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Use rs’  p e rc e p tio ns o f risks have  impo rta nt implic a tio ns fo r info rmatio n se c urity b e c a use  individua l use rs’  a c tio ns 

c a n c o mpro mise  e ntire  syste ms. The re fo re , the re  is a  c ritic a l ne e d to  unde rsta nd ho w use rs pe rc e ive  a nd 

re spo nd to  info rmatio n se c urity risks. Pre vio us re se a rc h o n pe rc e p tio ns o f info rmatio n se c urity risk ha s c hie fly 

re lie d o n se lf-re po rte d me a sure s. Altho ug h the se  studie s a re  va lua b le , risk pe rc e p tio ns are  o fte n asso c ia te d with 

fe e ling s—suc h as fe a r o r do ub t—that a re  diffic ult to  me asure  a c c ura te ly using  surve y instrume nts. Additio na lly, it 

is unc le a r ho w the se  se lf-re po rte d me asure s ma p  to  a c tua l se c urity b e ha vio r. This pa pe r c o ntrib ute s to  this to p ic  

b y de mo nstra ting  tha t risk-ta king  b e ha vio r is e ffe c tive ly pre dic te d using  e le c tro e nc e pha lo g ra phy (EEG) via  

e ve nt-re la te d po te ntia ls (ERPs). Using  the  Io wa  Gambling  Ta sk, a  wide ly use d te c hniq ue  sho wn to  b e  c o rre la te d 

with re a l-wo rld risky b e ha vio rs, we  sho w tha t the  diffe re nc e s in ne ura l re spo nse s to  po sitive  a nd ne g a tive  

fe e db ac k stro ng ly pre dic t use rs’  info rmatio n se c urity b e ha vio r in a  se pa ra te  la b o ra to ry-b a se d c o mputing  task. 

In a dditio n, we  c o mpa re  the  pre dic tive  va lidity o f EEG me a sure s to  tha t o f se lf-re po rte d me asure s o f 

info rmatio n se c urity risk pe rc e p tio ns. Our e xpe rime nts sho w tha t se lf-re po rte d me asure s a re  ine ffe c tive  in 

pre dic ting  se c urity b e ha vio rs unde r a  c o nditio n in whic h info rmatio n se c urity is no t sa lie nt. Ho we ve r, we  sho w 

tha t, whe n se c urity c o nc e rns b e c o me  sa lie nt, se lf-re po rte d me asure s do  pre dic t se c urity b e ha vio r. Inte re sting ly, 

EEG me a sure s sig nific a ntly pre dic t b e ha vio r in b o th sa lie nt a nd no n-sa lie nt c o nditio ns, whic h indic a te s tha t EEG 

me asure s a re  a  ro b ust pre dic to r o f se c urity b e ha vio r. 
 

Ke ywo rds:  Risk Pe rc e p tio n, Info rmatio n Se c urity Be ha vio r, Ne uro IS, Se lf-re po rte d Me asure s, EEG, Io wa  

Gambling  Ta sk (IGT), La b o ra to ry Expe rime nt, Se c urity Wa rning  Disre g a rd. 
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 Using Measures of Risk Perception to Predict 
Information Security Behavior: Insights from 
Electroencephalography (EEG) 

1. Introduction 
Scholars are increasingly recognizing that individual users play a crucial role in the security of 
information systems (Furnell & Clarke, 2012; Willison & Warkentin, 2013). This is because users often 
represent the weakest link in the security of a system—if a user can be coaxed into doing something 
insecure, the security of an entire system can be compromised (Anderson, 2008). The status of users 
as the weakest link in the security chain is fully recognized by hackers and cybercriminals, who routinely 
use social engineering tactics to trick users into installing malicious software (malware) or otherwise 
obviate technical security controls (Abraham & Chengalur-Smith, 2010; Mandiant, 2013). Given this 
reality, we need to understand how users perceive and respond to information security risks. 
 
Behavioral research on information systems security to date has ma inly used self-reported measures 
to gauge users’ perceptions of information security risks (e.g., Anderson & Agarwal, 2010; Guo, Yuan, 
Archer, & Connelly, 2011; Johnston & Warkentin, 2010; Malhotra, Kim, & Agarwal, 2004). While 
studies using self-reported measures have contributed significantly to our theoretical understanding of 
security and behavior, such measures are prone to certain biases that can undermine the validity of 
scientific findings (Dimoka et al., 2012). In particular, many emotions, such as fear, uncertainty, and 
distrust (all intrinsic to risk perceptions), are at least partially experienced unconsciously, which makes 
them difficult to capture accurately (Dimoka, Pavlou, & Davis, 2011; Winkielman & Berridge, 2004). 
 
Moreover, users’ perceptions of risks have predominantly been associated with intentions to behave 
rather than behavior itself (Crossler et al., 2013). This is problematic in the context of information 
security because respondents have been shown to profess security concerns and later fail to take 
action to protect themselves online, even when the costs to do so are minimal (Acquisti & Grossklags, 
2004). Due to these concerns, researchers have called for the measurement of security-related 
cognition and behaviors using alternative means, such as NeuroIS methods (Crossler et al., 2013). 
Therefore, a gap exists in our understanding of: 
 

1) how to measure information security risk perceptions most accurately, and  
 
2) how these measures map to security behavior. 

 
This paper contributes to IS research by demonstrating that risk perceptions are effectively measured 
using electroencephalography (EEG) via event-related potentials (ERPs), which measure neural 
events triggered by specific stimuli or actions. More specifically, we measured ERPs in response to 
gains and losses in the Iowa Gambling Task (IGT), a widely used technique in the fields of 
Psychology and Neuroscience that has been shown to be strongly correlated with real-world risky 
behaviors (Buelow & Suhr, 2009). Further, we show that the differences in these measures of the 
neural responses to gains and losses strongly predict users’ information security behavior in a 
separate laboratory-based computing task.  
 
In addition, we compare the predictive power of EEG measures to that of self-reported measures of 
information security risk perceptions. Our experiments show that these self-reported measures of risk 
perception are ineffective in predicting security behaviors under a condition in which information 
security is not salient. However, we show that, when security concerns become salient (through a 
simulated malware incident on participants’ personal computers), these same self-reported measures 
of security risk perception do predict security behavior. Interestingly, EEG measures significantly 
predict behavior in both salient and non-salient conditions, which indicates that EEG measures are a 
robust predictor of security behavior.  
 
This paper proceeds as follows. In Section 2, we review the literature to show how perceived 
information security risk has been previously captured using self-reported measures and neural 
measures. In Section 3, we develop our hypotheses for the predictive validity of self-reported and 
EEG measures of risk and under what conditions they are most effective. In Section 4, we describe 
our methodology involving a series of surveys and experimental tasks. In Section 5, we present our 
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analysis and the results of our hypothesis testing. Finally, in Section 6, we discuss the implications of 
our findings, their limitations, and directions for future research on the use of NeuroIS methods to 
measure the construct of information security risk perceptions. 

2. Literature Review 

2.1. Background 

In this section, we set a foundation for our hypotheses and experimental task by reviewing how 
information security risk perceptions have previously been studied in the IS field. We also discuss 
methodological issues for capturing risk perceptions using self-reported and NeuroIS methods. 

2.2. Information Security Risk Perceptions 

Risk perception is an interesting area of study because it is a complex combination of social, cultural, 
economic, psychological, financial, and political factors (e.g., Brooker, 1984; Dholakia, 2001; Grewal, 
Gotlieb, & Marmorstein, 1994; Kaplan, Szybillo, & Jacoby, 1974; Slovic, 1987). IS researchers have 
examined risk perceptions in the domains of information security and privacy (e.g., Anderson & 
Agarwal, 2010; Guo et al., 2011; Johnston & Warkentin, 2010; Malhotra et al., 2004). A primary 
theoretical perspective used is protection motivation theory (PMT) and related health-belief models 
(Rogers, 1975). PMT explains how people become motivated to cope with a threat, with two principal 
drivers being perceived severity and perceived susceptibility. Perceived susceptibility refers to the 
likelihood of becoming exposed to a threat, whereas perceived severity is the impact of potential 
consequences posed by the threat (Prentice-Dunn & Rogers, 1986). Together, these two constructs 
essentially measure perceived risk. 
 
Researchers have used PMT to explain the adoption of anti-spyware software (Johnston & Warkentin, 
2010), information security policy (ISP) compliance (Herath & Rao, 2009; Vance, Siponen, & Pahnila, 
2012), and security behaviors of employees (Workman, Bommer, & Straub, 2008) and home users 
(Anderson & Agarwal, 2010). Liang and Xue (2010) used the technology threat avoidance theory 
(TTAT), which draws on PMT as its theoretical base, to explain how threat severity and susceptibility 
contribute to the avoidance of spyware threats.  
 
Privacy researchers have also used the construct of perceived risk (Hong & Thong, 2013; Jarvenpaa, 
Tractinsky, & Saarinen, 1999; Xu, Luo, Carroll, & Rosson, 2011). These studies use perceived risk to 
explain Internet users’ willingness to share information about themselves online. Although these 
studies do not measure threat severity and threat susceptibility separately, they are both implicit in the 
measurement items (see Dinev & Hart, 2006; Malhotra et al., 2004 for commonly used measures of 
privacy perceived risk). In such cases, perceived risk is measured in terms of the likelihood of a 
negative privacy outcome (such as a company selling one’s personal information).  

2.3. Self-reported Measures 

All of the studies mentioned above measured perceptions of risk with self-reported measures. The 
advantages of such measures are that they are fairly easy to develop, distribute, collect, and analyze. 
A straightforward means of measuring someone’s perceptions is simply to ask that person. However, 
self-reported measures are subject to a range of well-known biases and demand effects (Dimoka et 
al., 2011), including the social desirability bias, subjectivity bias, common methods bias, and demand 
bias. “Social desirability bias” is the tendency of individuals to portray themselves and their behavior 
in ways that are more socially acceptable. It includes exaggerated positive self-reports and 
diminished or non-disclosure of negative self-reports (Paulhus, 1991). “Subjectivity bias” refers to the 
difficulty of capturing reality by soliciting individuals’ subjective perceptions. Individual differences 
between respondents can distort measures of objective reality (Theorell & Hasselhorn, 2005). 
“Common methods bias” describes variance that is attributable to artifacts of the survey 
instrumentation rather than to actual variance between different constructs (Podsakoff, MacKenzie, 
Lee, & Podsakoff, 2003). “Demand bias” relates to the effects of the roles that participants may 
perceive as part of the tacit social contract formed between participants and the experimenters in 
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undertaking a study. Demand-induced behaviors include attempting to discern and intentionally 
confirm or disconfirm the experimenter’s hypotheses (Orne & Whitehouse, 2000). 
 
Additionally, self-reported measures require conscious decision making. Several studies in 
Psychology (e.g., Greenwald & Banaji, 1995; Skowronski & Lawrence, 2001; Spangler, 1992) have 
shown that self-reported measures may correlate poorly with more implicit measures where 
participants may or may not be unaware in control of the impact of their attitude and cognition (Fazio 
& Olson, 2003). These types of non-conscious reactions are inherently impossible to self-report. 
 
Further, in almost all of the previous studies that measured perceived risk, the authors measured 
intentions, rather than actual behavior, as the dependent variable (Workman et al., 2008 is an 
exception). This is problematic because studies of IS security and privacy have shown that people 
behave inconsistently with their self-reported concern for their privacy and security (Acquisti & 
Grossklags, 2004; Belanger, Hiller, & Smith, 2002; Norberg, Horne, & Horne, 2007). For these 
reasons, our understanding of perceived risks and their effect on security behavior may be incomplete. 

2.4. Neurophysiological Measures 

A promising approach to investigate the effectiveness of security warnings is Cognitive Neuroscience 
applied to Information Systems (NeuroIS). In particular, the neural bases for human cognitive 
processes can offer new insights into the complex interaction between information processing and 
decision making. D'Arcy and Herath (2011, p. 694) present a call for research that applies NeuroIS to 
human-computer interaction, which includes “inferring temporal ordering among brain areas” as an 
important area of inquiry. They explain that, to understand the design of IT artifacts better, it is 
desirable to study the timing of brain activations while completing decision tasks. It has been 
suggested that NeuroIS techniques are a particularly promising means of measuring information 
security-related behaviors and attitudes (Crossler et al., 2013). 

