11 or,

if untreated in pediatric patients, can lead to developmental

delay,12 timely identification is of key importance.

Another potential application to decision support would

be to alert clinicians to patients in whom ferritin is predicted

to be low based on available tests but where a measured fer-

ritin had not been ordered and iron deficiency may not be

suspected. These patients may benefit from an iron defi-

ciency evaluation. We plan additional work to validate pre-

dicted ferritin for this purpose, noting that potential

applications to clinical decision support remain hypothetical

pending further validation. Finally, we will need to under-

stand better the optimal strategy to fit models like this for

use at other institutions. A future clinical application of the

model at other sites might involve other institutions apply-

ing the same methods and approach described here but train-

ing the models on their own institution’s data. Likewise, we

could envision the possibility of training models on pooled

data across multiple institutions.

Finally, the idea that the diagnostic information offered

by ferritin often duplicates that provided by other diagnostic

tests suggests a notion of “informationally” redundant test-

ing. In many patients, it is likely that a diagnosis of iron de-

ficiency could be confirmed or excluded without some of

the tests often ordered in current practice. We speculate that

informationally redundant testing occurs in a variety of

diagnostic settings and diagnostic workups and is much

more frequent than the more traditionally defined and nar-

rowly framed notion of redundant testing, which most often

just includes unintended duplications of the same or similar

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.0

1.0
T
ru

e
-P

o
s
it

iv
e

 R
a

te

False-Positive Rate

Mean (AUC = 0.910)

MICE full (AUC = 0.894)

MICE sel (AUC = 0.903)

missForest (AUC = 0.964)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.0

1.0

T
ru

e
-P

o
s
it

iv
e

 R
a

te

False-Positive Rate

Mean (AUC = 0.914)

MICE full (AUC = 0.896)

MICE sel (AUC = 0.903)

missForest (AUC = 0.965)

A B
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Curves are based on performance in the held-out test data set and are provided for the predictor set without missingness (A)

and the predictor set with missingness (B). Curves are denoted by the imputation method used prior to logistic regression.
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tests.13,14 Redundant laboratory testing under this narrow

definition is estimated to waste more than $5 billion annu-

ally in the United States,14 an amount potentially dwarfed

by the waste from informationally redundant testing.

Nonetheless, since ferritin and most of the other predictor

tests used in this study are generally performed on auto-

mated instruments with minimal analytic-phase variable

costs, eliminating a ferritin or a small number of other tests

from the workup without eliminating entire specimen tubes

or patient collections may only lead to a small reduction in

laboratory cost on any given patient.15

We plan to build on this proof of concept to apply simi-

lar approaches to a wide range of other pathology data,

including anatomic pathology results and other clinical la-

boratory analytes. For example, we hypothesize that some

immunohistochemistry results may be predictable based on

specimen morphology, clinical characteristics, and other

immunohistochemistry results. Future decision support sys-

tems could potentially provide clinicians a list of tests pre-

dicted to be normal and predicted to be abnormal at some

specified confidence level; the clinician would then primar-

ily select tests to order from a list with highly uncertain pre-

dictions. Likewise, we suspect that temporal trends may be

highly informative in predicting certain test results.

Selecting predictor tests (“feature selection”) for this

type of analysis requires certain trade-offs. For example, at

one extreme, we could have used as predictors only those

tests that are most frequently performed alongside ferritin,

minimizing missing data but at the expense of having a less

complete feature set. The other extreme would be to include

an expansive set of predictor tests, leading to a sparser data

set with more missing elements. We sought a balance be-

tween these extremes. For many applications, optimal pre-

dictor test selection will represent an empirical question,

guided largely by model performance. Practical consider-

ations related to model deployment (intended application)

may factor into feature selection. Another consideration is

that including too many predictors relative to the number of

cases in the training data set will make models more prone to

overfitting. Nonetheless, including an expansive feature set

with a high rate of missing data should not be problematic for

many applications so long as the models perform acceptably

on held-out test data. In the current study, the performance of

the selected imputation-regression combination (misForest-

Lasso) was only slightly better in the training data compared

with the test data (see Supplemental Table 1), indicating that

overfitting, while present, was minimal. Although we

included a large number of predictors in the lasso regression

(the model was permitted to fit nonzero coefficients for

all 40 predictors, and most coefficients had absolute values

�0.001), overfitting was likely controlled by the comparably

large number of training cases and the fact that lasso has a

built-in regularization procedure intended to control overfit-

ting (see supplemental methods). Likewise, given that

missForest imputation paired with logistic regression was

able to classify test data with a high AUC of 0.97, overfitting

in this classification model was likely well controlled.

Assessing the ability of various subsets of predictor tests to

predict ferritin represents an important topic for future work.

