Computing (2019) 101:893-936 ® CrossMark
https://doi.org/10.1007/500607-018-0614-9

Using meta-heuristics and machine learning for
software optimization of parallel computing systems:
a systematic literature review

Suejb Memeti'® - Sabri Pllana! - Alécio Binotto? - Joanna Kotodziej® -
Ivona Brandic*

Received: 13 December 2017 / Accepted: 19 April 2018 / Published online: 26 April 2018
© The Author(s) 2018

Abstract While modern parallel computing systems offer high performance, uti-
lizing these powerful computing resources to the highest possible extent demands
advanced knowledge of various hardware architectures and parallel programming
models. Furthermore, optimized software execution on parallel computing systems
demands consideration of many parameters at compile-time and run-time. Determin-
ing the optimal set of parameters in a given execution context is a complex task, and
therefore to address this issue researchers have proposed different approaches that use
heuristic search or machine learning. In this paper, we undertake a systematic literature
review to aggregate, analyze and classify the existing software optimization methods
for parallel computing systems. We review approaches that use machine learning or
meta-heuristics for software optimization at compile-time and run-time. Additionally,

B Suejb Memeti
suejb.memeti @Inu.se

Sabri Pllana
sabri.pllana@Inu.se

Alécio Binotto
abinotto @br.ibm.com

Joanna Kotodziej
jokolodziej@pk.edu.pl

Ivona Brandic

ivona.brandic @tuwien.ac.at

Department of Computer Science, Linnaeus University, 351 95 Vixjo, Sweden
2 IBM Research, Sdo Paulo, Brazil

Cracow University of Technology, 31 155 Cracow, Poland

Electronic Commerce Group, Institute of Software Technology and Interactive Systems,
Vienna University of Technology, 1040 Vienna, Austria

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-018-0614-9&domain=pdf
http://orcid.org/0000-0003-1608-3181

894 S. Memeti et al.

we discuss challenges and future research directions. The results of this study may
help to better understand the state-of-the-art techniques that use machine learning and
meta-heuristics to deal with the complexity of software optimization for parallel com-
puting systems. Furthermore, it may aid in understanding the limitations of existing
approaches and identification of areas for improvement.

Keywords Parallel computing - Machine learning - Meta-heuristics - Software
optimization

Mathematics Subject Classification 90C27 Combinatorial optimization - 68T20
Problem solving (heuristics, search strategies, etc.) - 68T05 Learning and adaptive
systems [See also 68Q32, 91E40] - 65Y05 Parallel computation

1 Introduction

Traditionally, parallel computing [73] systems have been used for scientific and
technical computing. Usually scientific and engineering computational problems are
complex and resource intensive. To efficiently solve these problems, utilization of
parallel computing systems that may comprise multiple processing units is needed.
The emergence of multi-core and many-core processors in the last decade led to the
pervasiveness of parallel computing systems from embedded systems, personal com-
puters, to data centers and supercomputers. While in the past parallel computing was
a focus of only a small group of scientists and engineers at supercomputing centers,
nowadays programmers of virtually all systems are exposed to parallel processors that
comprise multiple or many cores [49].

The modern parallel computing systems offer high performance capabilities. In
recent years, the computational capabilities of supercomputing centers have been
increasing very fast. For example, the average performance of the top 10 supercom-
puters in 2010 was 0.84 PFlops/s, in 2014 the average performance climbed to 11.16
PFlops/s, and in 2016 the average performance capability is 20.63 PFlops/s [94]. With
such exciting performance gain, a serious issue of the power consumption of these
supercomputing centers arises. For example, according to the TOP 500 list [94], in
the years 2010 to 2016, the average power consumption of the top 10 supercomputers
has increased from 2.98 to 8.88 MW, that is about 198% increase.

Utilizing these resources to gain the highest extent of performance while keeping
low level of energy consumption demands significant knowledge of vastly different
parallel computing architectures and programming models. Improving the resource
utilization of parallel computing systems (including heterogeneous systems that com-
prise multiple non-identical processing elements) is important, yet difficult to achieve
[50]. For example, for data-intensive applications the limited bandwidth of the PCle
interconnection forces developers to use the resources on the host only, which leads to
the underutilization of the system. Similarly, in compute-intensive applications, while
utilizing the accelerating device, the host CPUs remain idle, which leads to waste of
energy and performance. Approaches that intelligently manage the resources of host
CPUs and accelerating devices to address such inefficiencies seem promising [68].

@ Springer

Using meta-heuristics and machine learning for software... 895

To achieve higher performance, scalability and energy efficiency, engineers often
combine Central Processing Units (CPUs), Graphical Processing Units (GPUs), or
Field Programmable Gate Arrays (FPGAs). In such environments, system developers
need to consider multiple execution contexts with different programming abstractions
and run-time systems. There is a consensus that software development for parallel
computing systems, especially heterogeneous systems, is significantly more complex
than for traditional sequential systems. In addition to the programmability challenges,
performance portability of programs to various platforms is essential and challenging
for productive software development, due to the differences in architectural level of
multi-core and many-core processors [9].

Software development and optimal execution on parallel computing systems expose
programmers and tools to a large number of parameters [83] at software compile-
time and at run-time. Examples of properties for a GPU-accelerated system include:
CPU count, GPU count, CPU cores, CPU core architecture, CPU core speed, memory
hierarchy levels, GPU architecture, GPU device memory, GPU SM count, CPU cache,
CPU cache line, memory affinity, run-time system, etc. Finding the optimal set of
parameters for a specific context is a non-trivial task, and therefore many methods
for software optimization that use meta-heuristics and machine learning have been
proposed. A systematic literature review may help to aggregate, analyze, and classify
the proposed approaches and derive the major lessons learned.

In this paper, we conduct a systematic literature review of approaches for software
optimization of parallel computing systems. We focus on approaches that use machine
learning or meta-heuristics that have been published since the year 2000. We classify
the selected review papers based on the software life-cycle activities (compile-time or
run-time), target computing systems, optimization methods, and period of publication.
Furthermore, we discuss existing challenges and future research directions. The aims
of this systematic literature review are to:

— systematically study the state-of-the-art software optimization methods for parallel
computing systems that use machine learning or meta-heuristics;

— classify the existing studies based on the software life-cycle activities (compile-
time, and run-time), target computing systems, optimization methods, and period
of publication;

— discuss existing challenges and future research directions.

Figure 1 depicts our solution for browsing the results of literature review that we
have developed using SurVis [8] literature visualization tool. The browser is available
on-line at www.smemeti.com/slt/ and enables to filter the review results based on the
optimization methods, software life-cycle activity, parallel computing architecture,
keywords, and authors. A time-line visualizes the number of publications per year.
Publications that match filtering criteria are listed on the right-hand side; the browser
displays for each publication the title, authors, abstract, optimization method, life-
cycle activity, target system architecture, keywords, and a representative figure. The
on-line literature browser is easy to extend with future publications that fit the scope
of this review.

The rest of the paper is organized as follows. In Sect. 2 we describe the research
methodology. In Sect. 3, we give an overview of the parallel computing systems, soft-

@ Springer

www.smemeti.com/slr/

896 S. Memeti et al.

s DHEBEDE - o
or I 1. agakov200e npieceed: 2 | liwoghe febiler | fope
;ﬂ Using machine bearning to focus iterative aptimization
5 Agakov, v BONINA fowe Cavanos. ibe Franke, s Furin seges 0'Bayie. mhesl
" Themsen ke TousSBING vex WIlIms, St ©
Abstroct: ferotiee compiler optimizofion bas been shown 10 sutperform stonc onsvoaches.
This, R, s ar the cout af farge sumbers af evaiuations of the progrm. This pager
s and hence spee
» Keywords cmtimination, If usey. preslictive modeiing from th., =
mpe? 7
»Authors sclect umitar Cuation BbTeX
Methad " mia 110 3 sbryrakinta CornpuX | Deogle Sl | g
SR Impraving Application Behavior on Heterogeneous Manycore Systems Through
Machine_Learning. Metaheuristics, Kernel Mapping
Mathine_Learning_And_Metaheuristics Wnayrak cme o Akturk seras O7turk osan
Abstract: My being 3 i the spstem
+ Lite-cycie Activity Hiter ma (1 . In suth systems,
: ; whilnation of Espevially, b praphic units (G0,
L x Code | Adap 5 Code_t mappisg keemels that are pavt of
Code_Generation_and_Scheduling) Code_Girersfios_snd_Adsgtatins | .t i systeens poing mixed integer
sevect similar Coivon BETEX
« Architecture Rt min 1[4
il 1 wnsel 20petabricks. | Gaegle Sctolar | Google:
Single_Node_Ci Multi_Node_C: a anguage and

nLage piler far
Ansel imer Chan oy WORE weis: Diszewsid, wert Zhao, e Edeiman, ase
Amarasinghe. ssesn
Abstroct: [t is ften imgousible to sbtain & one-sie-fits-oll soiutioe for bigh perfermance
aipavithms i i paraieiicm,

docking, The best b ot
dilferent architectures, problem sire_ b

wee? dlgorithme languages performance

Single_and_Multi_Node_Computings
Grid_sng_Muk_Node_Computing

Grid_Compusings

Ghoud_and_Mur_tiode_Coomausngy Cioud_Comasang |

« Clsters

mew dustesing:

ombesof chaters: | 7| 5% MO Cauthen e usrering

Fig. 1 Our interactive browser of the results of literature review. Results can be filtered by software
optimization method, software life-cycle activity, parallel system architecture, keyword, and author name.
Results are visualized in the form of time-line that indicates the number of publications per year. The right-
hand compartment lists the publications that match the search criteria. The browser is available on-line at
www.smemeti.com/slr/

Literature Review

PLANNING CONDUCTING REPORTING
Identification of the @\ Research “\) Specifying the
need for a review identification - dissemination mechanism
@ Define research |:> = Literature . Report writting
= Ti
question(s) o= selection process and formatting
Develop/evaluate Data extraction
iz| ' # !
the review protocol and synthesis

Fig. 2 Research methodology

ware optimization techniques, and the software optimization at different life-cycle
activities. For each of the software life-cycle activities, including Compile-Time activ-
ities (Sect. 4), and Run-Time activities (Sect. 5), we discuss the characteristics of
state-of-the-art research, and discuss limitations and future research directions. Finally,
in Sect. 6 we conclude our paper.

2 Research methodology

We perform a literature review based on guidelines by Kitchenham and Charters
[53]. In summary, these guidelines include three stages: Planning, Conducting and
Reporting (see Fig. 2).

During the planning stage the following activities are performed: (1) identifying
the need for a literature review, (2) defining the research questions of the literature
review, and (3) developing/evaluating the protocol for performing the literature review.
The activities associated with conducting the literature review include: (1) identifying

@ Springer

www.smemeti.com/slr/

Using meta-heuristics and machine learning for software...

897

Literature Search and Seleciton Process

1. Define search query

2. Search Digital Libraries

3. Search Venues

4. Manual selection

5. Chain sampling

Y

List of keywords:
- parallel computing
- machine learning

2.1 ACM Digital Library
2.2 IEEE Explore
2.3 Google Scholar

3.1 Conferences:
-SC, ISC, ICAC, PPoPP,
ICPP, Euro-Par, ParCo, ...

4.1 Read title, abstract,
and keywords (209)

- Check the reference
section of each paper
for relevant scientific

Journal:
3.2TOCS, JPDC, JOS, ...

ist of potentially relevant scientific publications
(more than 1180 articles)

Fig. 3 The process of searching and selecting the relevant literature

- metaheuristics
- software

4.2 Read full paper (57)

publications
(39 i ified, 8 used)

Final set of scientific
ublications (65)

Set of relevant scientific
ublications (57)

Search Query

the research, (2) literature selection, (3) data extraction and synthesis. The reporting
stage includes writing the results of the review and formatting the document. In what
follows, we describe in more details the research method and the major activities
performed during this study.

2.1 Research questions

We have defined the following research questions:

— RQ1: Which software optimization goals for parallel computing systems are
achieved using meta-heuristics and machine learning?

— RQ2: Which are the common algorithms used to achieve such software opti-
mization goals for parallel computing systems?

