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Abstract
Mendelian randomization (MR), the use of genetic variants as instrumental
variables (IVs) to test causal effects, is increasingly used in aetiological
epidemiology. Few of the methodological developments in MR have
considered the specific situation of using genetic IVs to test the causal effect of
exposures in pregnant women on postnatal offspring outcomes. In this paper,
we describe specific ways in which the IV assumptions might be violated when
MR is used to test such intrauterine effects. We highlight the importance of
considering the extent to which there is overlap between genetic variants in
offspring that influence their outcome with genetic variants used as IVs in their
mothers. Where there is overlap, and particularly if it generates a strong
association of maternal genetic IVs with offspring outcome via the offspring
genotype, the exclusion restriction assumption of IV analyses will be violated.
We recommend a set of analyses that ought to be considered when MR is used
to address research questions concerned with intrauterine effects on post-natal
offspring outcomes, and provide details of how these can be undertaken and
interpreted. These additional analyses include the use of genetic data from
offspring and fathers, examining associations using maternal non-transmitted
alleles, and using simulated data in sensitivity analyses (for which we provide
code). We explore the extent to which new methods that have been developed
for exploring violation of the exclusion restriction assumption in the two-sample
setting (MR-Egger and median based methods) might be used when exploring
intrauterine effects in one-sample MR. We provide a list of recommendations
that researchers should use when applying MR to test the effects of intrauterine
exposures on postnatal offspring outcomes and use an illustrative example with
real data to demonstrate how our recommendations can be applied and
subsequent results appropriately interpreted.
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Introduction
The possibility that a wide-range of maternal pregnancy exposures, 

such as her gestational adiposity, smoking, diet and mental health, 

have long-term effects on an equally wide-range of post-natal off-

spring outcomes has gained such traction that it is influencing ante-

natal care. For example, the Independent Association of Diabetes 

and Pregnancy Study Groups (IADPSG) criteria for diagnosing 

gestational diabetes, which have been adopted by the World Health 

Organisation and many other national and international policy 

and guideline groups, aim to identify women whose children are 

at risk of future obesity, in order to ultimately prevent childhood 

obesity though antenatal care1. However, evidence that the proxy 

measures used by IADPSG developers to indicate offspring obes-

ity (high birthweight, birth skinfolds and cord-blood c-peptide) 

are accurate predictors of future risk of childhood obesity, or that 

treating women with the IADPSG criteria will effectively reduce 

childhood obesity, is lacking. In other areas women’s lifestyle in 

pregnancy is potentially being blamed for all future health risks in 

her offspring. It is essential, therefore, that methods are developed 

that can provide valid causal answers to questions about the long- 

term effects of intrauterine exposures. However, conventional 

methods are unlikely to be suitable; conventional approaches 

applied to cohort study data are likely to be influenced by  

residual confounding, and it is infeasible or extremely difficult  

to undertake randomised controlled trials (RCTs) of the effects  

of maternal pregnancy exposures on long-term offspring  

outcomes2.

Mendelian randomization (MR), the use of genetic vari-

ants as instrumental variables (IVs) to test causal effects3–5, is  

increasingly used in aetiological epidemiology, including to 

test the effects of intrauterine exposures on long-term offspring  

outcomes6–10. Increased confidence in the use of MR to improve 

causal understanding has been achieved through proof-of-concept  

studies, such as those confirming the causal effects of greater  

body mass index (BMI)11, systolic blood pressure12, and low  

density lipoprotein cholesterol (LDLc) on coronary heart dis-

ease (CHD)13,14, and of smoking intensity and duration on lung  

cancer15–17, as well as concerted efforts by researchers using  

MR to acknowledge its underlying assumptions and how these 

might be violated, together with the development of methods to test 

assumption violations and/or be able to relax these3–5,18–24.

Methods to improve causal understanding of intrauterine expo-

sures on offspring outcomes are important, given the likelihood 

for residual confounding in conventional multivariable analyses, 

and the infeasibility, or marked difficulty, of using RCTs to test 

effects of maternal pregnancy exposures on long-term offspring  

outcomes2. The first paper to describe the MR method, highlighted 

the value of having genetic (MTHFR) data on trios (both parents 

and offspring) when using MR to test the intrauterine effects of 

folic acid on offspring neural tube defects3. However, the majority 

of methodological developments in MR have not considered the  

case, where maternal genetic variants are used as IVs to test 

the effect of a pregnancy (intrauterine) exposure on offspring  

outcomes. The aim of this paper is to describe specific ways 

in which the MR assumptions might be violated in studies con-

cerning the effect of maternal pregnancy exposures on offspring  

outcomes, and to provide recommendations for how to test and 

potentially reduce the biases that might result from these assumption  

violations.

Mendelian randomization assumptions and 
assessing causal intrauterine effects
Figure 1 shows the key IV assumptions as they apply to MR stud-

ies of maternal pregnancy exposures on offspring outcomes. We 

Figure 1. Directed Acyclic Graph of use of Mendelian randomization to assess developmental origins (intrauterine) causal effects 
on offspring outcomes.
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examine each of these in turn and discuss potential ways in which 

they may be violated.

Maternal genetic instrumental variables are related to the 
maternal exposure during pregnancy
As with most MR studies, those that have been undertaken to test 

the effect of maternal pregnancy exposures on offspring outcomes 

have used variants that have been shown to be robustly related to 

the exposure in large genome-wide association studies (GWAS) 

conducted in non-pregnant women and men6,10. Some MR studies 

of maternal pregnancy effects, for example those related to alco-

hol consumption, have used candidate genes that are functionally 

related to the exposure of interest, but these have also been identi-

fied in non-pregnant women and men8,9. Thus, a key question for 

the use of MR in these studies is whether genetic variants identi-

fied in non-pregnant women and men are valid IVs for pregnancy 

exposures.

In theory, we might expect this to be the case given that genetic 

variants are determined at conception and many have been shown to 

relate to phenotypes across much of the life-course12,25. It has been 

shown that, for several genetic variants, associations with expo-

sures measured in pregnancy are similar to those seen in GWAS 

of non-pregnant women and men. This appears to be so for BMI, 

fasting glucose, fasting lipids, 25(OH)D, adiponectin, thyroid lev-

els and thyroid stimulating hormone10. Genetic variants that have 

been shown to have genome-wide significant associations with 

type 2 diabetes have been shown to relate similarly to gestational 

diabetes10,26–28, those related to smoking intensity and duration in 

GWAS, are related to difficulty quitting smoking in pregnancy29, 

and variants known to influence alcohol metabolism relate simi-

larly to alcohol consumption in pregnant women as they do in non- 

pregnant women and men30. Whilst these findings are reassuring, it 

is important to demonstrate the relationship of genetic instrumental 

variables with the exposures of interest in pregnant women when 

using MR to test causal intrauterine effects on offspring outcomes 

(Box 1).

Maternal genetic instrumental variables are not associated 
with potential confounders of the pregnancy exposure-
offspring outcome association
There is empirical evidence that genetic variants are much less 

likely to be related to the wide-range of socioeconomic, lifestyle 

and associated phenotypic characteristics than these phenotypes 

are related to each other31. However, we recommend that associa-

tions of maternal genetic IVs are checked with observed variables 

which are potential confounders of the maternal exposure and off-

spring outcome association. For some research questions, it will be 

optimal to adjust the maternal genetic IV for equivalent offspring 

(and paternal) genetic variants (see Maternal genetic IV associa-

tions with offspring and paternal genetic variants). Therefore, we 

recommend testing associations between maternal variants and 

observed potential confounders with and without adjustment for 

offspring (and paternal) genetic variants when such adjustments are 

used in the main MR analyses. Furthermore, as confounding paths 

between maternal pregnancy exposures and offspring outcome 

are likely to involve both maternal and offspring characteristics  

(Figure 1), we recommend testing associations with relevant mater-

nal and offspring observed confounders.

Box 1. Recommendations for using Mendelian randomization to 

determine causal effects of maternal pregnancy (intrauterine) 

exposures on offspring outcomes

•	 Demonstrate a robust association of the maternal genetic 

instrumental variable (IV) with the exposure assessed in 

pregnancy.

•	 Explore the association of the maternal genetic IV with 

observed maternal and offspring potential confounders of 

the exposure-outcome association. Explore associations of 

the maternal genetic IV with potential confounders, with and 

without adjustment for the same offspring genetic variants 

that are going to be controlled for in the main MR analyses.

