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Summary 1 

1. Endangered species subjected to reintroduction programs often occur 2 

as small and isolated populations with local high density and depressed 3 

fecundity. Variation in territory quality may lead to this low fecundity 4 

owing to increasing occupation of sub-optimal territories as population 5 

density grows, known as the habitat heterogeneity hypothesis (HHH). In 6 

this context, food supplementation in poor territories may be used to 7 

produce extra young which could be allocated to reintroduction 8 

programs. 9 

2. We analyze the density-dependent fecundity pattern and the 10 

underlying mechanism in a small population of bearded vultures 11 

(Gypaetus barbatus) in Aragón (NE Spain). We then examine the 12 

viability of a hypothetical reintroduction program using extra young 13 

produced by supplementary feeding on poor territories and the effect on 14 

the donor population by means of population simulations. We also 15 

compare the economic cost of such a reintroduction program in relation 16 

to the cost of a traditional captive breeding program. 17 

3. The wild population showed clear negative density-dependent 18 

fecundity regulation driven by the HHH mechanism, with territories 19 

acting as a ‘source-sink’ system. Simulations showed that extractions 20 

for translocations had no relevant long-term effects on the donor 21 

population viability, but a marked population reduction during the 22 

extraction period. However, the implementation of supplementary 23 

feeding to produce extra young for translocation lessened significantly 24 
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this expected initial population reduction.  1 

4. Likewise, analyses showed that the annual budget of a captive 2 

breeding program for this species could be seven times more expensive 3 

than the translocation of extra young produced by food 4 

supplementation. 5 

 5. Synthesis and applications. Reintroduction programs are increasingly 6 

used as effective conservation techniques. Released individuals may be 7 

provided by captive breeding programs, which have often been 8 

relatively expensive and entailed various problems, or by translocation 9 

of wild-reared individuals, which may be subjected to public criticism 10 

and potential effects on donor populations. In this respect, raising 11 

fecundity by means of supplementary feeding in heterogeneous 12 

populations was shown to be a relatively cheap source of young for 13 

reintroductions, also avoiding negative effects on donor populations and 14 

public opinion.  15 

 16 

Keywords: cost analysis, habitat heterogeneity hypothesis, population 17 

viability analysis, reintroduction, site-dependence hypothesis, 18 

supplementary feeding, translocation 19 
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Introduction 1 

The two main ways of obtaining a sustainable source of young to 2 

undertake a reintroduction program are breeding in captivity and 3 

extraction from wild populations. However, many endangered species, 4 

persist as small relatively isolated populations but at high local density 5 

(IUCN 2012). This is a common pattern in some large species, such as 6 

raptors, that have suffered from human persecution and habitat 7 

destruction in the past (Ferguson-Lees & Christie 2003). Species 8 

showing this type of distribution are often subject to reintroduction 9 

programs aimed at extending the current range and numbers of the 10 

species and, consequently, their expected persistence time (IUCN 1998; 11 

Seddon 2010). Remaining high-density populations of endangered 12 

species often show low fecundity, resulting from density-dependent 13 

processes (Nicholson 1933; Lack 1954; Sinclair 1989; Newton 1998). 14 

This fact complicates one of the methods used in reintroduction 15 

programs: the extraction of free-living young for release in other areas. 16 

Because fecundity is low, public opinion is often against extractions, 17 

making sensible management difficult, especially if extractions can put 18 

the donor population at risk. On the other hand, using young from a 19 

pre-existing captive population avoids any effects on potential wild 20 

donor populations.    21 

Density-dependent effects in the regulation of bird populations, 22 

especially fecundity, are well described (Cooch et al. 1989; Newton 23 

1994, 1998; Ferrer & Donazar 1996; Rodenhouse, Sherry & Holmes 24 
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1997; Penteriani, Gallardo & Roche 2002; Penteriani, Balbontín & Ferrer 1 