— RQ3: Which features are considered during software optimization of parallel
computing systems?

2.2 Search and selection of literature

The literature search and selection process are depicted in Fig. 3. Based on the objec-
tives of the study, we have selected an initial set of keywords (see activity 1) thatis used
to search for articles, such as: parallel computing, machine learning, meta-heuristics
and software optimization. To improve the result of the search process, we consider
synonyms for the keywords during the search. The search query is executed on digital
electronic databases (such as, ACM Digital Library, IEEEXplore, and Google Scholar),
conference venues (such as, SC, ISC, ICAC, PPoPP, ICDCS, CGO, ICPP, Euro-Par,
and ParCo), and scientific journals (such as, TOCS, JPDC, JOS). The outcome of the
search process is a list of potentially relevant scientific publications. Manual selection
of these publications by reading the title, abstract, and keywords (activity 4.1) first,
then the full paper (activity 4.2) is performed, which results in a filtered list of relevant
scientific publications. Furthermore, a recursive procedure of searching for related
articles is performed using the corresponding related articles section of each digital
library (for example, the ACM Digital Library related papers function powered by
IBM Watson, or the Related articles function of Google Scholar).

The initial automatic search on the ACM digital library (see Fig. 3, activity 2.1)
returned a list of total 25970 entries (articles). We sorted the entries by relevance,

@ Springer

898 S. Memeti et al.

such that the most relevant articles will show up first. As expected, the most relevant
articles were found in the first part of the list, and after hundreds of articles, the
suggested entries were not relevant to our study. Therefore, we decided to consider
only the first 1000 articles. Out of these articles, only 130 were selected for further
study based on reading the title and abstract (activity 4.1), and after reading the full
article (activity 4.2), 22 were selected as relevant articles. The IEEEXplore returned
40 potentially relevant articles (activity 2.2), 20 of them were selected for further study
based on reading the title and abstract (activity 4.1), and 16 were selected as relevant
after reading the full paper (activity 4.2). The Google Scholar returned 140 potentially
relevant articles (activity 2.3), 31 of them were selected after reading the title and
abstract (activity 4.1), and 11 were selected as relevant after reading the full paper
(activity 4.2). Searching the conference venues (activity 3.1) and scientific journals
(activity 3.2), we selected 28 articles based on reading the title and abstract (activity
4.1), and 8 of them were selected as relevant after reading the full paper (activity 4.2).
So, out of more than 1180 articles returned from various sources (activity 2 and 3),
209 were selected manually based on reading the title and abstract (activity 4.1), out
of which, after reading the full content (activity 4.2), 57 were selected as relevant to
the scope of this paper.

Additionally, the chain sampling technique (also known as snowball sampling, see
Fig. 3, activity 5) is used to search for related articles. 39 articles were identified using
this technique by reading the title and abstract (activity 4.1), and 8 of them were selected
as relevant after reading the full paper (activity 4.2). Chain sampling is a recursive
technique that considers existing articles, usually found in the references section of
the research publication under study [10]. In total, 65 publications are considered in
this review.

2.3 The focus and scope of the literature review (selection process)

The scope of this literature review includes:

— publications that investigate the use of machine learning or meta-heuristics for
software optimization of parallel computing systems;

— publications that contribute to compile-time activities (code optimization and code
generation), and run-time activities (scheduling and adaptation) of software life-
cycle;

— research published since the year 2000, because in literature, the year 2000 is
considered as the starting point of the multi-core era. IBM Power 4 [25], the first
industry dual-core processor, is introduced in 2001 [37].

While other optimization methods (such as, linear programming, dynamic program-
ming, control theory), and other software optimization activities (such as, design-time
software optimization) may be of interest, they are left out of scope to keep the sys-
tematic review focused.

@ Springer

Using meta-heuristics and machine learning for software. .. 899

Table 1 An excerpt of data items collected for each of the selected publications

Data item Description
1 Date Date of the data extraction
2 Bibliographic reference Author, Year, Title, Research Center, Venue
3 Type of article Journal article, conference paper, workshop paper,
book section
4 Problem, objectives, solution What is the problem; what are the objectives of the
study; how the proposed solution works?
5 Optimization Technique Which Machine Learning or Meta-heuristic
algorithm is used?
Considered features The list of considered features used for optimization
7 Life-cycle Activity Code Optimization, Code Generation, Scheduling,
Adaptation?
8 Target architecture Single/Multi-node system, Grid Computing, Cloud
Computing
9 Findings and conclusions What are the findings and conclusions?
10 Relevance Relevance of the study in relation to the topic under
consideration

2.4 Data extraction

In accordance with the classification strategy (described in Sect. 3.3) and the defined
research questions (described in Sect. 2.1), for each of the selected primary studies
we have collected information that we consider important to be recorded in order to
perform the literature review.

Table 1 shows an excerpt of the data items (used for quantitative and qualitative
analysis) collected for each of the selected studies. Data items 1-3 are used for the
quantitative analysis related to RQ /. Data item 4 is used to answer RQ2. Data collected
for item 5 is used to answer RQ3, whereas data collected for item 6 is used to answer
RQA4. Data item 7 is used to classify the selected scientific publications based on
the software life-cycle activities (see Table 3), whereas data item 8 is used for the
classification based on the target architecture (see Fig. 6).

3 Taxonomy and terminology
In this section, we provide an overview of the parallel computing systems and soft-
ware optimization approaches with focus on machine learning and meta-heuristics.

Thereafter, we present our approach for classifying the state-of-the-art optimization
techniques for parallel computing.

3.1 Parallel computing systems

A parallel computing system comprises a set of interconnected processing elements
and memory modules. Based on the system architecture, generally parallel computers

@ Springer

900 S. Memeti et al.

can be categorized into shared and distributed memory. Shared memory parallel com-
puting systems communicate through a global shared memory, whereas in distributed
memory systems every processing element has its own local memory and the commu-
nication is performed through message passing. While shared memory systems have
shown limited scalability, distributed memory systems have demonstrated to be highly
scalable. Most of the current parallel computing systems use shared memory within a
node, and distributed memory between nodes [6].

According to Top500 [94] in the 90s the commonly used parallel computing sys-
tems were symmetric multi-processing (SMP) systems and massive parallel processing
(MPP) systems. SMPs are shared memory systems where two or more identical
processing units share other system resources (main memory, I/O devices) and are
controlled by a single operating system. MPPs are distributed memory systems where
a larger number of processing units (or separate computers) are housed in the same
place. The disparate processing units share no system resources, they have their own
operating system, and communicate through high-speed network. The main comput-
ing models within the distributed parallel computing systems include cluster [26,89],
grid [13,32,82,86], and cloud computing [33,59,82].

Nowadays, the mainstream platforms for parallel computing, at their node level
consist of multi-core and many-core processors. Multi-core processors may have mul-
tiple cores (two, four, eight, twelve, sixteen...) and are expected to have even more
cores in the future. Many-core systems consist of larger number of cores. The individ-
ual cores of the many-core systems are specialized to efficiently perform operations
such as, SIMD, SIMT, speculations, and out-of-order execution. These cores are more
energy efficient because they usually run at lower frequency.

Systems that comprise multiple identical cores or processors are known as homo-
geneous systems, whereas heterogeneous systems comprise non-identical cores or
processors. As of November 2017, the TOP500 list [94] contains several supercomput-
ers that comprise multiple heterogeneous nodes. For example, a node of Tianhe-2 (2nd
most powerful supercomputer) comprises Intel Ivy-Bridge multi-core CPUs and Intel
Xeon Phi many-core accelerators; Piz Daint (3rd) consists of Intel Xeon ES multi-core
CPUs and NVIDIA Tesla P100 many-core GPUs [66,96].

Programming parallel computing systems, especially heterogeneous ones, is signif-
icantly more complex than programming sequential processors [78]. Programmers are
exposed to various parallel programming languages (often implemented as extensions
of general-purpose programming languages such as C and C++), including, OpenMP
[72], MPI [42], OpenCL [90], NVIDIA CUDA [70], OpenACC [100] or Intel TBB
[97]. Additionally, the programmer is exposed to different architectures with differ-
ent characteristics (such as the number of CPU/GPU devices, the number of cores,
core speed, run-time system, memory and memory levels, cache size). Finding the
optimal system configuration that results in the highest performance is challenging. In
addition to the programmability challenge, heterogeneous parallel computing systems
bring the portability challenge, which means that programs developed for a proces-
sor architecture (for instance, Intel Xeon Phi) may not function on another processor
architecture (such as, GPU). Manual software porting and performance tuning for
various architectures may be prohibitive.

@ Springer

Using meta-heuristics and machine learning for software... 901

Existing approaches, discussed in this study, propose several solutions that use
machine learning or meta-heuristics during compile-time and run-time to alleviate
the programmability and performance portability challenges of parallel computing
systems.

3.2 Software optimization approaches

In computer science selecting the best solution considering different criteria from a set
of various available alternatives is a frequent need. Based on what type of values the
model variables can take, the optimization problems can be broadly classified in con-
tinuous and discrete. Continuous optimization problems are concerned with the case
where the model variables can take any value permitted by some given constraints.
Continuous optimization problems are easier to solve. Given a point x, using contin-
uous optimization techniques one can infer information about neighboring points of
x [39].

In contrast, in discrete optimization (also known as combinatorial optimization)
methods the model variables belong to a discrete set (typically subset of integers)
of values. Discrete optimization deals with problems where we have to choose an
optimal solution from a finite number of possibilities. Discrete optimization problems
are usually hard to solve and only enumeration of all possible solutions is guaranteed
to give the correct result. However, enumerating across all available solutions in a
large search space is prohibitively demanding.

Heuristic-guided approaches are designed to solve optimization problems more
quickly by finding approximate solutions when other methods are too slow or fail
to find any exact solution. These approaches select near-optimal solutions within a
time frame (that is, they trade-off optimality for speed). While heuristics are designed
to solve a particular problem (problem-dependent), meta-heuristics can be applied
to a broad range of problems. They can be thought as higher-level heuristics that are
designed to determine a near-optimal solution to an optimization problem, with limited
computation capacity and knowledge about the problem.

In what follows, we first describe the meta-heuristics and list commonly used
algorithms, and thereafter, we describe machine learning in the context of software
optimization.

3.2.1 Meta-heuristics

Meta-heuristics are high-level algorithms that are capable to determine a sufficiently
satisfactory (near-optimal) solution to an optimization problem with limited domain
knowledge and computation capacity. As meta-heuristics are problem-independent
they can be used for a variety of problems. Meta-heuristics algorithms are often used
for the management and efficient use of resources to increase productivity [79,101]. In
cases where the search space is large, exhaustive search, iterative methods, or simple
heuristics are impractical, whereas meta-heuristics can often find good solutions with
less computational effort. Meta-heuristics have shown to provide efficient solution
to different problems, such as the minimum spanning tree (MST), traveling salesman

@ Springer

902 S. Memeti et al.

Software Optimization Approaches

Not the focus of this paper

The focus of this paper

Metaheuristics

Machine Learning

Other Approaches

Simulated Annealing

Regression

Linear Programming

Genetic Algorithms

Decision Tree

Non-Linear Optimization

Differential Evolution

Support Vector Machines

Dynamic Programming

Ant Colony Opt.

Bayesian

Quadratic Programming

Bee Algorithms

K-Nearest Neighbor

Fractional Programming

Particle Swarm Opt.

k-Means

Geometric Programming

Tabu Search

Random Forest

Control Theory

Harmony Search

Neural Networks

Fig.4 Classification of the software optimization approaches. While there exist many different optimization
approaches, in this study we focus on meta-heuristics and machine learning

problem (TSP), shortest path trees, and matching problems. Selecting the most suitable
heuristic for a specific problem is important to reach a near-optimal solution more
quickly. However, this process requires consideration of various factors, such as the
domain type, search space, computational time, and solution quality [12,65].

In the context of software optimization, the commonly used meta-heuristics include
Genetic Algorithms, Simulated Annealing, Ant Colony Optimization, Local Search,
Tabu Search, and Particle Swarm Optimization (see Fig. 4).