•	 Consider how likely genetic variants in the offspring, which 

are (strongly) associated with the offspring outcome of 

interest, overlap with genetic variants used in the maternal IV. 

Where the maternal exposure is the same as the offspring 

outcome, it is clear that there will be substantial overlap. 

In situations where the extent of any overlap is unclear, 

maternal genetic IVs should be looked-up in relevant 

publicly available datasets, such as those curated in 

MR-Base33, to determine whether they are importantly 

related to the (offspring) outcome of interest.

o Where there is no overlap between offspring genetic 

variants that influence their outcome and maternal 

genetic IV(s) there is no need to adjust for offspring 

genetic variants or undertake analyses with non-

transmitted maternal genetic alleles.

o If one is unsure about the extent to which there is 

overlap between offspring genetic variants that 

affect their outcome and maternal genetic IV(s), 

including after trying to explore this in publicly 

available datasets, it would be sensible to undertake 

MR analyses adjusted for offspring genetic variants 

and MR using non-transmitted maternal alleles as 

sensitivity analyses.

o Where there is overlap between offspring genetic 

variants that affect their outcome and maternal 

genetic IV(s), the main MR analyses should use 

maternal genetic variant IVs adjusted for the same 

genetic variants in offspring (and ideally if possible 

also in fathers of the offspring) and/or MR using 

maternal non-transmitted alleles as IVs.

•	 Undertake as many of the following additional sensitivity 

analyses as possible with the available data:

o Informed simulation analyses to test for acknowledged 

biases (e.g. due to violation of the exclusion 

restriction assumption via offspring and/or paternal 

genotype).

o Weighted (using external weights) median method 

to explore violation of the exclusion restriction 

criteria, other than via offspring genotype. If using 

this in situations where there is concern about 

violation via offspring genotype, this sensitivity 

analysis is best done on IVs that are maternal 

genetic variants adjusted for the same offspring 

(and paternal if possible) genetic variants.

o MR-Egger (using external weights) method to 

explore violation of the exclusion restriction criteria, 

other than via offspring genotype. If using this in 

situations where there is concern about violation 

via offspring genotype, this sensitivity analysis is 

best done on IVs that are maternal genetic variants 

adjusted for the same offspring (and paternal if 

possible) genetic variants.

•	 Triangulate with other approaches that can be used to test 

causal inference that make different assumptions to MR and 

have different sources of potential bias.
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Maternal genetic instrumental variables are only related 
to the offspring outcome through their relationship to the 
maternal pregnancy exposure (the exclusion restriction 
assumption)
Maternal genetic IV associations with offspring and paternal 

genetic variants. A specific way in which the exclusion restriction 

assumption may be violated in studies of the effects of maternal 

pregnancy exposures on offspring outcomes, is via the offspring’s 

genetic variants (Figure 2). The extent to which this will be a 

problem will depend on the extent to which any offspring genetic 

variants that are strongly related to their outcome are the same as 

variants used in their mother’s IV. This will almost definitely be a 

problem in the situation where the maternal exposure and offspring 

outcome are the same (or a very similar) characteristic (e.g. testing 

the causal effect of maternal pregnancy BMI on offspring BMI as in 

Figure 2). Yet, it is also likely to occur in some situations when the 

two are not the same. For example, some genetic variants related to 

BMI may have their effect on BMI via appetite control32, metabo-

lism or cardiorespiratory fitness. If an MR study were undertaken to 

test the causal effect of maternal pregnancy BMI on offspring appe-

tite or cardiorespiratory fitness, it is plausible that there would be 

some overlap between maternal genetic IVs and offspring genetic 

variants, which are associated with these offspring outcomes. Thus, 

a key consideration is the extent to which the maternal genetic IVs 

overlap with offspring genetic variants that affect the offspring  

outcome of interest. It is increasingly possible to explore this 

using large publicly available datasets, such as those curated in  

MR-Base33, in which the association of genetic variants being used 

in maternal IVs with the outcome of interest can be explored.

Where overlap between maternal genetic IVs and variants related 

to offspring outcomes are likely, the path from maternal genetic 

IVs to offspring outcomes via the offspring genotype needs to be 

blocked for the MR results to be valid. Consequently, many studies, 

which have used an MR approach to explore such relationships, 

have adjusted for offspring (fetal) genetic variants6,7,10. However, 

this adjustment could introduce a spurious association between 

maternal and paternal genetic variants (Figure 2). Intuitively, this 

is because once we adjust for offspring genetic variants we can, to 

some extent, predict paternal genetic variants given the genotype 

of the mother (e.g., if a mother is homozygous for a BMI increas-

ing allele at a particular locus and her offspring is heterozygous 

at the same locus, then we know that father must be heterozygous 

or homozygous for the allele that is not associated with increased 

BMI). The spurious association that will be generated is inverse 

(i.e. maternal BMI increasing alleles are associated with paternal 

BMI decreasing alleles) because of the way that parental genotypes 

contribute to offspring genotype. This phenomenon is known as 

collider bias, because of its appearance in Directed Acyclic Graphs 

(Figure 2)34–36. While there are many pregnancy/birth cohorts with 

genetic information on mothers and offspring, few have such data 

on fathers, and where they do this tends to be on a small selected 

sub-sample. Thus, it is rarely possible to be able to deal with this 

potential new bias by adjusting for paternal (as well as offspring) 

genetic variants. The issue then is whether it is better to adjust for 

offspring genetic variants (and risk introducing bias via paternal 

genetic variants and associated phenotype) or not (and risk intro-

ducing bias because of violating the exclusion restriction criteria 

via offspring genotype).

Figure 2. Directed Acyclic Graph illustrating the use of Mendelian randomization to assess developmental origins (intrauterine) 
causal effects on offspring outcomes, showing how the exclusion restriction criteria may be violated. BMI, body mass index; IV, 
instrumental variable.
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This is similar to what has been referred to as ‘M-bias’, where col-

liders exist and questions arise concerning whether or not to adjust 

for certain variable(s)36–40. Studies using simulation and real data 

suggest that in most such cases, the more proximal source of bias is 

likely to be the most important37–40. Thus, here we would anticipate 

that adjusting for offspring genetic variants, which are more proxi-

mal to maternal genetic variants, and offspring outcome, is more 

important than not, and that the potential bias from the more distal 

spurious association of paternal genetic variants with maternal vari-

ants is likely to be less problematic. In practice, whether the more 

proximal or distal bias is likely to be greatest will depend on the 

particular research question and the magnitudes of real and spuri-

ous associations.

For other questions, where maternal exposure is sufficiently dif-

ferent from the offspring outcome that it is unlikely that the same 

genetic variants that robustly influence maternal exposure would 

also influence (offspring) outcome, it might be reasonable to assume 

that there is no need to adjust for offspring genotype. For example, 

if we were interested in the causal effect of maternal pregnancy 

blood pressure on subsequent offspring depression, violation of 

the exclusion restriction assumption via offspring genotype is less  

likely than in the situation shown in Figure 2. This is because, whilst 

half maternal genetic variants for their blood pressure will also  

be transmitted to their offspring, offspring blood pressure variants 

(directly or via offspring blood pressure phenotype) are unlikely  

to have a (strong) association with offspring depression.

In addition to the spurious maternal-paternal genetic association 

induced by adjusting for offspring genetic variants, there may be 

a real association between maternal and paternal genetic variants 

generated by assortative mating. Assortment leads to an association 

between a couple’s genotypes and can be generated for a number 

of different reasons, including spouses being attracted to each other 

on the basis of heritable traits, including intelligence and physi-

cal appearance. This association (as with the potential spurious 

association of maternal-paternal genotype described above) could 

also result in bias, due to violation of the exclusion restriction cri-

teria if there is assortment on the exposure of interest, and paternal 

genotype (unless it or offspring genotype, through which it would 

influence offspring outcome, are controlled for) and its associated 

phenotypes influence offspring outcome. Assortative mating would 

generally produce a positive bias. As adjusting for offspring geno-

type induces an inverse association between maternal and paternal 

genotype (and hence negative bias), it is possible that in the pres-

ence of assortative mating adjustment for offspring genotype pro-

duces a minimally biased result as the two cancel each other.

