Using Markov Chains to Analyze GAFOs

Kenneth A. De Jong
Computer Science Department
George Mason University
Fairfax, VA 22030
E-mail: kdejong@gmu.edu

William M. Spears
Diana F. Gordon
Navy Center for Applied Research in Artificial Intelligence
Code 5510
Naval Research Laboratory
Washington, D.C. 20375-5320
E-mail: spears,gordon@aic.nrl.navy.mil

Abstract

Our theoretical understanding of the properties of genetic algorithms
(GAs) being used for function optimization (GAFOs) is not as strong
as we would like. Traditional schema analysis provides some first order
insights, but doesn’t capture the non-linear dynamics of the GA search
process very well. Markov chain theory has been used primarily for
steady state analysis of GAs. In this paper we explore the use of
transient Markov chain analysis to model and understand the behavior
of finite population GAFOs observed while in transition to steady
states. This approach appears to provide new insights into the
circumstances under which GAFOs will (will not) perform well. Some
preliminary results are presented and an initial evaluation of the merits
of this approach is provided.

1 INTRODUCTION

At the previous FOGA workshop the claim was made that our theoretical understanding
of the properties of genetic algorithms (GAs) being used for function optimization (i.e.,
GAFOs) was quite weak (De Jong, 1992). Traditional schema analysis provides insight
into the optimal allocation of trials when maximizing cumulative profits is the goal
(Holland, 1975), but doesn’t say much about global function optimization. Static
analysis of functions regarding their ‘‘deceptiveness’ provides some insights into what
kinds of functions are difficult to optimize with a GA (Goldberg, 1987), but is a “‘first
order’’ theory in the sense that it doesn’t include the effects of the non-linear dynamics
of the GA search process. Traditional Markov chain analysis provides insight into the
long term, steady state behavior of large population GAs (Davis and Principe, 1991; Nix
and Vose, 1992; Vose, 1992; Suzuki, 1993; Rudolph, 1994), but says little about the
transient observable behavior of implementable GAFOs. Markov chains have also been
used to model specific features of GAs, such as selection, genetic drift, niching, etc. (De
Jong, 1975; Goldberg and Segrest, 1987; Mafoud, 1993; Horn, 1993).

We feel that recent theoretical developments along with advances in computational
power have set the stage for a more complete analysis of GAFOs via Markov chains. In
this paper we present our ideas as to how previous Markov chain analyses can be
extended to provide a stronger GAFO theory capable of explaining and predicting the
behavior of GAFOs on various classes of optimization problems. We feel that such a
theory must simultaneously take into account the characteristics of the particular GAFO
being used (generational, elitist, etc.), the internal search space representation (binary,
gray code, etc.), the operators used (form and rate of crossover, etc.), the non-linear
dynamics of the search process, and the characteristics of the function to be optimized.

As a consequence, we are uncomfortable with the notion of a ‘‘GA-hard problem’
independent of these other details, unless we mean by such a phrase that no choice of
GA properties, representations, and operators exist that make such a problem easy for a
GAFO to solve. There are such problems, of course. Needle-in-a-haystack problems are
the canonical example, but are equally difficult for any other optimization algorithm.

As soon as we leave this class of hard search problems, we find ourselves in situations in
which the difficulty of finding the optimum is a function of both the particular GAFO
being used as well as the optimization problem. Changes to either can increase or
decrease the observed difficulty. Said another way, the difficulty of a particular GAFO
situation is strongly correlated to how well matched the features of a particular GAFO
are to the characteristics of a given problem. High degrees of consonance correspond to
our informal notion of a GA-easy situation, and significant dissonance results in GA-
hard situations. As GAFO engineers we can and do frequently increase the consonance
of a particular situation by changing representations, operators, etc.

From this perspective a GAFO theory should provide ways of measuring degrees of
hardness of a particular situation. It should provide insight into the effects that changes
in representation, operators, etc. have on hardness, and for a given GAFO make
predictions about the kinds of problems with which it will have difficulties. We present
the initial steps toward such a theory in the remaining sections.

2 MEASURING GA PERFORMANCE AND HARDNESS

The standard measures of performance for optimization algorithms involve convergence
properties (i.e., the ability to find an optimum) as well as convergence rates (how quickly
they are found). Since GAFOs are parallel, population-based stochastic search
procedures, there are a number of possible definitions of convergence. The simplest
notion is that ultimately a GAFO population converges to a uniform population
consisting of n copies of a single individual which may or may not correspond to a
global optimum.

Since most GAFOs are run with non-zero mutation rates, this simple form of
convergence seldom occurs, unless one "anneals" the mutation rate over time. Without
an annealing mechanism GAFOs settle into a dynamic equilibrium in which the
exploratory pressures of mutation and crossover are balanced by the exploitative
pressure of selection. Moreover, since mutation is active, every point in the space has
some non-zero probability of being visited. Hence, it is trivial to show that a global
optimum will be visited infinitely often when a GAFO is left to run in this state of
dynamic equilibrium.

As a consequence, most GAFO practitioners measure performance in terms of the
average (or best) points in the current population, or in terms of monotonically non-
decreasing ‘‘best so far’’ curves which plot, as a function of the number of samples (or
generations), the best point found so far in the search process regardless of whether or
not that point is currently represented in the population.

Some natural questions related to such performance measures immediately arise. How
likely is it that, if I look at the contents of the kth generation, it will contain a copy of the
optimum? What is the expected waiting time until a global optimum is encountered for
the first time? How long must we wait before a point is encountered that is within some
error tolerance of the optimum? How much variance is there in such measures from run
to run? How much are such measures affected by changes in population size, mutation
rates, etc.?

