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Abstract. Distance-based record linkage (DBRL) is a common approach
to empirically assessing the disclosure risk in SDC-protected microdata.
Usually, the Euclidean distance is used. In this paper, we explore the
potential advantages of using the Mahalanobis distance for DBRL. We
illustrate our point for partially synthetic microdata and show that, in
some cases, Mahalanobis DBRL can yield a very high re-identification
percentage, far superior to the one offered by other record linkage meth-
ods.
Keywords: Microdata protection, Distance-based record linkage, Ma-
halanobis distance.

1 Introduction

A microdata set V can be viewed as a file with n records, where each
record contains p attributes on an individual respondent. The attributes
in the original unprotected dataset can be classified in four categories
which are not necessarily disjoint:

– Identifiers. These are attributes that unambiguously identify the re-
spondent. Examples are passport number, social security number, full
name, etc. Since our objective is to prevent confidential information
from being linked to specific respondents, we will assume in what
follows that, in a pre-processing step, identifiers in V have been re-
moved/encrypted.

– Quasi-identifiers. Borrowing the definition from [3, 13], a quasi-identifier
is a set of attributes in V that, in combination, can be linked with ex-
ternal information to re-identify (some of) the respondents to whom
(some of) the records in V refer. Examples of quasi-identifier at-
tributes are birth date, gender, job, zipcode, etc. Unlike identifiers,
quasi-identifiers cannot be removed from V . The reason is that any



attribute in V potentially belongs to a quasi-identifier (depending on
the external data sources available to the user of V ). Thus one would
need to remove all attributes (!) to make sure that the dataset no
longer contains quasi-identifiers.

– Confidential outcome attributes. These are attributes which contain
sensitive information on the respondent. Examples are salary, religion,
political affiliation, health condition, etc.

– Non-confidential outcome attributes. Those are attributes which con-
tain non-sensitive information on the respondent. Note that attributes
of this kind cannot be neglected when protecting a dataset, because
they can be part of a quasi-identifier. For instance, “Job” and “Town
of residence” may reasonably be considered non-confidential outcome
attributes, but their combination can be a quasi-identifier, because
everyone knows who is the doctor in a small village.

Disclosure risk assessment is needed to measure the safety in a masked
microdata being considered for release. The standard procedure is to use
quasi-identifier attributes to perform record linkage between the masked
dataset and an external identified data source. Each correctly linked pair
yields a re-identification. To be more specific, the disclosure model con-
sidered in this paper is depicted in Figure 1 and is described next:

– We assume that the released microdata set (on the right-hand side in
Figure 1) contains records with quasi-identifier attributes Y ′ and con-
fidential outcome attributes X. Attributes Y ′ are masked, synthetic
or partially synthetic versions of original quasi-identifier attributes.

– A snooper has obtained an external identified microdata set (on the
left-hand side in Figure 1) which consists of one or several identifier at-
tributes Id and several quasi-identifier attributes Y . Attributes Y are
original (unmasked) versions of attributes Y ′ in the released dataset.

– The snooper attempts to link records in the external identified dataset
with records in the released masked dataset. Linkage is done by match-
ing quasi-identifier attributes Y and Y ′. The snooper’s goal is to pair
identifier values with confidential attribute values (e.g. to pair citizens’
names with health conditions).

1.1 Contribution and plan of this paper

We offer here an empirical comparison of various record linkage methods
for re-identification. The masked datasets have been generated using the
IPSO family of partially synthetic data generators [2] in the same way
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Fig. 1. Re-identification scenario

described in [9]. The range of record linkage methods tried is broader
than in [9] and includes distance-based record linkage (DBRL) based on
the Mahalanobis distance. This latter method yields surprising good re-
sults when there are strongly correlated attributes among in the quasi-
identifiers.

Section 2 describes the record linkage methods used. The IPSO syn-
thetic data generators are briefly recalled in Section 3. Section 4 specifies
the two test datasets used as original datasets in the empirical study.
Section 5 describes the experiments that were carried out. Conclusions
are drawn in Section 6

2 Record linkage methods used

We list below the record linkage methods implemented. For additional de-
tails and notation see [9, 8]. In what follows, when the distance between
pairs of records (a, b) where a ∈ A and b ∈ B is considered, we assume
that files A and B are defined, respectively, on attributes V A

1 , . . . , V A
n

and V B
1 , . . . , V B

n . Accordingly, the actual values of a and b are, respec-
tively, a = (V A

1 (a), . . . , V A
n (a)) and b = (V B

1 (b), . . . , V B
n (b)). The following

record linkage methods were considered:

DBRL1: Attribute-standardizing implementation of distance-based record
linkage. The Euclidean distance was used. Accordingly, given the no-
tation for a and b given above, the distance between a and b is defined
by:

d(a, b)2 =
n∑

i=1

(
V A

i (a)− V̄ A
i

σ(V A
i )

− V B
i (b)− V̄ B

i

σ(V B
i )

)2



DBRL2: Distance-standardizing implementation of distance-based record
linkage. The Euclidean distance was used. Therefore, the distance be-
tween a and b is defined by:

d(a, b)2 =
n∑

i=1

(
V A

i (a)− V B
i (b)

σ(V A
i − V B

i )
)2

DBRLM: Distance-based record linkage using the Mahalanobis dis-
tance. That is:

d(a, b)2 = (a− b)′[V ar(V A) + V ar(V B)− 2Cov(V A, V B)]−1(a− b)

where V ar(V A) is the variance of attributes V A, V ar(V B) is the
variance of attributes V B and Cov(V A, V B) is the covariance between
attributes V A and V B.
The computation of Cov(V A, V B) poses one difficulty: how records
in A are lined up with records in B to compute the covariances. Two
approaches can be considered:
– In a worst case scenario, it would be possible to know the cor-

rect links (a, b). Therefore, the covariance of attributes might be
computed with the correct alignment between records.

– It is not possible to know a priori which are the correct matches
between pairs of records. Therefore, any pair of records (a, b) are
feasible. If any pair of records (a, b) are considered, the covariance
is zero.

The re-identification using Mahalanobis distance with the first ap-
proach for computing the covariance will be denoted by DBRLM-
COV. The second approach will be denoted by DBRLM-COV0.

KDBRL: Distance-based record linkage using a Kernel distance. That is,
instead of computing distances between records (a, b) in the original
n dimensional space, records are compared in a higher dimensional
space H. Thus, let Φ(x) be the mapping of x into the higher space.
Then, the distance between records a and b in H is defined as follows:

d(a, b)2 = ||Φ(a)− Φ(b)||2 = (Φ(a)− Φ(b))2 =

= Φ(a) ·Φ(a)−2Φ(a) ·Φ(b)+Φ(b) ·Φ(b) = K(a, a)−2K(a, b)+K(b, b)

where K is a kernel function (i.e., K(a, b) = Φ(a) · Φ(b)).
We have considered polynomial kernels K(x, y) = (1 + x · y)d for
d > 1. With d = 1, the kernel record-linkage corresponds to the
distance-based record linkage with the Euclidean distance.



Taking all this into account, the distance between a and b is defined
as:

d(a, b)2 = K(a, a)− 2K(a, b) + K(b, b)

with a kernel function K.
PRL: Probabilistic record linkage. The method is based on [10] and [11].

Our implementation follows [14].

3 The IPSO synthetic data generators

Three variants of a procedure called Information Preserving Statistical
Obfuscation (IPSO) are proposed in [2]. The basic form of IPSO will be
called here Method A. Informally, suppose two sets of attributes X and
Y , where the former are the confidential outcome attributes and the latter
are quasi-identifier attributes. Then X are taken as independent and Y
as dependent attributes. A multiple regression of Y on X is computed
and fitted Y ′

A attributes are computed. Finally, attributes X and Y ′
A are

released in place of X and Y .
In the above setting, conditional on the specific confidential attributes

xi, the quasi-identifier attributes Yi are assumed to follow a multivariate
normal distribution with covariance matrix Σ = {σjk} and a mean vec-
tor xiB, where B is the matrix of regression coefficients. Let B̂ and Σ̂
be the maximum likelihood estimates of B and Σ derived from the com-
plete dataset (y, x). If a user fits a multiple regression model to (y′A, x),
she will get estimates B̂A and Σ̂A which, in general, are different from
the estimates B̂ and Σ̂ obtained when fitting the model to the original
data (y, x). IPSO Method B, IPSO-B, modifies y′A into y′B in such a way
that the estimate B̂B obtained by multiple linear regression from (y′B, x)
satisfies B̂B = B̂.

A more ambitious goal is to come up with a data matrix y′C such
that, when a multivariate multiple regression model is fitted to (y′C , x),
both sufficient statistics B̂ and Σ̂ obtained on the original data (y, x) are
preserved. This is done by the third IPSO method, IPSO-C.

4 The test datasets

We have used two reference datasets [1] used in the European project
CASC:

1. The ”Census” dataset contains 1080 records with 13 numerical at-
tributes labeled v1 to v13. This dataset was used in CASC and in
several other papers. [5, 4, 15, 12, 7, 6, 9].