Maternal genetic variants influence exposure pre- and post- 

pregnancy. Since genetic variants are allocated at conception, 

they conceivably influence traits across the entire life course. As a 

result, MR studies are often assessing the causal effect of a life-time 

cumulative exposure on outcomes12,25,41. This is potentially prob-

lematic when we are using MR (or multivariable regression analy-

ses) to address research questions concerned with exposure during a  

specific time period (such as the intrauterine period)41.

In MR studies of maternal pregnancy exposures on later offspring 

outcomes, it is theoretically possible that the exclusion restriction 

criteria is violated by a path from pre-pregnancy levels of the mater-

nal exposure through an impact on primordial oocytes (the primary 

female gametes that are present in the female ovary from birth), 

which relates to subsequent offspring outcomes (Figure 3). For 

example, studies in mouse models and non-human primates suggest 

Figure 3. Directed Acyclic Graph illustrating use of Mendelian randomization to assess developmental origins (intrauterine) causal 
effects on offspring outcomes, showing illustrative examples of how the exclusion restriction criteria may be violated by pre-
conceptual and post-natal maternal phenotype. IV, instrumental variable.
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that alcohol consumption in young adult females adversely affects 

oocyte quality and early stages of embryogenesis, even when alco-

hol consumption ceases before the completion of fertilisation and 

pregnancy42,43. Experimental evidence from animal models and on 

oocytes from women treated for infertility also suggest that mater-

nal obesity may affect oocyte quality44. If these effects are present in 

human females of reproductive age, the affected oocytes are capa-

ble of fertilisation and the changes to the oocytes impact on long-

term offspring outcomes (all of which is currently is unclear), then 

this would provide a potential violation of the exclusion restric-

tion criteria when exploring a ‘purely’ intrauterine effect via a pre- 

conceptual path (Figure 3).

Where the (maternal) exposure of interest is a behaviour that is 

‘visible’ to their offspring, such as alcohol consumption, there is 

also potential for violation of the exclusion restriction criteria by a  

postnatal path from maternal genotype to her postnatal expo-

sure (e.g. alcohol consumption), and then via modelled offspring  

exposure to their outcome (Figure 3). For maternal exposures that 

are less ‘visible’, for example circulating metabolite levels, postna-

tal effects are likely to be less problematic.

True pleiotropic effects of the maternal genetic instrumental  

variable. The mechanisms described above in the two previous sec-

tions are specific to the situation where maternal genetic variants 

are used as instruments to test the effect of a maternal pregnancy 

(intrauterine) exposure on an offspring outcome. However, it is 

important to acknowledge that these studies are also (like all MR 

studies) vulnerable to violation of the exclusion restriction criteria, 

due to horizontal pleiotropy (Figure 4)5,21,24.

Methods for assessing and limiting potential 
violations of the exclusion restriction criteria in MR 
studies of maternal pregnancy (intrauterine) effects
For many research questions concerned with intrauterine effects, 

violation of the exclusion restriction assumption via offspring gen-

otype is likely to be a key concern. Therefore, researchers should 

start by considering the extent to which the maternal genetic IV 

variants overlap with offspring variants related to the outcome of 

interest. Where the maternal exposure is the same as the offspring 

outcome (e.g. testing the causal effect of maternal gestational BMI 

on postnatal offspring BMI), it is clear that the overlap is substan-

tial. In situations where the extent of any overlap is unclear, mater-

nal variants used as IVs should be looked-up in relevant publicly 

available datasets, such as those curated in MR-Base33, to determine 

whether they are importantly related to the (offspring) outcome of 

interest.

In considering how the MR-Egger (see MR-Egger and median 

based methods to explore violations other than via offspring/

paternal genotype) method might work when addressing questions 

about intrauterine effects on offspring outcomes, we realised that it 

might be theoretically possible in some extremely specific cases that 

the problem of violation of the exclusion restriction assumption via 

offspring (and paternal) genotype might be solved by a very simple 

correction of the unadjusted MR result. However, we believe this 

would only work in a very specific situation where, amongst other 

criteria, the maternal exposure and offspring outcomes are exactly 

the same (e.g. testing the causal effect of maternal pregnancy BMI 

on adult offspring BMI), and where the model is additive and linear. 

If all criteria for this approach are present, a simple correction of the 

Figure 4. Directed Acyclic Graph illustrating use of Mendelian randomization to assess developmental origins (intrauterine) causal 
effects on offspring outcomes, showing how the exclusion restriction criteria may be violated by horizontal pleiotropy. IV, instrumental 
variable.

Page 7 of 23

Wellcome Open Research 2017, 2:11 Last updated: 22 MAR 2017



unadjusted MR result, achieved by subtracting 0.5 from this unad-

justed result, this should yield an asymptotically unbiased estimate 

of the direct effect of maternal exposure on child’s outcome (i.e. 

assuming all the other core assumptions are fulfilled). The crite-

ria required for this simple adjustment and our reasoning behind 

it are discussed in detail in Supplementary File 1: Section 1. How-

ever, this simple adjustment will be biased except in very specific 

situations and with very large sample sizes (Supplementary File 1:  

Section 1 for details); therefore, we recommend that it is only used 

in sensitivity analyses, where it is plausible that all relevant criteria 

(Supplementary File 1: Section 1) are met.

Adjustment for offspring (and paternal) genotype
In situations where some genetic variants in the offspring, which 

relate to the offspring outcome, overlap with the maternal genetic 

variants used as IVs for maternal pregnancy exposure, we recom-

mend adjusting for offspring genetic variants as part of the main 

MR analyses, and, if possible, simultaneously adjusting for paternal 

variants.

Testing effects using maternal non-transmitted genetic 
variants
A second main analysis that we recommend (either as an alterna-

tive or additional analysis), in situations where we are concerned 

that there will be violation of the exclusion restriction criteria via 

offspring genotype, is to use a maternal genetic IV that is based 

only on her non-transmitted alleles45. For each potential genetic 

instrument, if we can determine which of a mother’s alleles is not 

transmitted to their offspring, we can generate IVs that reflect the 

mother’s exposure, but are not related to offspring genotype (assum-

ing the absence of assortative mating on the exposure)45. If either 

or both mother or child are homozygotes then allele transmission 

can be unambiguously defined. To determine which allele has been 

transmitted from the mother in the situation where both mother and 

offspring are heterozygotes (for a bi-allelic variant) requires addi-

tional genetic information. For example, the most likely pattern of 

transmission can often be determined by constructing local haplo-

types of adjacent SNPs in mother and offspring around each SNP 

instrument (assuming that such data is available, e.g. from genome-

wide SNP arrays)45.

Sensitivity analyses using simulated data to explore 
violations due to offspring/paternal genotype
In addition to the methods described above – and in particular where 

it might not be possible to adjust for offspring (and/or paternal) 

genotype or construct haplotypes to use maternal non-transmitted 

alleles as IVs – we would suggest using simulations to explore the 

likely consequences of violation of the exclusion restriction criteria 

via offspring/paternal genotype. Here we provide methods, code 

and example results for doing such analyses.

Methods for simulation analyses. We performed a number of simu-

lations to quantify the bias using different approaches for estimat-

ing the causal relationship between maternal exposure and offspring 

outcome: (1) unadjusted MR analysis involving maternal genotype, 

maternal exposure and offspring outcome; (2) MR analysis involv-

ing maternal genotype, maternal exposure and offspring outcome 

adjusting for offspring genotype; (3) MR analysis involving 

maternal genotype, maternal exposure and offspring outcome 

adjusting for both paternal and offspring genotype; and (4) MR 

analysis utilizing the non-transmitted maternal alleles (we assumed 

that we knew the pattern of transmission precisely, which is effec-

tively the case when dense genome-wide trio data are available), 

maternal exposure and offspring outcome.

For each simulation strategy, we tested the impact of different levels 

of effect of offspring and paternal genotype (via a direct path or 

via their phenotype) on offspring outcome (explaining 0, 0.5, 1, 2 

or 5% of variation in offspring outcome). This range is to provide 

examples that might be seen across different plausible questions 

concerned with intrauterine effects on offspring outcomes46,47. We 

also allowed the IV strength, impact of confounders on offspring 

outcome, and the true causal effect of maternal exposure on off-

spring outcome to vary in these simulations. For each scenario, we 

generated 1000 replicates consisting of 10000 parent offspring trios. 