As GA practitioners we constantly look for ways to improve the performance of our
GAFOs with respect to these measures. Situations which exhibit shorter mean waiting
times and smaller variances correspond to our notion of GA-easy situations, and
situations with longer mean waiting times and higher variances are viewed as harder.
Consequently, these statistics appear to be natural quantitative measures of the difficulty
of a particular GAFO situation.

3 MARKOYV MODELS OF SIMPLE GAs

If we are to use such statistics as the mean and variance of waiting times as measures of
hardness, random process theory would seem to provide an appropriate set of tools for
describing the behavior of stochastic GAFOs. Historically, it has been quite natural to
model simple GAs as Markov processes in which the ‘‘state’” of the GA is given by the
contents of the current population (De Jong, 1975; Goldberg & Segrest, 1987). One can
then imagine a state space of all possible populations and study the characteristics of the
population trajectories (the Markov chains) a GA produces from randomly generated
initial populations.

Most of the analytic results obtained from this approach are derived using infinite
population models and involve characterizing steady state behavior (Davis and Principe,
1991; Vose, 1992; Suzuki, 1993; Rudolph, 1994). It is considerably more difficult to get
analytic results concerning means and variances of waiting times for Markov models of
finite population GAFOs. However, increases in computer technology now permit the
visualization and computational exploration of such models as the first steps in
developing such a theory. We explore such an approach in this paper.{

Among the many papers on Markov models of GAs, the Nix and Vose model (1992) is
particularly well suited to serve as the basis for our GAFO theory. We begin with a brief
summary of their model and notation.

3.1 Summary of the Nix and Vose Markov Model

The Nix and Vose Markov model is intended to represent a simple generational GA
consisting of a finite population, a standard binary integer representation, standard
mutation and crossover operators, and fitness-proportional selection. Fitness scaling,
elitism, and other GAFO-oriented features are not modeled.

If [is the length of the binary strings, then r = 2! is the total number of possible strings.
If n is the population size, then the number of possible populations, N, corresponding to
the number of possible states is:

_(n+r-1
The possible populations are described by the matrix Z, which is an N x r matrix.% The
ith row ¢ =<zy,...,2,- > of Zis the incidence vector for the ith population. In

other words, z; ,, is the number of occurrences of string y in the ith population, where y is
the integer representation of the binary string. For example, suppose / =2 and n = 2.
Then r = 4, N = 10, and the Z matrix would be:

Binary String
State | 00 01 10 11
P1 0 0 0 2
P2 0 0 1 1
P3 0 0 2 0
P4 0 1 0 1
P5 0 1 1 0
P6 0 2 0 0
P7 1 0 0 1
P8 1 0 1 0
P9 1 1 0 0
P10 2 0 0 0

Table 1: The Z matrix whenn =2 and [= 2.

T This approach is similar in spirit to Whitley’s executable GA models (Whitley, 1992).
I For programming convenience we transpose the Z matrix of Nix and Vose (1992).

Nix and Vose then define two mathematical operators, F and M, where F is determined
from the fitness function, and M depends on the mutation rate [, crossover rate X, and
form of crossover and mutation used.t

With F and M defined, they are now able to calculate exact state transition probabilities
Qi,j via:
Gy
Fo
IF ol

Qi,j =n! n ; 2

That is, given F and M, Q, ; specifies how likely it is that a simple GA in state i (the
current population) will be in state j in the next generation.

If the mutation rate is non-zero, all states have some non-zero probability of being
reached. Hence all the entries of Q are non-zero making the Markov chain ergodic. It is
a theorem that any ergodic Markov chain has a limiting distribution called the ‘‘steady
state distribution’’. This implies that, in the limit of many generations (time steps), the
probability of being in any state does not depend on the starting state of the GA.

3.2 GAFO-related Extensions

While these results provide us with useful insights about long term steady state behavior,
they don’t directly answer the GAFO-related questions raised earlier, such as how likely
is it that the optimum will be present in the kth generation, or long will it take on the
average before a global optimum is encountered for the first time. To answer such
questions we need to concentrate on the transient behavior of the Markov chain (i.e., the
time before steady state behavior is reached).

To see how this can be done, let us review what the Q matrix tells us. First, Q; j is the
probability that the GA will be in state j at time ¢ + 1, given that it is in state i at time .
One consequence of this is that the powers of Q yield the probabilistic behavior for
larger jumps in time. Thus Q¥ ; is the probability that the GA will be in state j at time
t + k, given that it is in state i at time 7. The matrix Q" is often referred to as the k steg
probability transition matrix. The fact that Q is ergodic (as noted earlier) implies that Q
approaches the steady state distribution as k increases.

However, as we will show, many interesting GAFO-related questions can be answered
using Q* before it reaches steady state. Closed form characterizations of transient Q*
are difficult in general. However, considerable insight into transient behavior can be
obtained computationally by computing and analyzing Q* directly. Unfortunately, the
size of the Q matrix for typical GAFO applications is computationally unmanageable
since the number of states N grows rapidly with population size n and string length [(see
equation 1 and table 2). However, we have obtained promising initial results from
models involving small values of n and [which appear to hold as the models scale up to
more realistic sizes.

7 In their paper they assume a standard bit flipping mutation operator and a 1-point crossover which produces
a single offspring, although M can be generalized to other operators.

String length [
Popsize n 1 2 3 4 5
1 2 4 8 16 32
2 3 10 36 136 528
3 4 20 120 816 5,984
4 5 35 330 3,876 52,360
5 6 56 792 15,504 376,992
6 7 84 1,716 54,264 2,324,784
7 8 120 3,432 170,544 12,620,256
8 9 165 6,435 490,314 61,523,748
9 10 220 11,440 1,307,504 273,438,880
10 11 286 19,448 3,268,760 1,121,099,408

Table 2: The value of N as a function of / and n.