2.5. EEG Measures 

The neurophysiological measure we used in this study is the P300 component of an event-related 
potential (ERP) measured with electroencephalography (EEG). The P300 is a positive-going component 
that peaks between 250 and 500 milliseconds after stimulus onset and has been observed in tasks that 
require stimulus discrimination (Polich, 2007). Passive stimulus processing generally produces smaller 
P300 amplitudes than active tasks; when task conditions are undemanding, the P300 amplitude is 
smaller. It has been proposed that the P300 reflects processes related to updating the mental 
representations of the task structure (Donchin, 1981; Donchin & Coles, 1988). According to the “context-
updating theory”, incoming stimuli are compared against previous stimuli held in working memory. If the 
new stimulus matches previous stimuli, no updating is required and no P300 is generated. If, however, 
the new stimulus produces a mismatch with the stimuli held in working memory, the context for that 
stimulus is updated and a P300 is generated. It is believed that because infrequent, low-probability 
stimuli can be biologically important, it is adaptive to inhibit unrelated activity to promote processing 
efficiency, and thereby yield large P300 amplitudes (Polich, 2007).  
 
EEG has been used in the Psychology and Neuroscience literatures to study risk-taking tendencies in 
individuals. Many EEG studies on risk-taking have had participants perform a gambling task while 
measuring the EEG either before or during the task. Some studies have related self-reported survey 
responses on risk-taking propensities to different EEG measurements, including ERP amplitudes and 
latencies, the power in different frequency bands of the EEG (Massar, Rossi, Schutter, & Kenemans, 
2012), or resting-state EEG measurements (Massar, Kenemans, & Schutter, 2013). A group of studies 
have focused on ERPs for predictions of risk-taking behaviors during gambling or other card tasks. 
These studies looked at various ERP components under conditions when participants experience a 
negative (loss) event or a positive (reward) event. 

3. Theory and Hypotheses 
In this section, we lay out our theory and associated hypotheses. Before doing so, however, we 
define the specific type of security behavior we examine in this paper—security warning disregard. 
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3.1. Security Warning Disregard 

A common defense against security threats is a security warning presented to the user by the 
operating system and software, such as email clients and Web browsers (Yee, 2004). While 
technically effective, these security warnings are undermined by users who either willfully disregard 
them or fail to recognize the importance of the threat (Schneier, 2004). This commonly observed 
behavior is contained in a well-known epigram in information security: “given a choice between 
dancing pigs and security, users will pick dancing pigs every time” (McGraw & Felten, 1999, p. 29). 
This means that, given a Web link promising to show some amusing entertainment on one hand and 
a security warning for the same link on the other, users will often ignore the security warning and 
access the Web link anyway. 
 
We formally define this behavior as “security warning disregard”, which is behaving against the 
recommended course of action of a security warning. We chose this particular form of security 
behavior as the dependent variable for the study because, by heeding or disregarding a security 
warning, users explicitly accept or reject taking on added risk to their information security. 
Consequently, this behavior provides an observable indication of a user’s information security risk 
tolerance, which can then be directly compared to measures of perceived risk. 

3.2. The Effect of Security Incidents on Behavior and Risk Perception 

For fear-arousing stimuli intended to cause individuals to perceive a threat and take a certain action to 
avert that threat to be effective, both the threat severity and the threat susceptibility should be 
conveyed (Rogers, 1975). The concept of a threat in a fear-arousing stimulus is theoretically 
analogous to the concept of risk—a threat is an event with a potentially adverse consequence (Witte, 
1992), and a risk describes an event with a potentially negative consequence.  
 
However, computer users are susceptible to becoming desensitized to fear-arousing stimuli and 
warning messages in general. Studies on warning communications and information system security 
have empirically validated that users can become habituated to seeing warning messages. For 
example, Egelman, Cranor, and Hong (2008) demonstrate habituation to Web browser phishing 
warning messages that appear visually similar after repeated exposure to the warning. Similarly, Amer 
and Maris (2007) used a laboratory experiment with more general or generic system warning 
messages that also demonstrated warning message habituation. We theorize that technology users 
who are already habituated to security warning messages will perceive low risk when presented with 
the messages since habituation can cause the warning to not even rise to an individual’s attention 
level (Amer & Maris, 2007) and because it is likely that the warning never resulted in a negative 
consequence (also described as the warning "crying wolf" by Sunshine, Egelman, Almuhimedi, Atri, 
and Cranor (2009)).  
 
We further predict that, after suffering a security incident (a fear-arousing stimulus) in relation to a 
threat, the security warning message warned against, such as having one's computer become 
infected with computer malware, an individual’s perceived threat susceptibility will become higher 
than before the security incident, which will increase self-reported measures of risk perception. Good, 
Dhamija, Muligan, and Konstan (2005) found that users who had a recent past negative experience in 
their computer usage were more cautious compared with other users. We also predict, consistent with 
the findings of Johnston and Warkentin (2010), a decrease in intended risk-taking behavior. In line 
with this logic, we hypothesize that: 
 

H1: Security warning disregard before a security incident will be higher than security 
warning disregard after a security incident screen. 

 
H2: Pre-test self-reported measures of risk perception will be lower before a security 

incident than post-test self-reported measures of risk perception after a security 
incident. 
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3.3. Effectiveness of Self-reported Measures  

The theory of planned behavior (TPB) (Ajzen, 1991) posits that an individual’s beliefs and intentions 
correlate with their actual behavior associated with those beliefs and intentions. Since raising 
perceptions of risk or a threat is an integral goal of a fear-arousing stimulus and since a security 
warning message can be considered fear-arousing, we posit that self-reported measures of risk 
perception will predict security warning disregard.  
 
However, the pre-test self-reports will likely be confounded by the effects of habituation to seeing 
security warning screens regularly (Amer & Maris, 2007). Consequently, while some users may report 
high levels of perceived risk in general, they may act contrarily in their actual behavior. Thus, pre-test 
risk perception measurements would not be as strong a predictor for actual security warning 
disregard before a security incident compared with parallel post-test measurements after a security 
incident since the exposure to the security incident will likely break the habituation and desensitization 
to the security warning messages (see Bansal, Zahedi, & Gefen, 2010; Good et al., 2005; Ng & Feng, 
2006). Therefore, we hypothesize that: 
 

H3: Pre-test self-reported measures of risk perception will negatively predict security 
warning disregard before a security incident is imposed. 

 
H4: Post-test self-reported measures of risk perception will negatively predict security 

warning disregard after a security incident is received better than will pre-test self-
reported measures of risk perception before a security incident is imposed. 

3.4. Effectiveness of EEG Measures 

Prior studies in the Neuroscience literature have reported that amplitude measurements of the P300 
component of the ERP during risk-taking laboratory experiment tasks can correlate with participants’ 
risk-taking behavior during the experiment (Polezzi, Sartori, Rumiati, Vidotto, & Daum, 2010; 
Schuermann, Endrass, & Kathmann, 2012; Yeung & Sanfey, 2004). The P300 amplitude can vary 
depending on such factors as the valence of an outcome (i.e., whether it is a gain or loss), how 
frequent target stimuli are compared to non-targets, the magnitude of the gain or loss, and the 
personal motivation to do well (Yeung & Sanfey, 2004).   
 
The P300 has been implicated in context updating (cf. Donchin, 1981; Donchin & Coles, 1988). 
According to the context-updating theory, the P300 reflects the amount of cognitive resources 
allocated to re-evaluating an internal model of the environment. In a task such as the Iowa Gambling 
Task (IGT), the internal model has to do with the probability of a reward when selecting cards from 
certain decks. In the case of the low-frequency, high-magnitude penalty (referred to as the B Penalty; 
see the task description below), a large updating is necessary because the deck has been a big 
winner for a number of trials but now becomes a big loser. This interpretation is supported by recent 
findings by San Martín, Appelbaum, Pearson, Huettel, and Woldorff (2013), who showed that the 
magnitude of the P300 predicted individual choices in a gain maximization/loss minimization task 
similar to the IGT. 
 
We posit that the P300 will predict security warning disregard better after a security incident than it 
will before a security incident. While P300 amplitude measurements can still measure how individuals 
will respond in risk-taking situations, if the users are habituated to a particular security warning screen, 
they are less likely to register it as a threat until they are sensitized by a significant change, such as a 
security incident (Amer & Maris, 2007). After experiencing the security incident, individuals' P300 
measurements will better predict their “unhabituated” security warning disregard. Given these 
arguments, we hypothesize that: 
 

H5: Pre-test P300 amplitude measures will negatively predict security warning disregard 
before a security incident is imposed. 
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H6: Pre-test P300 amplitude measures will negatively predict security warning disregard 
after a security incident is imposed better than will the same P300 amplitude 
measures before a security incident is imposed. 

3.5. Advantages of Neurological Measures vis-à-vis Self-reported Measures for
Risk Perceptions 

While self-reported measurements have been theorized to be able to predict actual behavior to a 
certain degree (see TPB, Ajzen, 1991), these measurements are subject to several weaknesses that 
decrease their explanatory power, including common methods bias, social desirability, and 
subjectivity bias (Dimoka et al., 2011). Moreover, constructs such as risk perceptions can be difficult 
to capture with self-reported measures given that they can be non-conscious, and individuals 
naturally cannot self-report things about themselves of which they are not cognizant (Dimoka, 2010; 
LeDoux, 2003). Direct neural measurement methodologies, such as EEG, overcome these 
weaknesses of self-reported measurements since they measure without the participants’ involvement 
(Dimoka et al., 2011). Therefore, we predict that EEG measurements (specifically the P300 
component of the ERP) will predict security warning disregard better than both pre-test and post-test 
self-reported measurements. Thus, we hypothesize that: 
 

H7: Pre-test P300 amplitude measures will negatively predict security warning disregard 
better than pre-test self-reported measures of risk perception before a security 
incident is imposed. 

  
H8: Pre-test P300 amplitude measures will negatively predict security warning disregard 

better than will post-test self-reported measures of risk perception after a security 
incident is imposed. 

4. Methodology 
We used a laboratory experiment to test the hypotheses. The experimental design consisted of four 
stages: a pre-test survey; a risk-taking experiment called the Iowa Gambling Task, during which EEG 
was recorded; a separate image classification computing task with simulated security warnings; and a 
post-test survey. We explain each of these stages below. 

4.1. Pre-test Survey 

Prior to taking part in the experiment, we had the participants complete a pre-test survey to gauge 
their general risk propensity and information security risk perceptions of malware. To measure 
general risk propensity, we used general risk orientation (Kam & Simas, 2010) and willingness to 
gamble lifetime income (Barsky, Juster, Kimball, & Shapiro, 1997) for income risk. These questions 
enabled us to create a general risk profile for each subject. We also used two different measures of IS 
security risk perception to ensure that (1) our measures were representative of IS risk perception 
measures used in the literature and (2) our results would not depend on any one measure. The 
measures we selected were those of Johnston and Warkentin (2010), who measured risk perceptions 
using separate items for “threat severity” and “threat susceptibility”, and those of Guo et al. (2011), 
who measured security risk perception as a single construct. Please see Appendix B for information 
about how we selected these measures. 
 
The pre-test survey contained 16 items measuring general and information security-related risk. To 
minimize hypothesis guessing in the experimental task, we had the participants take the pre-test 
survey online one week prior to the experiment. Because the survey was online, it could be taken by 
many students at once. However, we scheduled the other phases of the experiment at one hour each, 
with limitations based on laboratory and researcher availability. Consequently, some students who 
took the initial survey very early were not able to do the second stage of the experiment until up to 
four weeks later. To further obscure the objective of the pre-test survey, we added 17 unrelated 
personality questions to the survey and eight demographic questions. In total, the pre-test survey 
consisted of 44 questions, which are reported in the appendix. 
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4.2. Iowa Gambling Task 

The first experiment consisted of the Iowa Gambling Task (IGT), a widely used technique in the 
Psychology and Neuroscience fields to measure individuals’ decision making ability (Toplak, Sorge, 
Benoit, West, & Stanovich, 2010). The IGT was originally designed by Bechara, Damasio, Damasio, 
and Anderson (1994) at the University of Iowa as an instrument to measure risk-taking behaviors by 
simulating real-life decision making. The task is a gambling card game in which participants are 
required to choose cards from four decks for a set number of rounds. Each card draw results in 
participants earning a varying amount of play money, but some cards also include penalties that lose 
money. Certain decks are safer in that they contain smaller rewards, but the losses are also smaller, 
which results in overall net gains. In contrast, riskier decks contain larger rewards, but the losses are 
also larger, which results in overall net losses. In both the safe and risky decks, the frequency of 
losses is varied such that some decks have frequent, smaller losses while other decks have 
infrequent, larger losses (see Table 1 below). The participants’ task is to learn by experience which 
decks are safest; that is, those that yield the most money in the long run. Participants are said to be 
risk seeking if, after all rounds have been completed, they have lost more money than they have 
earned (Weller, Levin, & Bechara, 2010). 
 