Full details of these simulations, including R code, are provided in 

Supplementary File 1: Sections 2 and 3 (R version 3.2.5 was used 

in these simulation studies).

Results of simulation studies. Table 1 shows a selected number 

of illustrative examples from the large number (1800) of simu-

lated scenarios. For all of these illustrative results the IV strength 

is the same (maternal genetic IV explaining 2% of the variation 

in maternal exposure), as is the net effect of confounders on the 

exposure and outcome (zero in all cases). We show results for a true 

non-null (positive) causal effect and for a null effect. The propor-

tion of variance in the offspring outcome explained by offspring 

or paternal genotype (either directly or via the respective pheno-

types) varied between 0 and 5%. The results show that for two 

approaches, adjustment for both offspring and paternal genotype 

and use of maternal non-transmitted genetic variants, all results are 

unbiased at any level of offspring or paternal genotype association 

with offspring outcome (similar results were obtained in the pres-

ence of non-genetic confounders; see full set of simulation results in 

Supplementary File 2–Supplementary File 7).

Except in the situation where offspring genotype was not asso-

ciated with offspring outcome, failure to adjust for offspring 

genotype resulted in a large positive bias (exaggerating the true 

positive causal effect and producing a non-null positive effect when 

the true effect was null), which increased with stronger associations 

between offspring genotype and outcome. There was no impact on 

the causal effect estimate according to the magnitude of association 

between father’s genotype and offspring outcome, when no adjust-

ment for offspring genotype is made. Adjustment for offspring 

genotype resulted in a modest negative bias (producing negative 

effects both when the true causal effect was positive and when it 

was null), unless the association between father’s genotype and 

offspring outcome was null. The magnitude of this negative bias 

increased with the strength of the association between father’s 

genotype and offspring outcome.

The results from all 1800 different simulation conditions that we 

undertook can be found in Supplementary File 2–Supplementary 

File 7 in six separate excel spreadsheets, each with four sheets. 

These are consistent with the general patterns highlighted in Table 1 
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and also show that confounders for the outcome (beyond offspring 

genotype) have relatively little impact on bias, except in the pres-

ence of weak instrument strength when they distort the true effect 

towards the direction of the confounding with greater bias as a 

result of greater magnitude of confounding. The power for each 

approach is also provided in these Supplementary files; the results 

confirmed the impact of instrument strength on power, and illus-

trate the slightly lower power of the maternal non-transmitted allele 

approach compared with other approaches.

MR-Egger and median based methods to explore 
violations other than via offspring/paternal genotype
Two relatively novel methods for exploring the extent to which 

the exclusion restriction assumption might be violated are the  

MR-Egger and median based methods21. Whilst these enable one 

to relax the exclusion restriction assumption, they have additional 

assumptions that are likely to be violated in situations where there is 

overlap between offspring genetic variants related to their outcome 

and the maternal genetic IVs. Therefore, we recommend these meth-

ods are used only as sensitivity analyses for exploring violations of 

the exclusion restriction assumption through paths other than off-

spring genotype (e.g. pre-conception or post-natal paths of horizon-

tal pleiotropy), and are applied after adjustment for offspring (and  

ideally paternal) genotype. Methods for using MR-Egger or 

weighted medians with maternal non-transmitted alleles have not 

been developed, though as we discuss below it is theoretically  

possible that with large numbers of trios this approach could  

be combined with two-sample MR (see One- and two-sample  

Mendelian randomization).

MR-Egger. The MR-Egger method was developed to test for viola-

tion of the exclusion restriction assumption when using aggregate 

Table 1. Illustrative examples from simulation study results.

True 
causal 
effecta

% variation 
offspring 
outcome 
explained 

by offspring 
genetics

% variation 
offspring 
outcome 
explained 

by paternal 
genetics

Difference in means of offspring outcome (in standard deviations 
units) per 1SD increase in maternal exposure that the IV is testing 

(SE)

No 
adjustment

Adjustment 
for offspring 
genetics only

Adjustment for 
offspring and 

father’s genetics

Using maternal 
non-transmitted 

alleles

0.10 0 0 0.10 (0.07) 0.10 (0.08) 0.10 (0.09) 0.10 (0.10)

0.10 0 1 0.10 (0.07) -0.14 (0.08) 0.10 (0.08) 0.10 (0.10)

0.10 0 5 0.10 (0.07) -0.42 (0.09) 0.10 (0.09) 0.10 (0.10)

0.10 1 0 0.46 (0.08) 0.10 (0.08) 0.10 (0.09) 0.10 (0.10)

0.10 1 1 0.45 (0.07) -0.14 (0.08) 0.10 (0.09) 0.10 (0.10)

0.10 1 5 0.45 (0.08) -0.43 (0.09) 0.10 (0.08) 0.10 (0.10)

0.10 5 0 0.90 (0.09) 0.10 (0.08) 0.10 (0.08) 0.09 (0.10)

0.10 5 1 0.90 (0.09) -0.14 (0.08) 0.10 (0.08) 0.10 (0.10)

0.10 5 5 0.90 (0.09) -0.43 (0.09) 0.10 (0.08) 0.10 (0.10)

0 0 0 0.00 (0.07) 0.00 (0.08) 0.00 (0.09) 0.00 (0.10)

0 0 1 0.00 (0.07) -0.23 (0.09) 0.00 (0.09) 0.00 (0.10)

0 0 5 0.00 (0.07) -0.52 (0.10) 0.00 (0.09) 0.00 (0.11)

0 1 0 0.35 (0.08) 0.00 (0.08) -0.01 (0.09) -0.01 (0.10)

0 1 1 0.35 (0.08) -0.23 (0.08) 0.00 (0.09) 0.00 (0.10)

0 1 5 0.35 (0.08) -0.52 (0.09) 0.00 (0.08) 0.00 (0.10)

0 5 0 0.79 (0.09) 0.00 (0.08) -0.01 (0.08) -0.01 (0.10)

0 5 1 0.79 (0.09) -0.23 (0.08) 0.00 (0.08) 0.00 (0.10)

0 5 5 0.79 (0.09) -0.53 (0.09) 0.00 (0.08) -0.01 (0.10)

aDifference in mean offspring outcome in standard deviation (SD) units per 1 SD greater maternal exposure.

In all simulations shown in this table the maternal genetic instrument explained 2% of the maternal exposure (R2 = 0.02) and net 

confounding was zero. A full set of 1800 results from the simulation studies with a full range of different scenarios can be found in 

the Supplementary File 2–Supplementary File 7 (six separate excel files).
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data from multiple genetic IVs21,24, as done in two-sample MR48. It 

is related to the inverse-variance weighted (IVW) method, in which 

a weighted linear regression of each of the genetic IV–outcome 

coefficients on the genetic IV–exposure coefficients, with the latter 

orientated to be positive, is used. In IVW, the regression line is con-

strained to pass through zero (i.e. the exclusion restriction criteria is 

assumed and as such it is assumed if the genetic IV-exposure asso-

ciation is zero the genetic IV-outcome association must be zero)21. 

Unlike the standard IVW approach that assumes no violation of the 

exclusion restriction criteria, the intercept in MR-Egger regression 

is not constrained to zero, and therefore provides an estimate of the 

average pleiotropic effect across all of the genetic variants21. The 

MR-Egger method (through the MR-Egger slope) provides consist-

ent estimates of the true casual effect, even if all genetic variants 

are invalid due to violation of the exclusion restriction assumption, 

but requires an additional assumption known as InSIDE (instru-

ment strength independent of direct effect). The InSIDE assump-

tion states that there should be no correlation between instrument 

strength (i.e. the SNP-exposure association) and the “direct” effect 

of the variant on the outcome (i.e. the effect on the outcome that is 

not mediated by the exposure of interest). The InSIDE assumption 

is likely to be violated in MR studies testing the effect of a maternal 

pregnancy exposure on an offspring outcome when the maternal 

exposure and offspring outcome are very similar21. This is most eas-

ily illustrated if we think of the example where maternal exposure 

and offspring outcome are the same characteristic – e.g. BMI as in 

Figure 2. We know that the expected correlation between maternal 

genetic variants for BMI and offspring genetic variants for BMI at 

a single bi-allelic locus is 0.5 (since offspring inherit 50% of their 

genotype from each parent). Therefore, if the strength of associa-

tion between maternal BMI genetic variants and maternal BMI is 

correlated with the strength of association between offspring BMI 

genetic variants and offspring BMI (as would be expected), then 

the InSIDE assumption will be violated (unless offspring genotype 

is controlled for). If offspring BMI is assessed in adulthood then 

this association is likely to be very high (i.e. approaching a cor-

relation of 1), as the BMI variants will relate to BMI with the same 

magnitude in mothers and offspring. There is evidence that some 

genetic variants have age specific effects, such that their magni-

tude of association with BMI varies between infancy, childhood and  

adulthood49,50. Thus, if offspring BMI is measured in infancy 

or early childhood, the magnitude of a genetic BMI allele score 

with BMI may differ between pregnant adult women and their  

infant/childhood offspring. Nonetheless we would still anticipate 

some positive correlation between the two.