4 Visualizing Markov Models

Before we develop our GAFO theory in more detail, we take a slight diversion to
indicate a side benefit to having Q* directly available, namely to allow for visualization
of the changing probability distributions Q* represents. We have been pleasantly
surprised at the insight even simple visualization techniques provide concerning the
effects that various GA and fitness function features have on Q. + We illustrate this
briefly with an example involving visualizing Q* as an image, where the gray level of
coordinate (i,j) reflects the probability that the GA will move from state i to state j in k
steps. White indicates high probability, while black indicates low probability.

Figures 1-4 illustrate this for various Q* in which n =3 and [= 3. To highlight the
effects of genetic operators, Figures 1 and 2 show Q* with a flat fitness function (i.e., no
selection pressure). Figure 1 shows Q when only mutation is active (i =0.01 and
X = 0.0). The left most image, representing Q', has two interesting features. A bright
diagonal line is clearly visible, indicating that significant changes in the population in
one generation are very unlikely. Also, notice the interesting fractal-like patterns
exhibited. This appears to be an artifact of the particular lexicographic ordering of states
(given by Nix and Vose, 1992). We are currently exploring other potentially more
natural orderings.

As one scans the images from left to right, notice that the changes in the probability
distribution are already evident in Q* and quite striking in Q'°. The emerging vertical
lines represent the particular populations at which the steady state distribution will
accumulate most of its probability mass, i.e., those populations most likely to be
observed when the GA settles into its dynamic equilibrium.

Figure 2 shows the change in Q* when crossover is activated (i = 0.01 and X = 1.0). It
is interesting to compare Q! in Figure 1 with Q! in figure 2. The visual effect of turning
on crossover is to make Q1 more diffuse, matching our intuition that crossover can make
larger changes more easily.

T For additional evidence of the usefulness of visualizing Q, see Horn, Goldberg & Deb (1994).

Ql Q4 QIO

Figure 1: Q% with no selection, i = 0.01 and X = 0.0.

Ql Q4 Q 10
Figure 2: Q% with no selection, i = 0.01 and X = 1.0.

Figure 3 illustrates the added effects of selection pressure on QF by replacing the flat
fitness function with f (y) = integer (y) + 1, where integer (y) returns the integer
equivalent of the bit string y. Notice the visual confirmation of our intuition that
selection has an increasing effect on the probability distributions as the number of
generations (k) increases.

Finally, figure 4 illustrates the effects of increasing the mutation rate from = 0.01 to
i =0.1. Notice that the vertical lines in Q' form a different and much sharper pattern
than they did in figure 3. This reflects the fact that increasing P not only changes the
steady state probability distribution, but also decreases the number of generations
required to achieve a steady state distribution. Note that this does not imply that the

Ql Q4 QIO

Figure 3: Q% with selection, i = 0.01, and X = 1.0.

Ql Q4 Q 10
Figure 4: Q% with selection, i = 0.1, and X = 1.0.

number of generations required to find the optimum has also decreased. This is easily
seen by observing that in the limit of @ = 0.5 the steady state distribution is reached
immediately in generation 1 (i.e., Q = Q* for all k). In this extreme case the steady state
probabilities are precisely the a priori probabilities given in equation 3 in the next
section, since [= 0.5 is equivalent to randomly initializing a population.

S GAFO THEORY

We now show how QF can be used to characterize the transient behavior of GAs. This in
turn allows us to answer many questions related to the observable behavior of finite
population GAFOs. For the sake of clarity we will develop these results in two steps.

First, in this section, we will use QF to give probabilistic answers to questions
concerning the expected behavior of a GA at a particular point in time (i.e., during a
particular generation), and illustrate how that can provide considerable insight into
issues such as GA hardness.

Then, in section 6, we will extend these ideas to describe cumulative GA behavior
extending over multiple generations, which provides exact answers to GAFO-related
questions such as the expected waiting time until an optimum is first encountered.

5.1 Expected Behavior during the kth Generation

In this section we develop the theory which will allow us to answer questions such as:

1) What is the probability that the GA population will contain a copy of the optimum
at generation k?

2) What is the probability that the GA population will have average fitness greater
than some value at generation k?

3) What is the probability that the GA population will have diversity less than some
value at generation k?

4) What is the expected best individual at generation k?

To answer such questions, we need only combine Q* with a set of initial conditions
concerning a GA at generation 0. For this paper we make the reasonable assumption that
GA populations are randomly initialized. Thus, the a priori probability of the GA being
in state i at time 0, denoted as P(i @ 0), is:

Pa@mzf—lL——{% 3)

Ziol Zipa! [7

Since there are r = 2! possible strings, each string has a probability of r' of occurring,
there are n strings in the population, and the multinomial distribution takes into account
the different ways the strings can be inserted into the population to create a unique state.
Given this, we can now compute the probability that the GA will be in a particular state j
at time k:

Pg@mzzpa@mQ@ 4)

by simply considering the probability of each possible k step transition, appropriately
weighted by the a priori probabilities.

