
sensors

Article

Using Machine Learning to Provide Reliable
Differentiated Services for IoT in SDN-Like
Publish/Subscribe Middleware †

Yulong Shi 1,2,*, Yang Zhang 1,*, Hans-Arno Jacobsen 2, Lulu Tang 1, Geoffrey Elliott 2,
Guanqun Zhang 1, Xiwei Chen 3 and Junliang Chen 1

1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; 2013213377@bupt.edu.cn (L.T.);
xiaozhang123456@bupt.edu.cn (G.Z.); chjl@bupt.edu.cn (J.C.)

2 Middleware Systems Research Group, University of Toronto, Toronto, ON M5S 1A1, Canada;
jacobsen@eecg.toronto.edu (H.-A.J.); geoffrey.elliott@mail.utoronto.ca (G.E.)

3 School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA;
xiwechen@indiana.edu

* Correspondence: shiyulong2015@bupt.edu.cn (Y.S.); yangzhang@bupt.edu.cn (Y.Z.);
Tel.: +86-10-6119-8020 (Y.Z.)

† This paper is an extended version of our paper published in Shi, Y.; Zhang, Y.; Jacobsen, H.A.; Han, B.;
Wei, M.; Li, R.; Chen, J. Using Machine Learning to Provide Differentiated Services in SDN-like
Publish/Subscribe Systems for IoT. In Proceedings of the International Conference on Service-Oriented
Computing, Hangzhou, China, 12–15 November 2018.

Received: 19 December 2018; Accepted: 22 March 2019; Published: 25 March 2019
����������
�������

Abstract: At present, most publish/subscribe middlewares suppose that there are equal Quality
of Service (QoS) requirements for all users. However, in many real-world Internet of Things (IoT)
service scenarios, different users may have different delay requirements. How to provide reliable
differentiated services has become an urgent problem. The rise of Software-Defined Networking
(SDN) provides endless possibilities to improve the QoS of publish/subscribe middlewares due to
its greater programmability. We can encode event topics and priorities into flow entries of SDN
switches directly to meet customized requirements. In this paper, we first propose an SDN-like
publish/subscribe middleware architecture and describe how to use this architecture and priority
queues supported by OpenFlow switches to realize differentiated services. Then we present a machine
learning method using the eXtreme Gradient Boosting (XGBoost) model to solve the difficult issue
of getting the queuing delay of switches accurately. Finally, we propose a reliable differentiated
services guarantee mechanism according to the queuing delay and the programmability of SDN to
improve QoS, namely, a two-layer queue management mechanism. Experimental evaluations show
that the delay predicted by the XGBoost method is closer to the real value; our mechanism can save
end-to-end delay, reduce packet loss rate, and allocate bandwidth more reasonably.

Keywords: software-defined networking; publish/subscribe; quality of service; differentiated service;
queue management; machine learning

1. Introduction

In the Internet of Things (IoT) [1,2] scenarios, publish/subscribe (pub/sub) middlewares are used
to construct the communication infrastructure for different users to access the massive real-time sensor
data. Software-Defined Networking (SDN) [3–8] is a promising solution which can be used to solve
the hard problem of enhancing the Quality of Service (QoS) about disseminating data over IoT [2].

Sensors 2019, 19, 1449; doi:10.3390/s19061449 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/6/1449?type=check_update&version=1
http://dx.doi.org/10.3390/s19061449
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1449 2 of 25

In the traditional pub/sub middlewares based on IP networks, it will take more latency to match
events with the installed filters due to the detour to the broker network. However, in the new pub/sub
middlewares based on SDNs, it becomes more efficient to match and forward events directly and fast
in SDN-enabled switches by OpenFlow [9] protocol, which standardizes the interface specifications for
installing and modifying flow tables directly on SDN switches.

Bakken et al. [10] used the project GridStat to explain the significance of SDN in pub/sub
middlewares for IoT services. A pub/sub communication system was deployed over smart
grids, subscribers receive events in which they express their interests in advance from the system.
To guarantee the QoS about delivering events, they designed some specialized routers. Although the
specialized design solved the problem of QoS, it also limited their applications. In software-defined
networks, we can avoid the limitation by making full use of the programmability of SDN switches.

Most pub/sub systems consider that all subscribers have the same QoS requirements and make
the same contribution to system resources [11]. However, in real-world scenarios, different users may
have different delay requirements. Many delay-sensitive and bandwidth-limited IoT applications such
as the District Heating Control and Information Service System which has been deployed in Haidian
District, Beijing need real-time monitoring, transmission and response to anomalies (e.g., water pipe
breakage, fire). We should guarantee that such anomalous or emergency events are processed in
real time to prevent any danger. In most existing work about pub/sub middleware [12–16], much
more attention has been paid to how to forward events fast and effectively under the assumption
that system resources are sufficient, but it is rarely considered how to meet user needs in the case of
limited resources. In the user-oriented service scenario, users are often more concerned about whether
their needs can be met, such as their end-to-end delay requirements. In this paper, we focus on the
problem about meeting more user delay needs under limited network bandwidth. On the other hand,
in the traditional network, there is usually only one queue on the output ports of switches because it is
difficult to change the factory configuration of switches. We can change this situation by make full use
of the programmability of SDN-enabled switches, namely, setting different priority queues on switch
outputs. In this way, emergency events are forwarded fast, general events save network bandwidth,
and more user needs can be met, realizing differentiated services in IoT environment.

There is some similar work to ours. Tariq et al. [17] proposed a subscriber-driven decentralized
method based on the delay demands of subscribers so that subscribers with urgent delay demands
are located closer to the related publishers. However, in some location-based IoT applications,
this method does not work because subscribers cannot move freely. They also did not take
advantage of the flexibility of SDN to set up multiple priority queues for achieving differentiated
services. Bhowmik et al. [14,15] presented an SDN-based content-oriented high performance pub/sub
middleware PLEROMA, which uses the ternary content-addressable memory (TCAM) of switches
to perform filtering operations, realizing the line-rate forwarding of messages, but TCAM is very
expensive, power hunger, and has limited storage space. This work focuses on the fast forwarding
for all events, but our work mainly considers that emergency events should be forwarded fast,
the other events can be processed slowly to free up more bandwidth for emergencies. Wang et al. [18]
tried to provide differentiated services by configuring priority queues in SDN switches. However,
we found that it was inaccurate to predict the queuing delay of switch ports using the Random
Early Detection (RED) method. Because we cannot get the enqueued and dequeued data at the same
time, there is often a significant error compared to the real delay. In this paper, we try to solve this
hard issue. New methods are proposed to improve the accuracy of predicting the queuing delay;
furthermore, we describe a two-layer queue management mechanism based on user requirements to
guarantee the QoS of differentiated services. In the end, we also make some comparative experiments
about the methods. The goal of this paper is to provide reliable differentiated services in SDN-like
publish/subscribe middleware for IoT services.

How to meet the delay requirements of users in IoT is a huge challenge. There are some approaches
to achieve it, such as setting message priorities, providing multiple priority queues, configuring system

Sensors 2019, 19, 1449 3 of 25

policies, using supervised machine learning methods and providing adaptive transport protocols [19].
In traditional switches, we cannot install and modify flow tables directly on switches. However, SDN
switches get rid of these limitations. We can encode event topics and priorities into flow entries of
SDN switches directly to meet customized requirements. It is a good way to solve this difficult issue
by providing reliable differentiated services based on user delay requirements with priority queues
and machine learning methods.

In this paper, we first describe how to provide differentiated services using priority queues for
meeting the different delay requirements of users in SDN-like pub/sub systems. Then we propose
a machine learning method to solve the difficult issue of getting the queuing delay of switch egress
ports, that is to say, using the eXtreme Gradient Boosting (XGBoost) model of machine learning to
predict the queuing delay. We can get the queuing delay value by XGBoost accurately; unlike the RED
method, there is often a big error compared to the real delay. At last, in order to guarantee the reliability
of differentiated services, we use the queuing delay and the programmability of SDN to design a
two-layer queue management mechanism based on user requirements. In this way, unreasonable user
requirements will not enter the system and bandwidth resources are saved. In particular, to better
meet the user requirements, we also design a global QoS control strategy to adjust the delay constraint
of each switch dynamically in the whole network. The experimental evaluations demonstrate the
effectiveness of our proposed solution.

The major contributions of this paper are as follows:

1. We propose an SDN-like publish/subscribe middleware architecture and describe how to use this
architecture and priority queues which we can configure on SDN switches directly to provide
differentiated services. The encoding rules about event topics and priorities are presented in detail.

2. To the best of our knowledge, we are the first to predict the queuing delay of switch egress
ports using the eXtreme Gradient Boosting (XGBoost) model of machine learning. The difficult
problem of how to obtain the queuing delay of switches accurately is solved. We also compare
the performance of the XGBoost method with other methods.

3. Based on the above two solutions and making full use of the programmability of SDN, we present
a two-layer queue management mechanism based on user requirements to guarantee the reliability
of differentiated services from two different perspectives: (1) The local queue bandwidth
adjustment algorithm for a single switch in SDN controllers. The bandwidth of each queue of
switch egress ports can be readjusted dynamically according to the queuing delay and the queue
priority, more bandwidth is saved, and more delay requirements of users are satisfied with limited
bandwidth. (2) The global QoS control strategy for all switches on the path from a publisher to a
subscriber in the administrator of the pub/sub system. This strategy includes two algorithms:
the initial delay constraint calculation algorithm and the dynamic delay constraint calculation
algorithm. In this way, we can configure the delay constraint of each switch dynamically and
allocate the queue bandwidth more reasonably from the system view, reliable differentiated IoT
services are guaranteed.

The remainder of this paper is organized as follows. Section 2 discusses the related work. Section 3
describes the preliminaries about predicting the queuing delay of switches. Section 4 introduces how
to provide reliable differentiated services. Section 5 presents the queuing delay prediction method.
Section 6 proposes the reliable differentiated services guarantee mechanism. Section 7 provides the
experimental evaluations. Section 8 concludes this paper with an outlook on future research.

This paper is an extended version of our paper published in the International Conference on
Service-Oriented Computing 2018 [20].