Of particular interest to our study, the IGT has been shown to be predictive of risk behaviors outside 
of the experimental task (Schonberg, Fox, & Poldrack, 2011). For example, poor performance on the 
IGT is strongly correlated with real-world risky behaviors such as substance abuse, compulsive 
gambling, criminality (Buelow & Suhr, 2009), and medication non-compliance (Stewart, Acevedo, & 
Ownby, 2012). Additionally, IGT performance has been found to be strongly associated with 
sensation-seeking (Crone, Vendel, & van der Molen, 2003), disinhibition (van Honk, Hermans, 
Putman, Montagne, & Schutter, 2002), reward responsiveness and fun-seeking (Suhr & Tsanadis, 
2007), and impulsivity (Buelow & Suhr, 2013). Given the predictive power of the IGT for real-world 
risky tasks, we similarly expect the IGT to be predictive of insecure computing behaviors. 
 
In the Neuroscience field, various indexes have been used as measurements for risk-taking behavior 
during the IGT. Besides a simple ratio of risky to non-risky deck choices (Bechara et al., 1994), 
neurophysiological methods have also been used, such as skin conductance responses (SCR) 
(Bechara, Damasio, Tranel, & Damasio, 2005; Maia & McClelland, 2004; van Honk et al., 2002), 
cortisol measurements to correlate a lack of fear with higher risk-taking propensities (van Honk, 
Schutter, Hermans, & Putman, 2003), positron emission technology (PET), which measures 
normalized cerebral blood flow (rCBF) (Bolla et al., 2003; Ernst et al., 2002), and fMRI (Fukui, Murai, 
Fukuyama, Hayashi, & Hanakawa, 2005; Singh & Sungkarat, 2008; Tanabe et al., 2007), which also 
uses blood flow measures to track neural activity. In particular, EEG is a popular method of measuring 
the neural correlates of risk-taking behavior in the IGT (Oberg, Christie, & Tata, 2011; Schutter & Van 
Honk, 2005). Recent research has demonstrated that the P300 is sensitive to loss minimization, with 
larger amplitudes for larger than for smaller losses (San Martín et al., 2013). Furthermore, San Martín 
et al. demonstrated that the P300 amplitude predicted subsequent behavioral adjustment in individual 
subjects. Likewise, we measured P300 amplitudes during the IGT in this study. 

4.3. IGT Procedures 

The stimuli consisted of the four virtual decks of cards displayed on a computer monitor in an 
electrically shielded testing room. Participants entered each deck selection using the keyboard. On 
making a choice, the participant received feedback such as “You won 50” or “You won 100 but lost 
50” after a 750 ms delay. This delay was used to separate the electrical activity of the motor act of 
pressing the keyboard button from the ERP response to the feedback message. We implemented the 
same reward/penalty schedule as the original IGT described by Bechara et al. (1994) over 100 trials 
(see Table 1). However, we modified the original IGT design to include four rounds of 100 trials per 
round (400 trials total). We did this to make the task more suitable for ERP measurement (Christie & 
Tata, 2009). The position of the four decks was randomized at the start of each round to require 
participants to rediscover which decks were most profitable. Win and loss subtotals were displayed in 
between each round. The decks were shuffled at the start of each round. Finally, we instructed 
participants that they would be eligible to receive a bonus extra credit point if they finished the IGT 
with a positive balance. 
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Table 1. IGT Deck Details 

Deck Gains Losses Frequency 
Net gain/loss over 10 

trials 
Rank of 

riskiness 

A Large (+100) 
-150, -200, -250, -300,  

-350 
Frequent (-250) 2 

B Large (+100) -1,250 Infrequent (-250) 1 

C Small (+50) -25, -50, -75 Frequent +250 4 

D Small (+50) -250 Infrequent +250 3 

4.4. Electrophysiological Data Recording and Processing 

The electroencephalogram was recorded from 128 scalp sites using a HydroCel Geodesic Sensor 
Net and an Electrical Geodesics Inc. (EGI; Eugene, Oregon, USA) amplification system (amplification 
20K, nominal bandpass 0.10–100Hz). We referenced the EEG to the vertex electrode and digitized at 
250 Hz. Impedances were maintained below 50 kΩ. EEG data were processed off-line beginning with 
a 0.1 Hz first-order highpass filter and a 30 Hz lowpass filter. Stimulus-locked ERP averages were 
derived spanning 200 ms pre-stimulus to 1,000 ms post-stimulus and segmented based on the 
following trial type criteria: risky deck (decks A and B) rewards, safe deck (decks C and D) rewards, 
deck A penalty, deck B penalty, deck C penalty, and deck D penalty. We removed eye blinks from the 
segmented waveforms using independent components analysis (ICA) in the ERP principal 
components analysis (PCA) toolkit (Dien, 2010) for Matlab (Mathworks, Natick, MA). We removed the 
ICA components that correlated at 0.9 with the scalp topography of a blink template from the data 
(Dien, Michelson, & Franklin, 2010). We removed artifacts in the EEG data due to saccades and 
motion from the segmented waveforms using PCA in the ERP PCA toolkit (Dien, 2010). We marked 
channels as bad if the fast average amplitude exceeded 100 μV or if the differential average 
amplitude exceeded 50 μV. Because the structure of the IGT results in fewer trials in some conditions 
than in others, there is a possibility that ERP results could be biased by unequal trial counts in the 
conditions of interest due to the lower signal to noise ratio associated with fewer trials (Clayson, 
Baldwin, & Larson, 2013). To counter this, we randomly chose a subset of trials from the conditions 
with more trials to match the number of good trials following artifact correction in the condition with 
the lowest trial count (the deck B penalty in almost every case). We excluded data from three 
participants (one female, two males) from our ERP analyses due to low trial counts or excess bad 
channels. We average re-referenced data from the remaining participants and baseline corrected 
waveforms using a 200 ms window prior to feedback stimulus presentation. The participants spent 
about 15 minutes on the IGT task, after which we removed the EEG cap. 

4.5. Image Classification Task 

After participants completed the IGT, we took them into another testing room to perform an online 
image classification task. The purpose of this task was to observe how participants responded to 
security warnings when working under time pressure  (simulating real-world working conditions). 
However, we concealed the purpose for this task from the participants, who were led to believe that 
classifying online images was the sole purpose of the task. In doing so, we followed a deception 
protocol approved by the university’s institutional review board. 
 
Our goal in this study was to determine the effectiveness of the self-reported risk perception measures 
and the IGT measure to predict risky security behavior—specifically, security warning disregard. For this 
reason, it was critical that participants perceived actual risk to their data when performing the task. 
Accordingly, we required participants to bring their personal laptops to the experiment to use during the 
image classification task. In a few instances, participants failed to bring a laptop, in which case they 
were provided with a laptop that belonged to one of the researchers. Debriefing interviews with 
participants subsequent to the task uniformly confirmed that participants perceived higher risk due to 
using their (or the researcher’s) personal laptop rather than a laboratory machine. 
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4.6. Image Classification Task Procedure 

Participants used their laptops to browse to a URL for the image classification task and signed in 
using a participant number. They were left alone in the room to complete the task. Participants read 
instructions stating that their task was to classify images of Batman on the Web as either animated or 
photographic versions of the character. The ostensible purpose for doing so was to compare a 
computer algorithm’s performance in the classification task to that of a human.  
 
During the task, the experimental website displayed in an HTML frame websites found through a Goo
gle Image search for “Batman” (see Figure 1 below).  
 

 

Figure 1. The Image Classification Experimental Website 

 
For each website, participants were required to click a button labeled “real” or “animated” to classify 
the images. Additionally, participants were under time pressure to complete the task. For each 
website, participants had ten seconds in which to classify the image. Failure to classify the image was 
counted as an incorrect answer. 
 
A performance bar in the bottom-left corner of the screen provided participants with live feedback on 
their performance. Initially, the bar was green, and it remained so as long as participants classified 
images correctly. A green bar communicated to participants that they were on track to receive a bonus 
extra credit point given as an incentive. However, if the bar turned red due to a misclassification, 
participants knew that they were no longer eligible for the bonus extra credit point. This design was 
chosen because loss aversion research (cf. Kahneman & Tversky, 1984) indicates that people are 
more passionate about not losing something relative to the possibility of gaining something.  
 
The penalty for failing to classify an image correctly was a 40 percent reduction of the performance 
bar. However, each correct classification increased the performance bar by 10 percent (if not already 
full). At the 90-pecent level, the bar became green again, which thus built forgiveness into the task so 
that participants could recover with good performance. 
 
Unbeknownst to the participants, the experimental website was programed to periodically display 
Web browser security warnings (see Figure 2). We modeled the security warning after the one used 
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in Google Chrome. As such, participants could click on the security warning by choosing either “No, 
don’t proceed” or “Yes, proceed anyway”. 
 

 

Figure 2. The Security Warning Screen 

 
If the participants clicked “no”, the Web frame redirected to Google.com, and they were penalized for 
failing to classify the image correctly. If participants clicked “yes”, they were taken to the Google 
Image search result and allowed to classify the image. If participants failed to take action in ten 
seconds, the experimental website displayed the next Google Image search result and penalized 
participants for failing to classify the image. Thus, participants were under pressure to work quickly 
and perform well on the task. Heeding the security warning therefore came at a cost of productivity, 
simulating the real-world costs of observing security warnings (Herley, 2009). 
 
The configuration for the algorithm's penalty mechanism was as follows: the performance bar had a 
range from zero to 100 and an initial value of 100. If the bar dropped below a predetermined 90-point 
threshold, the bar would turn red. The penalty for a failed classification was 40 points. If the 
performance bar was not already full, the reward for a correct answer was 10 points. 
 
In addition to examining how participants would respond to security warnings initially, we also wished 
to observe whether a security incident could raise perceptions of information security risk and change 
behavior (H2, H4, H6, H8). Therefore, we imposed a simulated security incident without warning 
midway through the image classification task. The security incident consisted of a message from an 
“Algerian hacker” that displayed a ten-second countdown timer and the words “Say goodbye to your 
computer” (Figure 3). 
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Figure 3. The Simulated Security Incident Hacker Screen 

 
The message was displayed full-screen to maximize impact and was modeled after actual website 
defacements archived on Zone-H.org. Participants reported a relatively high degree of concern as a 
result of the hacker screen (an average of 7.5 on a scale of 0—“not concerned at all”—to 10—“100% 
concerned”)—a result that was significantly higher than the neutral response of 5 (one-sample t-test, t 
= 3.752, p < .001). Additionally, we corroborated this finding in the debriefing interviews1.  
 
The frequency at which security warnings were displayed varied between every 10th and 15th 
website viewed to prevent participants’ detection of a fixed pattern. Before the security incident, every 
participant saw a total of seven security warnings. After the security incident, the warnings appeared 
at the same variable frequency as before until all 182 experimental websites had been viewed, which 
equated to approximately six to eight warning screens displayed.  

4.7. Post-survey 

On completing the image classification task, we asked participants to complete a brief post-survey 
(see the appendix), which allowed us to compare whether self-reported measures of information 
security risk increased after the security incident (H2). Accordingly, we included the same measures 
of information security risk given on the pre-test (“perceived risk”, “threat susceptibility”, and “threat 
severity”). We also quizzed participants about how much they recalled from the pre-test to assess 
whether the pre-test survey influenced their behavior during the image classification task. No 
participant perfectly recalled the pre-test, although 3.7 percent of respondents correctly identified all 
of the general topics of the pre-test. Approximately 27 percent reported that the pre-test did influence 
their behavior, but of these, the average reported influence was moderate (an average of 3.3 on a 
five-point Likert-type scale). Finally, a t-test showed no difference in security warning disregard 
between those who claimed that the pre-test influenced their behavior and those who did not (before 

1  At least seven participants shut their laptop lids, powered off their laptops, unplugged the network cable, and/or otherwise 
stopped the experiment after seeing the hacker screen. 
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a security incident: t = 1.08; after: t = 1.10; both not significant). Therefore, we conclude that the pre-
test had minimal impact on the results of the image classification task. 