We can also compute probabilities over a set of states. Define a predicate Pred; and the
set J of states that make Pred; true. Then the probability that the GA will be in one of the
states of J at time k is:

PJ@k)y=3 P(j @k) 5)
JjoJ

It is also straightforward to compute related conditional probabilities such as the
probability that the GA is in one of the states of J at time ¢ + k, given that it is in state i
at time #:

PU@t+kli@n=3 QF (6)
joJ

This is easily generalized to give the probability that the GA will transition from one set
of states to another. Let Pred; be another predicate over the states, and denote / to be the
set of states that make Pred; true. Then the probability that the GA will be in one of the
states of J at time ¢ + k, given that it is in one of the states of [at time ¢, is:

S|Pi@npPU@i+k1i@r)
PU@t+k 1 1@ 1)=" 0
P @ 1)

which involves a renormalization over the states indexed by I. Note that equation 7
simplifies to equation 6 when / is composed of one state, and is similar to equation 4
when [is composed of all the states.

The nice feature of this formalization is that any predicate over the states (populations)
can be used. Thus, if we are interested in optimality, we can define the set of states that
contain at least one copy of an optimum, and compute the probability that the GA will
actually be in one of these states at generation k. We can also define predicates that
select states based on average fitness, fitness variance, diversity, and so on.

In fact we can generalize further to arbitrary functions f over the states and compute, for
example, the expected value of that function, at time k:

Elfill = 2P(@ k) f() ®)
j

This allows us to compute for the kth generation the expected best fitness value, the
expected average fitness, expected diversity, or any other measure of interest that is
defined over the states.

We conclude this section by illustrating how these results can be used to answer the four
questions posed at the beginning of this section:

1) To compute the probability that a GA will have in the population at time k at least
one copy of the optimum, use equation 5 with J as the set of all populations
containing at least one copy of the optimum.

2) To compute the probability that a GA will have at time k a population with an
average fitness greater than X, use equation 5 with J as the set of all populations
having average fitness greater than X.

3) To compute the probability that a GA will have at time k a population with
diversity less than X, use equation 5 with J as the set of all populations having
diversity less than X.

4) To compute the expected best fitness value in the population at time k, use
equation 8 with f defined to return the maximum fitness in a given population.

5.2 Transient Behavior of GAs

These results can be used directly to provide insight into the effects that fitness functions,
choice of operators, etc. have on the transient behavior of GAs. For example, to
understand GAFO behavior better we might consider plotting the probability that a GA
will have a copy of the optimum in its population at generation k for k = 1,...,K using
equation 5 above.

Figure 5 illustrates this for the simple case of / =2, n =5 and the fitness function
f (v) = integer (y) + 1. Using random search as a baseline, we show how the probability
of having a copy of the optimum in the population at generation k changes dynamically
over time, and how these probability curves are affected by turning crossover off
(X = 0.0) and on (X = 1.0) while holding the mutation rate fixed at i = 0.1.

1 —

crossover

0'9_ e o ® ®se see soesse -

Success et no crossover
Prob

0.8 —
random search

0.7 I | I |

2 5 10 20 50

Generations (log scale)
Figure 5: GA behavior on f (y) = integer (y) + 1

The probability curve for random search is included for comparative purposes. Since we
are focusing on generation-oriented questions, we conceptualize random search as a GA
which produces n random strings each generation. If there is a unique optimum among
the » = 2/ strings, then the probability that this random process will contain at least one
copy of the optimum string in generation k is constant and given by:
- | 1= |

r

There are several interesting observations one can draw from the probability curves in
figure 5. First, note that these are not cumulative probabilities indicating whether or not
the optimum has been encountered at least once by generation k. Rather, they predict
the likelihood of generation k containing a copy of the optimum regardless of whether or
not the optimum appeared in an earlier generation. These curves confirm our intuition
that GAs settle into a dynamic steady state in which there are no changes in the
probability of producing an optimal string.

They also confirm our notion that there are situations in which crossover clearly
improves the likelihood of generating optimal strings, and that even without crossover a

GA with moderate mutation rates is more likely to do so than random search.

These probability curves can also be used to study the effect that different classes of
fitness functions have on the ‘‘hardness’’ of the situation. To illustrate this, we simply
permute the fitness values assigned to the r = 2 strings by the original fitness function.
In the previous example f assigned the values {1,2,3,4} to the strings {00,01,10,11}
respectively. Permuting the 4 fitness values produces 4! = 24 distinct fitness functions.

Although not true in general, in this simple 2-bit case the 24 fitness functions fall into
three equivalence classes, each containing eight functions producing identical
probability curves.f Figures 6 and 7 show the corresponding curves for the two
equivalence classes not containing the fitness function used in figure 5.

1 — 1 —
0.9 — no crossover 0.9 —
Success mmt=——=oor " Quccess
Prob .o crossover Prob no crossover
0.8 - 0.8 -
crossover
random search RN : random search
0.7 T T 0.7 T T
2 5 10 20 50 2 5 10 20 50
Generations (log scale) Generations (log scale)
Figure 6: GA behavior on class 2. Figure 7: GA behavior on class 3.

The first thing to note is that crossover only clearly helps on the first of the three
equivalence classes. The reason for this is not clear until one considers both the effects
of crossover and fitness on this equivalence class. It turns out that the strings that have
2nd and 3rd highest fitness can be combined via crossover to yield the optimum string.
This is not true of the other two equivalence classes. This supports our intuitions that
crossover will exploit useful building blocks when they are present, but can actually
degrade performance when they are not present.

It is easy to show that none of these three equivalence classes obtained by permuting the
values {1,2,3,4} are ‘‘deceptive’’ in the sense of static schema analysis (Goldberg, 1987)
as indicated in table 3.

However, note that while a GA is uniformly better than random search on the first two
equivalence classes, its probability curves are actually worse than random search on
class 3 in the early generations. This is an example of a situation where the fitness
landscape is leading the GA away from the optimum initially, but the GA subsequently
recovers. Clearly the dynamics of the situation are quite subtle and complex. If we
observed a GA over the first 10 generations, we might conclude that we have a "GA-
hard" situation, whereas running a GA longer might shift that perception.