Table 1. Re-identification experiments using dataset ”Census” and methods IPSO-A,
IPSO-B and IPSO-C

Quasi-identifier in external A Quasi-identifier in released B

v7, v12 v7S1
A , v12S1

A

v4, v7, v11, v12 v4S1
A , v7S1

A , v11S1
A , v12S1

A

v4, v7, v12, v13 v4S1
A , v7S1

A , v12S1
A , v13S1

A

v4, v7, v11, v12, v13 v4S1
A , v7S1

A , v11S1
A , v12S1

A , v13S1
A

v1, v3, v4, v6, v7, v9, v11, v12, v13 v9S1
A , v11S1

A , v12S1
A , v13S1

A , v1S1
A , v3S1

A , v4S1
A , v6S1

A , v7S1
A

v7, v12 v7S2
A , v12S2

A

v4, v13 v4S2
A , v13S2

A

v7, v12, v13 v7S2
A , v12S2

A , v13S2
A

v4, v7, v12, v13 v4S2
A , v7S2

A , v12S2
A , v13S2

A

2. The ”EIA” dataset contains 4092 records with 15 attributes. The first
five attributes are categorical and will not be used. We restrict atten-
tion to the last 10 numerical attributes, which will be labeled v1 to
v10. This dataset was used in CASC, in [4, 6, 9] and partially in [12]
(an undocumented subset of 1080 records from ”EIA”, called ”Creta”
dataset, was used in the latter paper).

5 Experiments

We have considered the datafiles “Census” and “EIA”, with the same sce-
narios and the same re-identification experiments we used in [9]. In short,
re-identification experiments are applied to pairs of external and released
files using subsets of quasi-identifiers. In scenario S1 for the dataset “Cen-
sus” there are nine quasi-identifiers; in scenario S2 for “Census” there
are four quasi-identifiers. For “EIA” there is a single scenario with five
quasi-identifier attributes highly correlated with the rest of attributes.
Released files (see [9, 8] for details) were generated using the synthetic
data generators IPSO-A, IPSO-B and IPSO-C. Table 1 lists the sets of
quasi-identifiers considered for the “Census” data in the case of data
generated using IPSO-A. Analogous sets of quasi-identifiers (viS1

B and
viS1

C instead of viS1
A ) were considered for the other IPSO-B and IPSO-C

methods. Table 2 contains similar information corresponding to “EIA”
datasets.

Note that in this paper only experiments with files sharing attributes
have been considered.



Table 2. Re-identification experiments using dataset ”EIA” and methods IPSO-A,
IPSO-B and IPSO-C

Quasi-identifier in external A Quasi-identifier in released B

v1 v1A

v1, v7, v8 v1A, v7A, v8A

v1, v2, v7, v8, v9 v1A, v2A, v7A, v8A, v9A

v1 v1B

v1, v7, v8 v1B , v7B , v8B

v1, v2, v7, v8, v9 v1B , v2B , v7B , v8B , v9B

v1 v1C

v1, v7, v8 v1C , v7C , v8C

v1, v2, v7, v8, v9 v1C , v2C , v7C , v8C , v9C

The results of the experiments considered for the “Census” data for
methods IPSO-A, IPSO-B and IPSO-C are given in Tables 3, 4 and 5.
The results of the experiments using the file “EIA” are given in Table 6.

6 Conclusions

Conclusions in [9] with respect to distance-based and probabilistic record
linkage are also applicable here. In relation to the additional methods
considered here we should point out that:

– Distance-based record linkage based on Mahalanobis distance achieves
the highest number of re-identifications (3206 over 4092 records) in
the case of the EIA datafile when the synthetic data generator is
IPSO-A and all quasi-identifiers are considered. This corresponds to
the re-identification of 78.3% of the records. Similarly, 3194 (78.05%)
re-identifications are obtained for IPSO-B data. In the case of IPSO-
C, the best performance is 773 re-identifications (which corresponds
to 18.9% of the records).

– With respect to distance-based record linkage based on Mahalanobis
distance, DBRLM-COV0 (i.e., covariances between attributes V A and
V B are set to zero) has a better performance than DBRLM-COV.

– The distance-based record linkage based on the kernel distance leads
to results equivalents to the other distance-based methods. Only in
one experiment does this method outperform the other ones. This ex-
periment corresponds to “Census” data with synthetic data generated
with IPSO-A (first experiment with two variables). In this case, 146
records are re-identified.



One possible explanation for the different behaviour of DBRLM-COV0
in ”Census” and ”EIA” is that quasi-identifiers in the latter dataset are
more highly correlated.