3.2.2 Machine learning

Machine Learning is a technique that allows computing systems to learn (that is,
improve) from the experience (available data). Mitchell [67] defines Machine Learning
as follows, “A computer program is said to learn from experience E with respect to
some class of tasks 7" and performance measure P, if its performance at tasks in 7, as
measured by P, improves with experience E”.

Machine learning programs operate by building a prediction model from a set
of training data, which later on is used to make data-driven predictions, rather than
following hard-coded static instructions. Some of the most popular machine learn-
ing algorithms (depicted in Fig. 4) include regression, decision tree, support vector
machines, Bayesian inference, random forest, and artificial neural networks.

An important process while training a model is the feature selection, because the
efficiency of models depends on the selected variables. It is critical to choose fea-
tures that have significant impact on the prediction model. There are different feature
selection techniques that can find features that contain the most useful information to
distinguish between classes, for example mutual information score (MIS) [27], greedy
feature selection [87], or information gain ratio [45].

Depending on the way the prediction model is trained, machine learning may be
supervised or unsupervised. In supervised machine learning the prediction model
learns from examples that are labeled, which means that the input and the output
are known in the training data set. Supervised learning uses classification techniques

@ Springer

Using meta-heuristics and machine learning for software... 903

The focus of our paper
Design and Imple-

mentation Time Compile-Time Run-Time
® ; %
Selection of
Languages and Optimization
Models

Selection of
Parallelization

Code 7N ‘
&. Generation éi‘).D Adapiation
Strategy

MPL yp i E = Code ‘] .
%p,ff:f%c Programming : % Scheduling

Fig. 5 Software life-cycle activities. At design and implementation the selection of the programming
languages, models, and the parallelization strategy occurs. We focus on software optimization that occurs
during software compile-time (that includes code optimization and generation), and during run-time (that
includes scheduling and adaptation)

to predict discrete responses (such as, determining whether an e-mail is genuine or
spam, determining whether a tumor is malign or benign), and regression techniques to
predict continuous responses (such as, changes in temperature, fluctuations in power
demand). The most popular supervised learning algorithms for classification problems
include Support Vector Machines, Naive Bayes, Nearest Neighbor, and Discriminant
Analysis, whereas for regression problems algorithms such as Linear Regression,
Decision Trees, and Neural Networks are used. Selecting the best algorithm depends
on the size and type of input data set, the desired output (insight), and how those
insights will be used.

The unsupervised machine learning models have no or very little knowledge of how
the results should look like. Basically, correct results (that is labeled training data sets)
are not used for model training, but the model aims at finding hidden patterns in data
based on statistical properties (for instance, intra-cluster variance) of the training data
sets. Unsupervised learning can be used for solving data clustering problems in various
domains, for example, sequence analysis, market research, object recognition, social
network analysis, and astronomical data analysis. Some commonly used algorithms for
data clustering include K-Means, Hierarchical Clustering, Neural Networks, Hidden
Markov Model, and Density-based Clustering.

3.3 Software optimization at different software life-cycle activities

Software optimization can happen during different activities of the software life-cycle.
We categorize the software optimization activities by the time of their occurrence:
Design and Implementation-time, Compile-time, Run-time (Fig. 5).

During the design and implementation activity, decisions such as selection of the
programming language/model and selection of the parallelization strategy are consid-
ered.

@ Springer

904 S. Memeti et al.

The compile-time activities include decisions of selecting the optimal compiler
optimization flags and source code transformations (such as loop unrolling, loop
nest optimization, pipelining, and instruction scheduling) such that the executable
program is optimized to achieve certain goals (performance or energy) on a given
context.

The run-time activities include decisions of selecting the optimal data and task
scheduling on parallel computing systems, as well as taking decisions (such as switch-
ing to another algorithm or changing the clock frequency) that help the system to adapt
itself during the program execution and improve the overall performance and energy
efficiency.

While software design and implementation activities are performed by the program-
mer, software activities at compile-time and run-time are completed by tools (such as
compilers and run-time systems). Therefore, in this paper we focus on tool-supported
software optimization approaches that use approximate techniques (machine learning
and meta-heuristics) at compile-time and run-time.

For each of the software optimization life-cycle activities, including Compile-Time
(Sect. 4) and Run-Time (Sect. 5), we will describe the context for software optimization
goals, discuss the state-of-the-art research, and discuss limitations and future research
directions.

3.4 Classification based on architecture, software optimization approach, and
life-cycle activity

In this section we classify the considered scientific publications based on the archi-
tecture, software optimization approach, and life cycle activities.

To provide an overview of the current state of the art, we have grouped the scientific
publications that use machine learning and meta-heuristics for software optimization
of parallel computing systems in the following time periods: 2000-2005, 2006-2011,
and 2012-2017. Each of the periods, correspond to the type of the processors that
were used the most in the TOP list during that time. For example, even though the
first multi-core processor was introduced in 2001 [37], most of the super computers
in TOP500 list during years 2000-2005 comprised multiple single-core processors
[94]. Further filtering and classification of the considered scientific publications, and
visualization of the results in the form of a time-line can be performed using our
on-line interactive tool (see Fig. 1).

Architecture Figure 6 shows a classification of the reviewed papers based on the target
architecture, including multi-node, single-node, grid, and cloud parallel computing
systems. The horizontal axis on the top delineates the common types of processors
used during the corresponding time period. For instance, from 2000 to 2005 grids and
clusters employed single or multiple sequential processors at node level, whereas dur-
ing the period from 2006 to 2011 nodes employed multi-core processors. Accelerators
combined with multi-core processors can be seen during time period 2012-2017. We
may observe that most of the work is focused on optimization of resource utilization
at the node level (single-node). Optimization of the resources of multi-node comput-
ing systems (including clusters) is addressed by several research studies continuously

@ Springer

Using meta-heuristics and machine learning for software. .. 905

Sequential processors > Multi-core processors > Multi-core and -
15
Zg [60, 61, 44]
Vo
g o,
3 5 [54] [14, 76] [43, 36]
R [1,38,24,34,95,7,19,5,
2% | [104, 69, 88, 102, 17, 87, 21, 103, 91] 58, 98, 46, 47, 28, 77, 40, 52,55, 16, 51, 11, 30, 4, i’g']
R4 15, 41, 80, 9, 23, 29, 35, 92] ST T B T
Sw
g E [91, 22, 74, 75] [18, 34, 93, 85, 35, 92] [81, 60, 56, 36, 48, 84]
2000-2005 2006-2011 2012-2017

Fig. 6 Classification of state-of-the-art work based on the architecture (multi-node, single-node, grid, and
cloud computing systems, as described in Sect. 3.1). Please note that a single paper may target more than
one architecture (for instance, [36,60])

Table 2 Classification of state-of-the-art work based on the intelligent technique (machine learning or
meta-heuristics) used during compile-time and/or run-time of software optimization

Machine learning [17,22,54,69,87,91, [1,5,7,9,15,18,19,23, [11,16,30,31,31,36,
102,103] 24,28,29,34,35,40, 43,44,51,52,55,57,
41,46,47,58,76,77, 60,61,63—
80,95,98] 65,71,81,84,99]
Meta-heuristics [2,21,74,75,88,104, [14,38,85,92,93] [4,43,44,56,62,63,
105] 65]
2000-2005 2006-2011 2012-2017

during the considered periods of time. The optimization of grid computing systems
using machine learning and meta-heuristic approaches has received less attention,
whereas optimization of cloud computing systems has received attention during the
period 2012-2017.

Software optimization approach In Table 2 we classify the selected publications that
use intelligent techniques (such as, machine learning and meta-heuristics) for software
optimization at compile-time and run-time. We may observe that machine learning is
used more often for software optimization during compile-time and run-time compared
to meta-heuristics.

Life-cycle activity A classification of the reviewed papers based on the software
life-cycle activities (including, code optimization, code generation, scheduling, and
adaptation) is depicted in Table 3. We may observe that the scheduling life-cycle activ-
ity has received the most attention, especially during 2012-2017 period. The use of
machine learning and meta-heuristics for code optimization during compile-time has
been addressed by many researchers, especially during the period between 2006 and
2011. Similar trend can be observed for research studies that focus on using intelligent
approaches to optimize code generation. Optimization of software through adaptation
is addressed during the year of 2006-2011.

@ Springer

906 S. Memeti et al.

Table 3 Classification of state-of-the-art work based on the software life-cycle activities (code optimiza-
tion, code generation, scheduling, and adaptation)

Code Optimization [17,21,69,87,88] [1,18,34,35,38,92, [57,99]
93,95]
Code Generation [5,7,19,58,77,95] [31,81]
Scheduling [2,22,54,74,75,102— [7,9,15,23,24,40,41, [4,11,16,30,31,36,
105] 76,80,85,98] 43,44,51,52,55,56,
60-65,71,84]
Adaptation [91] [28,29,46,47,58]
2000-2005 2006-2011 2012-2017

Please note that a single paper may contribute to more than one software life-cycle activities (for instance,
[7,58])

4 Compile-time

Compiling [3] is the process of transforming source code from one form into another.
Traditionally, compiler engineers exploited the underlying architecture by manually
implementing several code transformation techniques. Furthermore, decisions that
determine whether to apply a specific optimization or not were hard-coded manually.
At each major revision or implementation of new instruction set architecture, the
set of such hard-coded compiler heuristics must be re-engineered (a time-consuming
process). In the modern era, the architectures are continuously evolving trying to bring
higher performance while keeping shorter time to market, therefore developers do not
prefer to do the re-engineering, which requires significant time investment.

Modern parallel computing architectures are complex due to higher core counts,
different multi-threading, memory hierarchy, computation capabilities, and processor
architecture. This disparity of architecture increases the number of available com-
piler optimization flags and makes compilers unable to efficiently utilize the available
resources. Tuning these parameters manually is not just unfeasible, but also introduces
scalability and portability issues. Machine learning and meta-heuristics promise to
address compiler problems, such as, selecting compiler optimization flags or heuristic-
guided compiler optimizations.

In what follows, we discuss the existing state-of-the-art approaches that use machine
learning and meta-heuristics for software optimization for code optimization and code
generation. Thereafter, we discuss the limitations and identify possible future research
directions.

4.1 Code optimization

Code optimization will not change the program behavior but will optimize the code
to reach optimization goals (reducing the execution time, energy consumption, or
required resources).

Compiler optimization techniques include loop unrolling, splitting and collapsing,
instruction scheduling, software pipelining, auto-vectorization, hyper-block forma-

@ Springer

Using meta-heuristics and machine learning for software... 907

tion, register allocation, and data pre-fetching [88]. Different device-specific code
optimization techniques may behave differently in various architectures. Furthermore,
choosing more than one optimization technique does not necessarily result in bet-
ter performance, sometimes combination of different techniques may have negative
impact on the final output. Hence, manually writing hard-code heuristics is impracti-
cal, and techniques that intelligently select the compiler transformations that result in
higher application benefits in a given context are required.

Within the scope of this survey, scientific publications that use machine learning
for code optimization at compile time include [1,17,34,35,57,69,87,95,99], whereas
scientific publications that use meta-heuristics for code optimization include [21,88,
92,93]. Table 4 lists the characteristics of the selected primary studies that address
code optimization at compile time. Such characteristics include: the algorithm used
for optimization, the optimization objectives, the considered features that describe the
application being optimized, and type of optimization (on-line or off-line). We may
observe that besides the approach proposed by Tiwari and Hollingsworth [92], the rest
of them focus on off-line optimization approaches and they are based on historical
data (knowledge) that is gathered from previous runs.

RQ1: Software optimization goals for compile-time code optimization:

— loop unrolling; instruction scheduling; partitioning of irregular and stream appli-
cations; determining the best compilation parameters; determining whether
parallelism is beneficial; tuning compiler heuristics;

As we mentioned earlier, different optimizations can be performed during compila-
tion. We may see that some researchers focus on using intelligent techniques to identify
loops that would potentially execute more efficiently when unrolled [69], or selecting
the loop unroll factor that yields the best performance [87]. Instruction scheduling [17],
partitioning strategy for irregular [57] and streaming [99] applications, determining
the list of compiler optimizations that results in the best performance [21,35,92] are
also addressed by the selected scientific publications. Furthermore, Tournavitis et al.
[95] use SVMs to determine whether parallelization of the code would be beneficial,
and which scheduling policy to select for the parallelized code.