2. Related Work

The pub/sub middleware is an event-driven middleware [21]. The full decoupling in time, space
and synchronization between publishers and subscribers [22,23] makes pub/sub systems especially

Sensors 2019, 19, 1449 4 of 25

appropriate for large-scale distributed IoT service deployments. Pub/sub systems are divided into
several variations in the light of different subscription mechanisms, such as topic-based [24–26],
content-based [27–29] and type-based [30,31] pub/sub systems. In the topic-based pub/sub scheme,
events are classified by topics, the group communication notion is used. It is easy to implement and
does not need too much runtime overhead, especially suitable for real-time IoT service scenarios.
However, these systems above are built with overlay networks, their QoS is difficult to improve
because clients cannot control the underlying switches. The rise of SDN provides endless possibilities
to improve the QoS of pub/sub systems due to greater programmability. The work of [14,15,17,32,33]
showed some cases about SDN-based pub/sub systems, they mainly focused on routing and event
filtering, the QoS of systems is rarely mentioned.

There have been some works on the QoS solutions of the traditional pub/sub systems.
Hoffert et al. [34] used machine learning methods for QoS parameter prediction. For example,
neural networks and decision trees are good at protocol classification. We are inspired by these
methods to predict the queuing delay of switches using the machine learning model (XGBoost).
Zeng et al. [35,36] presented a QoS-aware middleware platform about the composition of web
services. A special Service-Oriented Architecture (SOA) infrastructure for monitoring and detection
was designed. They tried to maximize user satisfaction for web services composition in middleware,
we also use user requirements as the metric of QoS in pub/sub system, but for differentiated services
in IoT. Behnel et al. [37] first presented the comprehensive evaluation standard about QoS metrics
for pub/sub systems, such as latency, bandwidth, and message priorities. In this paper, we use
bandwidth, end-to-end delay, and packet loss rate as evaluation standards. Lu et al. [38] described a
new real-time QoS-aware pub/sub service which is in line with the Data Distribution Service (DDS)
standard. Wang et al. [39] proposed the first pub/sub message broker which can actively schedule
computation resources to satisfy QoS needs. The authors described a message dispatching algorithm
to ensure different QoS needs; in our work we propose a two-layer queue management mechanism
to improve the QoS of pub/sub system. Pongthawornkamol et al. [40] proposed an analytical QoS
model for the timely prediction in distributed content-based pub/sub systems. Basem Almadani [41]
presented a QoS-aware real-time pub/sub middleware using DDS to improve the QoS performance in
petroleum industry. This article indicates that DDS is a good technology to enhance the performance
of IoT service.

However, there are few works about providing differentiated services in SDN-like pub/sub
systems. Blake et al. [42] proposed an architecture standard for differentiated services (DiffServ)
in Request for Comments (RFC) 2475. The architecture is scalable, a lot of new services can be
implemented based on it. The standard also defines the basic architectural model, design principles,
multicast considerations, and security considerations of DiffServ. Hakiri et al. [43] in 2013 presented a
solution combining differentiated services with DDS to provide the network-level DiffServ in pub/sub
systems. Hakiri et al. [44] in 2014 proposed a policy-driven QoS framework that combines Session
Initiation Protocol (SIP), DDS, and IP DiffServ to improve QoS in wide-area networks. Aiello et al. [45]
compared different queue polices for DiffServ in a single FIFO queue. They supposed that packets
are divided into high-priority or low-priority packets, a packet loss strategy and enqueue strategy are
designed to implement the DiffServ, the goal is to maximize the sum of the advantages of all packages.
but our design aim is to provide the DiffServ in multiple queues of a switch port, different packets
have different priorities and enter different queues.

3. Preliminaries

In this section, we describe some basic concepts and principles related to define our methods to
predict the queuing delay of switches. The queuing delay refers to the time interval from the end of
the queue to the start of the queue for a packet. To some extent, the congestion degree of the queue is
positively correlated with the queuing delay. The larger the queuing delay, the more congested the
queue. Therefore, the queue congestion degree can be judged according to the size of the queuing

Sensors 2019, 19, 1449 5 of 25

delay. XGBoost model is a new machine learning model for delay prediction. The Autoregressive
Integrated Moving Average (ARIMA) model is used to get the cycle of packets distribution. In this
paper, we adopt RED method to predict the queuing delay of switches by RED formula, which is often
used to avoid congestion in queue management. The IDM is an improvement of the RED method.

3.1. XGBoost Model

XGBoost model is a new and efficient machine learning method proposed by Tianqi Chen in
2016 [46]. This model can solve regression prediction problems in supervised learning efficiently
and accurately. It is used very frequently in academia and industry. Compared with the traditional
Gradient Boosting Decision Tree (GBDT) algorithm, XGBoost has made a series of improvements in
loss function, regularization, and column sampling etc. Whether in the famous machine learning
contest Kaggle or KDD Cup, XGBoost is used by many winning teams. It can save system resources
and improve training speed which can be 10 times higher than traditional methods.

In [46], the objective function is proposed as shown in Equations (1) and (2). In statistics, Root
Mean Squared Error (RMSE) is an evaluation index which is often used to weigh the proximity of the
predicted outcomes to the real values [47], so we use the classic RMSE loss function as the evaluation
function, as shown in Equation (3).

Obj(t) =
n

∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) +

K

∑
k=1

Ω(fk) + const (1)

Ω(fk) = γT +
1
2

λ
T

∑
j=1

ω2
j (2)

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (3)

Here, l(yi, ŷi
(t−1) + ft(xi) is the loss function, Ω(fk) is the regularization term. The l is a

differentiable convex loss function which weighs the deviation between the real value yi and the
predicted result ŷi, ŷi

(t) is the predicted value of the i-th instance of the t-th iteration, Ω measures the
complexity of this model, T represents leaves number in the tree. Every fk corresponds to a leaf weight
w and a separate tree structure, wj is the score on the j-th leaf, γ corresponds to the threshold, and the
pre-pruning is performed while optimizing to limit the growth of the tree, λ is used to smooth the final
learnt weights to prevent overfitting.

3.2. ARIMA Model

In statistics and econometrics, and especially in time series analysis, the classic ARIMA
model is fitted to time series forecasting. Box and Jenkins first proposed the famous time series
forecasting method in 1971 [48]. The ARIMA model has three basic elements expressed as (a, i, m).
The autoregressive (AR) element (a) indicates the effect of old values on current values in the series;
The integrated (I) element (i) represents that the data values have been taken the place of the deviation
between their values and the former values; The moving average (MA) element (m) models the model’s
random variation as a linear combination of prior error terms [49]. The goal of these elements is to
make this model match the data as well as possible.

3.3. RED Method

The RED formula [50] is a commonly used algorithm to avoid congestion in packet switching
networks. It uses the average queue length to detect the initial congestion. The RED gateway drops
packets or sets a flag bit in the header of packets when the average queue length exceeds the default
threshold. It enables instantaneous bursts of packets while keeping the average queue length low.
The basic principle is that it monitors the average queue length to reflect the queue congestion status.

Sensors 2019, 19, 1449 6 of 25

Because of the bursts of the real network load, the queue length varies greatly. The instantaneous full
and empty queues cannot be used as a reference for queue congestion. Therefore, the RED formula
uses a low-pass filter to smooth transient network changes, focusing on long-term changes in the
queue. The RED formula is shown in Equation (4).

avgQ = (1− w)× avgQ + w× qLen (4)

where avgQ is the average queue length, the avgQ on the left in Equation (4) is the current value, and
the avgQ on the right is the last one. qLen is the real-time queue length, w is the weight, 0 < w < 1,
used to measure the impact of qLen on avgQ. If w is close to 0, the change of the real-time queue length
qLen will not have too much impact on the average queue length avgQ; If w is close to 1, the average
queue length avgQ is degraded to the current queue length qLen. Therefore, the choice of w is very
important. If w is too large, the RED formula cannot effectively ignore short-term congestion; If it is too
small, then avgQ will react too slowly to the change of the actual queue length. Generally speaking,
it is determined by the size and duration of the burst traffic allowed by switches.

The RED method is composed of Equations (4)–(6). This method can reduce the data sensitivity,
ignore the instantaneous changes of data, and reduce the resource overhead caused by the frequent
bandwidth adjustment. In this paper, the RED formula is different from the RED method. The RED
formula is used to get the average queue length avgQ by Equation (4), while the RED method is used
to get the queuing delay of switches Delay by Equations (4)–(6).

qLen = enQ− deQ (5)

Delay = avgQ/Width (6)

Here, enQ and deQ are the total number of bytes enqueued and dequeued, respectively. Delay is
the queuing delay. Width is the queue bandwidth. We can get enQ and deQ by the Representational
State Transfer (REST) API of SDN controllers (OpenDaylight), then we get qLen by Equation (5);
Combined with the set w value, we can estimate the average queue length avgQ by Equation (4); The
queue bandwidth Width is also obtained by the REST API of SDN controllers. At last, we can get the
queuing delay of switches through Equation (6).

3.4. Incremental Difference Method

This method is an improvement of the RED method. Equation (5) can be improved as follows:

qLen = ∆enQ− ∆deQ + qLen (7)

where ∆enQ and ∆deQ are the increment of enQ and deQ, respectively.
Compared with the RED algorithm, this method does not need to guarantee the simultaneity

of getting the enqueued and dequeued data, avoiding the influence of measurement time difference
on data. At the same time, the error caused by packet loss is no longer cumulative, so the error is
greatly reduced.

4. How to Provide Reliable Differentiated Services

In this section, we propose some methods used to provide the reliable differentiated services in
detail. These methods mainly include four parts. The first part is the architecture design about the
SDN-like pub/sub system, it is the system platform to provide differentiated services; The second
part is the topic encoding in the topic-based SDN-like pub/sub system, which describes the encoding
rules about event topics and priorities; The third part is the design principles of priority queues, which
are used to implement differentiated services. The last part is the mechanism used to guarantee the
reliability of differentiated services.

Sensors 2019, 19, 1449 7 of 25

4.1. SDN-like Pub/Sub System Architecture

In SDN, the forwarding plane is separated from the control plane. The control layer is composed
of logically centralized controllers, network switches become simple packet forwarding devices. In this
way, SDN simplifies the design and management of networks, and makes the network have more
programmability and flexibility. We propose an SDN-like pub/sub system architecture, as shown in
Figure 1. The system includes one administrator and several clusters. The administrator is responsible
for the global network management and interacts with the controller of each cluster. A cluster contains
a controller, several switches, publishers, and subscribers. Border switches are used to interconnect
clusters. Users communicate with the system by Web Service Notification (WSN).