MR-Egger was developed for use within a two-sample MR 

framework using aggregate data, but studies of maternal preg-

nancy exposures on offspring outcomes will generally be done in 

the same sample(s) using individual participant data. The use of 

MR-Egger (and IVW) in one-sample MR is more problematic, how-

ever, because its performance deteriorates rapidly in the presence of 

weak instrument bias51,52. Unlike in the two sample context where 

simple methods exist to detect and adjust for weak instruments53,  

no simple solution has yet been developed for a one-sample anal-

ysis (the first stage F-statistic alone is unlikely to be suitable for  

determining the extent of weak instrument bias when using MR-

Egger or IVW). The direction of bias in this case is towards the 

(residually) confounded multivariable regression estimate rather 

than the null. This issue will be exacerbated if the genetic variants 

are weighted (by the magnitude of their effect on exposure) using 

internal weights (i.e. using the magnitudes of association with expo-

sure in the same study in which the MR analyses are undertaken).

Median based methods. Median based methods have also been 

developed to explore violation of the exclusion restriction crite-

ria using two-sample MR with aggregate data. A simple (without 

weights) median method is obtained as the median of the ordered 

set of ratio estimates obtained from using each genetic variant as a 

single IV24. The weighted median estimator is an extension of this 

method, which is more statistically efficient. It is the median of 

the inverse variance weighted empirical distribution function of IV 

estimates24. This method can consistently estimate the true causal 

effect when at least 50% of the weight in the analysis stems from 

variants that are valid instruments. As a corollary, if a single genetic 

variant contributes more than 50% of the weight, then that variant 

must be valid. In MR studies where the maternal exposure and off-

spring outcome are the same (as in Figure 2) all of the variants are 

likely to be invalid.

Although the weighted median estimate will be biased towards 

the (residually) confounded multivariable regression estimate 

when using weak instruments in the one sample setting, the dete-

rioration in performance is not expected to be as dramatic as in  

MR-Egger. This is because it is still a function of two-stage least 

squares (TSLS) estimates, rather than an (ordinary least squares) 

regression model.

Illustrative example using real data
Background
There is increasing concern that greater maternal adiposity in preg-

nancy results in greater offspring adiposity in later life via intrauter-

ine mechanisms, and that this could perpetuate the obesity epidemic 

because female offspring born to women who are more adipose 

would enter their pregnancies more adipose and the effect would 

cycle through generations54,55. We have recently shown, using MR, 

that greater maternal pregnancy BMI is likely to be causally (via 

intrauterine mechanisms) related to offspring birthweight and pon-

deral index10. We have also explored the likelihood that there may 

be lasting effects of maternal pregnancy BMI on offspring BMI and 

fat mass index (FMI) in offspring between ages 7 to 18 years6,56, 

using data from the Avon Longitudinal Study of Parents and Chil-

dren (ALSPAC; http://www.alspac.bris.ac.uk)57,58. In this illustrative 

example, we examine the same research question and use ALSPAC 

data, but here we focus specifically on the analytical methods and 

sensitivity analyses recommended in Box 1. This example was 

chosen because it addresses an important public health question and 

also represents the case in which we might have most concern, since 

maternal exposure and offspring outcome are the same (BMI).

Methods
Details of the study population and analyses that we used in 

this illustrative example are provided in Supplementary File 1:  

Section 4. We used two complementary approaches for our main 

MR analyses. First, we used a weighted allele score of 97 genetic 

variants that have been found to be robustly associated with 

BMI46, along with adjustment for the same weighted allele score 

in offspring. Second, we examined the causal effect using the  
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non-transmitted (to offspring) haplotype approach, as described by  

Zhang and colleagues45. We also undertook three sensitivity 

analyses with real data - MR-Egger and weighted median meth-

ods applied to the maternal weighted allele score with adjustment 

for offspring allele and the simple subtraction of 0.5 from the  

unadjusted MR estimate and each value of its 95% confidence inter-

val. In addition, we undertook simulation sensitivity analyses using 

the methods described in ‘Methods for simulation analyses’ and 

also in Supplementary File 1: Section 2. In the simulation analy-

ses, we examined results assuming a true null result and also a true 

positive effect of 0.2SD change in the offspring BMI/FMI per 1SD 

change in maternal pregnancy BMI.

These statistical analyses were undertaken in StataIC version 14.

Results
Each increase in weighted allele score in pregnant women in 

ALSPAC resulted in an average 0.026SD increase in their pre- 

pregnancy BMI and the allele score explained 2.6% of the vari-

ation in BMI; comparable results in the GWAS of men and  

(non-pregnant) women that were used to identify the 97 genetic 

instruments for this illustrative study, and to identify external 

weights, were 0.022SD and 2.7%46. The first stage F-statistic  

was > 45. The maternal genetic IV (weighted allele score) was 

positively associated with household social class and to some 

extent with parity, but not notably with other potential confounders  

(Supplementary File 1: Table S1).

The magnitudes of associations and patterns of differences between 

each approach were broadly the same for offspring BMI and off-

spring FMI. We found a positive effect of maternal early pregnancy 

BMI on offspring BMI and FMI at age 18 in the unadjusted MR 

weighted allele score using TSLS, which was considerably stronger 

than the multivariable regression result. However, with adjustment 

for offspring allele score (our first main analyses) this attenuated 

considerably and was consistent with the null (Table 2). Similarly, 

when maternal transmitted alleles were used as the IV there was a 

strong positive effect (reflecting the transmission of BMI increas-

ing alleles from mother to offspring and the effect of these on 

offspring BMI/FMI), but with the non-transmitted allele (our sec-

ond main analyses) the point estimate was weakly negative and 

consistent with the null (Table 2). For both BMI and FMI there 

was statistical evidence that the effects that both of our main  

MR methods were statistically inconsistent with the association 

from multivariable regression analyses (all p-values < 0.03).

The MR-Egger intercept was consistent with the null and the slope 

was similar to the two main analysis results, suggesting no strong 

evidence for a causal intrauterine effect of maternal pregnancy  

BMI on offspring BMI or FMI at age 18-years (Table 2). Both the 

IVW results and results obtained with a simple subtractions of  

0.5 from the unadjusted MR results were consistent with the 

null but had point estimates that were positive and stronger that  

either the main result or the MR-Egger slope (though both  

were ~50% of the magnitude of the multivariable regression results). 

By contrast, the positive weighted median point estimate was  

of a similar magnitude to that of the multivariable regression 

result.

The simulation studies suggest that whether we assume a null, or 

positive, association the MR method with adjustment for offspring 

and paternal genetic variants and that using maternal non-transmit-

ted alleles were unbiased. The simulated results with adjustment for 

offspring genetic variants only (i.e. without paternal adjustment) 

were modestly inversely biased, whereas this approach with real 

ALSPAC data (one of our main MR approaches) had point esti-

mates very close to the null for both BMI and FMI. The difference 

between this simulated result and our real data may be explained 

by our assumption in the simulated data that paternal genotype will 

explain 1% of offspring BMI (after adjustment for offspring BMI 

– i.e. removing the path from paternal genotype to offspring BMI 

that would go through offspring genotype); in the ALSPAC cohort 

paternal genotype might have less impact on offspring BMI once 

offspring genotype is adjusted for.