RQ2: Software optimization algorithms used for compile-time code optimiza-
tion:

— machine learning - nearest neighbor classifier; support vector machines; decision
trees; ruled set induction; predictive search distribution;

— meta-heuristics - genetic algorithms; hill climbing; greedy algorithm; parallel
rank order;

With regards to the machine learning algorithms used for code optimization, Nearest
Neighbor (NN) classifier [1,57,87,99], Support Vector Machine (SVM) [87,95], and
Decision Tree (DT) [69] are the most popular. Other algorithms, such as Ruled Set
Induction (RSI) [17], and Predictive Search Distribution (PSD) [34,35] are also used
for code optimization during compilation. Whereas, approaches that are based on

@ Springer

S. Memeti et al.

908

(s9[qerLreA JeOp AUl Ssuononsul 1Yo/ Adod

KIowaul/AB1LIe/dLIUS/[[BI/3PIAIP/yoULIq/a1edw00/2101S/peo]

‘suononnsur
$SQ0UQI0JA1 AvLIe # {3dap 1SOU {SUONIRIA # ‘OpLIS

SONLIB[TWIS
weaSoxd azATeue cuoneziwmndo to[dwod dA1RINN

(“dns) aur-go dooj ‘punoq dooj ‘doof paisau jo 2dA)) sarnjesy weisoid ur suonen[ead werdoid parnbar Jo roquunu oy 20npay NN NN SINAIT 11
(SoyouRIq # SUOTIONIISUI # ‘SISSOE BIEp
#) saanyeay werdoid orwreuAp {(SUOTIBINI # ‘SayouLIq Korjod Surnpayos 3s9q
(“dns) aur-yo # $Q101S/peO] # ‘suononnsul #) sainjedy wesdoid oneig Q) J09[3$ {[e1OYAUIq ST WSI[A[[eIed IyIoyM UIWLIARJ NAS [S6]
(sdo
210)s/peo] # ‘suoneindwod # S1om urol-ryds/ourjadid ‘dde
("dns) aur-jo ‘piw utof-yrpds sypdap surpedid) sermyesy weidoid Surwreans jo A391ens Suruonnied 1seq oY) uUTUWLIAR NN [66]
(Kouapuadap eep ‘Aiqeqold youelq Ayiqeqord doog suoneordde
(“dns) aur-go {SUOTIONIISUL # S)00]q JISeq #) sainjed) weidoid oneisg Tern3awn jo A32ens Suruonnied 1s9q Ay) QUILIARJ NN (L8]
(suonerado
JROP/IUI # {SATPI DD [BWLIOUQE/[BINLID/[RULIOU
("dns) aur-yo # ‘pOYIaW B UI $Y00[q J1Skq #) sainjeay weaSoid oneig suoneziundo 19[1dwod 9A1109)J9 JSOW AY) AUTULIAR asd [sepe]
(suononnsur
JIUN~OUNJ~ SAS/JROY/IUL {SUINIAI # $SAIO0IS # S[[BD
("dns) QUI-JO # SOUOURIQ # {SUOIIONISUI #) SONSLIAIOBIRYD JYI0[q-9PO) Surnpayos suononnsur Ajdde 03 Ioyioym QUL 1SY [L1]
(suonerann
‘nSuay yied reonuo ‘suonerado Arowaw # spuerado
(-dns) aur-go # ‘suoneredo jurod Suneoy #) sonsuejoereyd doo 103087 [[oIun doof [eroyouaq 1SOW Y} J09[9S NAS ‘NN [28]
(suonerar
{SJUOWIAIR)S [ONIUOD # (SIUAUWIAE]S # ‘suonerodo
(-dns) aur-go OTOWIYILIE # $SOSSI0IE AIOWAW #) SOTISLIORIRyd doo [1o1un 03 sdooy Ajryuapy 1a [69]
QuI-JO/UO somyea s9A192[qO wpuos[y S90UuQIoJoy

uopneziundo 9pod 10§ SONSHINAY-LIAW JO JUTUIL] UIYOBW dsn Jeyy) sayoroidde oy Jo sonsuioeIey) § Iqe],

pringer

as

909

Using meta-heuristics and machine learning for software. ..

saInjeay uonezrundo PaIIPISUOD Y} JO [[B ISI] JOU Op M ‘UOTBIIWI] ddedS JO asNLAq Jey) 2Jou ASeI[

s1o1owrered oyroads uoneordde ¢(Loedes s1o)owrered
uI-uQ 19181301 ¢K10eded oyoed) s1ejowered [BINJONIYIIY uone[duod 1s9q Y} QUIUWLIAIAP (9POd PILIdUT duny, odd [¢6°C6]
uonedwod
uI-1JO - aandepe y3noay) ssaooid uoneidwos oy Suruny, 43 DH (VO VIO [12]
‘saInyea Suryojey-axd vyep sainjesy
(postazadnsun) aur-JO UoTIEOO[E I9ISISAI {SaINJeaJ UoNeuIof Yoo[q-1odAy sonsunay Jo1idwod Juruny, ao [88]
QUI-JO/UO saInjeaq saAnd2(qO WISy SOOUAIJY

panunuod § Jqe],

pringer

As

910 S. Memeti et al.

search-based algorithms use Genetic Algorithm (GA), Hill Climbing (HC), Greedy
Algorithm (GrA), and Parallel Rank Ordering (PRO) for code optimization during
compile-time [21,92,93].

RQ3: Considered features during compile-time code optimization:

— loop characteristics - number of memory accesses, arithmetic operations, state-
ments, loop iterations, floating point operations, operands;

— code-block characteristics - number of instructions, branches, calls, stores,
returns, instructions;

— program features - type of nested loop; loop bound; loop stride; nest depth;

— static program features - number of basic blocks in a method, CFG edges,

operations, load/store operations; data dependency; loop and branch probability;

dynamic program features - number of data accesses, instructions, branches;

architectural parameters - cache capacity; register capacity;

application specific parameters; hyper-block formation features; register allo-

cation features; data pre-fetching features;

To achieve the aforementioned objectives, arepresentative set of program features is
extracted through static code analysis, which are considered to be the most informative
with regards to the program behavior. The selection of such features is closely related
to the optimization goals. For example, to identify loops that benefit from unrolling,
Monsifrot et al. [69] use loop characteristics such as, number of memory accesses,
arithmetic operations, code statements, control statements, and loop iterations. Such
loop characteristics are also used to determine the loop unroll factor [87]. Character-
istics related to a specific code block (such as number of instructions, branches, calls,
stores) are used when deciding whether applications benefit from instruction schedul-
ing [17]. Determining the partitioning strategy of irregular applications is based on
static program features related to basic block, loop characteristics, and the data depen-
dency [57]. Features such as pipeline depth, load/store operations per instruction,
number of computations, and computation-communication ratio are used when deter-
mining partitioning strategy of streaming applications [99]. Tiwari and Hollingsworth
[92] consider architectural specifications such as cache and register capacity, in addi-
tion to the application specific parameters, such as tile size in a matrix multiplication
algorithm.

4.2 Code generation

The process of transforming code from one representation into another one is called
code generation. We call “machine code generation” the code transformation from the
high level to low level representation (that is ready for execution), whereas “source
code generation” indicates in this paper the source-to-source code transformation.

In the context of parallel computing, a source-to-source compiler is an automatic
parallelization compiler that can automatically annotate a sequential code with paral-
lel code annotations (such as, OpenMP pragma directives or MPI code statements).

@ Springer

Using meta-heuristics and machine learning for software... 911

Source-to-source compilers may alleviate the portability issue, by enabling to auto-
matically translate the code into an equivalent representation of the code that is ready
to be compiled and executed on target architectures.

In this section, we focus on source code generation techniques that can:

— generate device-specific code from other code representations,
— generate multiple implementations of the same code, or
— automatically generate parallel code from sequential code.

During the process of porting applications, programmers are faced with the fol-
lowing problems: (1) demand of device-specific knowledge and API; (2) difficulties
to predict whether the application will have performance benefits before it is ported;
(3) there exist a large number of programming languages and models that are device
(types and manufacturer) specific.

To address such issues, researchers have proposed different solutions. In Table 5, we
list the characteristics of these solutions such as, optimization algorithm, optimization
objectives, and considered features during optimization.

RQ1: Software optimization goals for compile-time code generation:

— generating device-specific code; mapping applications to accelerating devices;
generating multi-threaded loop versions; source-to-source transformations;
determining the list of program method transformations; enabling writing multi-
ple versions of algorithms and algorithmic choices at language level; auto-tuning
algorithmic choices and switching between them during program execution;
determining optimal work distribution between CPU and GPU.

The optimization objectives are derived from the aforementioned portability chal-
lenges. For example, to alleviate the demand for device-specific knowledge, Beach and
Avis [7] aim to identify candidate kernels that would likely benefit from paralleliza-
tion, generate device-specific code from high-level code, and map to the accelerating
device that yields the best performance. Similarly, Fonseca and Cabral [31] propose
the automatic generation of OpenCL code from Java code. Ansel et al. [5] propose the
PetaBricks framework that enables writing multiple versions of algorithms, which are
automatically translated into C++ code. The runtime can switch between the avail-
able algorithms during program execution. Luk et al. [58] introduce Qilin that enables
source-to-source transformation from C++ to TBB and CUDA. It uses machine learn-
ing to find the optimal work distribution between the CPU and GPU on a heterogeneous
system.

RQ2: Software optimization algorithms used for compile-time code generation:

— machine learning - decision trees; near neighbors; linear regression;

Decision Trees (DT) [7,31], k-Nearest Neighbor (kNN) [19], Cost Sensitive Deci-
sion Table (CSDT), Naive Bayes (NB), Support Vector Machine (SVM), Multi-layer

@ Springer

S. Memeti et al.

912

saInjeay uoneznundo PaIAPISUOD Y} JO [[& ISI[10U Op M ‘UOTIBIIWI] 20kdS JO asneoaq Jey)) 20U SeI[J

(Syuowdreys
dooj # ‘sad£) sdooj #) seryeay paseq-doog
‘(suonerado jeop # ‘suonerado 0103s/peo]

awmn
uone[durod 1Mo Ul J[NSaI Jey) SUOTIBULIOJSUERT)

(-dns) auIr-o # {suonoONNSUI #) sarmesy weidord [erouan poyowr weidoxd Jo ISI] Yy JUIULINA(AdIT [LL]
£5901n0sa1 unnduwod snosuagoreay
- — sso1oe werdoid e jo suoniod [o[fered-elep Anqnsiq - [18]
s1o)owered uoneInSyuod arempiey NdoO pue NdD 2yp
ur-uQ pue (oz1s ndur) s1ojowrered wLIos[e dwnuny UQoM)aq uonNQLISIp yIom [ewndo 9y U a1 [8¢]
uonnoaxe weirsoxd
Suump swyiLIo3[e 9[qe[IeA. 9} U9IMIAq YIIIMS
£$901070 oTuIIIoS e peyroads oy Jo Surunj-oine
‘[oA9[a8en3ue| oY) B SAJI0YD dIUYILIOI[B
uI-JO - pue swylLos[e Jo suoisioA aidnnuw Sunum Jqeuyg - [s]
(*** ‘woij-eyep ‘0l-ejep) *9D1AJP J[qeIINS
sarnjedy werdoxd orwreuAp ¢(*** ‘suonerado d1seq QY] 309[3s pue Adudroyye ay) 101paid ‘suoneorjdde
(-dns) aur-o £0)LIM/SSQI08 JoUUI/I9IN0) saInjedf weidord oneig [o[[ered-e)ep JO UONBWLIOJSURT) 90IN0S-0)-00IN0S YT ‘LASD “IdIN ‘INAS ‘AN [1€]
(9z1s 19s BIEP) SOIMBIJ OTWRUAD QuIN-UnI 8 9UO J[qRIINS JSOW
(‘dns) our-jo ‘(pasn sAexre # ‘yidop 1sou dooy) saInyes] 9pod oneI§ 9} 109[2$ $SUOISIOA dOO] POPEAIYI-N[NUW 9)LISUID) NN l61]
(SOM)SLI9YOBIRYD SSA0IL
Klowaw pue pourojrad uoneindwod jo junowre 'SQ01AQP Sunela[dok 0) suonedrdde dew
("dns) aur-yo ‘uorsioaid eyep) sonsiioeIeyd ([ouIaYy) doo {opod [9A9[-YSIY WO} 9p0d dY10ads-901AP 9)LIUD) 1a 2]
UI-PJO/UO soImea saAN22[(qO WYILOI[Y SIOUIJY

UONEIdU3 9P0J J0J SONSLINY-BIOUI IO SUTUIRI] AUTYdRUI 2sn Jey) saydeordde ot jo sonsuaoeIey) S Jqe],

pringer

As

Using meta-heuristics and machine learning for software... 913

Perceptron (MPL) [31], Linear Regression (LR) [31,58], and Logistic Regression
(LRPR) [77] machine learning algorithms are used during the code-generation.