Administrator

Controller

Cluster

Publisher

Border Switches

Cluster

Control Layer

Data Layer

Subscriber

Global Management

A
d
v
e
rtisem

en
t

S
u

b
scrip

tio
n

Event

OpenFlow Message

WSN

SDN Switch

Figure 1. SDN-like pub/sub system architecture.

The system contains three layers: global management layer, control layer, and data layer. Our
SDN-like pub/sub system is mainly implemented in the control layer, namely, SDN controllers, which
are the control center of the system.

4.2. Topic Encoding

In our topic-based pub/sub system, topics are represented as a Lightweight Directory Access
Protocol (LDAP) topic tree. The topic, event type and queue priority are encoded into binary strings of
the 128 bits IPv6 multicast address in the header of packets. They are used to match flow tables directly
when forwarding. If the IPv6 destination address match the flow entries, the events will be forwarded;
else they will be discarded. We use 100 bits of IPv6 address to encode the topics. If the number of bits
of the topic code is less than 100, we fill them with 0. The encoding rules are shown in Figure 2.

4.3. Priority Queue

In this paper, we use different priority queues to meet the different delay needs of subscribers on
different topics. Different priority queues have different bandwidths. The bandwidth size determines
the forwarding capability of queues. In this way customized differentiation services are provided.
In SDN, OpenFlow switches can support up to 8 priority queues per port. These queues are numbered
from 0 to 7, and the larger the queue number is, the higher the priority is.

For simplicity and ease of experimental verification, we take three priority queues as an example
in this paper. In practical applications, we can set more- or less-priority queues according to specific

Sensors 2019, 19, 1449 8 of 25

application requirements. In this case, messages are divided into three levels according to their
emergency degrees: low, medium, high. The low-priority messages enter queue 5, the medium enter
queue 6, and the high enter queue 7, as shown at the bottom of Figure 3. We use 3 bits of IPv6 address
to encode the queue priorities of events in case of future expansion, as shown in Figure 2, if the number
of levels of the required priority queues is greater than three, we can set more priority queues. When
the network is congested, multiple priority queues not only ensure that high-priority messages can be
forwarded fast, but also prevent starved problems for low-priority messages.

8 bits

11111111

4 bits

0000

4 bits

1110

2 bits

3 bits

7 bits

100 bits

All

0000

Traffic

0001

Monitor

0000

Release

0010

Fire

0000

Leak

0001

Free

0001

Delete

0000

All:Release:Free

000000100001

Fixed prefix: ff Global

scope: e

Event

type

Queue

priority

Topic length Topic codeFlags: 0

Event type Code

subscription 00

advertisement 01

publication 10

e.g.

The code of topic “Free”is ‘000000100001’

The IPv6 code is :

ff0e:a8c0:2100:: for publication events with low priority

ff0e:38c0:2100:: for subscription events with high priority

Queue priority Code

low 101

medium 110

high 111

Jam

0000

Figure 2. Topic encoding.

 SDN Controller

 User

Queue Management

Local Queue

Bandwidth Adjustment

Queuing

Delay

Acquisition XGBoost

RED

IDM

Topology

Maintenance

Traffic

Management

 SDN Switch

Flow Table

Match

C
la

ssifier

S
ch

ed
u

ler A
g
en

t

Queue 7

Queue 6

Queue 5

Packet In

Port i

Packet Out

OpenFlow Southbound API OF-config

Table Miss

SDN Controller:
拓扑的构建、路由的计算、流表的下发维护，流量管

理.即
Topology maintenance
Routing computation

Flow Table maintenance
Traffic management

 Administrator

Queue Management

Global QoS Control

Application

Layer

Control

Layer

Forwarding

Layer

Northbound API

Pub/Sub

Middleware

Routing

Computation

Flow Table

Maintenance

SubscriberPublisher

S
ch

ed
u

ler S
er

v
er

T
w

o
-la

y
e
r

Q
u

eu
e M

a
n

a
g

e
m

en
t

RESTful RESTful

P
rio

rity
 Q

u
eu

e

Figure 3. Two-layer queue management mechanism.

Sensors 2019, 19, 1449 9 of 25

4.4. Reliable Differentiated Services Guarantee Mechanism

The reliable differentiated services guarantee mechanism is a two-layer queue management
mechanism based on user requirements. We present the mechanism from two different perspectives,
as shown in Figure 3. It is implemented in the control layer and the application layer. Specifically,
the local queue bandwidth adjustment is implemented in the SDN controller for a single switch;
the global QoS control is implemented by the administrator for all switches on the path from a
publisher to a subscriber.

On the SDN controller, we get the queuing delay using three methods: the RED method, IDM,
and the XGBoost model, then we use the delay to implement the local queue bandwidth adjustment.
The SDN controller communicates with SDN switches using the southbound APIs, such as the
OpenFlow protocol [9] and the OF-config protocol [51]. It interacts with the application layer by the
northbound APIs, such as REST APIs. The priority queue is mainly implemented in SDN switches.

5. Queuing Delay Prediction

The OpenFlow protocol provides standard specifications for interactions between SDN controllers
and switches. However, the support for queues is very limited, it does not provide a method to obtain
the real-time length of the switch port queue, so we cannot get the queuing delay directly. The RED
method [18] uses Equations (4)–(6) to get the queuing delay.

However, For Equation (5), because of the fast changes of SDN networks, it is difficult to get
enQ and deQ at the same time by remote access. On the other hand, when the queue is congested,
lost packets are counted in enQ but not in deQ, which results in a larger qLen, so the queuing delay is
inaccurate. To solve this problem, we propose two other methods. One is IDM as shown in Section 3.4;
the other is a machine learning method using the XGBoost model, as shown below.

5.1. Data Preprocessing

We collect a large amount of real data, such as bandwidth, package size by capturing data packets
from the network and logging once per monitoring period (200 ms). Then we get the queue data after
preprocessing by cleaning dummy data, filling missing values, and calculation, some data are shown
in Table 1.

Table 1. Queue data after preprocessing.

∆Time ∆Start ∆End Width MaxRoute Sum Pkg ∆In ∆Out ∆InOut Mem MaxPkg MinTran MaxMAC

2971099 0 0 80 12000 1500000 512 0 0 3351904417 512 M 4 M 1 µs 32 K
2769963 2972088 2770952 80 12000 1500000 512 0 0 3351904417 512 M 4 M 1 µs 32 K
3502000 5742931 6273832 80 12000 1500000 512 0 0 3351904417 512 M 4 M 1 µs 32 K
2793245 9246023 9068169 80 12000 1500000 512 0 0 3351904417 512 M 4 M 1 µs 32 K
2781192 12040209 11850302 80 12000 1500000 512 0 0 3351904417 512 M 4 M 1 µs 32 K

The meaning of each field is as follows: ∆Time: the time difference of the packet enqueued
and dequeued. ∆Start, ∆End: interval with the start or end time. Width: bandwidth. MaxRoute:
the maximum number of routing tables. Sum: the total number of received packets. Pkg: package size.
∆In, ∆Out: the number of in or out of bytes difference from the last packet. ∆InOut: the number of
in and out of bytes difference now. Mem: memory size. MaxPkg: maximum packet size. MinTrans:
minimum transmission delay. MaxMAC: the maximum number of MAC addresses. The time unit is
nanoseconds, rate in Mb/s, and size in bytes.

5.2. Feature Selection

5.2.1. Packet Distribution

Packets distribution means the distribution of packet transmission time intervals. The packets
distribution shows periodicity, so we use the ARIMA model to obtain the cycle. We also perform a

Sensors 2019, 19, 1449 10 of 25

covariance test on the cycle between two adjacent packets. The correlation coefficient is 0.87293211.
This higher value shows that there is little difference in their waveform distribution, and this method
is reasonable, so we use packets distribution as a feature.

5.2.2. Feature Coding

In raw data, there are many features represented by string that the XGBoost model cannot receive,
so we encode them into integer. Data from 11 to 14 columns in Table 1 are encoded as 0, 1, 2, and
4, respectively.

5.3. Model Training and Parameter Adjustment

We use the XGBoost model for training. The tree model is easily overfitting, so we divide training
set by 20% as validation set and set it as watchlist to obtain the optimal number of iterations. We also set
a larger iteration number, and use the score of the verification set no longer declining for 10 generations
consecutively as a criterion for early stop.

The RMSE is used as the evaluation function. The smaller it is, the closer the prediction is to the
real value. The training results are shown in Table 2. Finally, we choose the first row in Table 2 because
it has the smallest RMSE value and can achieve the best results.

Table 2. Training results.

XGBoost Parameter RMSE

min_child_weight=10; subsample=0.7;
colsample_bytree=0.7; scale_pos_weight=0.8;
max_depth=4; eta=0.1; early_stopping_rounds=30;

5.42028× 107

min_child_weight=10; subsample=0.7;
colsample_bytree=0.7; scale_pos_weight=0.8;
max_depth=6; eta=0.1; early_stopping_rounds=40;

5.59389× 107

min_child_weight=10; subsample=1;
colsample_bytree=1; scale_pos_weight=1;
max_depth=10; eta=0.1; early_stopping_rounds=50;

7.49699× 107

6. Reliable Differentiated Services Guarantee Mechanism

The reliable differentiated services guarantee mechanism is a two-layer queue management
mechanism based on user requirements. User requirements are end-to-end delay requirements of
subscribers in pub/sub systems. For a topic, a subscriber can propose a delay as the delay constraint
of messages when subscribing. Delay and packet loss rate complement each other: when one declines,
the other will rise. In some real-time scenarios, such as live video, the importance of delay is greater
than packet loss rate, because the lost data can be retransmitted, but the excessive delay cannot be
recovered. Therefore, the goal of system design is to meet delay requirements of users. By this
mechanism, more end-to-end delay are saved, we can also adjust the queue bandwidth dynamically
based on user requirements to guarantee the reliability of differentiated services.

We achieve our goal from two perspectives. One is the local bandwidth adjustment for a single
switch, SDN controllers adjust the bandwidth according to the queue priority and the queuing delay.
The other is the global control for all switches on the path. The administrator configures the delay
constraint of each switch as the local bandwidth adjustment reference.