Discussion
We acknowledge that we have limited statistical power from this 

one study. However, the aim was to illustrate the series of analyses 

we recommend in Box 1, using a real example. The two main analy-

ses – maternal genetic instruments adjusted for the same genetic 

variants in offspring and use of maternal non-transmitted variants 

as instruments – were consistent in suggesting that there was no 

strong causal intrauterine effect of maternal pregnancy BMI on 

offspring BMI and FMI at age 18. Our sensitivity analyses - MR-

Egger slope, weighted median and subtraction of 0.5 from the unad-

justed IV results – were also consistent with a null effect. Given the 

small sample size, we had anticipated that weak instrument bias 

might bias results from IVW, MR-Egger and the weighted median 

approaches towards the (residually) confounded multivariable 

results, with the extent of this bias being expected to be greatest 

for MR-Egger and least for the weighted median. We actually see  

the opposite, with little evidence of such bias for MR-Egger and 

greatest with the weighted median method. In ALSPAC, we only 

have genetic data on a small number of select fathers and were there-

fore unable to explore adjustment for offspring and paternal geno-

type, or use trios for determining maternal non-transmitted alleles.  

Overall the results suggest pregnancy BMI is unlikely to have a 

strong effect on offspring BMI, but we would want to explore this 

in additional larger studies.

Conclusions and additional comment
The main output of this paper is a list of recommendations for under-

taking MR in situations where one is interested in the causal effect 

of an intrauterine exposure that is measured and instrumented for 

in pregnant women on an outcome that occurs (and hence is meas-

ured) in their offspring. We have tried to provide a clear rationale 
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Table 2. Mendelian randomization analyses using different approaches to assess the intrauterine effect of maternal 
pre-pregnancy body mass index on offspring body mass index (BMI) and fat mass index (FMI) at age 18 years.

MR methoda N Difference in mean BMI (SD) 
per 1SD greater maternal BMI 

(95%CI)

N Difference in mean FMI (SD) 
per 1SD greater maternal BMI 

(95%CI)

Main analyses 

Unadjusted maternal weighted allele 
score 

2493 0.60 (0.37, 0.82) 2404 0.54 (0.31, 0.77) 

Maternal weighted allele score 
adjusted for same offspring weighted 
allele score

2493 0.01 (-0.23, 0.25) 2404 -0.01 (-0.26, 0.24)

Maternal transmitted haplotype score 2482 1.36 (0.85, 1.86) 2393 1.27 (0.78, 1.77) 

Maternal non-transmitted haplotype 
score

2482 -0.04 (-0.36, 0.28) 2393 -0.07 (-0.40, 0.27)

Sensitivity analyses 

Inverse-variance weighted method 
with offspring adjusted IVb 2493 0.11 (-0.02, 0.24) 2404 0.12 (-0.01, 0.25)

MR-Egger slope with offspring 
adjusted IVb 2493 0.03 (-0.17, 0.23) 2404 0.11 (-0.09, 0.31)

MR-egger intercept with offspring 
adjusted IVb 2493 0.006 (-0.006, 0.018) 2404 0.000 (-0.012, 0.013)

Weighted Median with offspring 
adjusted IVb 2493 0.27 (0.03, 0.50) 2404 0.20 (-0.04, 0.44)

Unadjusted maternal weighted allele 
score minus 0.5

2493 0.10 (-0.13, 0.32) 2404 0.04 (-0.19, 0.27)

Simulation sensitivity analysesc

Assuming null: With no adjustment 10000 0.49 (0.33, 0.65) 10000 0.49 (0.33, 0.65)

Assuming null: Adjusted for offspring 
genotype

10000 -0.24 (-0.42, -0.06) 10000 -0.24 (-0.42, -0.06)

Assuming null: Adjusted for offspring 
and paternal genotype

10000 0.00 (-0.18, 0.18) 10000 0.00 (-0.18, 0.18)

Assuming null: Using maternal non-
transmitted alleles

10000 0.00 (-0.22, 0.22) 10000 0.00 (-0.22, 0.22)

Assuming 0.1: With no adjustment 10000 0.60 (0.44, 0.76) 10000 0.60 (0.44, 0.76)

Assuming 0.1: Adjusted for offspring 
genotype

10000 -0.14 (-0.30. 0.02) 10000 -0.14 (-0.30. 0.02)

Assuming 0.1: Adjusted for offspring 
and paternal genotype

10000 0.10 (-0.12, 0.32) 10000 0.10 (-0.12, 0.32)

Assuming 0.1: Using maternal non-
transmitted alleles

10000 0.10 (-0.10, 0.30) 10000 0.10 (-0.10, 0.30)

Multivariable regression results for comparisond

1798 0.33 (0.28, 0.37) 1739 0.32 (0.27, 0.37)

aAll Mendelian randomization (MR) methods use maternal 97 SNPs from Locke et al. GWAS46. The main analyses are the maternal weighted 

allele score adjusted for offspring weighed allele score and the maternal non-transmitted analyses; the italicised unadjusted maternal weighted 

allele score and the transmitted maternal alleles (show italicised) are for comparison. The two stage least squares (TSLS) IV method was used in 

all four of these analyses. External weights from the recent GWAS46 were used for the main analyses and inverse-variance weighted, MR-Egger 

and weighted median sensitivity analyses.

bThese methods were applied to the maternal BMI genetic IVs (97 SNPs) adjusted for the same 97 BMI SNPs

cThese show the results we might have expected to get for each method if the true result was 0 (null) or a 0.1SD increase in offspring BMI per 

1SD increase of maternal pregnancy BMI. For all of these results based on simulated data maternal BMI allele score (instrument) is assumed to 

explain 2% of the maternal exposure (R2 = 0.02), as is the offspring BMI allele score with their BMI, paternal allele score is assumed to explain 

1% of variation in offspring BMI and we assumed the net confounding was zero.

dFor comparison these are the multivariable regression results with control for household social class, maternal and paternal education, maternal 

smoking, offspring smoking and offspring sex and age at outcome assessment.
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for these recommendations but we do not claim that they are neces-

sarily complete. As MR is further used to address such questions we 

envisage additional issues may be identified and also that additional 

methods (to those discussed here) will be developed. Below we dis-

cuss two further related issues to addressing questions of causal 

effects of maternal pregnancy exposures on offspring outcomes.

One- and two-sample Mendelian randomization
In one-sample MR, both the genetic IV-exposure and  

genetic IV-outcome associations are computed in the same study 

sample; in two-sample MR the two are computed in independent 

samples48. There are advantages to two-sample MR, in particular 

with increasing availability of complete summary results data from 

a large number of GWAS, it is possible to apply two-sample MR 

to these summary data and undertake MR in very large numbers of 

participants48,59. However, because it is essential to link exposure in 

mothers to outcome in their offspring it is not possible to use such 

summary data from two-samples to assess most questions related 

to intrauterine effects on offspring postnatal outcomes, though  

two-sample MR has been used to explore the causal effect of birth-

weight (as a proxy for some aspects of intrauterine environment) 

on later outcomes within the same individuals60–62. In theory two- 

sample MR could be used to explore the effect of maternal preg-

nancy exposures on offspring outcomes, but in general it would be 

essential to have individual participant data on maternal genetic 

variants that were used as IVs linked to offspring outcomes. For 

example, the association of maternal genetic instruments with 

offspring outcomes [ideally adjusted for offspring (and paternal) 

genotype] could be divided by results of the maternal genetic 

instruments with maternal exposure, with the latter obtained from 

a different sample to the former. Ideally, one would want the latter 

to assess maternal exposure during pregnancy, but if one were able 

to show (in a reasonably sized sample of pregnant women) that the 

genetic instruments related to maternal pregnancy exposure with 

the same magnitude and direction as that seen in the general (aggre-

gate) GWAS data of (non-pregnant) women and men, it might be 

valid to use aggregate GWAS data for the genetic IV-‘maternal’ 

exposure sample (ratio estimate denominator). In practice, overlap-

ping sample MR48 might be more common and useful. For example, 

for expensive or unusual pregnancy exposures there may only be 

measurements in a sub-sample of the cohorts being used, in which 

case the denominator of the ratio IV estimate (i.e. association of 

maternal genetic IVs with pregnancy exposure) might be done only 

in that smaller sample, but the numerator (association of maternal 

genetic IVs with offspring outcome) done in the large sample.