RQ3: Considered features during compile-time code generation:

— loop characteristics - data precision; amount of computation performed; mem-
ory access characteristics; loop type; loop statement

— general program features - number of instructions; load/store operations; float-
ing point operations

— static code features - 1oop nest depth; number of arrays; outer/inner access/write;
basic operations;

— dynamic features - data set size; data-to; data-from,;

— runtime algorithm parameters; hardware configuration parameters

Beach and Avis [7] considered static loop characteristics to achieve their objectives,
whereas Chen and Long [19] use both static and dynamic program features to generate
the multi-threaded versions of a selected loop, and then select the most suitable loop
version at run-time. Combination of static code features (extracted at compile time),
and dynamic features (extracted at run-time) are also used to determine the most suit-
able processing device for a specific application [31]. To determine the best workload
distribution of a parallel application, Luk et al. [58] consider algorithm parameters
and hardware configuration parameters. Pekhimenko and Brown [77] consider gen-
eral and loop-based features to determine the list of program method transformation
during code generation that would reduce the compilation time.

4.3 Observations, challenges, and future directions

In this section, we first discuss the advantages of meta-heuristics and machine learning
methods for software optimization at compile-time, followed by a discussion about
their limitations. Thereafter, we discuss the future directions.

In Table 6, we list each of the machine learning and meta-heuristic methods used
for compile-time software optimization. For each of the used methods, we provide the
advantages, such as performance improvement, speedup, and prediction accuracy.

While most of the approaches discussed in this review present significant perfor-
mance improvement, which is important towards having intelligent compilers that
require less engineering effort to provide satisfactory code execution performance,
indications that there is still room for improvement can be observed in Stephenson
et al. [88] and andWang and O’boyle [99].

Limitations of the compile-time software optimization approaches that use machine
learning or meta-heuristics are listed in Table 7, which include: (1) limitation to a
specific programming language or model [95], (2) forcing developers to use extra
annotations on their code [58], or use not widely known parallel programming lan-
guages [5], (3) focusing on single or simpler aspects of optimizations techniques (ex:
loop unrolling, unrolling factor, instruction scheduling) [17,69,87], whereas more
complex compiler optimizations (that are compute-intensive) are not addressed suffi-
ciently.

@ Springer

S. Memeti et al.

914

9pod TeuISLIo ayy 03 paredwod Juswaaordwr douewioyrad 9,94
y10dar pue ssaooxd uoneidwos jo Suruny snewoine 10§ OYJ 2SN [g6] ‘T8 10 LemI], pue [¢6] YHomsSUI[[O pue LIEMIL],

uoneuog }001q-12d£y 103 95 ¢z Jo dnpaads ureiqo [gg] ‘[e 19 IosaLpues
uonnoaxd

Temara parewnse pue ejep Surpgoid Sursn duo 9[3urs e 0) 9O] Wwoj uoneiodxe aoeds yoress Sumnp suonen[ead
Jo Joquinu 3y Suronpar o[iym sxjewered uoneidwoos fewndo ay) puy 0) SonsuNay-ejaw asn [[z] ‘[e 19 1odoo)

JuowaAoidwr eouewroyrad 9,11 110dar pue suoneziundo seridwod 1saq ay) 199[0s 03 (SJ SN [G¢“p¢] Te 10 ursing

swreaSoid eaef [enuanbas 1oa0 dnpaads xGg aad1yor 03 JuedYIUSIS ST NJD 10 NdD Y} U0 PANIAXI 9q

PINOYS S[AUIY I3YIaYM 3PIOap 01 JTIA PU ‘gN ‘L Jo Aorinooe uonoipaid 9, g6 01 dn oy ‘[€] [IqRD) puL BOASUO U]
Kyenb 9poo awres ay) Sururejurewr ofym ssaoo1d uoneidwod ay) jo dnpaads pjoy

om} 110dax pue s1eowrered onsunay ewndo oY) SUIMILAP 0] Sanbruyos) uorssaISar asn [£ /] UMOIG pue ONUSWIYYO

poyiour skempe a[npayds 03 pareduwod juswasoidur soueuriofrad 9,06 JO JUSWAIIYOE pajiodar
pue 3o0[q 9p0od & uo Surnpayds uononnsur A[dde 03 Jou 10 I9YIOYM SUTULIRIGP O [SY SN [£]] SSOJN pue sozeae))

NN Sursn paadryoe 2q ued juswasoidur aourwriogrod 1saysy oy

JO 918 ey 310dar1 [g]] SuoT pue uay)) "SUO [BIPI Y} JO 909 ST ydorym ‘A3a1ens Suruonnied jnejop ay) 03 paredwod

dnpoads x " 01 dn aadryoe s1oyine ay [, “suoneadrjdde jo armonns Suruonnied oy 3o1paid 03 NN 9sn [66] 91409.0
pue Suepy ‘suoneziundo 1o[1dwod papod-piey 0) paredwod juswaroidwr souewrto)rad 9,14 31odar [£ 6] [e 10 nr']

NdD 10 NdD U0 PAINIIXI 9q P[NOYS S[OUIY JOYIAYM IPIOAP 0} INAS Suisn uaym Aoeinooe uonoipaid
J0 95,76 10da1 [T ¢] TeIqe)) pue 89S0, "9p0d paun)-puey jo aouewtofrad ay) JO 9,96 SAAIYOE pue sajeprpued doof
azijoqered 03 19yIoyMm IPIOAP 0] JNAS S9SN [G6] T8 19 SHIABUINO], “dw) 3y} JO 96/ duo [ewndo Ieau ay) Jo auir Y} Jo
969 doo] uaA13 e 10J 1039€] [jo1un [ewndo ayy 1o1paxd ued NN pue JNAS ey 1odar [£8] aySuiserewry pue uosuaydarg
3p0od pajod-A[[enue paAdryoe sdueuLIof1ad ay) JO 9, G UIYIIM JUSWARIYOR ddouruLIofId
sy10dar [£] s1ay pue yoeog <Surjoiun dooj 1oy juswaoxdwr douewnojrad g,¢ 03 dn syrodar [69] Te 19 JOIJISUOIA

SuapIQ Yuey [o[[ered
WILIOI[Y dNAuD)

Surquip) [[1H pue wyiLos[y Apasin
SOUSLINIY-DI2 Y

uonnqQLISI YoIeas ANIIPaId
S9[QEL, UOoISI(J

SWYILIOZ[Y paseq UOISSATY

uononpuy 10§ pany

10qu3raN 1sa1eaN ()

sauIyoRJA 103094 1oddng

§991) UOISIdOJ

Sunwa) auryov

sagejueapy

POUION

uoneziundo arem)jos own-oIdwod J0J SpoYIW JUTUILI] QUIYIBW PUE SONSLINAY-BIOW JO SATBIUBAPY 9 J[qE],

pringer

As

915

Using meta-heuristics and machine learning for software. ..

pautioyrad sem Surun-oine ay) AIAYM INJOAIYIIL
9y uo Juapuadop A[eso[d st syoLgeod Jo ooueuniorad oy, ‘soFendue| Jurwweisord
umouy A[opim uou Jursn uonesrjdde aroy) sjuum s1odojarap reyy sermbar syougeled
TOuad(Q 031 paje[sueI) 9q UBD PO BAB[[[E JON "OPOO BAR[JO SAINJRAJ
oyroads 03 pajIw[ST uoneIduas opod onewolne 9y, ‘suonerodo aonpar-dewr 0 poywIry
syrun Sursseoo1d a100-nnw o[dn[nu Jo JSISUOD Jey) SAINJINIYIIE dIeMPILY PUe ‘dpod
[o11eTed 9316 YIM suonedrjdde 10J 9seaIoUl A[[EOnjBWRIP ABW [l 9[qBINOIXS Y} JO 9ZIS Y[,

uonepeI3op souewiojrad ur Jnsar Aew eyep Sururen jo
yoeT ‘suoisioop Surddew 9jeIndode 103 vlep Sururer Juedyrugis sannbar [opow uonorpaid ayJ,
swo[qoid xa[duiod 10w I0J SAIILINIOR
uonorpaid I9Mo[Ul snsal Ing ‘sfppout 9[dwis 10j Juatoyjy “suoneunojsuen fewndo au
puy 0) 3uo[00) SAYL], "SUONNIAXD [EMUIA) WIofIdd 0) PIdA[[0d 9q 0 SPA_u elep Sul[yoid

owy uone[idwod Iy asearour APueoyrusis

Kewr yorym ‘sayeprpued dooj 30930p 03 Surjyoid sas) "A[uo syonnsuod dooj JNuedQ syedie],
pasn aq

ued A3o1ens Suruonnred swes oY) ‘SAINLIJ JB[IWIS Y)IM SUONIUNJ 0M) AUe IOJ ey} Saunssy
SSOUAATIORYJQ S)T 9Npal Aewl

yorym ‘sodures jo roquinu o3xe| saxnbai 31 pue Jurjdwres ejep wopuel ur paseq SI Jururel],

Surdua[reyo a1owr
st suonezrundo 1o(idwod x9dwos arow pue opdnnw SuLIPISUO)) *(uoneuLoy yoo[q-1adAy
{Burnpayos uononnsut ‘Jurpjoiun dooj :se yons) uoneziwndo ajdwis pue maj/o[3uls [0nUOD)

Areiqi awm-uni ‘Surum-oyny

UOTJEULIOJSURI) 90IN0S-0}-90IN0S
dooj ayy jo

SUOISIOA PIpeaIy)-Nn SUNeIOUID)
SI0JBI9[000E

0 suoneorjdde Surddew
‘uoneIauds opood dy1oads-ad1aeg

ssooo01d
uone[idwos ayy jo Juruny aandepy

Korjod Surnpayos
159q I1oy) pue uonezijorered

woJj Jyouaq yey) sdooy Surururoq
A39ens

Suruonnaed 1s9q ay) SuruiuRqg
uonezrundo 19p1dwod

QAT}O0JJ0 1SOW Ay} SUTUTULIOA(T

uoneziwundo apoo Jo syoadse 93ulg

<]

[18‘1€°6]

[61]

[1e61°L]

[1z°1]

[S6]

[66°8S°LS]

[€6°T6°LL SE¥E]

[88°,8°69°L1]

suoneuI|

SNO0,J

SQOUQIRJY

uoneziundo a1em)jos own-o[1dwod 10§ SONSLINGY-LIOW PUE SUTUIES] SUIYOLW SN JBY) SAIPNIS SUNSIXS Y} JO SUONRIIWIT / QEL

pringer

As

916 S. Memeti et al.

Furthermore, optimizations based on features derived from static code analysis pro-
vide poor global characterization of the dynamic behavior of the applications, whereas
using dynamic features requires application profiling, which adds additional execution
overhead to the program under study. This additional time can be considered negligi-
ble for applications that are executed multiple times after the optimization, however
it represents overhead for single-run applications. Approaches that generate many
multi-threaded versions of the code [19] might end up with dramatic code increases
that make difficult the applicability to embedded parallel computing systems with lim-
ited resources. Adaptive compilation techniques [21] add non-negligible compilation
overhead.