6.1. Local Queue Bandwidth Adjustment Algorithm

The bandwidth of each queue needs to be readjusted dynamically according to the queuing delay
and the queue priority. The higher priority queue should be allocated more bandwidth, and it is not
allowed that one queue is congested but another is idle. More bandwidth is saved and more delay

Sensors 2019, 19, 1449 11 of 25

requirements of users are satisfied with limited bandwidth. Thus, reliable differentiated services are
guaranteed. The constraints for queues are as follows:

wq × tq = AvgQq, q = 5, 6, 7 (8)

tq ≤ Tq, q = 5, 6, 7 (9)

∑7
q=5 wq = Port (10)

wq > 0, q = 5, 6, 7 (11)

Minimize(c5 × t5 + c6 × t6 + c7 × t7) (12)

where wq is the bandwidth of queue q, tq is the queuing delay, AvgQq is the average queue length, Tq

is the delay constraint, Port is the total bandwidth of each switch port. Equation (12) is the adjustment
goal, namely, minimizing the weighted delay of queues. cq is queue weight (coefficient), the higher the
queue priority is, the greater the value is.

Algorithm 1 depicts the process of the local queue bandwidth adjustment. Here, tq is predicted by
the XGBoost model, IDM, or the RED algorithm. Lines 4–6 are determination conditions and updates,
we use Equations (10)–(12) to reason and calculate the new bandwidth Bq, the new delay Dq. Bq is sent
to the switch, and Dq is fed back to the administrator. The complexity of Algorithm 1 is O(1).

Algorithm 1 Local Queue Bandwidth Adjustment Algorithm
Input: wq, tq, cq, Tq, q = 5, 6, 7
Output: Bq, Dq

1: Initialize Bq = wq, Dq = 0, cq = q + 1, Port = 100
2: AvgQq = wq × tq
3: Sum = ∑7

q=5(AvgQq × cq)
1
2

4: if tq ≤ Tq then
5: Bq = Port× (AvgQq × cq)

1
2 /Sum

6: Dq = Sum× (AvgQq/cq)
1
2 /Port

7: else
8: notify the administrator to adjust Tq
9: end if

6.2. Global QoS Control Strategy

In Equation (9), Tq is calculated by the administrator according to user needs and path information.
A topic may have many subscribers, we use Uj to represent the delay requirements proposed by
subscriber j. There is a lower delay limit ti for hop (switch) i, which is a constant related to switch
performance, port bandwidth, and line standards. The switch can guarantee the delay constraint above
ti. For the whole path, the constraints are as follows:

∑n
i=1 Ti ≤ Uj, j = 1, 2, ..., m (13)

Ti ≥ ti, 1 ≤ i ≤ n (14)

Minimize(Uj −∑n
i=1 Ti) (15)

Here, n is the number of hops, m is the number of subscribers of a topic. When paths intersect,
a switch may have multiple delay constraints, taking the minimum to meet all needs. We use the best
adaptation principle to adjust the bandwidth, that is, to meet user needs as close as possible, as shown
in Equation (15). In this way, each user consumes as little bandwidth as possible, more bandwidth is
saved; overall, the system can meet more user needs with limited total bandwidth. If it has a solution,
the administrator will take Ti as the Tq of node i, and send it to the controller as a local adjustment
reference. The q depends on the priority of the topic; If it has no solution, the administrator will notify
the subscriber by the local controller that the delay requirement cannot be satisfied, please resubmit a
new subscription.

Sensors 2019, 19, 1449 12 of 25

After the initial delay constraint is delivered, the administrator still needs to adjust it in real time.
SDN controllers periodically feedback the queue delay to the administrator. We use fi to represent the
queuing delay fed back by the controller where switch i resides, and the administrator recalculates T′i
of each switch according to the following formulas:

Degree =
Uj

∑n
i=1 fi

(16)

T′i = Degree× Ti (17)

where Degree is the satisfaction degree to which the current delay meets the user needs. Ti is the
current delay constraint, T′i is the new one. In Equations (16) and (17), if Degree > 1, it shows that the
current delay constraint not only can meet the user needs, but also has some residual delay, T′i should
become larger than Ti, so more bandwidth can be saved, the delay requirements of more users can be
met with limited bandwidth resources; If Degree < 1, it shows that the current delay constraint cannot
meet the user needs, T′i should become smaller than Ti; If Degree = 1, it shows that the current delay
constraint just meets the user needs, no adjustment is required by the local controller. If T′i is smaller
than ti, it shows that the switch cannot meet the current transmission rate, and the administrator
should send a notification to the publisher to reduce the frequency of sending packets by the controller.
Otherwise, the administrator delivers T′i to the controller as the delay constraint of the local bandwidth
adjustment. The global QoS control strategy is shown in Algorithm 2 and Algorithm 3.

Algorithm 2 Initial Delay Constraint Calculation Algorithm

Input: UserDelay, NodeMinDelay, HopNum
Output: InitDelayConstraint

1: if UserDelay < HopNum× NodeMinDelay then
2: notify the subscriber to subscribe again
3: else
4: InitDelayConstraint = UserDelay/HopNum× λ

5: end if
6: save InitDelayConstraint to ConstraintTable
7: download the delay constraint message to SDN controller

In Algorithm 2, λ is the allocation ratio, and a flexible space should be reserved for constraints to
avoid the extra delay at the sending and receiving end. At last, the initial constraints are saved to the
table ConstraintTable, which is used in Algorithm 3. The complexity of Algorithm 2 is O(1).

Algorithm 3 Dynamic Delay Constraint Calculation Algorithm

Input: CurrentDelay, LastDelayConstraint, UserDelay, Path, Priority, ConstraintTable
Output: Res

1: Initialize Res = 0, temp = 0
2: for Switch in Path do
3: Con = ConstraintTable.get(Switch).get(Priority)
4: temp = temp + Con
5: end for
6: Res = CurrentDelay×UserDelay× temp/LastDelayConstraint

In Algorithm 3, lines 2–5 calculate the sum of the last delay constraint on the path. Line 6 calculates
the new constraint and send it to the controller. The complexity of Algorithm 3 is O(n).

This strategy makes full use of the administrator’s characteristics which can control the global
network and dynamically allocate constraints based on user requirements. Thus, more reliable
differentiated services are guaranteed. In this way, the delay of the entire path can satisfy the user
needs, realizing the SDN-like topic-based reliable differentiated IoT services.

Sensors 2019, 19, 1449 13 of 25

7. Experimental Evaluation

We perform five experiments to verify the effectiveness of our methods. The first experiment
verifies the effectiveness of two new queuing delay acquisition methods and compares them with the
RED method. The second and third experiments verify the performance of the local queue bandwidth
adjustment algorithm. The fourth one verifies the effectiveness of the global QoS control strategy.
The fifth one is a Poisson distribution background traffic experiment to verify the effectiveness of our
methods. The last one is constant bit rate and variable bit rate traffic experiments.

In real network scenarios, the queuing delay of switches changes very fast due to the uncontrolled
traffic, making it difficult to capture. It is complex and very hard to improve the QoS inside switches,
as the queue management inside switches is usually the responsibility of the management software of
switches. In this paper, we focus on the queue management at a larger granularity, namely, we explore a
two-layer queue management mechanism in the network (across switches), not the queue management
inside switches. For network congestion, we focus on the long-term network congestion, not the burst
congestion. In this paper, we use the centralized management by SDN controllers and the greater
programmability of SDN switches to improve the QoS of SDN-like pub/sub middlewares. SDN
controllers can get the topology of the whole network and can know the network status through the
northbound API. We can customize the forwarding rules of SDN switches to set queue priorities,
differentiated services, and security strategies. Therefore, it is easier to improve QoS in SDN networks.

7.1. Experimental Setup

We use three SDN-enabled physical switches and several PCs to setup the experiment topology
as shown in Figure 4. Each OpenDayLight controller is connected to one or more switches through the
OpenFlow protocol. Each SDN controller, switches, and some hosts form a cluster such as G1. The
switch model is Pica8-p3290, which can support OpenFlow1.4, Open vSwitch2.3, 48 ports, 8 priority
queues, IPv6. The bandwidth of each switch port is 100 Mb/s.

 Control Path

 Data Path

P1

S1 S2 S3

SW1 SW2 SW3

C1 C2 C3

Controller: C1, C2, C3

Switch: SW1, SW2, SW3

Publisher: P1

Subscriber: S1, S2, S3

Group: G1, G2, G3

Administrator

G1 G2 G3

 Group

Figure 4. Experiment topology.

In Figure 4, P1 is a publisher which can send packets with different topics. Different topics have
different priorities, and will enter different priority queues. Topics and priorities are encoded into IPv6
multicast address in the header of packets and will match flow tables directly when forwarding. S1,

Sensors 2019, 19, 1449 14 of 25

S2, and S3 are three subscribers, each of which can receive packets sent from P1, forming three paths
with one, two, and three hops, respectively. For the first three experiments, paths are from P1 to S1 (P1,
SW1, S1), For the fourth, the path is from P1 to S3 (P1, SW1, SW2, SW3, S3).

7.2. Queuing Delay Prediction Methods Comparison

In this experiment, for simplicity, we assume that the bandwidth proportion of the three priority
queues is 1:3:6, so the bandwidths of queue 5, 6, and 7 are 10 Mb/s, 30 Mb/s and 60 Mb/s, respectively.
The bandwidth ratio can also be adjusted according to the actual application scenarios. For each
queue we run three queuing delay prediction methods under different frequencies of sending packets,
the RED method proposed in the work of [18] is the control group of this experiment. The packet size
is 1 KB. Packets for each frequency are sent continuously for one minute. The experiment results are
shown in Figure 5.

 0

 3

 6

 9

 12

1000 3000 5000 10000 20000

D
el

ay
 (

s)

Number of Packets Sent Per Second

Real
RED
IDM
XGBoost

(a) Queue 5

 0

 1

 2

 3

 4

1000 3000 5000 10000 20000

D
el

ay
 (

s)

Number of Packets Sent Per Second

Real
RED
IDM
XGBoost

(b) Queue 6

 0

 0.5

 1

 1.5

 2

1000 3000 5000 10000 20000

D
el

ay
 (

s)

Number of Packets Sent Per Second

Real
RED
IDM
XGBoost

(c) Queue 7

Figure 5. Queuing delay prediction methods comparison.

It can be seen from Figure 5 that sometimes the delay of the RED method is far away from the
real value, because we cannot get the enqueued and dequeued data at the same time, the value of qLen
in Equation (5) is not accurate; However, IDM avoids the measurement time error by Equation (7),
therefore, we can get more accurate delay value using IDM by Equation (6). However, according to
Equation (4), we cannot get the perfect w, the estimated avgQ still has a small amount of error with the
real value. The XGBoost method uses a large amount of historical data in the network to predict the
delay, it does not need to consider the error of the above two methods, so we can get more accurate
delay value than IDM. As shown in Figure 5, when the frequency of sending packets becomes larger
(from 1000 to 20,000), the accuracy of IDM becomes worse than XGBoost. In a word, the prediction
accuracies of our two new methods are both better than the RED method, and XGBoost is better than
IDM, so we choose the XGBoost method for the following experiments.