7 For the sake of brevity we omit an explanation of why this occurs, other than to note that it is caused by a
relationship between fitness rankings of strings and the Hamming distance between them.

Class Fitness Function Schema Fitness
£(00) f(01) f(10) f(11) | f(0*) f(1%) f(*0) f(*1)
1 1 2 3 4 1.5 3.5 2.0 3.0
2 2 1 3 4 1.5 3.5 2.5 2.5
3 3 1 2 4 2.0 3.0 2.5 2.5
Table 3: Static schema analysis for the three equivalence classes.
5.3 Dynamic Properties of Deception

The fact that we were seeing interesting dynamic behavior on three classes of non-
deceptive functions lead us naturally to apply these transient GA analysis tools to the
Type I and Type II deceptive problems defined by Goldberg (1987). Figures 8 and 9

illustrate the performance of a GA withn =5,/ =2, 4 = 0.01 and X = 1.0.

0.8 — 0.8 —
0.7 random search 0.7 random search
Success 0.6 - Success 0.6 deceptive
Prob 5 | . Prob 5 | ...-..-/
04 | 0.4
0.3 I 0.3 I
2 5 10 20 50 2 5 10 20 50

Generations (log scale) Generations (log scale)

Figure 8: Type I deception. Figure 9: Type II deception.

It is interesting to note that the deceptive functions yield a ‘U’’-shaped curve that is
very similar to that shown by Goldberg, in which he considers the expected proportion of
the optimum string in the population. The explanation for this is that the expected
proportion of the optimum string at generation k directly effects the probability that the
GA population will contain at least one copy of that optimum at generation k. If the
expected proportion is high (low), so is the associated probability that we are measuring.

Note that, unlike the results obtained in the previous section, the probability curves of
the GA in this case are uniformly worse than random search. This certainly confirms our
notion that these deceptive problems create hard situations for simple GAs.

This same analysis can be used to show that there are other classes of fitness functions
which create similar difficulties for simple GAs, but which are not deceptive in the static
sense. We illustrate this by modifying the fitness value of one string in both of the
deceptive functions so that they are statically non-deceptive. However, care was taken
to ensure that the ranking of strings by fitness was still the same. The intuition here was

that such a minimal change was not likely to significantly change the dynamic behavior
of a simple GA. Table 4 summarizes both the original deceptive functions as well as
their modified non-deceptive counterparts.

Fitness Function
Class | f(00) f(01) f(10) f(11)
Typel 1.0 1.05 0.1 1.1
NotTypel 1.0 1.05 0.975 1.1
Typell 1.0 0.9 0.5 1.1
NotTypell 1.0 0.9 0.85 1.1
Schema Fitness
Class | f(0%*) f(1%) f(*0) f(*1)
Typel 1.025 0.6 0.55 1.075
NotTypel 1.025 1.0375 0.9875 1.075
Typell 0.95 0.8 0.75 1.0
NotTypell 0.95 0.975 0.925 1.0

Table 4: Static schema analysis for deceptive and non-deceptive problems

Figures 10 and 11 illustrate the behavior of a simple GA on these two non-deceptive
functions in comparison with the deceptive functions. If we consider situations in which
GAs perform uniformly worse than random search as one possible definition of ‘‘GA
hard’’, we see that statically deceptive functions are not the only sources of difficulty.

0.8 — 0.8 —
0.7 random search 0.7 random search
Success .6 — Success 0.6 — .not deceptive deceptive
Prob 0.5 — not deceptive Prob 0.5 - _..../
0.4 — e e anem -"/deceptive 0.4 —
flat flat
0.3 T T 0.3 T T
2 5 10 20 50 2 5 10 20 50
Generations (log scale) Generations (log scale)
Figure 10: Type I deception Figure 11: Type II deception

To further illustrate this point, we allowed a GA to attempt to find the hardest such
function in the following sense. We fixed the optimum at string ‘‘11’°, with a fitness
value of 1.0. We then allowed a GA to modify the fitness values of the other three
strings in the range (0, 1) and rewarded values that generated low probability curves.
The result was an ‘‘almost’’ flat fitness function (where all strings have fitness as close as
possible to 1.0). The resulting probability curve for this function is also illustrated in

figures 10 and 11. Note that the probability curve for this nearly flat fitness function is in
fact lower than the probability curves for the other four problems in table 4, especially in
later generations. The difficulty with it, of course, is that there is no differential feedback
whatsoever. On the other hand, if one were measuring difficulty in terms of "best so far"
curves, this would certainly look "easy" since near-optimal solutions are abundant
already in the first generation.

Finally, we were curious to see how sensitive these results were to population size, since
increasing population size is a standard way to overcome low-order deceptiveness.
Figure 12 illustrates typical results obtained with increasing population sizes, confirming
our expectations that the dynamic characteristics of deception remain, but that the
difficulty of the situation (as measured by the probability curves) decreases.

1—

random search
0.8 -
Success not deceptive
Prob
0.6 — deceptive
04 | | | l
2 5 10 20 50

Generations (log scale)

Figure 12: Type II deception with n = 10, 0 =0.01,x = 1.0

6 WAITING TIME ANALYSIS

The probability curve analysis of the previous section provides some interesting and
important insights into the non-linear interactions of the various components of a GAFO
situation. However, as we have seen, it doesn’t precisely capture "hardness" in a form
that a GAFO practitioner would necessarily care about. Generally, such a person would
be much more interested in ‘best so far’’ curves and in knowing how long the GA would
have to run on average before first encountering the optimum. In this section we extend
the theory developed in the previous sections to provide exact answers to such questions.