4.8. Pilot Tests 

In preparation for our study, we conducted two pilot tests. The first pilot test (N = 25) consisted of the 
pre-test survey and the image classification task. The second pilot test (N = 30) also included the IGT. 
After each pilot test, we made adjustments to the experimental protocol based on participant 
feedback and analysis of the data. For example, after the second pilot test, we found that electrical 
activity in the brain from the motor act of pressing the keyboard button masked the signal of the ERP 
in response to the IGT feedback. As a result, we instituted a 750 ms delay between deck selection 
and win/loss feedback, which substantially reduced the noise in the data. 

4.9. Primary Data Collection 

Sixty-two healthy volunteers (16 females, 46 males) at a large private university in the western United 
States were recruited to participate. The average age was 21.84 (std. 1.96). These participants were 
part of a research pool that gave extra credit points toward a variety of university courses. Each extra 
credit point corresponded to .025 percent of the participants’ course grades. We told participants (as a 
part of the sign-up process) that they would receive two extra credit points for completing all four 
steps of the experiment. Prior to the second step (the IGT), we told participants that they could 
receive a bonus extra credit point if they finished the IGT with a positive balance and completed the 
image classification task in the “green zone”. However, all students who completed all four steps were 
given three extra credit points. 
 
Participants reported demographic variables such as age, gender, handedness (right: 55, left: 7), 
normal or corrected vision (yes: 59, no 3), colorblindness (no: 58, yes: 4), whether they were a native 
English speaker (yes: 55, no: 7), and whether they had been treated for a neurological or psychiatric 
condition (yes: 3, no: 59). These variables are known to affect neural processing (Luck, 2005) and 
were later used as controls in our analysis. 

5. Analysis 
We chose linear regression to test our hypotheses because it is a common form of analysis for both 
EEG and field survey studies. Thus, regression provided a shared method to assess both the self-
reported and EEG-related hypotheses. Second, our models were simple: they had one or two 
independent variables depending on the information security risk measure used. Therefore, a 
multivariate technique such as structural equation modeling was unnecessary.  
 
The dependent variable in our analysis was participants’ security warning disregard during the image 
classification task. We operationalized this variable as the ratio of the number of times participants 
actively chose to ignore the security warning (by clicking “Yes, proceed anyway” on the security 
warning) over the total number of security screens displayed. If a participant either clicked the “No, 
don’t proceed” button or took no action before the timeout period, then we recorded that the security 
warning was not disregarded. We calculated this ratio both before and after the participant received 
the security incident. 

5.1. Control Variable Analysis 

We examined whether the control variables influenced security warning disregard using stepwise 
regression. We found that, for “security warning disregard (before-incident)”, the control variables had 
no significant influence. However, for “security warning disregard (after-incident)”, whether or not 
participants were native English speakers (seven non-native speakers, 55 native) had a significant 
effect (-.281 standardized beta, t = -2.272 one-tailed, p < .05). Accordingly, we included this variable 
in our regressions involving “security warning disregard (after-incident)”. 

5.2. Validation of Self-reported Measures 

We validated our self-reported measures as follows. First, we tested the reliabilities of our risk 
measures (general risk orientation, perceived security risk, perceived threat susceptibility, and 
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perceived threat severity) for both pre- and post-test measures. All items exhibited a Cronbach’s 
alpha greater than .70, which indicates good reliability (Nunnally, 1970). We then summed the items 
for each construct to create a single independent variable to be used in the regression analysis. 
Second, we performed an exploratory factor analysis (EFA) for “perceived threat susceptibility” and 
“perceived threat severity” to ensure that these constructs functioned as distinct independent 
variables in the same model (Straub, Boudreau, & Gefen, 2004)2.  The EFA showed a clear pattern of 
loading onto two factors, with all items loading onto the appropriate factor, consistent with Johnston 
and Warkentin (2010). Therefore, we conclude that instrument validation was sufficient to support 
statistical testing of our hypotheses. 

5.3. Iowa Gambling Task Behavioral Performance 

To assess performance in the IGT, we calculated the ratio of choices from the “risky” decks (decks A 
and B) to choices from the “safe” decks (decks C and D) for each block of 100 trials. Consistent with 
previous studies employing the IGT (e.g., Bechara et al., 1994), participants switched from choosing 
more from the risky decks to choosing from the safe decks (mean ratio of 1.06, .83, .69, and .71 for 
blocks 1, 2, 3, and 4, respectively). A repeated-measures ANOVA on the risky- to safe-choice ratio 
revealed a main effect of block (F = 12.68, p < 0.001) and a significant linear trend across blocks (F = 
21.42, p < 0.001). 

5.4. Hypothesis Testing 

5.4.1. Testing the Impact of the Security Incident in the Experimental Task 
First, we tested whether participants disregarded the security warning screens less frequently after 
the hacker screen was received (hereafter referred to as the security incident). A paired-sample t-test 
showed that, on average, participants disregarded the security warning screen significantly less after 
a security incident (ratio of .66 of warnings disregarded over warnings received) than before (.73), 
which indicates a significant decrease in security warning disregard (t = 2.192 one-tailed, p < 0.05). 
We confirmed the impact of the security warning screen in the post-test survey, in which participants 
reported that the security warning screen was both realistic and concerning (6.76 and 8.47 
respectively, measured on a 0 to 10 scale). This supports H1 because participants changed their 
security warning disregard after a security incident (see Table 2). 
 

Table 2. Paired-sample T-test Comparing Security Warning Disregard Before and After the 
Security Incident (H1) 

Mean of 
SWD (before 

Incident) 

Mean of 
SWD (after 
Incident) 

Mean of 
difference 

Std. 
deviation of 
difference 

Std. error 
mean of 

difference 

95% confidence interval  

t Lower Upper 

.733 .656 .077 .274 .035 .007 .146 2.192* 

* p < .05; degrees of freedom = 61; SWD = security warning disregard. 

 
Next, we tested whether perceptions of information security risk increased after a security incident. 
We would expect that the impact of the security incident would make information security risks more 
salient for participants, which would lead to a higher perception of information security risks. Again, a 
paired-sample t-test analysis showed that “threat severity” and “threat susceptibility” perceptions 
increased significantly by approximately 15 percent after participants had a security incident (an 
increase of 3.31 and 3.11, respectively, in a range of 21; t = 6.104 one-tailed, p < .001). Likewise, 
“perceived risk” also increased in the post-test, but not significantly (an increase of .57 out of a range 
of 21). As such, while our findings did not support H2a for “perceived risk”, they did support H2b for 
“threat severity” and H2c for” threat susceptibility” (see Table 3). 
 
 

2  We did not perform an EFA was for perceived security risk, general risk perceptions, or risk income preferences because we ran these constructs 

in separate models as the only independent variable or factor. 
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Table 3. Paired-sample T-test Comparing Perceptions of Information Security Risk Before and 
After the Security Incident 

H2a: for perceived security risk of malware (PSRM) 

Mean of PSRM 
(before 

incident) 

Mean of 
PSRM (after 

incident) 

Mean of 
difference 

Std. 
deviation of 
difference 

Std. error 
mean of 

difference 

95% confidence interval t 
 

Lower Upper 

14.19 14.76 .565 3.911 .497 -.429 1.558 1.558 ns 

H2b: for threat severity of malware (TSEV) 

Mean of TSEV 
(before 

incident) 

Mean of 
TSEV (after 

incident) 

Mean of 
Difference 

Std. 
deviation of 
difference 

Std. error 
mean of 

difference 

95% confidence interval t 
 

Lower Upper 

11.51 14.82 3.311 4.237 .542 2.226 4.397 6.104* 

H2c: for threat susceptibility of malware (TSUS) 

Mean of TSUS 
(before 

incident) 

Mean of 
TSUS (after 

incident) 

Mean of 
difference 

Std. 
deviation of 
difference 

Std. error 
mean of 

difference 

95% confidence interval t 
 

Lower Upper 

12.42 9.31 3.113 3.725 .473 2.167 4.059 6.581* 

*** p < .001; ns = not significant; degrees of freedom = 61. 

5.4.2. Testing the Predictive Validity of Self-reported Measures of IS Risk Perception 
To test H3, we examined whether self-reported measures of information security risk perceptions 
predicted security warning disregard before a security incident. To do this, we ran three separate 
regression equations with “security warning disregard (before incident)” as the dependent variable 
and one of the three self-reported information security risk perception measures (“threat severity”, 
“threat susceptibility”, and “perceived risk”) as a single independent variable (see Table 4). This 
allowed us to examine the effect of each measure independently3.  As an additional test, we also 
examined whether general risk orientation (i.e., general risk appetite and willingness to gamble 
lifetime income) also predicted behavior. However, none of the above regression tests were 
significant. Therefore, H3 was not supported—none of the self-reported security risk measures (H3a 
for “perceived risk”, H3b for” threat severity”, H3c for “threat susceptibility”, H3d for “general risk 
appetite”, and H3e for “willingness to gamble lifetime income”) predicted security warning disregard 
before the security incident. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  We also tested threat severity and threat susceptibility together since these measures are designed to predict jointly (Johnston & Warkentin, 

2010). However, in this model, both factors remained insignificant. 
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Table 4. Regression Results for the Effects of Pre-test Risk Perception on Security Warning 
Disregard (Before Security Incident) 

H3a: Perceived security risk of malware—pre-test 

Model ß Std. error Standardized ß t 

Intercept .851 .189 — 4.493*** 

Perceived security risk of malware—pre-test -.008 .013 -.083 -.647 ns 

Model statistics: R2 = .007; f = .419, p = .520     

H3b: Threat severity of malware—pre-test 

Model ß Std. error Standardized ß t 

Intercept .673 .127 — 5.306*** 

Threat severity of malware—pre-test .006 .010 .080 .614 ns 

Model statistics: R2 = .006; f = .377, p = .542     

H3c: Threat susceptibility of malware—pre-test 

Model ß Std. error Standardized ß t 

Intercept .760 .127 — 6.004*** 

Threat susceptibility of malware—pre-test -.003 .012 -.031 -.236 ns 

Model statistics: R2 = .001; f = .056, p = .814     

H3d: General risk appetite—pre-test 

Model ß Std. error Standardized ß t 

Intercept 1.015 .254 — 4.002*** 

General risk appetite—pre-test -.010 .009 -.140 -1.088 ns 

Model statistics: R2 = .020; f = 1.184, p = .281     

H3e: Willingness to gamble lifetime income—pre-test 

Model ß Std. error Standardized ß t 

Intercept .793 .087 — 9.106*** 

Willingness to gamble lifetime income -.037 .043 -.110 -.854 ns 

Model statistics: R2 = .012; f = .729, p = .397     

*** p < .001; ns = not significant; one-tailed tests. 

 
We also hypothesized that self-reported measures of risk would be more effective at predicting 
security warning disregard after a security incident compared to before a security incident (H4). To 
test this hypothesis, we followed the same procedure as described above for testing H3, with the 
difference that we tested “security warning disregard after incident” as the dependent variable and 
used post-test measurements for “threat severity”, “threat susceptibility”, “perceived risk”, and both 
“threat severity” and “threat susceptibility” in the same model. Our results showed that the post-test 
measurement of “perceived risk” (-.252 standardized beta, t = -2.069 one-tailed, p < .05) and “threat 
susceptibility” significantly (-.294 standardized beta, t = -2.448 one-tailed, p < .05) reduced security 
warning disregard (see Table 5). Thus, H4a for “perceived risk” and H4c for “threat susceptibility” 
were supported4.  However, H4b for “threat severity” was not. As such, the results support our 
hypothesis that self-reported measures would be more predictive immediately after subjects 
experienced a salient security incident only for “threat susceptibility”. 
 

4  We also tested whether pre-test measures for self-reported risk predicted post-consequence security warning disregard. In this case, perceived 

risk had a significant negative effect (-.22 standardized beta, p < .05), but threat susceptibility had no effect. 
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Table 5. Regression Results for the Effects of Post-test Risk Perception on Security Warning 
Disregard (After Security Incident) 

H4a: Perceived security risk of malware—post-test 

Model ß Std. error Standardized ß t 

Intercept 1.436 .262 — 5.475*** 

Native English speaker -.435 .168 -.316 -2.595** 

Perceived security risk of malware—Post-test -.028 .013 -.252 -2.069* 

Model statistics: R2 = .142; f = 4.863 , p = .011     

H4b: Threat severity of malware—post-test 

Model ß Std. error Standardized ß t 

Intercept 1.092 .268 — 4.077*** 

Native English speaker -.401 .175 -.291 -2.298* 

Threat severity of malware—post-test -.005 .013 -.055 -.432 ns 

Model statistics: R2 = .082; f = 2.640, p = .080     

H4c: Threat susceptibility of malware—post-test 

Model ß Std. error Standardized ß t 

Intercept 1.423 .232 — 6.142*** 

Native English speaker -.446 .166 -.324 -2.692** 

Threat susceptibility of malware—post-test -.030 .012 -.294 -2.448* 

Model statistics: R2 = .164; f = 5.793, p = .005     

*** p < .001; ** p < .01; * p < .05; ns = not significant; one-tailed tests. 

5.4.3. Testing of the Predictive Validity of EEG Measures of Risk Perception 
Next, we tested the predictive validity of our EEG measures of risk perception. To do this, we used 
the P300 ERP component as the independent variable. We extracted the P300 amplitudes as the 
mean amplitude in the 300–600 ms post-stimulus window (Fjell & Walhovd, 2001). We calculated 
latencies as the 50 percent area latency (Bashore & Ridderinkhof, 2002; Polich & Corey-Bloom, 
2005) for the 300–600 ms post-stimulus window.  
 