7.3. Local Queue Bandwidth Adjustment Algorithm Verification

For each combination of three priority queues, we compare the delay and packet loss rate under
different frequencies of sending packets. We conduct experiments about one, two, and three queues
congestion, respectively. Some experiment results are shown in Figure 6. The initial bandwidths of
queue 5, 6, and 7 are still 10 Mb/s, 30 Mb/s and 60 Mb/s, respectively. To prevent starvation of the
low-priority queue and avoid less responsive adjustments when data arrive suddenly, we also set
bandwidth lower limits to 2 Mb/s, 10 Mb/s and 30 Mb/s for queue 5, 6, and 7, respectively. For n
queue(s) congestion, there are n different topics subscribed, different topics have different priorities.

In Figure 6a, we show the situation about one queue congestion for queue 7. The bandwidth
of queue 7 is 60 Mb/s before adjustment, it starts congestion when the frequency is between 5000
and 10,000. The delay remains at 125 milliseconds, and the data received per second also remain in a
fixed range, resulting in increasing packets loss. When we use the bandwidth adjustment algorithm,
the queue starts becoming congested when the frequency is between 10,000 and 20,000, the delay
remains at 83 milliseconds, and the packet loss rate drops significantly compared with no adjustment.

Sensors 2019, 19, 1449 15 of 25

At this moment, the bandwidth of this queue is 88 Mb/s, occupying 88% of the whole bandwidth.
The data show that this algorithm is effective.

In Figure 6b, we show the situation about two queues congestion for queue 6 and 7. For queue 6,
it starts congestion when the frequency is between 3000 and 5000 before adjustment. When we use
the bandwidth adjustment algorithm, the queue starts becoming congested when the frequency is
between 5000 and 10,000, and the packet loss rate drops significantly compared with no adjustment.
For queue 7, there is no significant change in delay, but the packet loss rate is significantly reduced.
The data show that this algorithm is effective.

In Figure 6c, we show the situation about three queues congestion for queue 5, 6, and 7. The results
are similar with Figure 6a,b. Namely, for each queue, the delay and the packet loss rate decrease
significantly compared with no adjustment. The data show that this algorithm is effective.

In Figure 6, when a queue is congested, its delay is always maintained at a stable level if the
bandwidth of the queue is not changed, and does not increase with the increase of the packet frequency.
In a word, the data show that this algorithm is effective.

 0

 20

 40

 60

 80

 100

 120

 140

1000 3000 5000 10000 20000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

D
el

ay
 (

m
s)

P
ac

ke
t L

os
s

R
at

e

Number of Packets Sent Per Second

Q7_Delay_No
Q7_Delay_Adjust
Q7_Loss_No
Q7_Loss_Adjust

(a) One queue congestion

 0

 50

 100

 150

 200

 250

 300

1000 3000 5000 10000 20000
 0

 0.2

 0.4

 0.6

 0.8

 1

D
el

ay
 (

m
s)

P
ac

ke
t L

os
s

R
at

e

Number of Packets Sent Per Second

Q6_Delay_No
Q6_Delay_Adjust
Q6_Loss_No
Q6_Loss_Adjust
Q7_Delay_No
Q7_Delay_Adjust
Q7_Loss_No
Q7_Loss_Adjust

(b) Two queues congestion

 0

 200

 400

 600

 800

 1000

 1200

1000 3000 5000 10000 20000
 0

 0.2

 0.4

 0.6

 0.8

 1

D
el

ay
 (

m
s)

P
ac

ke
t L

os
s

R
at

e

Number of Packets Sent Per Second

Q5_Delay_No
Q5_Delay_Adjust
Q5_Loss_No
Q5_Loss_Adjust
Q6_Delay_No
Q6_Delay_Adjust
Q6_Loss_No
Q6_Loss_Adjust
Q7_Delay_No
Q7_Delay_Adjust
Q7_Loss_No
Q7_Loss_Adjust

(c) Three queues congestion

Figure 6. Local queue bandwidth adjustment algorithm verification.

7.4. Local Queue Bandwidth Adjustment Algorithm Overall Test

We use the average value of the products of delay and packet loss rate as the metric. There are
three settings: the first one has no bandwidth adjustment, the second has static bandwidth, the third
adjust the bandwidth dynamically. The static bandwidths of queue 5, 6, and 7 are 10 Mb/s, 30 Mb/s
and 60 Mb/s, respectively. The experiment results are shown in Figure 7. The data show that the
effect of setting static bandwidth is better than no adjustment and worse than adjusting the bandwidth
dynamically, overall. The effectiveness of the algorithm is verified.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1000 3000 5000 8000 10000 15000 20000

D
el

ay
 (

m
s)

 *
 P

ac
ke

t L
os

s
R

at
e

Number of Packets Sent Per Second

Static_Adjust

Dynamic_Adjust

No_Adjust

Figure 7. Delay * packet loss rate comparison.

Sensors 2019, 19, 1449 16 of 25

7.5. Global QoS Control Strategy Verification

In this test, we use the path from P1 to S3, there are three hops (switches) on the path. Each switch
has a different delay threshold. We do some experiments on three user end-to-end delay requirements
such as 10 ms, 60 ms, 150 ms. Different requirements are assigned to different priority queues, as shown
in Table 3.

Table 3. Delay requirements.

Requirement Priority Queue Bandwidth

10 ms high 7 60 M/s
60 ms medium 6 30 M/s
150 ms low 5 10 M/s

We show the experiment results about the 10ms user requirements in Figure 8. Figure 8a–c shows
that the delay threshold curve is always above the real delay curve for each switch, therefore the
threshold settings are reasonable. As shown in Figure 9, the end-to-end delay from P1 to S3 is always
less than 7ms, so subscribers can submit their latency requirements which are greater than 7 ms,
and the 10 ms user requirements can be met. Figure 10 shows that the bandwidth of the three priority
queues of switch1 changes reasonably.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1000
3000
5000
10000
20000
10000
5000
3000
1000
3000
5000
10000
2000
10000
5000
3000
1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D
el

ay
 (

m
s)

Number of Packets Sent Per Second

Time (min)

SW1_Threshold

SW1_Real

(a) Switch1

 0

 1

 2

 3

 4

 5

 6

1000
3000
5000
10000
20000
10000
5000
3000
1000
3000
5000
10000
2000
10000
5000
3000
1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D
el

ay
 (

m
s)

Number of Packets Sent Per Second

Time (min)

SW2_Threshold

SW2_Real

(b) Switch2

 0

 1

 2

 3

 4

 5

 6

1000
3000
5000
10000
20000
10000
5000
3000
1000
3000
5000
10000
2000
10000
5000
3000
1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D
el

ay
 (

m
s)

Number of Packets Sent Per Second

Time (min)

SW3_Threshold

SW3_Real

(c) Switch3

Figure 8. Delay threshold and real delay comparison.

 0

 1

 2

 3

 4

 5

 6

 7

1000
3000
5000
10000
20000
10000
5000
3000
1000
3000
5000
10000
2000
10000
5000
3000
1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
nd

 to
 E

nd
 D

el
ay

 (
m

s)

Number of Packets Sent Per Second

Time (min)

Figure 9. End-to-end delay.

Sensors 2019, 19, 1449 17 of 25

 0

 20

 40

 60

 80

 100

1000
3000
5000
10000
20000
10000
5000
3000
1000
3000
5000
10000
2000
10000
5000
3000
1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B
an

dw
id

th
 (

M
bp

s)

Number of Packets Sent Per Second

Time (min)

SW1_Q7

SW1_Q6

SW1_Q5

Figure 10. Three priority queues bandwidth.

In a word, according to the global QoS control strategy, the administrator can allocate reasonable
delay constraints for switches dynamically to meet user requirements. The queue bandwidth of
switches can be adjusted dynamically when the network is under the long-term congestion. This
experiment verifies that the global QoS control strategy is effective.

7.6. Background Traffic Experiment

In the previous four experiments, we verified our queuing delay prediction methods and
bandwidth adjustment algorithms with only the application traffic, and no background traffic. In this
section, we try to do the experiment alongside a background traffic to simulate the real network
scenarios. We adopt a Poisson distribution as the model of background traffic. The Poisson distribution
model [52] is one of the most widely used traffic models, which is originally used to analyze traffic
in traditional telephone networks [53]. In this model, the number of packets arriving in a fixed time
follows the Poisson distribution in the network, and the packet arrival time interval follows the
exponential distribution. We can set the time interval of packets arrival as exponential distribution
to simulate real network scenarios. The probability function of the Poisson distribution is shown
as follows:

P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, 3, ... (18)

where λ is the average number of occurrences of random events per unit time. The derivation process
is as follows:

The arrival process of data packets in the network satisfies the following three characteristics:

(I) The arriving packets are independent of each other during different time periods.
(II) In any small period of time ∆t, the probability of a packet arrival is independent of the start

time, it is only proportional to the length of the time period.
(III) In any small period of time ∆t, the number of packet arrivals is either 0 or 1.

Let β be the probability of a packet arrival in unit time, and let Pk(t) be the probability of k packet
arrivals in t seconds. According to (II) and (III), in any small period of time ∆t, the probability of
one packet arrival is β∆t, the probability of no arrival is 1− β∆t. If the finite time period t is divided
into n small time periods ∆t, namely, t = n∆t, the k packet arrivals in t can be distributed in any k ∆t.
According to the binomial distribution, the probability of k packet arrivals within t is as follows:

Pt(X = k) = Ck
n(β∆t)k(1− β∆t)n−k, k = 0, 1, 2, 3, ... (19)

Sensors 2019, 19, 1449 18 of 25

When n→ ∞, the binomial distribution follows the Poisson distribution approximately, as shown
in Equation (20).

Pt(X = k) = lim
n→∞

Ck
n(β∆t)k(1− β∆t)n−k =

e−βt(βt)k

k!
(20)

Equation (20) shows that the probability of k packet arrivals within time t follows the Poisson
distribution. βe−βt is the probability density function of the packet arrival interval, namely, the packet
arrival interval is subject to the exponential distribution. Therefore, we can build the Poisson
background traffic model: the time interval for each packet sent is an exponential distribution, and the
mean of the interval is λ, which is shown in Equation (18).