Future research should address the identified shortcomings in this systematic review
by providing intelligent compiler solutions for general-purpose languages (such as,
C/C++) and compilers (for instance, GNU Compiler Collection) that are widely used
and supported by the community. Many compiler optimization issues are complex and
require human resources that are usually not available within a single research group
or project.

5 Run-time

The run-time program life-cycle is the time during which the program is running
(that is, being executed) and it is also known as execution-time. Software systems
that enable running programs to interact with the execution environment are known
as run-time systems. The run-time environment contains environment information,
such as, the available resources, existing workload, and scheduling policy. A running
program can access the execution environment information via the run-time system.

In the past, the choice of architecture and the algorithms was considered during the
design and implementation phase of software life-cycle. Nowadays, there are various
multi- and many-core processing devices, with different performance and energy con-
sumption characteristics. Furthermore, there is no single algorithm implementation
that can exploit the full processing potential of these diverse processing elements.
Often it is not possible to know if an application performs better on device X or Y
before the execution. The performance of a program is determined by the properties
of the execution context (program input, type of available processing elements, cur-
rent system utilization...) that is known at run-time. Some programs perform better
on device X when the input size is large enough, but worse for smaller input sizes.
Hence, decisions whether a program should be run on X or Y, or which algorithm to
use are postponed to run-time.

In this study, we focus on optimization methods used in different run-time systems
that use machine learning or meta-heuristics to optimize the program execution. Such
run-time systems may be responsible for partitioning programs into tasks and schedul-
ing these tasks to different processing devices, selecting the most suitable device(s) for
a specific task, selecting the most suitable algorithm or the size of the input workload,
selecting the number of processing elements or clock frequency, and many more differ-
ent system run-time configuration parameters to achieve the specified goals including
the performance, energy efficiency, and fault tolerance. Specifically, we focus on two
major run-time activities: scheduling and adaptation.

@ Springer

Using meta-heuristics and machine learning for software... 917

In what follows, we discuss the related state-of-the-art run-time optimization
approaches for scheduling and adaptation. Thereafter, we summarize the limitations
of the current approaches and discuss possible future research directions.

5.1 Scheduling

According to the Cambridge Dictionary,' scheduling is “the job or activity of planning
the times at which particular tasks will be done or events will happen”. In context of
this paper, we use the term scheduling to indicate mapping the tasks onto the pro-
cessing elements and determining the order of task execution to minimize the overall
execution time.

Scheduling may strongly influence the performance of parallel computing systems.
Improper scheduling can lead to load imbalance and consequently to sub-optimal
performance. Researchers have proposed different approaches that use meta-heuristics
or machine learning to find the best scheduling within a reasonable time.

Based on whether the scheduling algorithms can modify the scheduling policy
during program execution, generally scheduling algorithms are classified in static and
dynamic.

5.1.1 Static scheduling

Static scheduling techniques retain an unchanged policy until the end of program
execution. Static approaches assume that the number of tasks is fixed, known before
execution starts, and that accurate information of their running times is known. Static
approaches usually use analytical models to estimate the computation and communi-
cation cost, where the work distribution is performed based on these estimations.
The program execution time is essential for job scheduling. However, accurately
predicting/estimating the program execution time is difficult to achieve in shared
environments where system resources can dynamically change over time. Inaccurate
predictions may lead to performance degradation [20].

Table 8 lists the characteristics (such as optimization algorithm, objective, and
features) of scientific publications that use machine learning and/or meta-heuristics
for static scheduling.

RQ1: Software optimization goals for run-time static scheduling:

— mapping program parallelism to multi-core architectures; determining the opti-
mal number of threads; mapping applications to the most appropriate processing
device; reducing memory latency and contention; mapping threads to specific
cores; determining workload distribution on heterogeneous systems; determin-
ing near-optimal system configuration parameters;

With regards to static scheduling, the attention of recent research that use machine
learning and meta-heuristics is in the following optimization objectives: mapping pro-
gram parallelism to multi-core architectures [98], mapping applications to the most

1 Cambridge Dictionary, http://dictionary.cambridge.org/dictionary/english/scheduling.

@ Springer

http://dictionary.cambridge.org/dictionary/english/scheduling

S. Memeti et al.

918

(dns) sur-yo - Sunpayds ysel, VO [SO1 401 ¥1°C]
uonorIy PEOPIom sw)sKs snoauagorey
(-dns) aur-go oy pue (Ao1jod SUINPAYDS {SIINOSAI A[QB[TRAY uo uoneIN3yuod wasAs rewndo-redu QUIULIARJ VS 1rad [s9¢¢ca]
(901A9p/IS0Y
U0 UOT)ORIJ PROIoM /AJIULJe™ PRaIY)/SPeIylH) SWIAISAS snoauagora)ay Jo siojowered
("dns) aur-go s1ojowrered uoneINIYuod weIsAg uoneIn3yuod wa)sAs rewndo-1eau auruog VS [z9]
(az1s Jndur)
s1oyowrered uoneoridde {(Kjuygje peary) (210d/speaiy) SWA)ISAS snoauadorajay uo suonesrdde
(-dns) aur-go # $SOIO0D # SPBAIY) #) UONRINSYUOD TempIeH [e[rered-ejep Jo uonNqIISIP PEOYIOM QUITLIN(] M1ag [+9]
s10ss9001d 01 uonesrdde Surddew ‘ejep Suturen
(-dns) aur-go — QATJRULIOJUI JSOUI QU] }09[9S ‘ejep Sururen} oy Suronpay “** ISy gl <141 ‘dIN T [1L]
(sasstwr ayoed ‘Aorjod uonnjosax
191gu0d ¢Ao110d UOND9IIP IDTPUOD ‘onel JI0qe UONUAUOd pue Aousje|
(-dns) aur-go uoTOBSUE) ‘0TJEl 9T UOT)ORSUERI)) SAINJeo) werSold KIoweur 90npar (100 oy10ads 0y speary) Surddepy 1d ¢dal [s1]
(oner K1owow-ndwod ¢$9s$900€ A1oWwaw
PI9ISI[BOI/[BIO] 9, {$ISSOIOE AIOWAW (SIILLIEq
("dns) aur-yo ‘suonerado Yiew/1eO/UL #) S2INIB) Ip0d d1elS 201A3p Jurssadord a[qeyns ay) o3 suoneyndwod Jurddepy INAS [ot]
(7RI SSTW YoURIq 91T SSIW AYOLD BIRD [7])
SQIMIEoJ OTWERUAP pUE elep ‘(seyouelq # ‘suonerado troquinu peany) fewndo oy
(-dns) aur-o Q10)S/PeO] # {SUOTIONIISUT ONE)S #) SAINJLAJ OPO)) QUIULIAIP SN 2I0d-n[nw 0} suoneindwods Jurddejy INAS NNV [86]
UI-JJO/UO soImjea saAndalqO wyILos [y SOOUAINJOY

Surmpayds o1els 10§ SONSLINAY-LIAW J0 Fururea] auryorw asn jeyy saydeordde ayy jo sonsuajoerey) § dqeL

pringer

As

Using meta-heuristics and machine learning for software... 919

appropriate processing device [40,71], mapping threads to specific cores [15], and
determining workload distribution on heterogeneous parallel computing systems [62—
65].

RQ2: Software optimization algorithms used for run-time static scheduling:

— machine learning - artificial neural networks; support vector machines; (boosted)
decision trees; logistic; multi-layer perceptron; IB 1; IBk; KStar; Random Forest;
LogitBoost; multiclass classifier; NNge; ADTree; random tree;

— meta-heuristics - simulated annealing; genetic algorithms;

To achieve the aforementioned optimization objectives, machine learning algorithm
such as, Artificial Neural Networks (ANN), Support Vector Machines (SVM), and
(Boosted) Decision Trees (BDTR) are used [15,40,64,98]. An approach that combines
a number of machine learning algorithms, including, Logistic (L), Multilayer Per-
ceptron (MP), IB1, IBk, KStar, Random Forest, Logit Boost, Multi-Class-Classifier,
Random Committee, NNge, ADTree, and RandomTree, to create an active-learning
query-committee with the aim to reduce the required amount if training data is pro-
posed by Ogilvie et al. [71]. A combination of Simulated Annealing (SA) and boosted
decision tree regression to determine near optimal system configurations is proposed
by Memeti and Pllana [63]. The use of Genetic Algorithms (GA) for task scheduling
has been extensively addressed by several researchers [2, 14,104, 105].

RQ3: Considered features during run-time static scheduling:

— static program features - number of static instructions; number of load/store
operations; number of branches; barriers; memory accesses; compute-memory
ratio; transaction time ratio; transaction abort ratio; conflict detection and reso-
lution policy;

— data and dynamic features - L1 data cache miss rate; branch miss rate;

— hardware characteristics - number of threads, cores, threads per core; thread
affinity;

— system configuration parameters - input size; workload fraction on host and
accelerating devices;

The list of considered system features for optimizing of parallel computing systems
is closely related to the optimization objectives, target applications and architecture.
For example, Castro et al. [15] consider transaction time and abort ratio, conflict detec-
tion and resolution policy to map thread to specific cores and reduce memory latency
and contention in software transactional memory applications running on multi-core
architectures. Static code features, such as number of instruction, memory operations,
math operations, and branches, are considered during the mapping of applications to
the most suitable processing devices [40,98]. While such approaches consider appli-
cation specific features, researchers have demonstrated positive improvement results
in approaches that do not require code analysis. Instead, they rely on features such as
the available system resources and program input size during the optimization process
(that is determining the workload distribution of data-parallel applications) [62—-64].

@ Springer

920 S. Memeti et al.

5.1.2 Dynamic scheduling

Dynamic scheduling algorithms take into account the current system state and modify
themselves during run-time to improve the scheduling policy. Dynamic scheduling
does not require prior knowledge of all task properties. To overcome the limitations
of the static scheduling, various dynamic approaches are proposed, including work
stealing, partitioning and assigning tasks on the fly, queuing systems, and task-based
approaches. Dynamic scheduling is usually harder to implement; however, the perfor-
mance gain may be better than static scheduling.

Table 9 lists the characteristics (such as optimization algorithm, objective, and
features) of scientific publications that use machine learning and/or meta-heuristics
for dynamic scheduling.

RQ1: Software optimization goals for run-time dynamic scheduling:

— mapping tasks to processing devices; partitioning tasks between performance
clusters and the cloud; determining resource allocation; predicting thread map-
ping strategy; predicting the optimal number of threads; improving scheduling
algorithms; determining scheduling policy; minimizing the make-span; mapping
computation kernels to heterogeneous GPU accelerated systems; determining
optimal system configuration; load balancing; determining performance aspects,
such as execution time ad power consumption; selecting the best algorithm
implementation variant; reducing the number of training data required to build
prediction models;

With regards to the optimization objectives, considered scientific publications
aim at: (1) determining the optimal number of threads for a given application
[30,41,102,103]; (2) determining the application execution time [9,23,51,52,54];
(3) mapping tasks to processing devices [4,15,76,80]; (4) partitioning tasks between
high performance clusters [60]; (5) predicting resource allocation in the cloud
[61]; (6) improving scheduling algorithms [36,43]; (7) minimizing the make-span
[11,24,44,74,75,85,104]; (8) selecting near optimal system configurations [56]; and
(9) reducing the number of training examples required to build prediction models [55].