The one exception to this general need to have maternal genetic IVs 

directly linked to offspring outcomes, would be in the case where 

it was possible to have ‘fully’ estimated maternal non-transmitted 

alleles. For example, if it were possible to have large numbers of 

trios with genetic data together with pregnancy exposure data from 

the mothers in those trios. Theoretically one could correctly iden-

tify the non-transmitted haplotype scores in the mothers and use 

those to determine the associations of these haplotype scores with 

the maternal pregnancy exposure in the sample from which the trios 

came. Then, look up the haplotype scores, which are the same as 

the maternal non-transmitted scores, in a general population sample 

to estimate their associations on ‘offspring’ outcomes. Currently, 

there are too few birth/pregnancy cohorts with genetic data on trios 

and maternal (potential exposure) measurements in pregnancy. 

However, as more pregnancy/birth cohorts collect genetic data on 

trois and work together collaboratively, there is future potential to 

explore this theoretical approach further.

Combining results with other approaches in a triangulation 
framework
This paper highlights specific sources of bias when MR is used to 

explore the causal effect of maternal pregnancy exposures on off-

spring outcomes. Given the difficulty of establishing causality using 

conventional multivariable approaches or RCTs to address research 

questions concerned with the effect of maternal pregnancy expo-

sures on long-term offspring outcomes, together with increasing 

pressure to direct antenatal care and public health policy towards 

preventing future ill-health via antenatal interventions54, we feel 

that using methods such as MR is important in this field, and in 

Box 1 we provide recommendations for its use. We would also sug-

gest that results from such MR studies are integrated with other 

approaches that a priori are assumed to have different key sources 

of bias in a triangulation framework41. The idea of triangulation is 

that if the results from two or more different approaches, each of 

which has different and unrelated sources of bias, point in the same 

direction this supports those results pointing to the correct causal 

answer. In the case of the illustrative example that we present here, 

the fact that negative control studies (using paternal BMI as a nega-

tive control)63, and within sibship analyses64, each of which have 

different key sources of bias to the MR approach used here41, all 

point towards there being no strong causal effect of maternal greater 

pregnancy BMI on her offspring BMI, strengthens the conclusion 

that there is no causal intrauterine effect in this specific example.

Data availability
ALSPAC data used for this submission will be made available on 

request to the ALSPAC Executive via this website, which also pro-

vides full details and distributions of the ALSPAC study variables: 

http://www.bristol.ac.uk/alspac/researchers/access/. The ALSPAC 

data management plan (available here: http://www.bristol.ac.uk/

alspac/researchers/data-access/documents/alspac-data-manage-

ment-plan.pdf) describes in detail the policy regarding data sharing. 

A sampler set of similar data containing relevant ALSPAC variables 

is available from the European Genome-phenome Archive (acces-

sion number: EGAS00001000090): https://www.ebi.ac.uk/ega/

studies/EGAS00001000090.
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Supplementary File 3: Full simulation results for strong IV with a true null effect. This provides all results of the simulation studies in 

the example with the IV is strong and the true causal effect is null.

Click here to access the data.
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Supplementary File 4: Full simulation results for strong IV with a true positive effect. This provides all results of the simulation studies 
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Click here to access the data.

Supplementary File 5: Full simulation results for weak IV with a true negative effect. This provides all results of the simulation studies 

in the example with the IV is weak and the true causal effect is negative (inverse).

Click here to access the data.

Supplementary File 6: Full simulation results for weak IV with a true null effect. This provides all results of the simulation studies in 
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The article addresses the important methodological issues surrounding application of genetic
instrumental variable (IV) analysis, or Mendelian randomization, to maternal-child exposure-outcome
associations. The authors describe scenarios in which the so-called exclusion restriction might be
violated and then describe analytic approaches to address the potential bias in IV estimates that could
arise. The article is clearly written with apt examples and is very thorough, especially with the abundant
supplemental materials including code. This manuscript is likely to be valuable to the community of
researchers interested in IV applications to maternal-child associations.
 
There are several issues that it would be helpful if the authors could address to make the manuscript a
more comprehensive resource.
 

The authors describe the usefulness of examining associations between the maternal genetic IV
and measured confounders under several different conditions (page 4). However, it is not clear
how to optimally address associations between the genetic IV and measured confounders (see
comment 2a below) as the bias introduced by such IV-confounder associations on the IV-outcome
association estimate are not always clear.
 
It would help if the authors could specifically address adaptation of their simulation-based
sensitivity analyses to examine pleiotropy. Two examples that came to mind when reading the
manuscript:
 

In the example evaluating a genetic IV to examine the association between maternal
pregnancy BMI and childhood BMI, the authors describe associations between the IV and
measured confounders (social class and parity). Depending on how the DAG is conceived,
one could see this as an example of pleiotropy leading to a violation of the IV assumption
that all directed paths from the IV to the outcome pass through maternal pregnancy BMI
(especially for parity if there is a causal association between BMI genetic variants and
parity). Furthermore, there might be plausible paths connecting the BMI IV, maternal
pregnancy BMI, parity, and the outcome that would suggest that bias could be introduced
by including parity as a covariate in either the multivariable regression or the IV analysis.
Could the authors address their choice to include social class but not parity in their
multivariable regression model and discuss adaptations of their simulations to address
possible contributions of pleiotropy to IV estimates?
 
The authors’ discussion of assortative mating is clear. However, they do not address the
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The authors’ discussion of assortative mating is clear. However, they do not address the
scenario in which the assortment occurs not on the exposure of interest but on a correlated
trait (e.g. if the exposure of interest is maternal diabetes, IV is a genetic risk score for
diabetes, outcome of interest is childhood BMI or glucose levels, and assortative mating
might occur on the basis of maternal/paternal BMI). In this scenario, accounting for paternal
and offspring diabetes genetic variants is unlikely to block all paths between the IV and
outcome that do not go through the exposure of interest, and adding covariates related to
assortment (maternal and/or paternal BMI) might induce bias in the IV-outcome association
estimate. While this is essentially a special case of pleiotropy, it may be worth making the
distinction between assortment based on the exposure of interest (for which the IV is
selected) and assortment based on traits correlated with the exposure of interest. The
impact of the latter case on the IV-outcome estimate can likely be addressed through
simulation as well.

 
The authors do not include offspring genetic variants for BMI in their multivariable regression
model in the example derived from ALSPAC data. This would seem to inflate the difference in
estimates of exposure-outcome association compared to the IV-outcome association (since
offspring genetic variants are included in the IV analysis but not in the multivariable regression).
While this does not affect the causal effect estimate from the IV analysis, it does impact any
statistical test for difference in effect estimates comparing the multivariable regression model and
the IV model. Can the authors address this discrepancy?
 
Two additional sources of bias in IV estimates that are not unique to maternal-offspring IV analyses
arise from additional assumptions  that the authors do not describe in their manuscript: 1. The
assumption of no effect modification by the instrument on the exposure-outcome association; 2.
The assumption of monotonicity between instrument and exposure. In the context of genetic
instruments for which we infrequently understand the causal variants or biological pathways
involved, the assumption of no effect modification is difficult to verify. Similarly, when a genetic
instrument is used for a dichotomous exposure (e.g. diabetes or obesity), the monotonicity
assumption is not always satisfied (some mothers with a heavy burden of diabetes-associated
genetic variants might not develop pre-pregnancy or gestational diabetes). It might be helpful to
include a brief discussion of sources of bias common to all genetic IV analyses, irrespective of
whether an intrauterine exposure is of interest, that warrant consideration.
 

Minor comments:
Typo- Para 1: sentence beginning “For example, IADSPG…. antenatal care.”through 
 
Intro, last para, sentence that starts “However, the majority ….”, there is an incorrect comma.
 
Extraneous comma in the last sentence of para starting “True pleiotropic effects of the

.”maternal genetic instrumental variable
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This is a clear and balanced article on the use of MR to analyse the effects of maternal pregnancy
exposures on offspring outcomes. Our comments are reported below.
 
1) Introduction

a. ”However, evidence that the proxy measures used by IADPSG developers to indicate offspring obesity
(high birth weight, birth skinfolds and cord-blood c-peptide) are accurate predictors of future risk of
childhood obesity, or that treating women with the IADPSG criteria will effectively reduce childhood
obesity, is lacking”. It would be important to clearly distinguish between prediction and the possibility to
prevent obesity through interventions, as the former concept does not require causation.

b. “In other areas women’s lifestyle in pregnancy is potentially being blamed for all future health risks in
her offspring”. This statement is maybe too strong; in addition strong evidence of causation (or lack of
causation) would not solve the blaming component. 

c. “However, conventional methods are unlikely to be suitable [to provide valid causal statements]”. Also
this statement is maybe too strong. We agree that residual confounding is a major issue for causal
inference from observational data, but there are several examples of valid causal inference based on
observational studies analysed using conventional approaches.  