The Knuth algorithm [54] is used to generate Poisson random variables, and then get the time
interval of packets sent by the accumulation of the variables. The Poisson network traffic model
parameter value is shown in Table 4.

Table 4. Poisson background traffic model parameter value.

Parameter Name Parameter Value

rate 1 MB/s
time interval 5 ms
packet size 1 KB

The Poisson background traffic model curve is shown in Figure 11. In one second, there are about
200 time intervals (points), the intervals follow the exponential distribution, the rate varies around
1 MB/s uniformly, this also meets the characteristics of the Poisson distribution.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

Ra
te (

MB
/s)

T i m e (s)

 R a t e

Figure 11. Poisson background traffic model curve.

The comparison of the Poisson background traffic and no background traffic is shown in Figure 12.
We conduct two sets of experiments to verify the effectiveness of our two-layer queue management
mechanism. One uses the Poisson network traffic model to generate the background traffic, the other
one is a control group without the background traffic. The packet size is 1 KB. The packet frequency
is the number of packets sent per second. We use different packet frequencies to increase the traffic
in the queue. When this value is large enough, the network can generate congestion, then the queue
bandwidth adjustment algorithm is triggered to adjust the bandwidth of queues, at last, the delay will
become small, and the packet loss rate will decrease. We continue to send each kind of packet for one
minute to simulate the long-term network congestion.

Sensors 2019, 19, 1449 19 of 25

We take queue 7 as an example. This queue has the high priority with an initial bandwidth of
60 Mb/s. As shown in Figure 12a, when the background traffic is added to the experiment, the delay
increases, and the packet loss rate is also larger than the control group. The experimental group first
triggers the bandwidth adjustment algorithm. For example, when the packet frequency is 15,000 pps,
the delay begins to decrease for the experimental group, but for the control group, when the value
is 20,000, the delay begins to decrease. In Figure 12, the queue bandwidth adjustment algorithm is
triggered when the frequency is 5000 for the experimental group, but for the control group, when
the value is 10,000, the bandwidth of queue 7 begins to increase. Therefore, our two-layer queue
management mechanism is effective, as the bandwidth of queues can be adjusted dynamically under
the background traffic.

5 0

1 0 0

1 5 0

2 0 0

2 5 0

De
lay

 (m
s)

 D e l a y _ N o
 D e l a y _ B a c k g r o u n d
 L o s s _ N o
 L o s s _ B a c k g r o u n d

1 0 0 0 3 0 0 0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

Pac
ket

 Lo
ss R

ate

P a c k e t F r e q u e n c y
(a) Delay and packet loss rate

1 0 0 0 3 0 0 0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0

6 0

6 5

7 0

7 5

8 0

8 5

9 0

Ba
ndw

idt
h (

Mb
ps)

P a c k e t F r e q u e n c y

 N o _ B a c k g r o u n d
 B a c k g r o u n d

(b) Bandwidth

Figure 12. Background traffic and no background traffic comparison.

7.7. CBR and VBR Traffic Experiments

In this section, we conduct two traffic experiments with constant bit rate (CBR) and variable
bit rate (VBR) to verify our bandwidth adjustment methods. The experiment topology is shown in
Figure 4. We choose the path from P1 (publisher) to S1 (subscriber) through only one switch SW1,
the experiments are conducted on the Mininet [55] testbed. The Mininet version is 2.3.0, the SDN
controller Ryu [56] version is 4.29, the Open vSwitch version is 2.5.0, the OpenFlow protocol version is
1.3, and the operating system (OS) version is Ubuntu 14.04 64-bit.

For traffic generation, we adopt the Distributed Internet Traffic Generator (D-ITG) [57,58],
which has been proven to work reliably than other traffic generation tools [59]. It can generate
the realistic network workload for emerging networking scenarios. We can get the D-ITG log files after
running D-ITG tools. Some average metrics about the network can be dumped as sampled every few
milliseconds. In these experiments, we set the time to 1000 milliseconds, namely, one second. Each line
of the output file consists of these fields respectively: Time, Bitrate, Delay, Jitter, and Packet loss. It is very
convenient to evaluate network performance by D-ITG, because we can get experiment results directly
without complex calculations. In this paper, we use D-ITG to define two traffic scenarios:

CBR Traffic. In this scenario, we generate four flows with constant bit rate in 200 s by D-ITG,
respectively. The packet size is 1024 byte. The first flow is used to simulate no congestion in network
with the constant packet rate 100,000 packets per second (pkts/s); The second flow is used to simulate
the mild congestion with packet rate 200,000 pkts/s; The third flow is used to simulate the severe
congestion with packet rate 1,000,000 pkts/s; The fourth flow is used to simulate the severe congestion
with the same packet rate after bandwidth adjustments; For the first three experiments, the bandwidth

Sensors 2019, 19, 1449 20 of 25

of the switch SW1 is limited to 10 Gbps, for the last one, there is no limit to the bandwidth of the
switch, the throughput can be 20 Gbps measured by Netperf [60].

The experiment results are shown in Figure 13. Figure 13a presents the traffic from P1 to S1 with
different packet rates. Figure 13b presents the packet loss rate about the four flows. We do not use the
end-to-end delay as a metric because those delay data are not accurate with virtual machines; therefore,
we choose the packet loss rate as the metric for network congestion status, and the throughput is
selected as the real traffic metric. For the first flow, there is no packet loss because the packet rate is
lower, each packet can be delivered successfully. For the second flow, there is a small amount of packet
losses, generally less than 8%, we call the mild congestion for this situation and there is no bandwidth
adjustment. For the third flow, sometimes the packet loss rate can be very high, for example, 54.8743%
at the 109th second, as shown in Figure 13b, the network congestion is severe, the throughput is low in
this second, so the bandwidth adjustment algorithm will be executed in this situation. The execution
results are shown in the fourth curve, as shown in Figure 13a, the throughput becomes larger compared
with the third flow, the amplitude of the curve decreases, the packet loss rate decreases too. These data
prove the effectiveness of our bandwidth adjustment methods. However, the throughout data are not
increase too much due to the same packet rate, the real traffic in the network is limited by the packet
rate of senders. The throughout data are not stable or not become a straight line under the constant
packet rate for each flow because there are bursts and congestions in networks.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 00

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

Th
rou

ghp
ut

(M
bps

)

T i m e (s)

 T r a f f i c 1 0 0 0 0 0 p k t s / s n o c o n g e s t i o n
 T r a f f i c 2 0 0 0 0 0 p k t s / s m i l d c o n g e s t i o n
 T r a f f i c 1 0 0 0 0 0 0 p k t s / s s e v e r e c o n g e s t i o n
 T r a f f i c 1 0 0 0 0 0 0 p k t s / s b a n d w i d t h a d j u s t

(a) CBR traffic experiment about throughput

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pac
ket

 Lo
ss R

ate
 (%

)

T i m e (s)

 T r a f f i c 1 0 0 0 0 0 p k t s / s n o c o n g e s t i o n
 T r a f f i c 2 0 0 0 0 0 p k t s / s m i l d c o n g e s t i o n
 T r a f f i c 1 0 0 0 0 0 0 p k t s / s s e v e r e c o n g e s t i o n
 T r a f f i c 1 0 0 0 0 0 0 p k t s / s b a n d w i d t h a d j u s t

(b) CBR traffic experiment about packet loss rate

Figure 13. CBR traffic experiments over the Mininet testbed.

VBR Traffic. In this scenario, we generate four flows with Pareto distribution for the inter-departure
times of packets in 200 s by D-ITG, respectively. The shape parameter λ is 1.75 for all flows, the scale
parameters X f low1, X f low2, X f low3, X f low4 are 0.01, 0.001, 0.0001, 0.0001 for the four flows, respectively.
The four flows are used to simulate no congestion, the mild congestion, the severe congestion, the severe
congestion after bandwidth adjustments, respectively. The packet size and the bandwidth upper limit
configuration are the same with the CBR traffic experiments.

The experiment results are shown in Figure 14. Figure 14a presents the traffic from P1 to S1
with different Pareto distribution parameters. Figure 14b presents the packet loss rate about the four
flows. For the first flow, there is no packet loss, the throughput is relatively stable. For the second
flow, there are some packet losses, the network is in mild congestion, but sometimes the throughput
fluctuates considerably, and can be close to 0, this is different from the CBR experiment because
the packet rate is changing in Pareto distribution. For the third flow, both the throughput and the
packet loss rate fluctuate greatly, the throughput can be 17.54 Mbps, which is close to 0 at the 47th
second in the curve, as shown in Figure 14a, and the packet loss rate can be 66.2%, as shown in
Figure 14b. These data indicate that the network is seriously congested. After bandwidth adjustments,

Sensors 2019, 19, 1449 21 of 25

the throughput becomes relatively stable and larger, and the packet loss decreases too, as shown in the
fourth flow in Figure 14. These data verify the effectiveness of our bandwidth adjustment methods.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 00

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

Th
rou

ghp
ut

(M
bps

)

T i m e (s)

 � �
 � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � �
 � �
 � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � �
 � �
 � � � � � � � � � � � � 	 �
 � �
 � � � � � � � � � � � � 	 � � � � � � � � �
 � � � � � �
 � � � �

(a) VBR traffic experiment about throughput

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Pac
ket

 Lo
ss R

ate
 (%

)
T i m e (s)

 � �
 � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � �
 � �
 � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � �
 � �
 � � � � � � � � � � � � 	 �
 � �
 � � � � � � � � � � � � 	 � � � � � � � � �
 � � � � � �
 � � � �

(b) VBR traffic experiment about packet loss rate

Figure 14. VBR traffic experiments over the Mininet testbed.

7.8. Discussion

In the queuing delay prediction methods comparison part, one difficult problem for the RED
method and IDM is setting the appropriate w in Equation (4). If it is too large, the equation cannot
effectively filter short-term network congestion, if it is too small, avgQ will react too slowly for changes
in the actual queue length. To solve this problem, we select the proper w value from many tests
according to some network parameters such as the real-time queue length, and the total number of
bytes enqueued and dequeued. The other hard issue for XGBoost method is getting enough raw data
of switches for training, we collect a lot of real data, such as package size, bandwidth and the total
number of received packets by capturing data packets from the network and logging them once per
monitoring period (200 ms).