RQ2: Software optimization algorithms used for run-time dynamic scheduling:

— machine learning - artificial neural networks; regression and filtering techniques;
support vector machines; (boosted) decision trees; logistic; multi-layer percep-
tron; IB1; IBk; KStar; Random Forest; LogitBoost; multiclass classifier; NNge;
ADTree; random tree; dispatch tables; Naive Bayesian classifier; decision dia-
grams;

— meta-heuristics - (adaptive) greedy algorithm; simulated annealing; genetic
algorithms; hill climbing; particle swarm optimization;

Artificial neural network (ANN) [30,41,43,44], regression (LR, QR, PR) [9,24,
36,52,54], support vector machines (SVM) [23,51,76], and decisiontrees (DT) [16,

@ Springer

921

Using meta-heuristics and machine learning for software. ..

ul-go SOINJEOJ PLOPIOM PUE SAINJEo) WeISold speaIy Jo requinu [ewndo oy 101paIg NNV [1¥]
soImyeay swojrerd
QuI[-uQ 2 AUI-JO wuopeld soourwioyrad yse) s1oysuen eiep ‘ejep indug SNOJUS010)aY U0 SuInpayds ysel Ay dzrundQ - [11]
$901n0sa1 pardnodo soanbruyoa) Jurures|
aui-uQ ¢sqol Suruuni # ¢$90In0SaI paImbar ‘own [eALLIE qO[suyoew Sursn swyioge Surmpayos oY) Jursoxdury a1 [9¢]
JuI-uQ 2 AUI-PJO 9z1s Ind)no ay) pue Yse) JO peOPIOM ‘SPUBWIAP AJLINIAS uedsayew ay) aaoxdwy VD NNV [++]
AuI-JO SOUIYOLRW PUE SYSB) AY) JO SONSLIORIRYD) SUOISIOAP JO[NPAYDS PLIT JO SSAUIANIRIJQ 9y da0Idw] NNV [ev]
SSIJA[QUIBD) [9AdT-1SB] SADI[0J UOTINOSIY/UONOA(suoneordde
(“dns) aur-go 1OIgu0)) ‘oney 110qy/oWL], [BUOTIOBSURL], JALLS 103 A39rens Surddew peany) e Sunorpaig 1de€dl [91]
pnogy =1
ur-Jo JOTARYQq $IT puE $s9001d © JO SOLIOUI WUy ur $9s59001d SSoUISNQ I0J UOTIBIO[[E 92IN0SAI SUNOIPAI] - [19]
SUNYD SYSE} JO BILP JO QW) "09XA [eNnjoe PRO[o oY) pue SIAISN[O
uI-uQ Q) SurIojuoWw Aq PAUTULIANAP SUWIT} UONNIIXS PAjeWISH douewrojrad y3iy usomioq syse) Suruonned A[uoag Vio [09]
quryoew yoea jo sanijiqedes unndwod
(“dns) aur-yo {sauryorW Ay} JO SAwI) Apear Ay} ananb Jyy ur syse) # $201A9p Suissado1d 0 sysey Surddepy WAS [9/]
SJUQWUOIIAUD
(-dns) aur-go snye)s 90In0saI $s10ss9001d # ‘s1o1owrered ndur werSoig PpaIeys UI 9w} Uonnodxe uonedrdde oy) ourureloq 99 [¥6]
(g-Saep] ¢1-3aep[{yISuo] ananb uni {speary) peopyiom
$510559001d #) SoIMEAY OIUERUAD {(SoyoueIq
(-dns) aur-go # ‘suononnsur # ¢sdo 910)s/peo #) saIMELaJ oLl SpeaIy) JO JoqUINU 1S9q) SUTULINA(] NNV [og]
QUI-JO/UO saImyeo $9A192[qO unpLos[y SOOUAIRJY

Surnpayos OTweuAp I0J SONSLINAY-LJAW JO JUTUILI] QUIOBW dsn Jey) sayorordde oty Jo sonsuoeIey) ¢ IqRL

pringer

As

S. Memeti et al.

922

BIEp-BIOW

Korjod Surnpayos ay) pue jueLies uonegjuawdur
159q) JO9[9S AW} UONNIAXS Pajoadxa ayy orpard

(pasiazadns) QUI[-JJO S90INOSAI J[qR[TRAR WA)SAS £(9zIs "3-0) s1ojowered nduy 03 syuouodwiod areme souewioyiod woly elep-e1owWw as() NAS ‘AN ‘dd ‘LA [1s¢cT]
(SIOJRID[OOI. # {SAI0D # 'T°9) s[opowr uonorpard

(pasiazadns) aui[-JJO SOOINOSAI J[qR[IBAR WIA)SAS ¢(9z1s '3-9) s1ojowered indu] pring 03 paxmbar ejep Sururen jo raquunu ay) SUONpay 1a [sg]

(Knpiqeqreae ndur <syuerrea uonejuowd[dwr

Jo oouewrojrod pajewnse ‘sjuowraarnbax sjuerrea uonejuowordur jo (uondwnsuod romod

(pasiazadns) aur-jjo pue AJI[Iqe[IeAR 90IN0SAI) UOHRULIOJUI WAISAS ‘OWIN) UONNIIXA “39) s1oadse doueuriorad jo uonorpaid AO U1 [zs‘6l
‘ejep uonELIUAWINISUI ¢"TeA uonnqrsip ndur SWISAS SNOAUDF01)AY

(pasiazadns) auil-gO ¢oz1s Indur ¢s1ojowered aumyorW QWIN UONNIAXD [QUIY J0J uoneziundo douewtojrad pue Juinpayds srueukq Md [+2]

‘sonsu)orIeyd uonesrdde

uI-uQ ‘suroped uoneindwod sjjo-oper) [eINjoIyoIy SoINO9IYOIE SN0AUaS010)aY 0 syse} Surddepy - [08]
QUWIT)-UNIT J& OA[OAD UBD

uIf-uQ — Surmpoayos yse) rewndo a1oym Juroue[eq-peo] SIeUA(VD [+01]
(s10ss9001d #) sentodoid arempiey ¢(uonouny ssouyy ‘3urouereq peoj ¢s10ss9001d snoduagoreoy

- £1S00 UOTBITUNWIWIOD QW) UONNIx3) santadoid yse, U0 SYsB) SN03uagoI1a)ay Jo Surmpayos orweukq VS ‘0Sd [s8]
(SQI00 [BNIIA # ‘QUI'LIOS OI $1IB)S suoneorjdde sonpaydey

uI-uQ MOIS ‘s190npal # ‘s1oddew #) s1o1owrered oonpar-dejy 10} uoneINSyuod waysAs ysey 1od rewndo Sunodfeg DOH [96]
SOTJSLIOYOBIBYD dIeMpIeY ‘(own "SWIQ)SAS PajeIaoode SNJdoH

uI-jJo JI0JSUBI}-BIEP OUIT} UONINJIXQ) UONBULIOJUT SUI[OI] SN0JUA3019)Y U0 s[oury uoneindwoos jo Surddepy Vvi0 oandepy [#]
(s10ss9001d yr0MmI0U) sentodord SWIAISAS Snoauadordoy

aur-uQ wA)sAs ¢(Kouapuadap fown [earte)santadoid ysey, ur Surnpayos yse) drweukp ‘ueds-oyew oy SZIWIUIA vD [sLpL]
Qoue[RqUIIT uor3ar [o[ered yoes 10j

- PEO[puE XIW UONoNIsuI ‘A3edo] eyep pearyl-19u] Aorjod Surnpayos pue speaIy) Jo JqUINU oY) SUIIIISAJ I1oandepy [€01°20T1]

AuI-JO/UO soImnyeaj $9A102[qO WPLIOS[Y SI0UIOJOY

panunuod ¢ JqeL,

pringer

as

Using meta-heuristics and machine learning for software... 923

23,51,55] are the most popular machine learning algorithms used for optimization
in the scientific publications considered in this study. Whereas, genetic algorithms
(GA) [44,74,75,104], greedy-based algorithms (GrA) [4,60], hill-climbing (HC) [56],
particle swarm optimization (PSO) [85], and simulated annealing (SA) [85] are used
as heuristic based optimization approaches for dynamic scheduling.

RQ3: Considered features during run-time dynamic scheduling:

— static and dynamic features - number of load/store operations; number of instruc-
tions and branches; number of processors and workload threads; run-queue
length;

— task related features - number of tasks in the queue; machine ready time; esti-
mated task execution time; task performance; arrival time; dependencys;

— runtime information - metrics of a process and its behavior; last level cache
misses; job arrival time; running jobs; data transfers; inter-thread data locality;
instruction mix and load imbalance; execution time; data-transfer time; fitness
function;

— application specific and workload characteristics - transactional time and abort
ratio; conflict detection and resolution policy; required resources; input data;
number of mappers and reducers in map-reduce applications;

— hardware characteristics - machine computing capability; occupied resources;
platform features; network properties; processor properties;

Approaches such as [16,56,60,61,102,103] focus on features collected dynami-
cally during program execution, such as, estimated execution time determined through
analysis of profiling data, information related to tasks (arrival time, number of cur-
rently running tasks). Whereas other approaches combine static features collected
at compile-time with dynamic ones collected at run-time [30,43,74-76], program
input parameters, and hardware related information [11,24,41,54,80]. Similar to
the static scheduling techniques, the selection of such features is closely related to
the optimization objectives. For example, Zhang et al. [102,103] consider the inter-
thread data locality when tuning OpenMP applications for hyper-threaded SMPs;
Page and Naughton [74,75] consider task properties, such as, task arrival time and
task dependency, when scheduling dynamically tasks in heterogeneous distributed
systems. Features such as security demands, workload of tasks, and the output size are
considered to train the ANN for optimization of scheduling process and maximization
of resource usage in the cloud [44].

5.2 Adaptation

According to the Cambridge Dictionary,” adaptation is “the process of changing to suit
different conditions”. In this paper, we use the term adaptation to refer to the property of
systems that are capable of evaluating and changing their behavior to achieve specified
goals with respect to performance, energy efficiency, or fault tolerance. In dynamic

2 Cambridge Dictionary, http://dictionary.cambridge.org/dictionary/english/adaptation.

@ Springer

http://dictionary.cambridge.org/dictionary/english/adaptation

924 S. Memeti et al.

environments, modern parallel computing systems may change their behavior by:
(1) changing the number of used processing elements to optimize system resource
allocation; (2) changing the algorithm or implementation variant that yields to better
results with respect to the specified goals; (3) reducing the quality (accuracy) of the
output to meet the performance goals; or (4) changing the clock frequency to reduce
energy consumption.

The studied literature in this paper provide examples that adaptation (also referred
to as self-adaptation) proved to be an effective approach to deal with the complex-
ity, variability, and dynamism of modern parallel computing systems. Table 10 lists
the characteristics (such as, adaptation method and objectives, monitored and tuned
parameters) of the scientific publications that use adaptation for software optimization
of parallel computing systems.

RQ1: Software optimization goals for run-time adaptation:

— selecting the most suitable algorithm implementation; applying user defined
actions to change the program behavior; adapting lock’s internal implementa-
tion mechanisms; determining the ideal data structure knob settings; adaptive
mapping of computations to processing elements; adapting applications to meet
the user defined goals;

With regards to the adaptation objectives, Thomas et al. [91] use a custom adaptation
loop to adaptively select the most suitable algorithm implementation for a given input
data set and system configuration. Hoffmann et al. [46,47] use an observe-decide-act
(ODA) feedback loop to adaptively apply user defined actions to change the program
behavior in favor of achieving some user-defined goals, such as energy efficiency and
throughput. Adaptation methods are used in the smart-locks library [28], which can
change its behavior at run-time to achieve certain goals. Similarly, in [29] adaptation
methods are used for optimizing data structure knobs. Adaptive mapping of computa-
tions to the processing units is proposed by Luk et al. [58]. The Antarex [84] project
aims at providing means for application tuning and adaptation for energy efficient
heterogeneous high-performance computing systems, by providing a domain specific
language that allows specifying adaptation goals at compile-time.

RQ2: Software optimization algorithms used for run-time adaptation:

— machine learning - decision trees; reinforcement learning; linear regression;
— other - custom adaptation loop; observe-act-decide loops; lock acquisition
scheduling;

During the process of adaptation, all of the approaches proposed in the consid-
ered scientific publications, have at least three components of an adaptation loop,
including monitoring, deciding, and acting. For example, Thomas et al. [91] monitor
architecture and environment parameters, then uses a decision tree to analyze such
information, and perform the required changes (in this case selecting an algorithm
implementation). Similarly, Hoffmann et al. [47] use the so called observe-decide-act
(ODA) feedback loop to monitor performance related information (retrieved using the

@ Springer

925

Using meta-heuristics and machine learning for software. ..