6.1 Expected Waiting Time Theory

The theory extension needed to obtain the expected waiting time until an event of
interest is first observed is based on the observation that the Q matrix can be used to
compute ‘‘mean first passage times’’ for going from state i to state j (for a nice
discussion of this, see Winston 1991). Questions involving waiting times to convergence
using a 1-bit Markov model with mutation and selection were considered in the paper by

Goldberg and Segrest (1987). Our work extends these earlier formulations.

More precisely, we wish to compute the length of time that it takes (on the average) to
reach state j for the first time, given that the process is currently in state i. Answering
such questions involves solving the set of simultaneous equations:

mi;=Q;i+ 2 Qip (1+my)))
k#j
where m; ; denotes the mean first passage time from state i to state j. To understand the
equation, consider transitioning from state i to j in one move. This occurs with
probability Q; ; and requires only one step. However, suppose the GA transitions from
state i to state k, where k is not equal to j. This occurs with probability Q;; and requires
one step. However, there now remain my,; steps to state j.

As before, if we are interested in a set J of states, we can compute the mean first passage
time for the GA to first enter that set of states, given that it is currently outside that set:

miy=2> 0+ 2 Qix(l +my) (10)
jor k27
where m; ; denotes the mean first passage time from state i to any of the states in set J,
and i is not in J. This is very similar to equation 9, with the exception that the
probability of entering state J in one step is simply the sum of the probabilities of
entering each state within J.

Once this system of simultaneous equations is solved, we can calculate the ‘‘expected
waiting time’’ to reach a state in J, given a random initial state, via:

EWT(J)=S P(i @ 0)0 + S P(i @ 0)m,, (11)
i0J il

There are two parts to Equation 11. The first part reflects the possibility that a random
initial population is in state J, and hence has a zero waiting time. The second part
reflects the mean passage time from initial populations not in J, to a state in J. Clearly
this simplifies to:

EWT(J)=S P(i @ 0)m;, (12)
iy

As we noted in section 5, equation 12 hold for any set of states J, and thus can be used to
provide expected waiting times for a variety of "interesting" events such as: the first time
an optimum is encountered, the first time the average fitness of the population exceeds a
given threshold, the first time the population diversity falls below a given threshold, etc.

6.2 Expected Waiting Times for GAFOs

Clearly, an interesting GAFO event involves the first time an optimal string is produced.
Following the same approach as section 5, we define J to be the set of states containing
at least one copy of the optimum string. Then EWT(J) is the expected number of
generations until the optimum is first encountered. To us, this scalar quantity is a natural
measure of the difficulty of a GAFO situation, with longer EWTS representing more
difficult situations. We explore this view in more detail in this section.

As a starting point, table 5 provides the EWTs for the same three equivalence classes of
fitness functions studied in section 5 and illustrated in figures 5-7. Recall that in these

situations / =2,n = 5and 4 = 0.1.

Class | No Crossover | Crossover | Random
1 0.71 0.52 0.31
2 0.89 0.75 0.31
3 1.42 1.19 0.31

Table 5: EWT (J) forl =2 and n = 5.

There are several interesting observations about the EWT results in table 5. First, note
that the EWT analysis agrees with the probability curve analysis (figures 5-7) with
respect to ranking the "difficulty” of the equivalence classes. However, there are also
some striking disagreements. Notice that, unlike the probability curve analysis,
crossover improves the situation (decreases EWT(J)) on all three classes. It is also
interesting to note that random search yields the best EWT performance on all three of
these classes of 2-bit functions.

One would expect that the EWT(J) results should be highly correlated with the
corresponding probability curves. After all, if a GA always has a higher probability of
seeing the optimum at every generation than random search on some particular problem
(e.g., figure 5), then shouldn’t we expect the GA to first see the optimum in less time?
Similarly, if a GA with crossover yields lower probability curves (e.g., figures 6 and 7),
shouldn’t this be reflected in table 57

To understand better this apparent contradiction consider two simple Markov processes,
Rexpiore and R,yp0i; Whose transition matrices are given by:

QRexplm‘(QReprnit
1 J 1 J
I| 050 050|075 025
J 1050 050] 025 0.75

Table 6: The transition matrices.

R.xpiore 18 the more explorative of the two because its probability of going from one state
to a different state is higher than R,,,;;, which is more likely to remain in a given state.
For simplicity of illustration, we assume each of the processes has just two states / and J
in which state J is analogous to being in the J set of states containing the optimum, as
discussed earlier. We also assume that each of the processes has identical a priori
probabilities of being in one of the two states. Hence, any behavioral differences are due
only to the different Q matrices (transition probabilities).

T Again, random search is equivalent to running the GA with p = 0.5. In this case crossover and selection do
not affect the results.

From equation 4 we have the probability of being in state J at time k given by:
PUJ@k)=3 P(s @0) O,

If we assign equal a priori probabilities to both states, this simplifies to:
PUJ @k)=0530%,

Since each of the Q matrices are symmetric, so are their powers Q. Hence their
columns (as well as their rows) sum to 1.0, leading to a further simplification:

PU @k =05

Hence, in spite of their different transition probabilities, both processes have identical
probability curves with respect to their likelihood of being in state J at time k, namely, at
any given time each process has a 50/50 chance of being in state J.