In the local queue bandwidth adjustment algorithm verification part, one difficulty is how to
simulate queue congestion. We handle this by increasing the number of packets sent per second
gradually. For example, in Figure 6a, when the value of the x-axis is between 1000 and 5000, the queue
is not congested, when the value increases to 5000, the queue begins to congest, the delay and the
packet loss rate start to increase. The other difficulty is how to reduce the complexity of the local queue
bandwidth adjustment algorithm. In the beginning, we use three for-loops to traverse the bandwidth
range of each queue, from minimum (the bandwidth lower limits for each queue to prevent starvation)
to maximum (the total network bandwidth), but the algorithm complexity is too high, so we use the
mathematical reasoning to deduce results directly, reducing the complexity of the algorithm to O(1).

In the local queue bandwidth adjustment algorithm overall test part, the hard problem is how to
evaluate the overall performance of the algorithm. Because delay and packet loss rate complement each
other, when one declines, the other will rise. For example, if we process packets quickly, the end-to-end
delay will decrease, but the packet loss rate will increase due to congestion coming early, so we
designed a new metric to reflect system performance comprehensively, namely, the product of delay
and packet loss rate. The area formed by the curve and two coordinate axes in Figure 7 reflects the
performance of the system to some extent.

In the global QoS control strategy verification part, the difficult issue is how to get the right
standard of user delay requirements. We did a lot of experiments to find the right delay boundary.
It is not a constant, and varies with the network size, packet size, path length, and so on. As shown

Sensors 2019, 19, 1449 22 of 25

in Table 3, we selected three sets of appropriate user delay requirements to prevent the system from
returning the resubscription message directly because the requirement could not be satisfied.

In the CBR and VBR traffic experiments, the hard issue is how to simulate the network congestion
status. We conducted a lot of experiments and adjusted the parameters for different traffic distribution
models. Except the Pareto distribution, there are also Uniform distribution, Normal distribution,
and Gamma distribution for the VBR traffic experiments. It is also a meaningful subject to do
experiments in real network environments such as campus networks or operator networks.

8. Conclusions

In this paper, we mainly address the issue of how to use SDN controllers and SDN switches
to provide reliable differentiated services in SDN-like pub/sub middlewares for IoT. In traditional
networks, we cannot install and modify flow tables directly on switches; but in SDN networks, SDN
switches remove these limitations, we can encode event topics and priorities into flow entries of SDN
switches directly. However, existing work about SDN-like pub/sub middlewares rarely studied this
issue comprehensively. We first propose an SDN-like pub/sub middleware architecture and describe
how to use this architecture and priority queues which we can configure on SDN switches directly to
provide differentiated services. Then we present a machine learning method using XGBoost model to
solve the difficult issue of getting the queuing delay of switch egress ports accurately. Finally, according
to the above two schemes and making full use of the programmability of SDN, we propose a two-layer
queue management mechanism based on user requirements to guarantee the reliability of differentiated
services from two different perspectives, SDN controllers and the system administrator, respectively.
Experimental evaluations show that our solution is effective. In this way, some delay-sensitive IoT
services are guaranteed to be prioritized, and the reliable differentiated services are provided to further
improve the QoS in SDN-like pub/sub middlewares.

However, we only use three OpenFlow physical switches to do the experiments due to their
high costs, we cannot perform large-scale experiments conveniently, therefore it is difficult to involve
routing problems. In the future, we hope to do large-scale experiments on a cloud platform with SDN
switches or the SDN simulation platform Mininet. In the administrator’s delay threshold settings,
it is a new problem to deal with the multi-topic mutual interference. On the other hand, we can
combine the local queue bandwidth adjustment algorithm and routing algorithms to promote the QoS
of pub/sub middlewares for IoT services.

Author Contributions: Conceptualization, Y.S. and Y.Z.; Investigation, Y.S., G.Z., L.T. and X.C.; Methodology,
Y.S. and Y.Z.; Project administration, Y.Z.; Resources, Y.Z., J.C. and H.-A.J.; Software, Y.S., Y.Z., G.Z., L.T. and
J.C.; Supervision, Y.Z., J.C. and H.-A.J.; Validation, Y.S., Y.Z., L.T., G.Z. and G.E.; Writing—original draft, Y.S.;
Writing—review & editing, Y.S., Y.Z., H.-A.J., G.E. and X.C.

Funding: This research was funded by the National Key Research and Development Program of China
(No. 2018YFB1003800), the State Scholarship Fund of China Scholarship Council (No. 201706470069).

Acknowledgments: The authors would like to thank all reviewers including the anonymous reviewers for
reviewing this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

2. Hakiri, A.; Berthou, P.; Gokhale, A.; Abdellatif, S. Publish/subscribe-enabled software defined networking
for efficient and scalable IoT communications. IEEE Commun. Mag. 2015, 53, 48–54. [CrossRef]

3. Kreutz, D.; Ramos, F.M.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined
networking: A comprehensive survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]

http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/MCOM.2015.7263372
http://dx.doi.org/10.1109/JPROC.2014.2371999

Sensors 2019, 19, 1449 23 of 25

4. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A survey of software-defined
networking: Past, present, and future of programmable networks. IEEE Commun. Surv. Tutor. 2014,
16, 1617–1634. [CrossRef]

5. Farhady, H.; Lee, H.; Nakao, A. Software-defined networking: A survey. Comput. Netw. 2015, 81, 79–95.
[CrossRef]

6. Fundation, O.N. Software-Defined Networking: The New Norm for Networks; ONF White Paper; Open
Networking Foundation: Palo Alto, CA, USA, 13 April 2012; pp. 1–12.

7. Kim, H.; Feamster, N. Improving network management with software defined networking.
IEEE Commun. Mag. 2013, 51, 114–119. [CrossRef]

8. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A survey on software-defined networking. IEEE Commun.
Surv. Tutor. 2015, 17, 27–51. [CrossRef]

9. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.
OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008,
38, 69–74. [CrossRef]

10. Bakken, D.E.; Bose, A.; Hauser, C.H.; Whitehead, D.E.; Zweigle, G.C. Smart generation and transmission
with coherent, real-time data. Proc. IEEE 2011, 99, 928–951. [CrossRef]

11. Tariq, M.A.; Koch, G.G.; Koldehofe, B.; Khan, I.; Rothermel, K. Dynamic publish/subscribe to meet
subscriber-defined delay and bandwidth constraints. In Proceedings of the 16th International Euro-Par
Conference, Ischia, Italy, 31 August–3 September 2010; pp. 458–470.

12. Bhowmik, S.; Tariq, M.A.; Hegazy, L.; Rothermel, K. Hybrid content-based routing using network and
application layer filtering. In Proceedings of the 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS), Nara, Japan, 27–30 June 2016; pp. 221–231.

13. Chen, C.; Jacobsen, H.A.; Vitenberg, R. Algorithms based on divide and conquer for topic-based
publish/subscribe overlay design. IEEE/ACM Trans. Netw. 2016, 24, 422–436. [CrossRef]

14. Tariq, M.A.; Koldehofe, B.; Bhowmik, S.; Rothermel, K. PLEROMA: A SDN-based high performance
publish/subscribe middleware. In Proceedings of the 15th International Middleware Conference, Bordeaux,
France, 8–12 December 2014; pp. 217–228.

15. Bhowmik, S.; Tariq, M.A.; Koldehofe, B.; Durr, F.; Kohler, T.; Rothermel, K. High performance
publish/subscribe middleware in software-defined networks. IEEE/ACM Trans. Netw. (TON) 2017,
25, 1501–1516. [CrossRef]

16. Koldehofe, B.; Dürr, F.; Tariq, M.A.; Rothermel, K. The power of software-defined networking: Line-rate
content-based routing using OpenFlow. In Proceedings of the 7th Workshop on Middleware for Next
Generation Internet Computing, Montreal, QC, Canada, 3–7 December 2012; p. 3.

17. Tariq, M.A.; Koldehofe, B.; Koch, G.G.; Khan, I.; Rothermel, K. Meeting subscriber-defined QoS constraints
in publish/subscribe systems. Concurr. Comput. Pract. Exp. 2011, 23, 2140–2153. [CrossRef]

18. Wang, Y.; Zhang, Y.; Chen, J. Pursuing Differentiated Services in a SDN-Based IoT-Oriented Pub/Sub System.
In Proceedings of the 2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA,
25–30 June 2017; pp. 906–909.

19. Hoffert, J.; Schmidt, D.C. Maintaining QoS for publish/subscribe middleware in dynamic environments.
In Proceedings of the Third ACM International Conference on Distributed Event-Based Systems, Nashville,
TN, USA, 6–9 July 2009; p. 28.

20. Shi, Y.; Zhang, Y.; Jacobsen, H.A.; Han, B.; Wei, M.; Li, R.; Chen, J. Using Machine Learning to Provide
Differentiated Services in SDN-like Publish/Subscribe Systems for IoT. In Proceedings of the International
Conference on Service-Oriented Computing, Hangzhou, China, 12–15 November 2018; pp. 532–540.

21. Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. Middleware for Internet of Things: A survey.
IEEE Internet Things J. 2016, 3, 70–95. [CrossRef]

22. Eugster, P.T.; Felber, P.A.; Guerraoui, R.; Kermarrec, A.M. The many faces of publish/subscribe. ACM Comput.
Surv. (CSUR) 2003, 35, 114–131. [CrossRef]

23. Happ, D.; Karowski, N.; Menzel, T.; Handziski, V.; Wolisz, A. Meeting IoT platform requirements with open
pub/sub solutions. Ann. Telecommun. 2017, 72, 41–52. [CrossRef]

24. Jokela, P.; Zahemszky, A.; Esteve Rothenberg, C.; Arianfar, S.; Nikander, P. LIPSIN: Line speed
publish/subscribe inter-networking. ACM SIGCOMM Comput. Commun. Rev. 2009, 39, 195–206. [CrossRef]

http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://dx.doi.org/10.1016/j.comnet.2015.02.014
http://dx.doi.org/10.1109/MCOM.2013.6461195
http://dx.doi.org/10.1109/COMST.2014.2330903
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/JPROC.2011.2116110
http://dx.doi.org/10.1109/TNET.2014.2369346
http://dx.doi.org/10.1109/TNET.2016.2632970
http://dx.doi.org/10.1002/cpe.1751
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1007/s12243-016-0537-4
http://dx.doi.org/10.1145/1594977.1592592

Sensors 2019, 19, 1449 24 of 25

25. Chockler, G.; Melamed, R.; Tock, Y.; Vitenberg, R. Spidercast: A scalable interest-aware overlay for
topic-based pub/sub communication. In Proceedings of the 2007 Inaugural International Conference
on Distributed Event-Based Systems, Toronto, ON, Canada, 20–22 June 2007; pp. 14–25.