2003; Kokko, Harris & Wanless 2004; Ferrer, Newton & Casado 2006, 2 

2008). Two major mechanisms have been proposed (Fretwell & Lucas 3 

1970). The first is called the habitat heterogeneity hypothesis (HHH) 4 

(Dhondt, Kempenaers & Adriaensen 1992; Ferrer & Donazar 1996), or 5 

site-dependence hypothesis (Rodenhouse, Sherry & Holmes 1997). In 6 

such situations, at low population densities, individuals select optimal 7 

territories. As density increases, an increasing proportion of individuals 8 

are relegated to poorer territories, where breeding is less successful, 9 

lowering the mean per capita fecundity of the population as a whole 10 

(Andrewartha & Birch 1954; Brown 1969).. The second potential 11 

mechanism is named the individual adjustment hypothesis (IAH) or 12 

interference competition hypothesis. In this situation (Lack 1966, 13 

Fretwell & Lucas 1970; Dhondt & Schillemans 1983), density-dependent 14 

depression of fecundity is envisaged to affect all individuals of the 15 

population to a similar extent. It can arise from a general depression in 16 

food supplies, or an increased frequency of aggression and interference 17 

among territorial pairs, resulting in a hostile social environment that leads 18 

to a relatively uniform reduction in breeding performance across the 19 

population. Under this hypothesis, as density rises, all or most individuals 20 

(or territories) should show reduced fecundity (Fernandez, Azkona & 21 

Donazar 1998). 22 

According to both hypotheses, mean fecundity declines as density 23 

rises (Ferrer & Donazar 1996). But from a conservation point of view, the 24 
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two mechanisms have different effects. In a high density population under 1 

HHH, a fraction of the territories are producing most of the young, 2 

contributing disproportionately to the recruitment and persistence of the 3 

population ("sources" according to Ferrer & Donazar 1996). Under IAH, 4 

however, the production of young is more uniformly distributed among 5 

territories (Ferrer, Newton & Casado 2008). Under the heterogeneity 6 

hypothesis, the destruction of a fraction of the population would have 7 

tremendous effects on population viability if high quality territories were 8 

affected or small effects if only poor territories were affected. Under IAH 9 

the effect should be proportional to the fraction affected.    10 

Variation in the quality of territories is the main driver of fecundity 11 

according to the HHH. Differences in productivity among territories have 12 

been explained by differences in food availability, degree of human 13 

disturbance, mortality factors, and other differences (Newton & 14 

Marquiss 1976; Newton 1991, Ferrer & Donazar 1996; Ferrer & Bisson 15 

2003). Food availability seems to be both one of the most common 16 

factors limiting territory quality and one of the easiest to manipulate. 17 

Supplementary feeding is a common practice in raptors and other 18 

species to raise reproductive output, either for experimental or 19 

conservation purposes (e.g. California condor, Wilbur, Carrier & 20 

Borneman 1974; sparrowhawk, Newton & Marquiss. 1981; various 21 

vulture species, Terrasse 1985; common kestrel, Wiehn & Korpimaki 22 

1997; Spanish imperial eagle, González et al. 2006, Ferrer & Penteriani 23 

2007; bearded vulture, Margalida 2010). In a high density population, 24 
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food supplementation in ’sink’ territories could lead to an 1 

‘overproduction’ of young that are not strictly necessary to maintain the 2 

population. Although these extra young could increase the resilience of 3 

the original population, keeping surplus birds nearby in case of 4 

population decline, the demographic values of these extra young would 5 

be higher in a well-designed reintroduction programme in a new but 6 

suitable area. This holds especially when the donor population operates 7 

under the HHH, because in this situation the aim is to produce extra 8 

young from territories that would otherwise be mostly unproductive. 9 

Those extra young can then be used in reintroduction programs, for 10 

example, releasing them in areas where they might not otherwise settle, 11 

but without affecting the trend of the donor population. Under the IAH, 12 

it is much less predictable whether or not donor territories would 13 

produce young naturally in any particular year, so some supplementary 14 

feeding could be ineffective, and the impacts of removal on the donor 15 

population would be much less certain. 16 

The only surviving bearded vulture (Gypaetus barbatus) 17 

population in the Spanish Pyrenees is composed of 150 reproductive 18 

units (mostly pairs, but some polyandrous trios), 78 of them in the 19 

region of Aragon. In this Aragonese population, we analyzed fecundity 20 

to find whether the observed density dependence was operating as 21 

expected on HHH or IAH. This finding enabled us to evaluate the 22 

potential for producing extra young using a supplementary feeding 23 

program,  and whether a reintroduction program could be undertaken 24 
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without affecting the viability of the donor population. Finally, the cost 1 