We calculated each participant’s P300 responinformationses to gain/loss feedback subsequent to 
deck selections in the IGT. The deck selections of special interest for our context were the highest-
risk deck (deck B with high-penalty and low-frequency) and the lowest-risk deck (deck C with low-
penalty and high-frequency). These decks provided the greatest contrast to participants’ responses to 
penalties incurred in the IGT. In the course of the experiment, participants chose from deck B an 
average of 94.7 times (SD=29.9, min=53, max=160). Penalties in this deck are high-magnitude and 
low-frequency; participants received an average of 6.5 B penalty trials (SD=3.8, min=1, max = 16). 
Participants chose from deck C an average of 104.9 times (SD=29.1, min=38, max=160). Penalties in 
this deck are of lower magnitude and higher frequency; participants received an average of 34.5 C 
penalty trials (SD=17.5, min=1, max=73; see Appendix E for more information). As we note in Section 
4.4, we randomly selected trials from conditions with higher trials counts to reduce bias due to 
differential trial counts.  
 
Next, to highlight the contrast between risky and safe feedback, we calculated a difference curve or 
score by subtracting the activity observed for the C penalty response from that of the B penalty 
response (Falkenstein, Hoormann, Christ, & Hohnsbein, 2000) (see Figure 4). This technique 
suppresses activity that is common between two experimental conditions and thus leaves only the 
difference of what is truly distinct (Hoormann, Falkenstein, Schwarzenau, & Hohnsbein, 1998). 
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Figure 4. Event-related Potentials between 300 and 600 ms for Responses to B and C Deck 
Penalties and Their Difference at the Pz Electrode Site5   

 
Consistent with previous literature examining feedback-related ERPs (San Martín et al., 2013), we 
analyzed the P300 using the mean ERP amplitude 300-600ms after stimulus onset (Figure 4 shaded 
area; see Appendix F for further detail).  A topographical analysis of our difference data showed two 
potential peaks in the 300-600ms time window; one that was situated more frontally and peaked 
earlier, probably representing the P3a subcomponent of the P300, and another that was situated 
more posteriorly and peaked slightly later, probably reflecting the P3b subcomponent of the P300. We 
observed the greatest P300 amplitude differences in the parietal (Pz) region of the scalp (see Figure 
5). Therefore, we used measures from this region in our analyses. Hence, our calculated independent 
variable was the difference in mean activity between the B penalty and the C penalty at the Pz 
electrode site (i.e., a B penalty minus C penalty difference score). 
 

5 We extracted mean amplitude for the P300 during the 300–600 ms post-stimulus epoch (shaded) deck penalties. 
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Figure 5. Topographical Heat Map of P300 Amplitudes for Responses to B and C Deck 
Penalties and Their Difference 

  
First, we tested whether our “difference score” measure of risk predicted security warning disregard in 
the before-incident phase of the image classification task (H5). We found that the “difference score” 
had a significant influence on security warning disregard before the incident (standardized beta of -
.277, t = -2.235 one-tailed, p < .05). This indicates a medium effect size following Cohen’s 
classification of effect sizes (where small, medium, and large effects correspond to .10, .30, and .50, 
respectively (Cohen, 1992). Therefore, H5 was supported (see Table 6). This was in contrast to the 
self-reported measures, which had no effect before the security incident. 
 

Table 6. Regression Results for the Effects of P300 Difference Score on Security Warning 
Disregard (Before a Security Incident) 

H5: P300 difference score 

Model ß Std. error Standardized ß t 

Intercept .766 .051 — 14.940*** 

P300 difference score -.028 .013 -.277 -2.235* 

Model statistics: R2 = .077; f = 4.997, p = .029     

*** p < .001; ** p < .01; * p < .05; ns = not significant; one-tailed tests. 

 
Next, we tested whether the “difference score” predicted security warning disregard better after a 
security incident compared to before a security incident (H6). A regression analysis showed that the 
“difference score” did predict security warning disregard after-incident (standardized beta of -.324, t = 
-2.750 one-tailed, p < .01) (see Table 7). 
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Table 7. Regression Results for the Effects of P300 Difference Score on Security Warning 
Disregard (After Security Incident) 

H6: P300 difference score 

Model ß Std. error Standardized ß t 

Intercept 1.014 .153 — 6.649*** 

Native English speaker -.355 .162 -.258 -2.185* 

P300 difference score -.036 .013 -.324 -2.750** 

Model statistics: R2 = .184; f = 6.644, p = .002     

*** p < .001; ** p < .01; * p < .05; ns = not significant; one-tailed tests. 

 
The difference in the size of the standardized path coefficients before and after the security incident 
was -.047 (-.324 less -.277). To test whether this difference was significant, we used a SAS 9.2 macro 
to bootstrap our sample following the procedure described in (Hayes, 2009). In this approach, we 
randomly selected, with replacement, 62 observations from our dataset of 62. We then ran two 
separate regression models: the “difference score” regressed on security warning disregard “before” 
and “after” the security incident, and saved the resulting path coefficients of the models. We repeated 
this process to obtain 1,000 resamples and associated path coefficients because 1,000 or more 
resamples are recommended (Hayes, 2009). Next, we calculated the difference between the 
coefficients in each resample (e.g., standardized βResample1 “difference score” [after-incident] - 
standardized βResample1 “difference score” [before-incident], standardized βResample2 “difference score” 
[after-incident] - standardized βResample2 “difference score” [before-incident], etc.). 
 
We next sorted the difference values of the resampled coefficients from largest to smallest to create a 
percentile-based confidence interval ci% using the formula k(.5 - ci/200) for the lower bound and the 
formula 1 + k(.5 + ci/200) for the upper bound, where k is the number of resamples (Hayes, 2009). In 
our case, we obtained 1,000 resamples and specified a 95 percent confidence interval. For the sorted 
values of the differences of the coefficients, the lower bound of the confidence interval was 
represented by the value in the 25th position, whereas the upper bound was denoted by the value in 
the 975th position. For the constructed confidence interval, if zero is not between the lower and upper 
bound, then one can state with ci% confidence that the difference between the coefficients is not zero 
(MacKinnon, 2008). Table 8 reports the results of the 95 percent confidence interval test. Because 
zero was included in the confidence interval, we conclude that the effect of “difference score” on after-
incident behavior was not significantly greater than its effect on before-incident behavior. Therefore, 
H6 was not supported. The effect of the P300 “difference score” on behavior was essentially the 
same before as it was after the security incident. 
 

Table 8. Bootstrapped Confidence Interval to Test for an Increase in the Strength of the P300 
Difference Score After a Security Incident (H6) 

Variable 
 

Confidence interval Zero in 
interval? 

 

H6 
supported? 

 
2.5% lower 

bound 
97.5% upper 

bound 

Std. β difference score (after-incident) - Std. β difference 
score (before-incident) 

-.230 .029 Yes No 

5.5. Comparing the Relative Predictive Strength of Self-reported and EEG 
Measures of Risk 

Having tested the effects of the self-reported and EEG measures of risk separately, we then 
compared the relative strength of the self-reported risk perception measures and the EEG P300 
“difference score” measure. Consistent with the results of H3 and H5, only the difference score had a 
significant effect on the security warning disregard before the security incident. Thus, H7 was 
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supported—that is, in every case (H7a for “perceived risk”, H7b for “threat severity”, and H7c for 
“threat susceptibility”), EEG measures of risk were more predictive of security warning disregard 
before incident than were the self-reported measures.  
 
Finally, to test H8, we followed the same process as for testing H7, with the difference that we now 
examined “security warning disregard after-incident” as the dependent variable. The variables 
“perceived risk (post-test)”, “threat susceptibility (post-test)”, and “difference score” independently had 
significant negative effects on “security warning disregard after-incident” (see testing for H4 and H6 
above). To test whether the path coefficient of the “difference score” was significantly greater than 
those of the self-reported measures, we followed the same bootstrapping procedure described for our 
tests of H6 above. We individually bootstrapped the effects of “perceived risk (post-test)”, “threat 
susceptibility (post-test)”, and “difference score” on after-incident behavior and saved the coefficients. 
This resulted in 1,000 resamples for each coefficient. We then calculated the difference between each 
resampled pair and sorted the resulting difference scores to create a 95 percent confidence interval. 
In both cases, zero was inside the 95 percent interval (see Table 9). 
 

Table 9. Bootstrapped Confidence Interval to Compare the Strength of the P300 Difference 
Score with Self-reported Risk Measures (After Incident) (H8) 

Variable 
 

Confidence interval Zero in 
interval? 

 

H8 
supported? 

 
2.5% lower 

bound 
97.5% upper 

bound 

Std. β P300 difference score - std. β perceived risk (after-
incident) 

-.418 0.169 Yes H8a: No 

Std. β P300 difference score - std. β threat susceptibility 
(after-incident) 

-.356 .290   

 
Thus, H8b for “threat severity” was supported, but H8a for “perceived risk” and H8c for “threat 
susceptibility” were not. The EEG measures were no more effective in predicting security warning 
disregard after the adverse incident was received than were the post-test measures of perceived risk 
and threat susceptibility. Table 10 summarizes the results of our hypothesis testing. 
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Table 10. Summary of Hypothesis Testing 

Hypothesis Supported? 

H1. Security warning disregard before a security incident will be higher than security 
warning disregard after a security incident. 

Yes 

H2. Pre-test self-reported measures of risk perception will be lower before a security 
incident than post-test self-reported measures of risk perception after a security 
incident. 
         a. for perceived risk 
         b. for threat severity 
         c. for threat susceptibility 

 
 
 

No 
Yes 
Yes 

H3. Pre-test self-reported measures of risk perception will negatively predict security 
warning disregard before a security incident is imposed. 
         a. for perceived risk 
         b. for threat severity 
         c. for threat susceptibility 
         d. for general risk appetite 
         e. for willingness to gamble lifetime income 

 
 

No 
No 
No 
No 
No 

H4. Post-test self-reported measures of risk perception will negatively predict security 
warning disregard after a security incident is imposed better than pre-test measures 
negatively predict security warning disregard before a security incident is imposed.  
         a. for perceived risk 
         b. for threat severity 
         c. for threat susceptibility 

No 
Yes 
No 

H5. Pre-test P300 amplitude measures will negatively predict security warning 
disregard before a security incident is imposed. 

Yes 

H6. Pre-test P300 amplitude measures will negatively predict security warning 
disregard after a security incident is imposed better than will the same P300 amplitude 
measures before a security incident is imposed 

No 

H7. Pre-test P300 amplitude measures will negatively predict security warning 
disregard better than pre-test self-reported measures of risk perception before a 
security incident is imposed. 
         a. for EEG superior to “perceived risk” 
         b. for EEG superior to “threat severity” 
         c. for EEG superior to “threat susceptibility” 

 
 
 

Yes 
Yes 
Yes 

H8. Pre-test P300 amplitude measures will negatively predict security warning 
disregard better than will post-test self-reported measures of risk perception after a 
security incident is imposed. 
         a. for EEG superior to “perceived risk” 
         b. for EEG superior to “threat severity” 
         c. for EEG superior to “threat susceptibility” 

 
 
 

No 
Yes 
No 

6. Discussion 
This study’s results provide several important contributions to research on information security risk 
perceptions and their measurement, which Table 11 summarizes below. In this section, we elaborate 
on each of these contributions. 
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Table 11. Research Contributions 

Element of research Contributions 

P300 measure of risk propensity  
The P300 difference score proved the strongest predictor: it 
significantly predicted security warning disregard both before and 
after a security incident.  

Self-reported measures of risk 
perceptions 

Self-reported measures of information security risk perception did 
not predict security warning disregard before a security incident, 
which indicates a poor correspondence with behavior in this 
experimental setting.  