In this study, MICE and missForest imputation per-

formed better than mean imputation. Our results support

findings by Waljee et al16 that missForest tends to perform

well in imputing missing laboratory results. We speculate

Table 2
Univariate Associations Between Ferritin and Predictor Testsa

Analyte

Correlation

With Ferritin R2 AUC

AbsBaso 0.05 0.00 0.54

AbsEos 0.03 0.00 0.52

Albumin –0.11 0.01 0.51

AlkPhos 0.08 0.01 0.51

AbsLymph 0.02 0.00 0.52

AbsMono 0.10 0.01 0.51

AbsNeut 0.05 0.00 0.52

B12 0.12 0.02 0.59

%Baso 0.02 0.00 0.57

Ca 0.03 0.00 0.58

Eos 0.03 0.00 0.53

Fe 0.33 0.11 0.79

Glob 0.05 0.00 0.56

Hct 0.07 0.00 0.68

Hb 0.15 0.02 0.72

%Lymph –0.05 0.00 0.51

MCH 0.43 0.19 0.84

MCHC 0.32 0.11 0.75

MCV 0.39 0.15 0.83

%Mono 0.06 0.00 0.54

%Neut 0.01 0.00 0.51

%NucRBC 0.12 0.02 0.51

NucRBC 0.12 0.02 0.51

Anion –0.01 0.00 0.53

BUN 0.26 0.07 0.55

Cl –0.07 0.01 0.55

Cr 0.26 0.07 0.56

Glu 0.13 0.02 0.50

K 0.10 0.01 0.52

Bicarb 0.05 0.00 0.55

Plt –0.18 0.03 0.61

Na –0.05 0.00 0.50

RBC –0.17 0.03 0.56

RDW –0.09 0.01 0.73

AST 0.21 0.04 0.59

ALT 0.20 0.04 0.63

TBILI 0.22 0.05 0.60

TIBC –0.62 0.38 0.85

Prot –0.01 0.00 0.55

WBC 0.06 0.00 0.52

For definitions of all analytes, see Table 1.
aShown are the correlation and percentage of variance explained (R2) between each

analyte and ferritin (log transformed). Also shown is the area under the curve (AUC)

describing the discriminative power of each individual analyte to predict whether fer-

ritin would be abnormal. Pairwise complete cases were used; missing results were

excluded from analyses.
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that missForest performs well because it best accommodates

nonlinear relationships and interactions between the pre-

dictor data and the ferritin results.

Although it is difficult to directly compare regression

performance with classification performance, the high degree

of ferritin classification accuracy may appear somewhat dis-

cordant with the only moderate regression performance. One

explanation for this apparent discrepancy may be that predic-

tions are most accurate toward the middle of the dynamic

range of measured ferritin results (Figure 2C), presumably

due to “regression toward the mean.” Some of the numerical

prediction error may thus be attributed to measured ferritin

values toward the high end of the range with predicted values

of ferritin that are considerably lower but that are still within

the reference range. Furthermore, the regression algorithms

must train to minimize error throughout the dynamic range,

while classification algorithms must only minimize error at

the specific classification threshold.

A potential limitation of this approach is that the imput-

ation techniques are only unbiased under the assumption

that the data are missing at random. Real clinical practice

surely violates this assumption since clinicians usually order

tests given some expectations about the likely results.

Nonetheless, including in our ferritin prediction models a

set of dichotomous variables to indicate whether each pre-

dictor test result was imputed (missing) or measured (ie,

using the "predictor set with missingness") added little ben-

efit in terms of improved ferritin prediction performance.

The lack of predictive information gained by including these

additional dichotomous variables suggests that imputation

bias may have only a minimal impact on ferritin prediction.

Another caveat is that this approach provides only a lower

limit for the level of information redundancy in that differ-

ent machine-learning algorithms could provide different re-

sults. Thus, true informational redundancy may be higher

than that demonstrated here. Finally, our approach measures

predictability of ferritin given those tests ordered in real

clinical practice rather than potential information redun-

dancy given a large complete set of test results.

Nonetheless, since many decision support strategies must

rely on the data available, prediction performance on real

data is likely to be most relevant. While a limitation in our

data extraction technique treated test results with a numer-

ical value of zero as missing (other than nucleated RBCs),

we expect that the impact on our overall analysis should be

minimal. This is because most analytes and all key analytes

have a minimum reportable and/or physiologic limit greater

than zero, and thus this limitation should have affected few

results. Furthermore, by slightly increasing the rate of miss-

ing data, this limitation would if anything lead our analysis

to underestimate the predictability of ferritin.

In conclusion, we show that ferritin results are predict-

able given other concurrent test results. This suggests that

common sets of laboratory results may contain substantial

information redundancy. More broadly, this work provides

a framework for a novel type of clinical decision support,

which, with additional validation and refinement, we hope

to implement for a variety of analytes.

Ferritin results Predicted ferritin results
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n = 26 (1.7%)
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Figure 4 Clinical review of selected cases. Shown is a summary of the case review. As shown, predicted ferritin may some-

times be a better indicator of a patient’s underlying iron status than measured ferritin. See the text and supplemental results

for additional clinical detail regarding each case.
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