of such a procedure was compared against a typical program of captive 2 

breeding for release.  3 

 4 

Material and methods 5 

SPECIES AND POPULATION  6 

The bearded vulture is a large long-lived territorial raptor, with delayed 7 

maturity (adult plumage at 5–7 years old), that breeds in sparsely 8 

distributed territories in mountainous regions (Donázar et al. 1993). Its 9 

numbers and breeding range declined throughout Europe during much 10 

of the twentieth century (Hiraldo, Delibes & Calderón 1979; Tucker & 11 

Heath 1994; Mingozzi & Estève 1997; Grubac 2002). The clutch 12 

generally consists of two eggs, but only one chick survives due to 13 

obligate cainism (Brown 1977; Thaler & Pechlaner 1980; Heredia & 14 

Heredia 1991). The species feeds mainly on large bones of ungulates 15 

which it obtains from fresh carcasses and swallows whole or in pieces.  16 

In Spain, where the bulk of the current European population is 17 

located, the species reached its lowest levels in the 1970s, when fewer 18 

than 40 occupied breeding territories remained in the Pyrenees. After a 19 

period of stability up to 1987, the population of this vulture increased to 20 

90 occupied territories by 2002 (Heredia & Margalida 2002) and to 150 21 

by 2011 (Spanish bearded vulture working group unpublished data). 22 

However, this increase occurred only within a restricted geographical 23 

area, leading to a rise in population density (Donázar et al. 2005). 24 
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The whole bearded vulture population in the Aragonese Spanish 1 

Pyrenees area (approx. 7600 km2) was monitored for 25 years from 2 

1988 to 2012 inclusive. Each year, all known territories as well as other 3 

potential breeding areas were carefully searched for birds, nests or 4 

other signs of occupancy during the breeding season (November to 5 

August). Occupied territories were located on the basis of territorial or 6 

courtship activity and breeding parameters were then recorded on later 7 

visits (see Margalida et al. 2003). At the population level, productivity 8 

was measured as the mean number of fledglings raised per territorial 9 

pair, including breeding failures and taking into account that no more 10 

than one nestling could be reared per breeding attempt. Territories 11 

occupied for more than 15 years (i.e. since 1997) were considered as 12 

first occupied territories in the analyses. In general, once a territory was 13 

occupied, it remained occupied throughout the remaining period of 14 

study. 15 

 16 

SUPPLEMENTARY FEEDING 17 

In order to avoid competition with other more generalist scavengers, 18 

such us griffon vultures (Gyps fulvus) or corvids, a specific diet was 19 

provided for individual reproductive units based on sheep and goat 20 

bones. These were the 3rd and 4th metatarsal and metacarpal together 21 

with the remaining limb up to the finger bones. They were collected 22 

from authorized slaughter houses, where under official regulations, 23 

these materials are considered as surplus waste.  In all cases, the bones 24 
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were conveyed by veterinary officials in watertight barrels to the feeding 1 