However, when we calculate expected waiting times until these processes first enter state
J, we observe something quite different. Using equations 10, we compute the mean first
passage time from state I to state J for process Reyiore:

myy = 0.5+ (05)(10 + m“)

the solution of which yields m;; = 2.0. The expected waiting time until state J is first
encountered is then easily calculated via equation 12 in which the mean first passage
times are normalized by the 0.5 probability of being in state I at time zero, yielding
EWT piore(J) = 1.0.

Similar calculations yield an EWT (J) of 2.0 for R,,,;;» producing the curious situation
that, although each process has a 50/50 chance of being in state J at any given instant in
time? EWTexplore (J) < EWTexploit(J)'

To see why that is the case, consider the sequence of states visited by one of these
random processes over time:

S15 825 8§35 ceey Sy~

Both processes have a 50/50 chance of starting out in state J. If that’s the case, then we
have identical EWT (J)s of zero. However, if both processes start out in state I, then
Rexpiore 18 much more likely to switch to state J, resulting in a shorter average waiting
time until the first J occurs in the sequence.

Interestingly, this effect can be made even more dramatic by changing the a priori
probabilities of being in states I and J. For example, consider the effects of setting
P @0)=0.25 and P(J @ 0) = 0.75 while keeping the two Q matrices the same as
before. In this case Poyipre(J @ k) < Poyppoir(J @ k) while their relative rankings with
respect to EWT (J) remains unchanged (we omit the proof for the sake of brevity). That
is, even though R, is less likely to be in state J at any given time than R,y iS,
Rexpiore 18 still more likely to produce the first J because of its higher switching rate.

In summary, this section provides a clear picture of the relative merits of probability
curve analysis and EWT analysis. Probability curves provide insight into the dynamic
non-linear interactions of GAFO behavior, but are not good predictors of traditional
measures of GAFO performance. EWTs, on the other hand, collapse all of this behavior
into a single figure of merit which is directly related to the usual notions of GAFO
performance.

6.3 Analyzing GAFO EWTs

If EWT is a useful figure of merit, then it is important to understand how various features
of GAFO situations affect EWT. Characterizing these effects will in turn provide insights
(and make predictions) about how to improve GAFO performance. We present some
preliminary results in this section.

6.3.1 The Importance of Exploration for GAFOs

Finding a balance between exploration and exploitation has been an important theme of
GA research from the very beginning. Achieving such a balance, however, is difficult
since it is a complex non-linear function of selection, representation, operators, and
fitness landscape. One of the frequent empirical observations is that GAFO performance
can be improved by using higher mutation rates and more disruptive crossover operators
(e.g., uniform crossover) than traditional analysis suggests. The preceding section
indicates why: EWT measures of performance encourage more exploration than
measures involving maximizing total (or average) payoff.

The previous R,pjore-Rexpioir €xample provides an intuitive illustration of how too much
exploitation is bad for EWTs. Table 5, given earlier, provided a more concrete example:
for a fixed mutation rate of u = 0.1, adding crossover consistently improved EWT, but in
all cases these "traditional" settings were outperformed by random search. Our intuition
was that, for these simple 2-bit problems, the optimal exploration/exploitation ratio was
much higher than we might expect, but that this ratio should decrease as a function of /.

To test this hypothesis, we used EWT analysis to estimate the "optimal" mutation rate (in
the sense of minimizing EWT) for a variety of situations involving the fitness function
f () =integer (y) + 1. We kept n =2 and X = 1.0, but allowed [to range from 2 to 5.
We then estimated the optimal mutation rate by calculating EWT (J) for every U from
0.01 to 0.99, in increments of 0.01. Table 7 gives the optimum U for each .

l 2 3 4 5
optimal [l 0.68 054 044 0.36
EWT of GA withoptimal g | 1.19 325 7.18 14.52
EWT of RAND (p=0.5) 1.29 326 725 1525

Table 7: Optimum [for EWT (J) as [increases.

As expected, the advantage of high mutation rates falls off quickly as a function of
increasing I. Notice also that with these "optimal" mutation rates, the GA is now slightly
better than random search, but accomplishes this by using much higher levels of
mutation than are typically used. This raises the interesting, but unconfirmed conjecture,
that these optimal mutation rates will approach the traditional 1/ heuristic setting as [
increases.

The optimal mutation rates in table 7 that are greater than 0.50 are a bit surprising at
first. With g = 1.0 we are essentially complementing each string in the population. For
very small problems there exists a reasonable chance that the complement of the solution
will appear in an early generation. Hence, a complement operator can improve EWTSs.

As [increases, this effect quickly starts to diminish, although interestingly, a complement
operator can also be quite effective for certain classes of deceptive problems.

6.3.2 Interacting Effects of Crossover and Mutation

One can also use these models to analyze the interacting effects of crossover and
mutation on EWTs. Table 8 summarizes a simple example using fitness function
f (y) =integer (y) + 1 withn =5and [= 2:

1l X=00 x=1.0
0.5 0.31 0.31
0.1 0.71 0.52
0.01 5.07 2.65

Table 8: Effect on EWT (J) of X as |\ decreases.

Note how crossover becomes increasingly important as [decreases. However, for these
small 2-bit problems, crossover is unable to increase exploration enough to maintain or
improve on the EWT values obtained at higher mutation rates. Although we have not
had time to verify it, we would expect to see a more dominant role for crossover as [
increases.

6.3.3 Effects of Scaling

A well-known property of proportional selection is its sensitivity to simple linear scaling
of the fitness function. If we present a GA with two unknown functions f and
g =f + 100, the GA will generally converge more rapidly on fthan on g. This is easily
shown using EWT analysis Table 9 illustrates this by duplicating the analysis in table 8
with only one change: the original fitness function fis now g (y) = f (y) + 100.