26. Zhao, Y.; Kim, K.; Venkatasubramanian, N. Dynatops: A dynamic topic-based publish/subscribe architecture.
In Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems, Arlington,
VA, USA, 29 June–3 July 2013; pp. 75–86.

27. Fidler, E.; Jacobsen, H.A.; Li, G.; Mankovski, S. The PADRES Distributed Publish/Subscribe System.
In Proceedings of the Feature Interactions in Telecommunications and Software Systems VIII, ICFI’05,
Leicester, UK, 28–30 June 2005; pp. 12–30.

28. Barazzutti, R.; Felber, P.; Fetzer, C.; Onica, E.; Pineau, J.F.; Pasin, M.; Rivière, E.; Weigert, S. StreamHub:
A massively parallel architecture for high-performance content-based publish/subscribe. In Proceedings
of the 7th ACM International Conference on Distributed Event-Based Systems, Arlington, VA, USA,
29 June–3 July 2013; pp. 63–74.

29. Jayaram, K.; Eugster, P.; Jayalath, C. Parametric content-based publish/subscribe. ACM Trans. Comput.
Syst. (TOCS) 2013, 31, 4. [CrossRef]

30. Eugster, P. Type-based publish/subscribe: Concepts and experiences. ACM Trans. Program. Lang.
Syst. (TOPLAS) 2007, 29, 6. [CrossRef]

31. Dayal, J.; Bratcher, D.; Eisenhauer, G.; Schwan, K.; Wolf, M.; Zhang, X.; Abbasi, H.; Klasky, S.; Podhorszki, N.
Flexpath: Type-based publish/subscribe system for large-scale science analytics. In Proceedings of the 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Chicago, IL,
USA, 26–29 May 2014; pp. 246–255.

32. Hakiri, A.; Gokhale, A. Data-centric publish/subscribe routing middleware for realizing proactive overlay
software-defined networking. In Proceedings of the 10th ACM International Conference on Distributed and
Event-based Systems, Irvine, CA, USA, 20–24 June 2016; pp. 246–257.

33. Zhang, K.; Jacobsen, H.A. SDN-like: The next generation of pub/sub. arXiv 2013, arXiv:1308.0056.
34. Hoffert, J.; Mack, D.; Schmidt, D. Using machine learning to maintain pub/sub system qos in dynamic

environments. In Proceedings of the 8th International Workshop on Adaptive And Reflective Middleware,
Urbana Champaign, IL, USA, 1 December 2009; p. 4.

35. Zeng, L.; Benatallah, B.; Ngu, A.H.; Dumas, M.; Kalagnanam, J.; Chang, H. QoS-aware middleware for web
services composition. IEEE Trans. Softw. Eng. 2004, 30, 311–327. [CrossRef]

36. Zeng, L.; Lei, H.; Chang, H. Monitoring the QoS for web services. In Proceedings of the International
Conference on Service-Oriented Computing, Vienna, Austria, 17–20 September 2007; pp. 132–144.

37. Behnel, S.; Fiege, L.; Muhl, G. On quality-of-service and publish-subscribe. In Proceedings of the 26th IEEE
International Conference on Distributed Computing Systems Workshops, ICDCS Workshops 2006, Lisboa,
Portugal, 4–7 July 2006.

38. Lu, X.; Li, X.; Yang, T.; Liao, Z.; Liu, W.; Wang, H. QoS-aware publish-subscribe service for real-time
data acquisition. In Proceedings of the International Workshop on Business Intelligence for the Real-Time
Enterprise, Auckland, New Zealand, 24–24 August 2008; pp. 29–44.

39. Wang, Z.; Zhang, Y.; Chang, X.; Mi, X.; Wang, Y.; Wang, K.; Yang, H. Pub/Sub on stream: A multi-core based
message broker with QoS support. In Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems, Berlin, Germany, 16–20 July 2012; pp. 127–138.

40. Pongthawornkamol, T.; Nahrstedt, K.; Wang, G. Probabilistic QoS modeling for reliability/timeliness
prediction in distributed content-based publish/subscribe systems over best-effort networks. In Proceedings
of the 7th International Conference on Autonomic Computing, Washington, DC, USA, 7–11 June 2010;
pp. 185–194.

41. Almadani, B. QoS-aware real-time pub/sub middleware for drilling data management in petroleum industry.
J. Ambient Intell. Humaniz. Comput. 2016, 7, 287–299. [CrossRef]

42. Carlson, M.; Weiss, W.; Blake, S.; Wang, Z.; Black, D.; Davies, E. An Architecture for Differentiated Services;
RFC 2475; The Internet Society: Reston, VA, USA, 1998; pp. 1–36.

43. Hakiri, A.; Berthou, P.; Gokhale, A.; Schmidt, D.C.; Gayraud, T. Supporting end-to-end quality of service
properties in OMG data distribution service publish/subscribe middleware over wide area networks.
J. Syst. Softw. 2013, 86, 2574–2593. [CrossRef]

http://dx.doi.org/10.1145/2465346.2465347
http://dx.doi.org/10.1145/1180475.1180481
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1007/s12652-015-0332-5
http://dx.doi.org/10.1016/j.jss.2013.04.074

Sensors 2019, 19, 1449 25 of 25

44. Hakiri, A.; Berthou, P.; Gokhale, A.; Schmidt, D.C.; Thierry, G. Supporting SIP-based end-to-end data
distribution service QoS in WANs. J. Syst. Softw. 2014, 95, 100–121. [CrossRef]

45. Aiello, W.A.; Mansour, Y.; Rajagopolan, S.; Rosén, A. Competitive queue policies for differentiated services.
J. Algorithms 2005, 55, 113–141. [CrossRef]

46. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM
Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
13–17 August 2016; pp. 785–794.

47. Wu, Y.; Xie, F.; Chen, L.; Chen, C.; Zheng, Z. An Embedding Based Factorization Machine Approach for Web
Service QoS Prediction. In Proceedings of the International Conference on Service-Oriented Computing,
Malaga, Spain, 13–16 November 2017; pp. 272–286.

48. Bartholomew, D. Time series analysis forecasting and control. J. Oper. Res. Soc. 1971, 22, 199–201. [CrossRef]
49. Shaw, R.; Howley, E.; Barrett, E. Predicting the available bandwidth on intra cloud network links for

deadline constrained workflow scheduling in public clouds. In Proceedings of the International Conference
on Service-Oriented Computing, Malaga, Spain, 13–16 November 2017; pp. 221–228.

50. Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw.
1993, 1, 397–413. [CrossRef]

51. Narisetty, R.; Dane, L.; Malishevskiy, A.; Gurkan, D.; Bailey, S.; Narayan, S.; Mysore, S. Openflow
configuration protocol: Implementation for the of management plane. In Proceedings of the 2013 Second
GENI Research and Educational Experiment Workshop (GREE), Salt Lake City, UT, USA, 20–22 March 2013;
pp. 66–67.

52. Chandrasekaran, B. Survey of network traffic models. In Washington University in St. Louis CSE; Washington
University: Washington, DC, USA, 2009; Volume 567.

53. Frost, V.S.; Melamed, B. Traffic modeling for telecommunications networks. IEEE Commun. Mag. 1994,
32, 70–81. [CrossRef]

54. Kemp, C.; Kemp, A.W. Poisson random variate generation. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1991,
40, 143–158. [CrossRef]

55. De Oliveira, R.L.S.; Schweitzer, C.M.; Shinoda, A.A.; Prete, L.R. Using mininet for emulation and prototyping
software-defined networks. In Proceedings of the 2014 IEEE Colombian Conference on Communications
and Computing (COLCOM), Bogota, Colombia, 4–6 June 2014; pp. 1–6.

56. Rastogi, A.; Bais, A. Comparative analysis of software defined networking (SDN) controllers—In terms
of traffic handling capabilities. In Proceedings of the Multi-Topic Conference, Islamabad, Pakistan,
5–6 December 2016.

57. Megyesi, P.; Botta, A.; Aceto, G.; Pescape A.; Molnar S. Available bandwidth measurement in software
defined networks. In Proceedings of the ACM Symposium on Applied Computing, Pisa, Italy, 4–8 April 2016;
pp. 651–657.

58. Botta, A.; Dainotti, A.; Pescape, A. A tool for the generation of realistic network workload for emerging
networking scenarios. Comput. Netw. 2012, 56, 3531–3547. [CrossRef]

59. Botta, A.; Dainotti, A.; Pescape, A. Do You Trust Your Software-Based Traffic Generator? IEEE Commun. Mag.
2010, 48, 158–165. [CrossRef]

60. Blum, R. Network Performance Open Source Toolkit Using Netperf, tcptrace, NISTnet, and SSFNet; John Wiley &
Sons: New York, NY, USA, 2003.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jss.2014.03.078
http://dx.doi.org/10.1016/j.jalgor.2004.04.004
http://dx.doi.org/10.1057/jors.1971.52
http://dx.doi.org/10.1109/90.251892
http://dx.doi.org/10.1109/35.267444
http://dx.doi.org/10.2307/2347913
http://dx.doi.org/10.1016/j.comnet.2012.02.019
http://dx.doi.org/10.1109/MCOM.2010.5560600
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminaries
	XGBoost Model
	ARIMA Model
	RED Method
	Incremental Difference Method

	How to Provide Reliable Differentiated Services
	SDN-like Pub/Sub System Architecture
	Topic Encoding
	Priority Queue
	Reliable Differentiated Services Guarantee Mechanism

	Queuing Delay Prediction
	Data Preprocessing
	Feature Selection
	Packet Distribution
	Feature Coding

	Model Training and Parameter Adjustment

	Reliable Differentiated Services Guarantee Mechanism
	Local Queue Bandwidth Adjustment Algorithm
	Global QoS Control Strategy

	Experimental Evaluation
	Experimental Setup
	Queuing Delay Prediction Methods Comparison
	Local Queue Bandwidth Adjustment Algorithm Verification
	Local Queue Bandwidth Adjustment Algorithm Overall Test
	Global QoS Control Strategy Verification
	Background Traffic Experiment
	CBR and VBR Traffic Experiments
	Discussion

	References