point. 2 

Supplementary feeding was conducted over four years (2007-3 

2010) with the aim of improving the physical condition of particular 4 

breeders in the pre-laying period, and stimulating the laying of viable 5 

eggs. Supplementary feeding started on 31 October and finished on 31 6 

March, about 30 days after egg laying. Some 350 working days and 980 7 

hours were dedicated to this operation. Technical workers walked to the 8 

nesting areas to deposit 15-18 kg of bones each day, at a medium 9 

distance of 1118.5 ± 999.1 m (range: 50-3900 m, n = 14) from the 10 

nest. The food was placed on ledges supposedly unreachable by other 11 

carnivores, but on at least 7 occasions other species were seen at the 12 

food (Corvus corax, Corvus corone, Gyps fulvus, Milvus milvus, Vulpes 13 

vulpes, Martes martes). Nevertheless, the most frequently observed 14 

species using the food was by far the bearded vulture. Only the local 15 

pair visited each feeding site, and indeed no more than one or two 16 

bearded vultures were seen there at one time. Around 5108 kg of bones 17 

were supplied during the four years, divided among 10 different 18 

territories. The selected experimental territories where considered as 19 

low quality or “sink” territories because they had a laying rate (number 20 

of years with egg laying per number of monitored years) below the 21 

population mean (0.69 layings per year). They were also accessible by 22 

car even during heavy snow, and the topography allowed access on foot 23 

close to the nest.  24 
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 1 

SIMULATIONS 2 

We conducted simulations to analyze the viability of a hypothetical 3 

reintroduction program, based on the extra young produced by 4 

supplementary feeding. We used Vortex simulation software (Vortex, 5 

version 9.72, Lacy et al. 2005). Vortex is an individual-based model for 6 

population viability analyses (PVA). It models population dynamics as 7 

discrete, sequential events that occur according to probabilities defined 8 

by the user and modelled as constants or random variables that follow 9 

specified distributions. The events used for modelling describe the 10 

typical life cycle of sexually reproducing, diploid organisms. The method 11 

is particularly suitable for species like the one we modelled here, with 12 

low fecundity, long lifespan, small population size, estimable age-13 

specific fecundity and survival rates, and mainly monogamous breeding 14 

(Lacy 2000). In fact, Vortex has already been used to analyze the 15 

viability of bearded vulture populations (Bustamante 1996, 1998). 16 

 Using previously published estimates of fecundity and mortality 17 

rates for the species (Bustamante 1998; Margalida et al. 2003; Oro et 18 

al. 2008; Table 1), we conducted several simulations for different 19 

scenarios. For each scenario, we performed 1000 replicates during a 20 

simulated 50-year period. We selected this period because it is the 21 

double of the known reproductive life for this species (age at first 22 

breeding 7 years, maximum age of reproduction 32 years, see table 1). 23 

Negative density-dependent fecundity was considered in all the 24 
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simulations (Table 1).  The equation that Vortex uses to model density 1 

dependence is: P(N)=P(0)-[P(0)-P(K)N/KB]. were P(N) is the percentage 2 

of females that breed when the population size is N, P(K) is the 3 

percentage that breed when the population is at carrying capacity (K), 4 

and P(0) is the percentage that breed when the population is close to 5 

zero . The exponent B can be any positive number and determines the 6 

shape of the curve relating the percentage breeding to population size, 7 

as the population becomes large. If B = 1, the percentage breeding 8 

changes linearly with population size. If B = 2, P(N) is a quadratic 9 

function of N. As can be seen in Figure 2, the relationship between 10 

number of pairs and fecundity was significantly linear, so a value of B=1 11 

was selected for modeling purposes.   12 

First, we examined the dynamics of released bearded vultures in a 13 

simulated reintroduction program. We calculated the number of 14 

juveniles that would be available to release each year and the number 15 

of years required to achieve a new population. We estimated juvenile 16 

mortality (from 1 to 6 years old) using data from the reintroduction 17 

program conducted by the Gypaetus Foundation in Spain 18 

(http://www.gypaetus.org/, Table 1). We consider a new population as 19 

successfully established when the probability of extinction during 50 20 

years (that is twice the reproductive life) was less than 0.001 (P < 21 

0.001) and it showed a positive trend in population size. We simulated 22 

reintroduction programs lasting from 2 to 13 years in duration, 23 

calculating the minimum number of juveniles we would have to release 24 

http://www.gypaetus.org/
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each year assuming a 1:1 sex ratio. A population ceiling of 70 pairs was 1 

considered in these simulations because the selected area for potential 2 

reintroduction in Picos de Europa Mountains is of similar size to the 3 

Aragones population. 4 

 Second, we simulated the effect on the Aragonese bearded 5 

vulture population of repeated extractions of the minimum number of 6 

young needed for a successful reintroduction according to previous 7 

simulations, with and without food supplementation. In these 8 

simulations a population ceiling of 70 breeding pairs was considered. 9 

Juvenile mortality (between 1 and 6 year of age) used was derived from 10 

published data of this population (Table 1). Simulations started with an 11 

age distribution of a stable population.   12 

 13 

COST ANALYSIS 14 

In order to analyse the relative financial costs of alternative 15 

approaches to obtaining young for reintroduction, we compared the 16 

budget of a typical captive breeding program, namely the one 17 

conducted by the Gypaetus Foundation in Spain 18 

(http://www.gypaetus.org/), with the cost of a supplementary 19 

feeding program (like the one conducted by Fundación para la 20 

Conservación del Quebrantahuesos in the Pyrenees; 21 

http://www.quebrantahuesos.org/), plus the necessary care of the 22 

extracted young until the age of release. We also estimated the 23 

annual cost of a standard reintroduction program, based on young 24 

http://www.gypaetus.org/
http://www.quebrantahuesos.org/
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taken from unfed wild pairs, using data from the following programs 1 