P300 measure of risk propensity 
and self-reported measures of 
risk perceptions  

After a security incident, “perceived risk” and “threat susceptibility” 
significantly predicted security warning behavior to essentially the 
same degree as the P300 difference score. This suggests that self-
reported measures are better predictors when information security 
risks are salient. In contrast, the P300 difference score was a strong 
predictor even when information security risks were not salient. 

Security warning behavior and 
self-reported measures of risk 
perceptions 

Security warning disregard and self-reported measures of risk 
perception change with the introduction of an adverse 
consequence. 

 
First, we found that the P300 difference score, derived from participants’ P300 amplitudes in response 
to losses in the IGT, was the strongest predictor of security warning disregard in our study (H5, H7). It 
was also the most robust measure because it predicted security warning disregard consistently 
before and after a security incident (H6). Accordingly, with this study, we provide evidence that 
NeuroIS measures of risk propensity can predict security behavior. In doing so, we paper respond to 
the call to use NeuroIS methods to study information security behaviors (Anderson et al., 2012; 
Crossler et al., 2013). 
 
Second, we found that a variety of self-reported risk measures—five different measures in all—failed 
to predict security warning disregard before the security incident was imposed (H3). This was a 
surprising finding and counter to our hypotheses. The levels of risk perception of the self-reported 
measures were moderate to high in all cases. However, despite this, these measures were weakly 
and insignificantly correlated with security warning disregard. This finding is consistent with previous 
studies on security and privacy risk that have showed that participants reported high levels of concern 
about their privacy and online security but later behaved contrarily to their stated apprehensiveness 
(Acquisti & Grossklags, 2004; Belanger et al., 2002; Norberg et al., 2007). This has important 
implications for research involving information security risk perceptions. 
 
Third, this paper contributes the interesting finding that self-reported measures of information security 
risk were insignificant before a security incident; however, after an incident, “perceived risk” and 
“threat susceptibility” predicted security warning disregard more or less equally with the P300 
difference score (H4, H8). This finding has been anticipated by Dimoka et al. (2012, 2011), who 
observed that many emotions—such as fear and uncertainty—are not processed consciously and are 
therefore difficult to measure using self-reported measures. Thus, initially, the self-reported measures 
did not accurately reflect participants’ actual attitudes toward information security risk. However, after 
a security incident, attitudes toward information security risk became salient and were processed 
consciously by the participants. This conclusion is supported by the fact that measures of “threat 
severity” and “threat susceptibility” significantly increased after a security incident (H2).  
 
In contrast, the P300 difference score measured a correlate of the neural response as early as 300 
ms after receiving the IGT loss stimulus. The amplitude of the P300 ERP component has been shown 
to be sensitive to target probability and is influenced by participants’ expectations (for a review, see 
Polich, 2007). As the probability of a loss in the various decks in the IGT was the same for each 
participant, the target probability (i.e., the probability of a loss in a particular deck) cannot account for 
variations in the difference scores between participants. Thus, in our experiment, the P300 difference 
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score appeared to be more in line with participants’ actual security warning disregard. This measure 
was unrelated to the perceptions of information security risk participants espoused before the incident 
and was therefore a far more accurate predictor of actual security warning disregard (H5). After a 
security incident, the P300 difference score continued significantly to predict security warning 
disregard, which indicates robust predictive validity (H6; Straub et al., 2004). 
 
Interestingly, “perceived risk” and “threat susceptibility”, but not “threat severity”, became significant 
after a security incident. Although this was contrary to our hypothesis, this result is reasonable given 
that the severity of the security incident for each participant was apparently nil—contrary to the dire 
claim reported by the hacker screen that data on the participant’s laptop would be erased. Therefore, 
while participants recognized that they were more susceptible to malware than they initially thought, 
they had no cause to change their attitudes about the severity of such attacks. This explanation also 
holds for the measure of “perceived risk” because its items combine the concepts of susceptibility and 
severity into the same measure. Thus, because perceptions of susceptibility increased, the predictive 
power of “perceived risk” increased as well. 
 
Finally, we showed that people’s behavior and attitudes do change after a security incident—security 
warning disregard significantly decreased while risk perceptions significantly increased (H1, H2). This 
finding is also consistent with research showing that users substantially alter their computing 
behaviors to be more cautious after being compromised by malware (Fox, 2005; Good et al., 2005). 
This result, though expected, nonetheless demonstrates that information security risk perceptions are 
not static but change as people gain experience with information security threats. 

6.1. Methodological Implications 

From the aforementioned findings, two primary methodological implications are evident. First, the 
P300 difference score from the Iowa Gambling Task is a good measure of risk propensity and a 
significant predictor of security warning disregard. This indicates that researchers who wish to 
measure information security risk perceptions should consider using an EEG measure of risk 
because of its superior predictive power. It also suggests that other NeuroIS methods may be 
similarly effective in predicting information security behavior because of their ability to avoid 
measurement biases. Moreover, our findings demonstrate the value of capturing information security 
risk at an unconscious level, which is possible using a variety of NeuroIS methods, such as fMRI and 
galvanic skin response (Dimoka et al., 2011). 
 
Second, our findings show that self-reported measures of information security risk and risk generally 
were not effective predictors of security behavior in this experimental setting until a security incident 
was salient in a person’s recent experience. This suggests that researchers might profitably use self-
reported measures in a post-test after an experimental treatment that simulates a security incident. 
Alternatively, researchers might try measuring past experiences with information security incidents (as 
per Anderson & Agarwal, 2010) to help qualify self-reported measures of risk. Additionally, self-
reported measures of information security risk might be used to triangulate data collected using 
NeuroIS or other behavioral methods (Dimoka et al., 2011).  
 
However, researchers should use caution when attempting to use self-reported measures of information 
security risk as a predictor of information security intentions. Although information security risks have 
been shown to be significant predictors of security-related intentions in the past (e.g., Guo et al., 2011; 
Malhotra et al., 2004), this and other research suggests that this predictive ability may not translate into 
actual security behavior (Acquisti & Grossklags, 2004; Belanger et al., 2002; Crossler et al., 2013). 

6.2. Limitations and Future Research 

This study has several limitations that point to future research opportunities. For example, this study 
examined security warning disregard as the only form of security behavior. It is possible that other 
forms of security behavior may be more amenable to prediction using self-reported measures of risk.  
 
Similarly, this study used only one NeuroIS method—EEG. It is possible that using different NeuroIS 
methods such as fMRI may yield different results. Future research should attempt to measure 
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information security risk perceptions using other techniques to determine the most effective methods 
to measure the construct of information security risk. Further, one or more NeuroIS methods in 
combination could be used to produce more reliable measurements (Dimoka et al., 2012). 
 
Another limitation is that we did not use EEG to measure information security risk per se. Rather, we 
used EEG to measure participants’ responses to gains and losses in the IGT, a widely used technique 
in the Psychology and Neuroscience fields that has been shown to be strongly correlated with real-
world risky behaviors (Buelow & Suhr, 2009). Nevertheless, there are two aspects of the IGT that 
deserve further consideration. The first is that, due to the structure of the IGT, there are relatively few 
B penalty trials, which could lead to noisier ERP measures associated with the B penalty trials. Noisy 
ERP signals are particularly problematic for peak measures (such as peak amplitude or latency to 
peak) and, as such, we used average ERP amplitude measures, which are more resistant to noisy 
measures (Luck, 2005).  
 
The second consideration is that the relative frequency of penalty types differed between the B 
penalty and C penalty conditions. The P300 has been observed widely in ERP studies and seems to 
be generated any time a task requires stimulus discrimination (for a review, see Polich, 2007). 
Furthermore, the different subcomponents of the P300 (namely the P3a and P3b) may reflect different 
underlying neural computations. Previous P300 research has indicated that the amplitude of the P300 
is influenced by the local probability of a target stimulus occurring (Polich & Margala, 1997). Because 
of how the IGT is structured, this almost certainly has an influence on the amplitude of the P300 in 
response to the B penalty (relatively infrequent) and the C penalty (relatively frequent). However, 
while stimulus probability explains the difference in the amplitudes in these conditions, it does not 
explain why this difference predicts subsequent security warning disregard. Indeed, further analysis 
found no evidence of either mediation or moderation of participants’ selections of B or C decks on 
subsequent security warning disregard (see Appendix D). From these results, we conclude that the 
behavioral data in the IGT had no influence (either as a mediator or moderator) on the effect of the 
P300 difference score on security warning disregard in the image classification task.  
 
Similarly, it has been suggested that the amplitude of the P300 is related to attentional processes 
(Kok, 1990) or neural inhibition (Polich, 2007). If participants devote fewer attentional resources to 
losses of different magnitudes or frequencies, or, alternatively, if they are less likely to inhibit non-
related processes following a high-magnitude loss, they may be less likely to attend to security 
warnings in another context.  
 
These disparate explanations are accounted for by another influential theory of the purpose of the 
P300—the context-updating theory (Donchin, 1981; Donchin & Coles, 1988). As we discuss in 
Section 2.5, the P300 reflects changing mental representations of the ongoing task structure in 
response to incoming stimuli. The context-updating theory can account for several findings in the 
P300 literature, including those listed above (Polich, 2007). For example, infrequent targets may 
demand more cognitive resources to update ongoing task representations and thus produce a larger 
P300. In the context of risk perception, the P300 may be reduced in cases of individuals who are less 
responsive to negative outcomes and are therefore more risk-seeking. Previous research has 
demonstrated that risk perceptions measured using EEG during the IGT do predict other risk 
behaviors (Bianchin & Angrilli, 2011; Schuermann, Kathmann, Stiglmayr, Renneberg, & Endrass, 
2011). Our study’s results are consistent with this previous body of work in that it shows that the P300 
difference score does significantly predict security behavior. Thus, it exhibited strong predictive 
validity (Straub et al., 2004) and demonstrated its value as an information security risk measure. 
 
Another limitation of our study is that it may not be very generalizable given the necessary artificiality of 
the laboratory environment and the use of student subjects. However, the raison d’être for laboratory 
experimentation is not external validity but precision and control (Dennis & Valacich, 2001; McGrath, 
1981). Similarly, student subjects typically represent a homogenous sample that reduces noise and 
thereby provides the strictest test of the hypotheses (Calder, Phillips, & Tybout, 1982). Regardless, as 
young people spend a proportionately large amount of time online compared with the general 
population (Pew Research Center, 2012), students frequently encounter threats from security and are 
therefore a valid sample to study information security risk perceptions and security warning disregard. 
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Additionally, there is a chance that our design choice may have introduced some reciprocal causation. 
That is, in the interest of completing the task, participants may have disregarded security warnings as 
quickly as possible to continue with the classification. Thus, those who sought to optimize the image 
classification task may have exhibited the highest level of security warning disregard (the dependent 
variable). However, we considered this possibility in our design of the experiment for two reasons. 
First, we intentionally tried to emulate real life, in which an individual is typically striving to complete a 
task when a pop-up warning or message is received and therefore tries to remove an interfering item 
as quickly as possible. Dual-task interference theory explains the difficulty people have when trying to 
perform two or more tasks, even relatively simple ones (Pashler, 1994). Further, recent research 
(Jenkins & Durcikova, 2013) asserts that is it possible to predict a disconnect between security 
intentions and behaviors due to the cognitive load of two simultaneous tasks. Consequently, we 
designed the experiment so that the participants would have to deal with a time-sensitive competing 
task when responding to the security warning. Second, as we note in Section 3.1, people routinely 
sacrifice promised information security for some other utility. Thus, the temptation to ignore the 
security warnings received on their personal laptops in exchange for better performance in the image 
classification also mirrored real life. 
 
Finally, our sample consisted of 62 participants. While more data is generally better, our regression 
models involved only one or two predictors at one time. As the “rule of ten” sample size heuristic for 
regression suggests ten observations per predictor (Chin, 1998), this indicates that our sample size 
was sufficient. Further, Dimoka (2012) points out that, although sample sizes tend to be smaller for 
NeuroIS studies due to the expense and time commitment required per subject, NeuroIS methods 
generally provide many data points per subject. In our case, we collected 400 behavioral observations 
per participant while recording EEGs at 250 Hz. Thus, the amount of data captured and used in our 
analysis was actually much greater than a sample size of 62 would suggest. 