2) Section “Maternal genetic instrumental variables are not associated with potential
confounders of the pregnancy exposure- offspring outcome association”

a. “Therefore, we recommend testing associations between maternal variants and observed potential
confounders with and without adjustment for offspring (and paternal) genetic variants when such
adjustments are used in the main MR analyses”.  We have some difficulties in understanding the practical
implications of this recommendation. It could be useful to add the offspring genetic variants in the DAG
reported in Figure 1 to understand what would be the impact of this adjustment on the IV – potential
confounders associations. Furthermore, it would be good to clarify the concept of “testing” in this context:
is it a statistical test, a judgment on the magnitude of the associations, is it at an univariable or
multivariable level?

3) Section " Maternal genetic instrumental variables are only related to the offspring outcome
through their relationship to the maternal pregnancy exposure (the exclusion restriction

1 2
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3) Section " Maternal genetic instrumental variables are only related to the offspring outcome
through their relationship to the maternal pregnancy exposure (the exclusion restriction
assumption)"

a. We wonder if the offspring genetic variants could also affect the maternal exposures during pregnancy.
It is probably unlikely, but not impossible. This would have implications for the scenario described in
Supplementary File 1.

b. Figure 2 and the last two sentences on page 5  “Thus, it is rarely possible to be able to deal with this
potential new bias by adjusting for paternal (as well as offspring) genetic variants…”.  Cohorts could have
information on paternal characteristics e.g. paternal BMI, paternal physical activity, smoking and other
phenotypes. Adjustment for paternal phenotypes could block the path B1-->B2àB3 (even if the paternal
phenotype would then become a collider).

c. In our opinion, maternal postnatal exposures are potent potential sources of bias, whenever these
exposures act on the offspring outcome through various pathways. For example maternal obesity might
act on the offspring through different pathways involving diet, physical activity, sedentary behaviours, etc.

A similar comment regards Figure 3 and page 7 – second paragraph – maternal exposure of interest as
behaviour “visible” to their offspring and last sentence of the same paragraph (“less visible” exposures).
We would not define these postnatal exposures as “visible” or “less visible”. In Figure 3 maternal alcohol
consumption might affect offspring cognitive function or other outcomes by mechanisms other than
“imitating”. In this specific case mothers with such exposures might have different child-care practice or
create diverse environment where child grows that could influence later cognitive function. Maybe
“manifest” and “not manifest” would work better [for example we used this terminology in Richiardi L et al.
 2013]

4) Section "Testing effects using maternal non-transmitted genetic variants."

a. We should admit that we have not fully understood the inherent assumptions of the analysis restricted
to the non-transmitted allele. For example, wouldn’t this imply an inherent conditioning on the offspring
genetic variants?

5) Supplementary file 1
 
a. “If offspring BMI is assessed in adulthood then this association is likely to be the case, as the BMI
variants will relate to BMI with the same magnitude in adult mothers and their offspring when BMI is
assessed in adulthood”. It should be considered however that the maternal exposure is assessed in
pregnancy, while the offspring is not. Thus the strength of the IV might be different even if the assessment
is made at the same age (in general, the assumption of identical effects is very stringent and it is easy to
come up with examples in which this assumption is violated).
 

6) Illustrative example using real data
 
a. If the standardization of the BMI is not necessary for the application of the method, we would suggest
using the actual BMI in the analysis instead of BMI SDs (at least it would be good to report the magnitude
of 1 SD BMI, if not already shown in the manuscript).
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b. Maybe it is out of the scope of this manuscript, but it would be interesting to discuss the implications of
a possible baseline selection related with pre-pregnancy BMI in this cohort (e.g. obese mothers were
more -or less- likely to participate in the study). Wouldn’t this be a source of violation of the exclusion
restriction assumption (and a possible explanation for the association between the genetic score and SES
and parity?)
 
c. “For both BMI and FMI there was statistical evidence that the effects that both of our main MR methods
were statistically inconsistent with the association from multivariable regression analyses (all p-values <
0.03)”. It seems that something is missing in this sentence.
 
d. Page 11: “In the simulation analyses we examined results assuming a true null result and also a true
positive effect of 0.2SD change in the offspring BMI/GFMI per 1SD change in maternal pregnancy BMI” Is
this effect supported by the literature? Note that the note in Table 2 reports an assumed true result of 0.1
SD , wile the text reports 0.2 SD.
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This is a well-written article clearly addressing the specific, topic which also gives a nice explanation of
some the newer Mendelian randomization (MR) concepts and techniques.

The paper considers 3 major issues that could arise when using MR to estimate the effect of maternal
attributes on offspring outcomes, shown in Figures 1, 2 and 3. It would be very helpful if at the beginning
of the section "Mendelian randomization assumptions and assessing causal intrauterine effects" these
three different issues were introduced, before discussing Figure 1.

In Figure 1 it seems a bit redundant to write the IV assumptions because they can be read off the directed
acyclic graph. However it may help some readers.

In everyday life it is generally understood that causes, when relevant, act consistently. It seems
unnecessary to test that genetic variants act the same in pregnant women as at other times. Instead, it
might only be necessary to test that genetic variants act consistently if there was some reason to think
otherwise. 

The explanation for the result that in some cases the unadjusted MR result can be corrected by
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The explanation for the result that in some cases the unadjusted MR result can be corrected by
subtracting 0.5 (pages 7/8) needs to be included in the text, at least as an intuitive explanation, not just
given in a Supplementary File. 

From the regularity of the patterns in Table 1 it looks like there is an analytic solution for the simulation. If
such an analytic solution could be found and added to the paper it would be very helpful and make the
paper more generally applicable.

Does weak instrument bias also likely inflate the estimate? A weak instrument might mean the
denominator of a ratio is likely to be smaller than it should be.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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 Brandon L. Pierce
Departments of Public Health Sciences , Comprehensive Cancer Center, University of Chicago, Chicago,
IL, USA

This is a well-written and important paper, as it considers a special case of MR when maternal genetic
variation is use as IV to test to effect of maternal/intrauterine exposures on offspring outcomes. There are
specific challenges that arise in such studies, as the IV used for the maternal exposure is likely correlated
with genetic factors in the offspring which could affect offspring outcomes (violating the exclusion
restriction). Also, adjusting for offspring genotype could introduce collider bias. This paper describes
these (and other) potential biases and recommends approaches for avoiding these biases. No major
changes suggested, but I have a few comments that may help improve the paper:

It seems that the real data example used here was very recently published by the authors in PLOS
Medicine. Assuming this is true, I suggest acknowledging this somewhere with a comment on how
the data analysis presented here is different or expands on the published work, or if it is essentially
the same.   
 
The authors state that assortative mating could result in bias. Is this an issue specific to maternal
exposures? Or a more general problem for any MR study?
 
Figure 3 describes violations of the ER due to pre- and post-natal pathways. Based on this
example (alcohol consumption), it seems reasonable to suspect that if one variant violates the
exclusion restriction then all variants use as IV(s) would potentially violate the exclusion restriction
through the same pathway. So in this case, would MR-egger and median methods might not be
useful (as suggested they would be on page 9)? If not, perhaps an alternative example would
better illustrate the point you’re trying to make.
 
The authors state that maternal exposures will typically be studied in the one-sample setting (page
10), which can be problematic for MR-egger. This was counter-intuitive to me because information
on the IV-maternal exposure association can be obtained from external data sets and use in a
two-sample MR analysis. My confusion was later cleared up in the discussion, where the authors
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two-sample MR analysis. My confusion was later cleared up in the discussion, where the authors
mention that this 2-sample approach is possible. In my opinion, it is not necessary to wait until the
discussion to make this point. Furthermore, you may want to reconsider the claim that maternal
exposures will generally be studies in the one-sample MR setting. 

 
Minor comments:

Commas placement not correct: “The simulation studies suggest that whether we assume a null, or
positive, association the MR method …”
 
“Pre/post-pregnancy” is used in text, while “pre/post-natal” is used in Figure 3. Better to be
consistent. 
 
Title and abstract are reasonable, but consider a more concise title. One suggestion:
“Recommendations for avoiding bias in Mendelian randomization studies of maternal exposures
and offspring outcomes”.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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