developed in Spain: Osprey reintroductions in Huelva and Cádiz 2 

(Muriel et al. 2010), Spanish imperial eagle reintroduction in Cádiz 3 

(Madero & Ferrer 2002; Muriel et al. 2011) and Bearded vulture 4 

reintroduction (http://www.gypaetus.org/) in Cazorla (Simón et al. 5 

2005). Obviously the costs could change through time, but it is the 6 

relative costs of the different procedures that are important here. 7 

  8 

STATISTICAL ANALYSES 9 

We tested for trends in fecundity with linear analysis using the F-ratio 10 

statistic to find whether the slope of the data was significantly different 11 

from zero. Variances of the linear models were tested for homogeneity 12 

using Cochran's C statistic. Generalized linear models (GLM) with 13 

binomial distribution and logit link function were used to examine 14 

differences in productivity among territories as well as to compare 15 

productivity in the same territories with and without supplementary 16 

feeding. Statistical significance was set at P < 0.05 and analyses were 17 

conducted using the STATISTICA 8.0 package (Statsoft Inc., Tulsa, 18 

USA). 19 

 20 

Results 21 

DENSITY-DEPENDENT FECUNDITY 22 

The population of bearded vultures in Aragon increased throughout the 23 

25-year study period from 29 occupied territories in 1988 up to 78 in 24 
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2012 (Fig. 1), which represents an increase of 269%. During the same 1 

period, the trend in fecundity was significantly negative, decreasing 2 

from a mean value of 0.56 young per occupied territory during the first 3 

8 years to 0.36 during the last 8 years (r = -0.663, n = 22, P < 0.001; 4 

Fig. 1). In addition, a significant negative relationship between fecundity 5 

and number of breeding pairs was found (r = -0.655, n = 22, P < 6 

0.001; Fig. 2), suggesting the action of a density-dependent fecundity 7 

process.  8 

Significant differences of fecundity among territories were found 9 

(GLM with binomial distribution and logit link function; Wald statistic = 10 

156.45, P < 0.001), with some territories showing consistently high 11 

values of fecundity throughout the study, and others consistently low 12 

values. Comparing fecundity between those territories occupied for 13 

longer than 15 years and recently occupied territories, using only the 14 

last 10 years, a significant difference was found (GLM with binomial 15 

distribution and logit link function; Wald statistic = 4.73, P = 0.029, Fig. 16 

3), with higher fecundity in old territories (mean = 0.372 young per 17 

territory and year) than in recently occupied ones (mean = 0.288). In 18 

other words, the decline in mean fecundity was caused by the 19 

progressive addition of less productive territories to the population, the 20 

occupants of which bred poorly throughout.  21 

 22 

SUPPLEMENTARY FEEDING  23 

Comparing the production of chicks in the 10 selected poor territories 24 
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between the periods with (2007-2010) and without (2001-2006) 1 

supplementary feeding, highly significant differences were found. 2 

Average annual production of young in those 10 nests during the 6 3 

years without supplementary food was 0.078 against 0.541 during the 4 4 

years with supplementary food. This significant change (GLM with 5 

binomial distribution and logit link function; Wald statistic = 8.617, P = 6 

0.003), represents a seven-fold (693.6 %) increase in the expected 7 

number of young per nest. On the other hand, territories without 8 

supplementary food showed no significant change in average production 9 

between those two periods (GLM with binomial distribution and logit link 10 

function; Wald statistic = 2.758, P = 0.948). From these results, we can 11 

predict that supplementary feeding in all the 15 poorest territories of 12 

the population (i.e. those with an average annual egg laying rate below 13 

the population mean, i.e. 0.69 laying events per year), whose mean 14 

annual production of young per pair was 0.103 (total annual young = 15 

1.545) would become 0.541 x 15 = 8.115 young (between 5 and 11; P 16 

= 0.05), roughly equivalent to 7 extra young per year. 17 

 18 

SIMULATIONS  19 

The number of young released necessary to obtain a new successful 20 

population (with a probability of extinction of P<0.001 during 50 years) 21 

varies from 54 per year over two years to 4 per year over 23 years (Fig. 22 

4), with number of young per year showing a significant negative 23 

exponential relationship with number of years (r = - 0.788, P < 0.001). 24 
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Consequently, as we reduce the number of young released each year, 1 