7. Conclusion 
With this study, we show that participants’ EEG P300 amplitudes in response to losses in a risk-taking 
experimental task strongly predicted security warning disregard in a subsequent and unrelated 
computing task using participants’ own laptop computers. By comparison, self-reported measures of 
information security risk did not predict security warning disregard. However, after secretly simulating 
a malware incident on the participants’ own laptops, post-test measures of information security risk 
perception did predict participants’ security warning disregard after a security incident. This suggests 
that self-reported measures of information security risk can significantly predict security behavior 
when security risks are salient. In contrast, the P300 risk measure is a significant predictor of security 
behavior both before and after a security incident is imposed, which highlights the robustness of 
NeuroIS methods in measuring risk perceptions and their value in predicting security behavior.  
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Appendices 

Appendix A: Survey Instrumentation 

Table A-1. Survey Constructs 

Construct Pre/post 
(mean, std.) 

Questions Source 

Willingness to 
gamble 

lifetime income 

Pre-test 
(1.65, 1.19) 

Suppose that you are the only income earner in the family, and you 
have a good job guaranteed to give you and your current (family) 
income every year for life. You are given the opportunity to take a 
new and equally good job, with a 50-50 chance that it will double 
your (family) income and a 50-50 chance that it will cut your (family) 
income by a third. Would you take the new job? 

Barsky et 
al., 1997 - If yes, suppose the chances were 50-50 that it would double your 

(family) income, and 50-50 that it would cut it in half. Would you still 
take the new job? 

- If no to the first question, suppose the chances were 50-50 that it 
would double your (family) income and 50-50 that it would cut it by 
20 percent. Would you then take the new job? 

General risk 
appetite 

Pre-test 
(27.56, 5.58) 

Some people say you should be cautious about making major 
changes in life. Suppose these people are located at 1. Others say 
that you will never achieve much in life unless you act boldly. 
Suppose these people are located at 7. Others have views in 
between. Where would you place yourself on this scale? 

Kam & 
Simas, 
2010 

I would like to explore strange places. 

I like to do frightening things. 

I like new and exciting experiences, even if I have to break the rules.  

I prefer friends who are exciting and unpredictable. 

In general, it is easy for me to accept taking risks. 

Perceived 
security risk of 

malware† 

Pre-test 
(14.19, 3.99) 

 
Post-test 

(14.76, 4.08) 

Ignoring malware warning screens can cause damages to computer 
security. 

Guo et al., 
2011 

Ignoring malware warning screens can put important data at risk. 

Ignoring malware warning screens will most likely cause security 
breaches. 

Threat 
susceptibility† 

Pre-test 
(9.31, 4.13) 

 
Post-test 

(12.42, 4.32) 

My computer is at risk for becoming infected with malware. 
Johnston & 
Warkentin, 

2010 

It is likely that my computer will become infected with malware. 

It is possible that my computer will become infected with malware. 

Threat 
severity† 

Pre-test 
(11.51, 5.01) 

 
Post-test 

(14.77, 4.43) 

If my computer were infected by malware, it would be severe. 
Johnston & 
Warkentin, 

2010 

If my computer were infected by malware, it would be serious.  

If my computer were infected by malware, it would be significant. 

Bias‡ 
Post-test 

(3.29, .77) 
How much did the pre-study survey influence your behavior on the 
image classification task?  

None 

Malware 
warning 
screen 

realism* 

Post-test 
(6.76, 3.03) 

On a scale of 0 to 10, how realistic do you think the following screen 
is? (malware warning screen) 

None 

Hacker screen 
realism* 

Post-test 
(4.76, 3.44) 

On a scale of 0 to 10, how realistic do you think the following screen 
is? (hack screen) 
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Table A-1. Survey Constructs (cont.) 

Construct Pre/post 
(mean, std.) 

Questions Source 

Malware 
warning 
screen 

concern** 

Post-test 
(4.47, 2.95) 

On a scale of 0 to 10, how concerned did the following screen make 
you feel during the image classification task? (malware warning 
screen) 

None 

Hacker screen 
concern** 

Post-test 
(6.47, 2.91) 

On a scale of 0 to 10, how concerned did the following screen make 
you feel during the image classification task? (hack screen) 

 

Demographic 
questions 

Pre-test 
 

What is your age? (mean 21.84, std. 1.96) 

Control 
variables 

What is your gender? (male: 46, female 16) 

What is your handedness? (right: 55, left: 7) 

Are you a native English speaker? (native: 55, not native: 7) 

Do you have normal/corrected to normal vision? (yes: 59, no: 3) 

Have you ever had an EEG? (yes: 6, no: 56) 

Have you ever been treated for a neurological or psychiatric 
condition? (yes: 3, no: 59) 

Are you color blind? (yes: 4, no: 58) 

† These questions used a 7-point Likert scale with a range from 1 (strongly disagree) to 7 (strongly agree). 

‡ This question used a 5-point Likert scale with a range from 1 (not at all) to 5 (very strongly). 

* These questions had a scale from 0 (not realistic) to 10 (100% realistic) and from 0 (not concerned at all) to 10 (extremely 
concerned). 

** This question had a scale from 0 (not concerned) at all to 10 (extremely concerned). 
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Table A-2. List of Acronyms 

DTPB Decomposed theory of planned behavior 

EEG Electroencephalography 

EFA Exploratory factor analysis 

EMF Electric magnetic fields 

ERP Event-related potentials 

fMRI Functional magnetic resonance imaging 

ICA Independent components analysis 

IGT Iowa Gambling Task 

ISP Information security policy 

PCA Principal components analysis 

PET Positron emission technology 

PLS Partial least squares  

PMT Protection motivation theory 

PSRM Perceived security risk of malware 

Pz Parietal region of scalp 

TPB Theory of planned behavior 

TSEV Threat severity of malware 

TSUS Threat susceptibility of malware 

TTAT Technology threat avoidance theory 

SCR Skin conductance responses 

SWD Security warning disregard 
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Table A-3. Construct Correlation Matrix 

Construct Mean Std. 1 2 3 4 5 6 7 8 9 10 11 

Security warning 
disregard—before SI (1) 0.74 0.39 N/A           

Security warning 
disregard—after SI (2) 0.65 0.45 .70** N/A          

P300 difference score 
(3) 3.43 2.85 -.18* -.27** N/A         

Willingness to gamble 
lifetime income (4) 1.51 1.18 .01 .09 .09 N/A        

General risk appetite (5) 27.86 5.84 -.13 -.13 .06 .27** .76       

Perceived security risk 
of malware-pre-test (6) 14.33 3.89 -.04 -.04 -.04 -.14 .05 .84      

Perceived security risk 
of malware-post-test (7) 14.98 3.86 .07 -.04 -.02 .00 .05 .49** .87     

Threat susceptibility of 
malware—pre-test (8) 9.45 4.04 -.04 -.08 .04 -.13 -.14 .07 .10 .79    

Threat susceptibility of 
malware—post-test (9) 12.42 4.04 -.06 -.17† .07 -.17 -.08 .21* .54** .58** .81   

Threat severity of 
malware—pre-test (10) 11.04 4.69 .02 .00 .11 .04 .00 .32** .39** .35** .48** .95  

Threat severity of 
malware—post-test (11) 14.55 4.37 .12 .01 .10 -.08 -.04 .25** .59** .03 .35** .50** .95 

N.B. Cronbach’s α provided on the diagonal where applicable. 
* p < .05; ** p < .01; † This correlation is significant when the variable native English speaker is controlled for. 

 
 

 
Jo urna l o f the  Asso c iatio n fo r Info rmatio n Syste ms  Vo l. 15, Sp e c ia l Issue , p p . 679-722, Oc to b e r 2014 

 
713 



 
Va nc e  e t a l. / Me a sure s o f Se c urity Risk Pe rc e ptio n 

Appendix B: Criteria for Selection of IS Security Risk Perceptions Measures 

To identify measures of IS security risk perception, we performed a literature review using the 
following criteria. First, we searched all issues of the AIS Basket of six journals from their inception to 
February 2013 for papers that mentioned security in the title, abstract, or keywords. This resulted in 
128 paper. From this set, we narrowed the paper to those that also mentioned the word “risk” 
anywhere in their body. We then searched each of the resulting papers for survey items related to IS 
risk perceptions, which yielded nine papers. Of these, two addressed privacy rather than security 
issues and so we excluded them. From this final set of seven, three papers measured risk 
perceptions using a combination of threat severity and threat susceptibility measures (Herath & Rao, 
2009; Johnston & Warkentin, 2010; Liang & Xue, 2010). We chose the Johnston and Warkentin 
(2010) measures because they are representative of this set of papers and because they also 
measured risk perceptions of malware specifically. The other four papers (Anderson & Agarwal, 2010; 
Gefen, 2002; Guo et al., 2011; Van Slyke, Shim, Johnson, & Jiang, 2006) used items to measure risk 
perceptions as a single construct. We therefore chose the Guo et al. (2011) measures because they 
are representative of this set of papers and because they were most naturally adaptable to the 
context of malware. In summary, we chose two sets of items that are representative of IS security risk 
perception measures in use in the IS literature. Further, selecting two different sets of IS security risk 
perception items ensured that our results were not dependent on any one set of items. 
 

Table B-1. Security-Related Risk Perception Items 

Reference Measures 

Guo et al. (2011)  

Perceived Security risk of NMSV (non-malicious security violations) 
• Risk 1: the action can cause damages to computer security. 
• Risk 2: the action can put important data at risk. 
• Risk 3: the action will most likely cause security breaches. 

Anderson & 
Agarwal (2010) 

 

Concern (adapted from Ellen and Wiener 1991; Ho 1998; Obermiller 1995) 
Anchors 1 = not at all concerned, 7 = very concerned 
Some experts have warned that hackers may try to cripple major American businesses or the 
government by breaking into their computers or by using home computers to attack other 
computers using the Internet. How concerned are you that hackers might...? 

• Harm American corporations or the government by breaking into their computers 
• Break into home computers and use them to attack computers owned by American 

corporations or the government 
• Break into your home computer and use your e-mail account to send spam to others 
• Use home computers to spread a virus over the Internet that harms other computers 
• Steal or change data stored on your computer 
• Gain access to your personal financial information 
• Gain access to your personal health/medical information 
• Gain access to other personal data (such as family photos, hobby information, 

shopping preferences, and/or school data) 

Johnston & 
Warkentin (2010)  

 
 

Threat severity 
• If my computer were infected by spyware, it would be severe (TSEV1). 
• If my computer were infected by spyware, it would be serious (TSEV2) 
• If my computer were infected by spyware, it would be significant (TSEV3). 

Threat susceptibility 
• My computer is at risk of becoming infected with spyware (TSUS1). 
• It is likely that my computer will become infected with spyware (TSUS2). 
•  It is possible that my computer will become infected with spyware (TSUS3). 
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Table B-1. Security-Related Risk Perception Items (cont.) 

Reference Measures 

Liang & Xue 
(2010)  

Perceived susceptibility (1 = strong disagree, 7 = strongly disagree)  
• It is extremely likely that my computer will be infected by spyware in the future. 
• My chances of getting spyware are great. 
• There is a good possibility that my computer will have spyware. 
• I feel spyware will infect my computer in the future. 
• It is extremely likely that spyware will infect my computer. 

Perceived severity (1 = innocuous, 7 = extremely devastating) 
• Spyware would steal my personal information from my computer without my 

knowledge.  
• Spyware would invade my privacy. 
• My personal information collected by spyware could be misused by cyber criminals. 
• Spyware could record my Internet activities and send it to unknown parties. 
• My personal information collected by spyware could be subject to unauthorized 

secondary use.  
• My personal information collected by spyware could be used to commit crimes 

against me.  
• Spyware would slow down my Internet connection. 
• Spyware would make my computer run more slowly. 
• Spyware would cause system crash on my computer from time to time. 
• Spyware would affect some of my computer programs and make them difficult to use. 

Perceived threat (1 = strong disagree, 7 = strongly disagree)  
• Spyware poses a threat to me. 
• The trouble caused by spyware threatens me.  
• Spyware is a danger to my computer. 
• It is dreadful if my computer is infected by spyware.  
• It is risky to use my computer if it has spyware. 

Herath & Rao 
(2009)  

Perceived probability of security breach 
• How likely is it that a security violation will cause a significant outage that will result in 

loss of productivity? 
• How likely is it that a security violation will cause a significant outage to the Internet 

that results in financial losses to organizations? 
• How likely is it that the organization will lose sensitive data due to a security violation? 

Perceived severity of security breach 
• I believe that information stored on organization computers is vulnerable to security 

incidents. 
• I believe the productivity of organization and its employees is threatened by security 

incidents. 
• I believe the profitability of organizations is threatened by security incidents. 

Van Slyke et al. 
(2006)  

Risk perceptions.  All anchors on 7-point scale anchored on very strongly disagree to very 
strongly agree. 