11 X=00 x=1.0
0.5 0.31 0.31
0.1 0.92 0.71
0.01 9.52 6.25

Table 9: Effect of scaling on EWT (J).

Compared with table 8, this situation is clearly more difficult as measured by EWT and
illustrates why most GAFOs which use proportional selection also use some form of
dynamic fitness scaling in order to "normalize" selection pressure.

6.3.4 Effects of Building Blocks

One can also study the effects of "building blocks" on EWT. To illustrate, we duplicated
the analysis of table 8 with only one change: the fitness value of f ("01") was increased
by 1. Since the optimum string is "11", the idea was to equally reward both "01" and
"10" and set the stage for crossover. Table 10 summarized the results.

1l X=00 x=1.0
0.5 0.31 0.31
0.1 0.69 0.50
0.01 5.01 245

Table 10: Effect of building blocks on EWT (J).

Clearly, as the mutation rates decrease and crossover plays a more dominant role,
rewarding good building blocks uniformly improves EWT (in comparison with table 8).
In this particular example the improvements are quite small and one might be tempted to
question their statistical significance. However, recall that this is not data derived from
empirical averages. These are exact values (subject to rounding errors) computed
directly from the theory.

7 Summary and Discussion

This paper describes our initial exploration of transient Markov chain analysis as the
basis for a stronger GAFO theory. Although closed form analysis is difficult in general,
useful insights can be obtained by means of both visual and computational exploration of
the transient behavior of the models. We are quite pleased with the initial progress and
are optimistic of the future potential of this approach.

There are clearly a number of concerns, primary of which is the scalability of the results.
So far, we have observed fairly consistent results as we increase both string length and
population size. However, much more work is required to scale up to more realistic
values of n and [.

There are a variety of directions we are exploring. There are many other visualization
techniques which have the potential for further elucidation of these models. In addition
to expected waiting times, the variance of the waiting times is an important measure
which can also be derived from the models. It is also possible to study the effects of
other operators (e.g., uniform crossover) and other GA features such as population size,
rank selection, and so on.

It would also be nice to see how well fitness correlation (Manderick et al., 1991), which
takes into account aspects of the fitness function, representation, and the genetic
operators, predicts EWT performance.

An interesting future possibility would be to create Markov models of other evolutionary
algorithms and standard hill climbers, and then allow a GA to find those problems that
are easy for GAs and hard for hillclimbers (or vice versa), using the EWT performance
measure!

Acknowledgements

We would like to thank Dr. Daniel Carr for suggesting visualization techniques, and Dr.
Marty Fischer for suggestions on Markov Chain analysis.

References

Davis, T. E., & Principe, J. C. (1991) A simulated annealing like convergence theory for
the simple genetic algorithm. Proceedings of the 4th International Conference on
Genetic Algorithms, San Diego, 174-181.

De Jong, K. A. (1992) GAs are not function optimizers. Proceedings of the Foundations
of Genetic Algorithms Workshop. Vail, CO: Morgan Kaufmann.

De Jong, K. A. (1975) An analysis of the behavior of a class of genetic adaptive systems.
Doctoral Thesis, Department of Computer and Communication Sciences. University of
Michigan, Ann Arbor.

Goldberg, D. E. (1987) Simple genetic algorithms and the minimal, deceptive problem.
Chapter 6 in Genetic Algorithms and Simulated Annealing, Lawrence Davis (ed.),
Morgan Kaufmann.

Goldberg, D. E., & Segrest, P., (1987) Finite Markov chain analysis of genetic
algorithms. Proceedings of the 2nd International Conference on Genetic Algorithms,
Cambridge, 1-8.

Holland, J. H. (1975) Adaptation in natural and artificial systems. Ann Arbor, Michigan:
The University of Michigan Press.

Horn, J. (1993) Finite Markov chain analysis of genetic algorithms with niching.
Proceedings of the 5th International Conference on Genetic Algorithms, San Mateo, CA:
Morgan Kaufmann, 110-117.

Horn, J., Goldberg, D. E., & Deb, K., (1994) Implicit niching in a learning classifier
system: nature’s way. Evolutionary Computation, Volume 2, #1, 37-66.

Juliany, J., & Vose, M. D., (1994) The genetic algorithm fractal. To appear in
Evolutionary Computation, Volume 2, #1.

Manderick, B., de Weger, M., & Spiessens, P., (1991) The genetic algorithm and the
structure of the fitness landscape. Proceedings of the 4th International Conference on
Genetic Algorithms, San Diego, 143-150.

Mafoud, S. (1993) Finite Markov chain models of an alternative selection strategy for
the genetic algorithm. Complex Systems, 7 (2), 155-170.

Nix, A. E., & Vose, M. D., (1992) Modelling genetic algorithms with Markov chains.
Annals of Mathematics and Artificial Intelligence #5, 79 - 88.

Rudolph, G. (1994) Massively parallel simulated annealing and its relation to
evolutionary algorithms. Evolutionary Computation, Volume 1, #4.

Suzuki, J. (1993) A Markov chain analysis on a genetic algorithm. Proceedings of the
5th International Conference on Genetic Algorithms, Urbana-Champaign, 146-153.

Vose, M. (1992) Modeling simple genetic algorithms. Proceedings of the Foundations of
Genetic Algorithms Workshop, Vail, CO: Morgan Kaufmann, 63-74.

Whitley, D. (1992) An executable model of a simple genetic algorithm, Proceedings of
the Foundations of Genetic Algorithms Workshop, Vail, CO: Morgan Kaufmann, 45-62.

Winston, W. (1991) Operations Research: Applications and Algorithms, 2nd Edition,
PWS-Kent Publishing Company, Boston MA.