the number of years necessary to obtain a successful population 2 

increases exponentially. Analysing only the cases between 2 and 13 3 

years, a significant effect of number of young per year on the final size 4 

of the simulated population was found (r = - 0.614, P = 0.033), with 5 

higher mean population levels as the number of young released per year 6 

increased, thereby shortening the reintroduction period. After 50 years, 7 

the mean final population size in simulations with 54 young released 8 

during two years was 33.1 breeding pairs against 22.7 when releasing 7 9 

young during 13 years (Fig. 5). Therefore, if we only released the 7 10 

extra young produced by supplementary feeding we would need at least 11 

13 years of releases to obtain a new population with a probability of 12 

extinction of P < 0.001.  13 

In simulating the effect on the donor population of the removal of 14 

nestlings, we only considered extractions of up to 26 young per year, as 15 

this is roughly the mean number of young produced by the whole 16 

population of Aragon each year. Consequently, only extraction 17 

programmes of 4 or more years were simulated. As shown in Fig. 6, the 18 

effect on the donor population varies significantly according to the 19 

extraction program (r = - 0.896, P < 0.001).  20 

As the extraction period lengthened, the size of the modelled 21 

donor population after 50 years became lower. If we removed 26 young 22 

over each of four successive years, the mean donor population size after 23 

50 years became 246 individuals, against 184 if we removed 7 young 24 
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during each of 13 successive years. However, the number of breeding 1 

pairs was the same at the end of all these simulations (70, i.e. 2 

maximum possible; Fig. 6). The magnitude of temporary decreases in 3 

the number of breeding pairs in donor populations was related to the 4 

length of the extraction period (r = 0.941, P = 0.017), ranging between 5 

36.3% (from 70 to 44.57 pairs) in four-year extraction programmes to 6 

13.7% in 13 year programmes. In any case, the probability of extinction 7 

of the donor populations was always below 0.001.   8 

Conducting the same simulations under a supplementary feeding 9 

program (i.e. assuming that we are able to produce 7 extra young), 10 

again the probability of extinction was lower than 0.001 for all the 11 

scenarios (Fig. 7). The effect of different extraction programs on the 12 

donor population was consistently less than in the previous simulations, 13 

and the length of the extraction programs had no influence on the final 14 

donor population size (r = 0.330, P = 0.385). Temporal reduction in 15 

number of breeding pairs varies from 18.2% (from 70 to 57.24 pairs) in 16 

four-year extraction programs to 0% in 13-year programs. In fact, 17 

extractions varying from 10 young over 10 years to 7 young over 13 18 

years seem to have no effect on the size of the donor population (Fig. 19 

7).  20 

 21 

ANALYSIS OF LIKELY COSTS 22 

We compared the relative costs of a captive breeding program 23 

producing 7 young bearded vultures per year against the alternative 24 
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approach of supplementary feeding of wild birds in poor territories. The 1 

annual cost of a captive breeding program for this species, as currently 2 

running in Andalusia, Spain (http://www.gypaetus.org/), is 700,000 €, 3 

including the cost of the releases in the Cazorla mountains (SE Spain) 4 

where an average of 2.7 young per year have been released during the 5 

last 6 years. This gives a total budget of 9,100,000 € to maintain the 6 

program during the necessary 13 years, releasing at least 7 young per 7 

year, to obtain a self-sustaining population in the new area, assuming 8 

that the production of 7 young per year would not increase the current 9 

budget.   10 

 In contrast, the cost of the supplementary feeding program in the 11 

Aragonese Pyrenees plus the additional cost of raising the extracted 7 12 

young until their release by hacking, together with all other associated 13 

costs of the program, give an estimated annual budget of 100,000 €, 14 

which is seven times less than the approach based on captive breeding. 15 

Using the supplementary feeding technique, the total cost of a 16 

reintroduction program during the 13 necessary years would be 17 

1,300,000 €. In other words, for the money needed for a captive 18 

breeding and release program, we could conduct up to seven different 19 

reintroduction programmes using this new approach, providing that 20 

sufficient young were available.  21 

 A major component of the total cost is the number of years 22 

needed to maintain a programme. According to our simulations, a 4-23 

year program would be successful providing that 26 young were 24 

http://www.gypaetus.org/
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available per year. This means that during 4 consecutive years we 1 