• How would you characterize the decision of whether to buy a product from this Web 
retailer (Amazon.com/Half.com)? (Anchors: very significant risk to very significant 
opportunity) 

• How would you characterize the decision of whether to buy a product from this Web 
retailer (Amazon.com/Half.com)? (Anchors: very high potential for loss to very high 
potential for gain) 

• How would you characterize the decision of whether to buy a product from this Web 
retailer (Amazon.com/Half.com)? (Anchors: very negative situation to very positive 
situation) 

Gefen, D. (2002)  

 

Perceived risk with vendor: 
• There is a significant threat doing business with Amazon.com. 
• There is a significant potential for loss in doing business with Amazon.com. 
• There is a significant risk in doing business with Amazon.com. 
• My credit card information may not be secure with Amazon.com. 
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Appendix C: Tests for Homogeneity of Sample Groups 

We split the sample into two groups in two different ways to check for homogeneity of the sample 
between "yes-click" and "no-click" groups. The splits were set based on each participant's ratio of yes 
to no clicks compared to the means for the yes/no click ratio for the sample. We performed the first 
grouping based on the ratio of security warning disregard before the security incident, and we 
performed the second grouping on the ratio of security warning disregard after the security incident. 
We compared all of the demographic and control variables in each analysis. 
 
First, we grouped the data based on their relation to the mean of security warning disregard before 

the security incident for the sample ). Table C-1 describes 
comparisons of control and survey research variables between the two groups. We found no 
statistically significant differences between the two groups. 
 

Table C-1. Comparison of Yes-click and No-click Groups Before the Security Incident 

Variable Group 1 M (SD) Group 2 M (SD) p 
Effect size 
(Cohen's d) 

Age1 21.53 (2.038) 21.98 (1.933) .529 0.229 

Income risk sensitivity (scale of 1–4)1 2.74 (1.327) 2.60 (1.137) .607 0.117 

Perceived security risk of malware—pre-test1 15.11 (3.160) 13.86 (4.302) .581 0.313 

Threat severity of malware—pre-test1 10.83 (4.076) 11.79 (5.365) .656 0.191 

Threat susceptibility of malware—pre-test1 9.22 (3.370) 9.33 (4.492) .759 0.026 

General risk appetite—pre-test3 27.72 (4.496) 27.49 (6.017) .883 0.041 

Perceived security risk of malware—post-test3 15.22 (3.797) 14.63 (4.254) .709 0.138 

Threat severity of malware—post-test1 14.33 (3.985) 15.02 (4.662) .266 0.154 

Threat susceptibility of malware - post-test3 12.78 (4.066) 12.28 (4.506) .704 0.114 

Variable 
Group 1 

proportions 
Group 2 

proportions 
p2 

Effect size 
(ϕ) 

Gender Male (68.4%) Male (76.7%) .538 .088 

Left-handed Yes (10.5%) Yes (11.6%) 1.000 .016 

Native English speaker Yes (94.7%) Yes (86.0%) .422 .127 

Normal vision Yes (89.5%) Yes (97.7%) .220 .176 

EEG experience No (94.7%) No (88.4%) .657 .099 

Mental condition No (100%) No (93.0%) .546 .150 

Colorblind No (94.7%) No (93.0%) 1.000 .032 

1 Due to a violation of the assumption of normality, this p-value was obtained using the Mann-Whitney U test. Cohen's d is 
included for ease of approximate interpretation of the effect size.  

2 p values taken from Fisher exact test. 
3 p values taken from t-test. 

 
Next, we grouped the data based on their relation to the mean of security warning disregard after the 
security incident for the sample (M=.673,SD=.433,N_G1=22,N_G2=40). Table C-2 shows 
comparisons between the two groups’ control and survey research variables. The only significant 
differences found were between the group proportions for native and non-native English speakers 
and in the comparison of group means for measures of threat susceptibility taken post-test. We also 
detected this difference during the main data analysis for the hypotheses and w included it as a 
control variable in H4's regression analyses. Likewise, we found that survey measures of threat 
susceptibility to malware taken post-test significantly predicted security warning disregard (see Table 
5, H4c). Therefore, it is not surprising to see a significant difference between groups in post-test 
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threat susceptibility given that the groups were decided based on participants’ security warning 
disregard ratios, which makes this examination, in a way, tautological. 
 

Table C-2. Comparison of Yes-Click and No-Click Groups After the Security Incident 

Variable Group 1 M (SD) Group 2 M (SD) p 
Effect size 
(Cohen's d) 

Age1 21.50 (1.99) 22.03 (1.94) .401 0.229 

Income risk sensitivity (scale of 1–4)1 2.68 (1.21) 2.63 (1.19) .843 0.117 

Perceived security risk of malware—pre-test3 15.71 (2.795) 13.45 (4.356) .148 0.582 

Threat severity of malware—pre-test1 11.95 (4.213) 11.28 (5.411) .502 0.133 

Threat susceptibility of malware—pre-test1 9.67 (3.679) 9.10 (4.431) .408 0.136 

General risk appetite—pre-test3 28.48 (4.936) 27.08 (5.885) .355 0.251 

Perceived security risk of malware—post-test1 15.95 (3.232) 14.20 (4.410) .148 0.433 

Threat severity of malware—post-test1 15.57 (3.572) 14.43 (4.846) .668 0.257 

Threat susceptibility of malware—post-test1 14.19 (4.045) 11.50 (4.267) .017* 0.642 

Variable 
Group 1 

proportions 
Group 2 

proportions 
p2 

Effect size 
(ϕ) 

Gender Male (63.6%) Male (80.0%) .226 .179 

Left-handed No (90.9%) No (87.5%) 1.000 .052 

Native English speaker Yes (100%) Yes (82.5%) .044* .265 

Normal vision Yes (95.5%) Yes (95.0%) 1.000 .010 

EEG experience No (95.5%) No (87.5%) .409 .129 

Mental condition No (100%) No (92.5%) .546 .167 

Colorblind No (90.9%) No (95.5%) .610 .080 

1 Due to a violation of the assumption of normality, this p-value was obtained using the Mann-Whitney U test. Cohen's d is 
included for ease of approximate interpretation of the effect size.  

2 p values taken from Fisher exact test. 
3 p values taken from t-test. 
* significant at α<.05. 
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Appendix D: Tests for Mediating and Moderating Effects  

To better understand how the IGT behavioral data relates to the P300 and security warning disregard, 
we conducted an exploratory analysis of mediation (i.e., the behavioral data intervenes between the 
P300 amplitude and security warning disregard), and moderation (i.e., the behavioral data interacts 
with the P300 amplitude in influencing security warning disregard). In doing so, we used the ratio of 
choices from the most risky deck (Deck B) to choices from the safest deck (Deck C) for each 
participant during the IGT as our behavioral measure of performance. 
 
First, we tested whether the behavioral IGT data mediated the effect of P300 on security warning 
disregard (see Figure D-1 below). 
 

 

Figure D-1. Mediating Effect of Behavioral IGT Data 

 
According to Baron and Kenny (1986), in order for mediation to occur, one must first demonstrate that 
the independent variable (P300) significantly predicts the mediating variable (behavioral IGT data), and 
that the mediating variable significantly predicts the dependent variable (security warning disregard). We 
tested these relationships utilizing regression, as presented in Table D-1 and D-2 below: 
 

Table D-1. Behavioral IGT Data Regressed on the P300 Difference Score 

Model ß Std. error Standardized ß t 

Intercept 1.094 .105 — 10.378*** 

P300 difference score -.007 .025 -.037 .782 ns 

Model statistics: R2 = .001; F = .078, ns 
*** p < .001; ns = not significant 

 

Table D-2. Security Warning Disregard (Before Security Incident) Regressed on Behavioral 
IGT Data 

Model ß Std. error Standardized ß t 

Intercept .624 .090 — 6.971*** 

Behavioral IGT data .096 .067 .184 1.427 ns 

Model statistics: R2 = .034; F = 2.037, ns 
*** p < .001; ns = not significant 

 
The results depicted in the above tables show that the P300 difference score did not predict the 
behavioral IGT data, nor did the behavioral IGT data predict security warning disregard (before  the 
security incident)6. We therefore conclude that the behavioral data from the IGT did not mediate the 
effect of the P300 on security warning disregard in the image classification task. 
 
Additionally, we tested whether the behavioral IGT data moderated the effect of P300 on security 
warning disregard (see Figure D-2 below). 
 

6 We obtained similar results when using security warning disregard (after security incident) as the dependent variable. 
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Figure D-2. Moderating Effect of Behavioral IGT Data 

 
According to Carte and Russell (2003), in order for moderation to occur, one must first demonstrate 
that the product of the independent variable (P300) and the moderating variable (behavioral IGT data) 
significantly predicts the dependent variable (security warning disregard). We tested these 
relationships using hierarchical regression, with the interaction term in the second block. This allowed 
us to show the effect of the interaction over and above its individual components. These results are 
presented in Table D-3 below: 
 

Table D-3. Security Warning Disregard (Before Security Incident) Regressed on the Interaction 
of Behavioral IGT Data and P300 Difference Score 

Model 1 ß Std. error Standardized ß t 

Intercept .664 .089 — 7.485*** 

P300 difference score -.028 .013 -.272 -2.174* 

Behavioral IGT data .091 .065 .174 1.392 ns 

Model statistics: R2 = .108; F = 3.446* 

Model 2 ß Std. error Standardized ß t 

Intercept .663 .089 — 7.421*** 

P300 difference score -.035 .020 -.348 -1.760 ns 

Behavioral IGT data .092 .066 .176 1.399 ns 

Behavioral IGT data X P300 difference score .008 .015 .098 .496 ns 

Model statistics: R2 = .112; F = 2.349 ns 
ΔR2 = .004; F for ΔR2 = .246 ns 

 
Because the interaction term was not significant, and because R2 did not significantly increase when 
the interaction term was added to the model, we conclude that the behavioral IGT data did not 
moderate the effect of the P300 on security warning disregard (before security incident)7. 
 
Considering the above results, we conclude that the behavioral data in the IGT had no influence 
(either as a mediator or moderator) on the effect of the P300 difference score on security warning 
disregard in the image classification task. This is an example of overt behavior not being as good a 
predictor as neurophysiological measures (Kirwan, Shrager, & Squire, 2009). 

7 Again, the results were similar for using security warning disregard (after security incident) as the dependent variable. 
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Appendix E: IGT Deck Selections 

 

Table E-1. Participant IGT Deck Selections by Block of the Experiment 

 Deck A  
 

Deck B  
 

Deck C  
 

Deck D 

Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Block 1 19.2 6.5 10 37 30.5 7.4 9 40 20.2 8.1 4 40 30.1 8.6 14 40 

Block 2 18.0 6.8 0 39 25.1 8.6 7 40 25.4 9.4 7 40 31.4 7.2 14 40 

Block 3 17.7 8.4 4 40 19.7 10.4 3 40 30.2 10.5 6 40 32.4 8.8 11 40 

Block 4 17.4 8.8 5 40 19.4 11.3 2 40 29.0 10.4 0 40 33.0 8.9 11 40 

Total 72.4 23.2 32 129 94.7 29.9 53 160 104.9 29.1 38 160 126.9 24.5 65 160 

 
Jo urna l o f the  Asso c iatio n fo r Info rmatio n Syste ms  Vo l. 15, Issue  10, p p . 679-722, Oc to b e r 2014 

 
720 



 
Va nc e  e t a l. / Me a sure s o f Se c urity Risk Pe rc e ptio n 

Appendix F: Explanation of the 600-800ms Time Window 

Most of the literature examining the P300 focuses on the time window 300-600ms following stimulus 
onset (San Martín et al., 2013), and we analyzed our data accordingly. Inspecting Figure 4 reveals a 
deflection from the baseline for the difference curve at the later 600-800ms time window. However, 
this appears to be largely due to the increased noise introduced by taking the average ERP waveform 
from a subset of randomly sampled trials. Inspection of an analysis that included all trials does not 
reveal this extreme deflection from 0 at the Pz electrode (see Figure F1A). To facilitate comparison, 
Figure 4 is reproduced below as Figure F-1B. We therefore conclude that the deflection from the 
baseline observed in Figure 4 is an artifact of noise in the resampling process, and not due to 
participants’ actual neural activity. 
 

 
Note that panel B is the same as Figure 4 from the manuscript. 

Figure F-1. Mean Amplitudes When Including all Trials (A) and a Randomly Sampled Subset 
of Trials (B) PZ Electrode.  
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