In the experiments performed here, re-identification consists of finding
the links between the original and the synthetic data. This corresponds
to the assumption that the snooper knows a subset of the original data
and tries to link such data with the synthetic data in order to disclose
sensitive attributes. This re-identification is directed following the scheme
in Figure 1. This re-identification scheme differs from the scheme consid-
ered in [9]. There, synthetic data was re-identified back to the original
source data. The change in the scheme does not reveal any substantial
differences among the methods already considered in [9]. The following
results illustrate the minor differences:

– DBRL1 for “Census” data in scenario S1 on the data generated with
IPSO-A leads to 144, 85, 104, 79 and 36 records re-identified when
using the scheme in [9]. Instead, the current scheme leads to 145, 91,
95, 98 and 23, respectively.

– DBRL1 for “EIA” data on the data generated with IPSO-A, the pre-
vious scheme leads to 10, 23 and 65 re-identifications while the new
one yields 14, 16 and 65 re-identifications, respectively.

Acknowledgments

We acknowledge partial support by the Government of Catalonia under
grant 2005 SGR 00446, by the Spanish Ministry of Science and Educa-
tion under project SEG2004-04352-C04-01/02 ”PROPRIETAS” and by
Cornell University under contracts no. 47632-10042 and 10043. Abowd
acknowledges support from NSF-ITR grant SES-0427889 to Cornell Uni-
versity.

References

1. R. Brand, J. Domingo-Ferrer, and J. M. Mateo-Sanz. Reference data sets to test
and compare sdc methods for protection of numerical microdata, 2002. European
Project IST-2000-25069 CASC, http://neon.vb.cbs.nl/casc.

2. J. Burridge. Information preserving statistical obfuscation. Statistics and Com-
puting, 13:321–327, 2003.

3. T. Dalenius. Finding a needle in a haystack - or identifying anonymous census
records. Journal of Official Statistics, 2(3):329–336, 1986.



Table 3. Re-identification experiments using dataset ”Census” and method IPSO-
A. Results in number of correct re-identifications over an overall number of 1080
records. DBRL1: attribute-standardizing implementation of distance-based record link-
age (DBRL); DBRL2: distance-standardizing implementation of DBRL; DBRLM-COV
and DBRLM-COV0: distance-based record linkage using Mahalanobis distance (covari-
ances computed using the appropriate alingment or covariances set to zero); KDBRL:
distance-based record linkage with kernel distance (polynomic kernel with d=2); PRL:
probabilistic record linkage

DBRL1 DBRL2 DBRLM-COV0 DBRLM-COV KDBRL PRL

145 133 135 123 146 133

91 75 126 60 89 82

95 87 137 66 94 103

98 87 129 62 97 86

23 40 123 67 24 97

104 92 93 84 100 92

59 65 63 57 61 65

94 85 89 68 91 86

109 104 106 44 106 103

4. R. Dandekar, J. Domingo-Ferrer, and F. Sebé. Lhs-based hybrid microdata vs rank
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Table 5. Re-identification experiments using dataset ”Census” and method IPSO-
C. Results in number of correct re-identifications over an overall number of 1080
records. DBRL1: attribute-standardizing implementation of distance-based record link-
age (DBRL); DBRL2: distance-standardizing implementation of DBRL; DBRLM-COV
and DBRLM-COV0: distance-based record linkage using Mahalanobis distance (covari-
ances computed using the appropriate alingment or covariances set to zero); KDBRL:
distance-based record linkage with kernel distance (polynomic kernel with d=2); PRL:
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DBRL1 DBRL2 DBRLM-COV0 DBRLM-COV KDBRL PRL

34 34 34 34 33 34

37 37 42 19 39 32

24 24 24 11 23 23

39 39 44 17 40 36

24 24 50 11 25 43

47 47 47 44 49 48

19 19 20 20 19 18

40 40 34 34 41 37

35 35 41 41 32 33

Table 6. Re-identification experiments using dataset ”EIA” and methods IPSO-
A, IPSO-B and IPSO-C. Results in number of correct re-identifications over an
overall number of 4092 records. DBRL1: attribute-standardizing implementation of
distance-based record linkage (DBRL); DBRL2: distance-standardizing implementa-
tion of DBRL; DBRLM-COV and DBRLM-COV0: distance-based record linkage using
Mahalanobis distance (covariances computed using the appropriate alingment or co-
variances set to zero); KDBRL: distance-based record linkage with kernel distance
(polynomic kernel with d=2); PRL: probabilistic record linkage

DBRL1 DBRL2 DBRLM-COV0 DBRLM-COV KDBRL PRL

14 9 9 9 14 8

16 15 18 9 16 16

65 121 3206 143 63 159

14 9 9 9 14 8

17 15 18 8 17 16

65 120 3194 135 62 159

11 11 11 11 11 10

6 6 14 8 6 5

53 53 773 46 54 93