would have to remove almost all the young of the donor population 2 

(without supplementary food). Although no risk of extinction for the 3 

donor population would exist, some effects on the size of the total 4 

population would be expected during the first 10 years until it had fully 5 

recovered (see Figs. 6, 7). The total budget needed, however, would be 6 

400,000€, that is almost 23 times less than the money needed for the 7 

actual captive breeding and release program.  8 

    9 

Discussion 10 

Our studied population of bearded vultures in the Aragonese Pyreenes 11 

showed density-dependent fecundity regulation, as suggested by the 12 

highly significant negative relationship found between mean fecundity 13 

and density. The fact that first occupied territories showed higher 14 

fecundity throughout than newly-occupied ones is in accordance with 15 

the HHH as the main driver of density-dependent fecundity in this 16 

population. As expected under the HHH, the decrease in mean fecundity 17 

over the years was mainly due to an increase in the proportion of poor 18 

territories occupied as the population increased, while reproductive units 19 

on first occupied territories maintained a high mean fecundity (e.g. 20 

Newton 1991; Dhondt, Kempenaers & Adriaensen 1992; Kempenaers & 21 

Dhondt 1992; Ferrer & Donazar 1996; Krüger & Lindström 2001; Sergio 22 

& Newton 2003). Significant fecundity differences among territories 23 

support this pattern as well. In this situation, the population can be 24 
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viewed as a source-sink system, with sink territories being maintained 1 

due to ‘overproduction’ of young in source territories (Pulliam & 2 

Danielson 1991; Ferrer & Donazar 1996). Other authors have previously 3 

suggested that this bearded vulture population was under HHH 4 

regulation, at least partially (Carrete, Donazar & Margalida 2006). 5 

 Nevertheless, some other factors would explain why old territories 6 

show a consistently higher fecundity than recently-occupied ones. For 7 

example, old territories could be occupied by older and/or higher quality 8 

breeders than new territories so that age-differences would confound 9 

any effects of territory quality. This seems improbable, however, due to 10 

a general trend in long-lived raptor species with deferred maturity to 11 

increase the mean age at first breeding as population density increases 12 

(Ferrer et al. 2004). This tendency has already been suggested for the 13 

growing population of the bearded vulture in the Pyrenees (Antor et al. 14 

2008). Furthermore, in the longest occupied territories much turnover of 15 

breeders would have been expected in the 25-year study period, 16 

because every few individuals would have been expected to live to the 17 

maximum possible breeding age. Lastly, even if an age effect was 18 

operating and the positive effect of food supplementation depended on 19 

inexperienced individuals more than on territory quality, it could not 20 

have affected the results or the rationale behind the simulations. As 21 

long as some territories responded to supplementary feeding by 22 

increasing fecundity, the extraction of those ’extra young‘ would have 23 

had the same effect on the viability of the donor population, regardless 24 
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of whether it resulted from territory quality, breeder quality or both.   1 

Supplementary feeding increased fecundity in poor territories by 2 

more than 690%. This contrasts with an earlier study by Magalida 3 

(2010) who found no such effect. However, Margalida (2010) provided 4 

supplementary food only from hatching and during the following two 5 

months, so it could not have affected egg laying. In our case, food 6 

provision started well before laying, thereby increasing the proportion of 7 

pairs that laid and thus their fecundity. For supplementary feeding to be 8 

effective, it must be applied at the right time. If the main objective is to 9 

increase the proportion of Bearded Vulture pairs laying eggs, 10 

supplementary feeding must start well before laying in order to affect 11 

female condition,(for general discussion of efficacy of management 12 

techniques  see Ferrer & Hiraldo 1991).  13 

Cost analyses, based on recent comparative price levels, show 14 

that the use of captive breeding as a source of young for a 15 

reintroduction program is seven times more expensive than extraction 16 

of overproduced young from a food-supplemented wild population. The 17 

necessary maintenance of the facility, year-round labour costs and food 18 

supply for the captive animals, account for those differences. In 19 

addition, the probability of success is often lower in reintroduction 20 

programs using captive-born animals owing to factors such as lower 21 

survival rates, inappropriate behaviour or poor adaptation to local 22 

conditions (reviews in, Griffth et al. 1989; Beck et al. 1994; Snyder et 23 

al. 1996; Wolf et al. 1996).  24 
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In all the scenarios examined, extractions of young had non-1 

significant effects on the viability of the donor population with or without 2 

stimulating extra production of young by means of supplementary 3 

feeding in poor territories. Nevertheless, in the absence of appropriate 4 

food supplementation during the extraction period, the simulated donor 5 

population was significantly affected, losing breeding pairs. This 6 

temporary decrease in population size had no effect on the extinction 7 

probability over 50 years, but the simulated population took some years 8 

to recover its previous size, which could have negative effects on public 9 

opinion, hampering support for the programme. Moreover, population 10 

size was more affected as the extraction period lengthened, suggesting 11 

that extractions of young would be best concentrated into a period as 12 

short as possible. 13 

 On the other hand, using food supplementation in target 14 

territories, the expected production of extra young allowed their 15 

removal without any effect on the donor population, in either the short-16 

term or long term. Using these extra young, a 13-year reintroduction 17 

could be started with a probability of extinction for both the donor and 18 

the new population of P < 0.001. This would help to avoid any negative 19 

public perception of the management plan and would be cheaper than a 20 

captive breeding and release program, but must be maintained for at 21 

least 13 years. Probably a combination of both strategies would be the 22 

best compromise option, i.e. an overproduction of young and the 23 

removal of additional young in order to reduce the duration of the 24 
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program.   1 

 Many endangered species could benefit from this approach, 2 

especially those that now exist as isolated but dense populations. 3 

Extending the overall distribution, and increasing the connectivity 4 

between subpopulations, could be one of the most effective 5 

conservation measures that could be undertaken. Reintroduction 6 

programmes of various animals have increased greatly during the last 7 

25 years, and will probably be increasingly used in the future (Seddon 8 

et al. 2007). In this context, the use of population dynamics theory 9 

applied to conservation could reduce the costs of these interventions, 10 

increase the probability of success, and avoid problems related to 11 

negative impacts on donor populations and public opinion.     12 

 13 
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Table 1. Summary of parameter values used in Vortex for the 1 

simulations of trends in the donor population and in the hypothetical 2 

reintroduced population. Based on data from Bustamante (1998), 3 

Margalida et al. (2003), Oro et al. (2008) 4 

   5 

Parameter Value 

Age of first breeding  7 years 

Maximum age of reproduction  32 years 

Maximum number of broods per year  1 brood 

Maximum progeny per brood  1 young 

Sex ratio at birth 50% 

Fecundity rate (density dependence) 0.6 at low density 

0.35 at high density 

Juvenile mortality in Pyrenees (1-6 years) 21% (SD 1.8) 

Annual adult annual mortality (>6 years old) 13% (SD 1.4) 

Juvenile mortality of released birds (1-6 years) 50% (SD 1.2) 

 6 

7 
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Fig. 1. Growth of the population (number of occupied territories) and 2 

average fecundity (fledglings per year) of the bearded vulture in Aragon 3 

(Spanish Pyrenees) throughout the study period (1988-2012, inclusive). 4 

5 
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Fig. 2. Significant negative relationship between density and mean 2 

fecundity (r = -0.717, n = 25, P < 0.001) in the bearded vulture 3 

population of Aragon (Spanish Pyrenees). Dotted lines represent 95% 4 

confidence intervals. Fecundity is measured as the mean number of 5 

young produced per reproductive pair or unit. 6 

7 
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Fig. 3. Significant (GLM Binomial distribution and logit link function, 2 

Wald statistic = 4.73, P = 0.029) differences in fecundity between old 3 

territories (those occupied more than 15 years ago) and new ones (less 4 

than 10 years ago). 5 
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Fig. 4. Negative exponential relationship between number of young 2 

released per year and number of years necessary to obtain a probability 3 

of extinction below 0.001 in a simulation period of 50 years. 4 

5 
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Fig. 5. Trajectories of new populations according different combinations 4 

of young released per year and duration of the releases (2 years-54 5 

young, 4 years-26 young, 6 years-18 young,  8 years-14 young, 10 6 

years-10 young and 13 years-7 young).  7 

8 
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Fig. 6. Effect of different combinations of young removed per year and 4 

number of years of extraction on the number of breeding pairs in the 5 

donor population without a supplementary feeding programme (4 years-6 

26 young, 6 years-18 young,  8 years-14 young, 10 years-10 young and 7 

13 years-7 young). 8 

9 
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Fig. 7. Effect of different combinations of young removed per year and 4 

number of years of extraction on number of breeding pairs of the donor 5 

population with a supplementary feeding programme producing an extra 6 

7 young per year (4 years-26 young, 6 years-18 young,  8 years-14 7 

young, 10 years-10 young and 13 years-7 young). 8 
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