(Surddew yse} pue *50[[e 90IN0SAT K)I[Iqe[TRAR S92IN0SAI ‘sjuawraIinbax s[eo3 pauyop
SuLIo)[e) SUONO. PAUYIP JOS) ‘UOTJEWLIOJUI [BN)XIU0D) Josn 100w 0) suonedrjdde idepy 1sd [+8]
(eandepe 10 weidoxd qd 01
one)s) awayds urddew ayy Sursooy)) Jo siured Jo awn-uonndAXy suonendwod jo Surddew aandepy a1 [8¢]
wyose Juruiquo)) sIojruow
18 JO qouy [eonLI-edurwLIOfod ‘J10d TeUINX9 10§ 110ddns {(9yex s3umjes qouy
pue anfeA junoouvos) unsnlpy yreay IndySnoayy) [eusis premay] 2IM)ONNS BILP [BIPI AY) UIULIRJ T l62]
syeaq)reay uoneorjdde Sursn uoneyuawdur Ty ‘Surnpayos
Korjod Surnpayos }00] ay) 23ueyD) PoAdLIRI (Q1e1 1IBaY) [RUSIS pIemdy [euxdyur s 3o0[ay) idepy uonismboy yoo [82]
(paads o010 2y) Sunsnlpe [9¥7] s1eaqureay uonesrjdde Suisn J01ABY2q weisoxd oy
ISB [ONSs) SUONJ’ PoUyap Jos) POAQLIAI UOTBULIOJUT QJUBULIOLId] 93ueyd 0] suonoe pauyap Josn Ajddy vao [L¥‘ot]
SONSLIAJORIRYD
Qouewioyrad (s10ssao01d
“9Z1S oYOLD ‘ATOWAW J[qe[IeAL) uonejuewarduur 1q ‘doog
uonejuawdw WpLIo3[y UOTRULIOJUT WAJSAS PUB AINJINIYIIY wy)LIo3[e 9[qelIns 10w Y} J99[9S uonejdepe woisn) [16]
s1ojowrered pouny, s1ojoweIed pa1ojiuoiN saAnoalqo uoneidepy POYIOIA SOIUIJIY

sanbruyoa) uoneydepe uo paseq sayoeoidde uoneziundo ay) Jo sonsuRIORIRY) (] qBL

pringer

Qs

926 S. Memeti et al.

application heartbeats [46]) and use the heart-rate to take some user defined actions,
such as adjusting the clock speed, allocating cores, or change the algorithm. Reinforce-
ment learning (RL), an on-line machine learning algorithm, is used to help with the
adaptation decisions in both smart-locks [28] and smart data-structures [29], whereas
linear regression (LR) is used by Luk et al. [58] for choosing the mapping scheme of
computations to processing elements.

RQ3: Considered features during run-time dynamic scheduling:

— hardware characteristics - available memory; cache size; number of processors;
resource availability

— performance characteristics - heartbeat reward signal; throughput; external per-
formance monitors; execution time;

— contextual information; requirements;

In Table 10 we list two types of parameters, the monitored parameters, used to
evaluate whether adaptation goals have been met, and tuned parameters, which are
basically defined actions that will change the program behavior until the desired goals
are achieved. For monitoring, architecture and environment variables (such as, avail-
able memory, cache size, number of processors), and performance characteristics are
considered by Thomas et al. [91]. Performance related information retrieved from the
heartbeats monitor are used as monitoring parameters in the following scientific articles
[28,29,47]. Luk et al. [58] rely on the execution time of parts of the program, whereas
the Antarex framework uses contextual information, requirements, and resource avail-
ability for monitoring the program behavior. As tuning parameters, the following are
considered, selecting the algorithm implementation [47,91], adjusting the clock speed,
core allocation, select algorithm [47], change lock scheduling policy [28], adjust the
scancount [29], change mapping scheme [58], and altering resource allocation and
task mapping [84].

5.3 Observations, challenges and research directions

In this section, we first discuss the advantages of meta-heuristics and machine learning
methods for software optimization at run-time, followed by a discussion about their
limitations. Thereafter, we discuss the future directions.

In Table 11, we list each of the machine learning and meta-heuristic methods used
for run-time software optimization. For each of the used methods, we provide the
advantages, including performance improvement, speedup, or prediction accuracy.

@ Springer

Using meta-heuristics and machine learning for software... 927

Table 11 Advantages of meta-heuristics and machine learning methods for run-time software optimization

Method

Advantages

Machine Learning Artificial Neural

Network

Support Vector

Machines

Decision Trees

Regression

Reinforcement

Learning

Emani et al. [30] report speedup of up to 3.2x
compared to OpenMP default scheme, and 2.3 x
compared to Hill Climbing on-line adaptation
technique. Grzonka et al. [43] show that the ANN can
be used to reduce the time required to find the best
possible solutions by approximately 30-40%. Grewe
et al. [41] show that their neural network is aware of
existing workload and can reduce the slowdown to
existing workload from 4.5 to 0.5% at a cost of
reducing the speedup from 1.66x to 1.59x

Grewe and O’Boyle [40] report performance
achievement of 80.6% compared to the optimal one.
Wang and O’Boyle [98] use ANN and SVM to
determine the best number of threads and show
performance achievements of up to 96% compared to
the optimal performance. Kessler and Lowe [51] show
that the SVMs can be used to select the best
optimization variant with 0% inaccuracy, however the
decision overhead is high

Castro et al. [15] show performance improvement of up
to 18.46% compared to the worst case scenario.
Memeti and Pllana [64] can determine a near-optimal
workload distribution on heterogeneous system,
which results in performance improvement of up to
35.6x compared to sequential version. Thomas et al.
[91] show that a performance accuracy between 86
and 100% is capable to dynamically optimize the
execution time by choosing the most suitable
algorithm in a given context

Gaussier et al. [36] can predict the execution time,
which help to achieve up to 28% makespan reduction.
Zhang et al. [103] show performance improvement up
to 27% when using regression techniques to predict
the optimal number of threads and scheduling policy.
Luk et al. [58] use regression techniques to map
computations to processing units, which result in
performance improvement up to 40% compared to
mapping always to CPU, 25% compared to
GPU-always, and within 94% of the near optimal
mapping

Eastep et al. [28] reported up to 1.2x speedup compared
to other approaches for lock acquisition scheduling.
Eastep et al. [29] show the ability to adapt scancount
to changing application needs, which result in up to
1.5x speedup compared to state-of-the-art approaches

@ Springer

928 S. Memeti et al.

Table 11 continued

Method Advantages

Meta-heuristics Simulated Annealing Memeti and Pllana [63] use simulated annealing to
optimize the workload distribution on heterogeneous
systems. By evaluating only about 5% of all possible
configurations it can achieve average speedup of 1.6x
and 2x compared with the host-only and device-only
execution

Genetic Algorithms Zomaya and Teh [104] show that GA performs better
than First Fit for dynamic scheduling using various
number of tasks and available processing elements.
Page and Naughton [74,75] show that their
evolutionary based scheduler outperforms other
schedulers

Greedy Algorithm Mantripragada et al. [60] predicts the application
execution time, and allows to dynamically shift part of
the workload from the cluster to be computed in the
cloud, in order to meet the deadline. Albayrak [4]
show that nine out of ten times the mapping algorithm
based on GrA performs better than single-device

mapping
Hill Climbing Li et al. [56] shows performance improvement of up to
30% compared to the default configurations used by
YARN
Particle Swarm Sivanandam et al. [85] uses PSO and SA for task
Optimization scheduling. The hybridization of these algorithms

outperforms other algorithms, including GA

At run-time, many execution environment parameters influence the performance
behavior of the program. Exploring this huge parameter space is time consuming
and impractical for programs with long execution times and large demand for sys-
tem resources. Different computing capabilities and energy efficiency of processing
elements of heterogeneous parallel computing systems make the scheduling a diffi-
cult challenge. Table 12 lists the limitations of the run-time software optimization
approaches for parallel computing systems considered in this paper.

We may observe that some of the existing scheduling techniques often assume that
the program is executed on a dedicated system and all system resources are available
for use. The approach proposed by Grewe et al. [41] propose a co-scheduling tech-
nique, which considers that the resources are shared with other applications. However,
the adaptation occurs only when the application is executed, but not during program
execution. We believe that better results could be achieved if they consider to adapt to
changes while the application is being executed. Another issue is that commonly used
scheduling techniques ignore slow processing elements due to their low performance
capabilities. Mapping computations always to processing units that offer higher per-
formance capability is not optimal, because slower processing elements may never get
work to perform. Furthermore, most of the reviewed approaches target specific features
of the code only (for example, loops), or are limited to specific programming models

@ Springer

929

Using meta-heuristics and machine learning for software. ..

uoIsIoop
rewndo a1ow © saye) romawel) ay) [run (s1jowered rewndo-uou yiim u)jo) awr Jo junowe
ure1109 e 10J uonesrdde oy Suruuni axmnbay -opod oY) 01 UOHRWLIOJUT [RUONIPPE SUIppPR 21mbay

souo 1931e] Y 10330q wiograd SIoYI0 searayMm ‘sozrs jndur Jo[ews 10§ 19339q woyrad
swiyyLoJ e swog *sonseloereyd ndur werdoid ay) Jou Jnq ‘SONSLIIOBIBLYD 2IBMPILY SIIPISUOD)

sNdo Io/pue
SNdD [eoNUIPI-uoU Jo Ioquinu Io3Ie[asudwod Aew Jey) SWAISAS Sn0dug012)ay uo A[eroads
‘prayIaA0 3Ny JuasaIdal 90IAAP AISAQ UO [oUIRY Yord JoJ uoneuriojur 3urjyord Sunoseo)

Qanwuwod uondipaid ay) piing o3 Juaunsaaul Jurwweisord [euonippe saxnbar uonnjos sy,

Qwmn-uni 18 pasueyod aq JOU Ued)1 PUB UI[-}JO
PauTWLIOp 9q Ued SuInpayds pue ‘syse) wiojiad 0) Apear skempe are pue romod Funndwod
enba aaey syun urssasoid ‘Uonnoaxa Jotid umouy SI JWI UONBITUNUIIOD JBY) JWNSSY

SPERAYIAO UOTIEITUNTUUIOD dONPOIIUT
Kayy 19ramoy ‘Surjgoad ou saxnbar sanbruyoa) Surnpayos 9YI] AB[S-I9)SEW 10 WLIRJ-YSE],

SYSB) Uamlaq sarouapuadap Jopisuod jou op sayorotdde pasodoid ay,

PEAYIOAO dWN)-UNnI

JuBdYIUSIS 20Nponul ABW YoIyM ‘SISA[eue pue uorod[[od eiep Jurjygold dAIsSu)Xa sarnboy
Quinuni je safueyd

9a13op wstpapered ay) uaym A39ens Surddew ayy oFueyd jou ued J1 ‘SaINILJ d1IR)S SIASN I1 JUIS

sdoo[-9[3uts Jo Js1suod jeyy suonesrdde

uo snodoj [z01] Te 12 SuryyZ "uonndaxa s)1 Jnoysnoiy) Jdepe Jou S0P 1 INq ‘UONHNIAXA S SHIL)S
uonedrjdde ay) uaym AJuo peopyiom ay) 03 sydepe [[4] [e 19 9ma1n) "Sururen aulf-}jo 21nbay

uoneIN3YUOd 2INIANIYIIR

pue uonedsrdde mau yoes 1oy [opowr uonarpaid oY) uIea-a1 01 saxmbai I -armioaIyoIe

IoUIOU. U0 oueULIOjIad PaIIsap 2y) P[aIA Jou AeW 2INJOAIYDIIE UB [[9M SIIJ JBY) QWIS
Surddew e jey) suedw yorym @InjoIydIe IempIey dy) uo juopuadop st ssaooxd Surddew oy,

uoneydepe-jios

uonoares wyiLode aandepy

SWIRISAS SNOQUS0I)AY
0y uoneindwos jo Surddepy

'Iep Sururen
paimbar jo requnu ay) Suronpay

Surnpayos ysey,

Kem uLrej-yse) ur Jurnpayds
pue syunyo ojur syse} SUIpIAI]

Surmpayos yse) orwreukq
s1o)ouwesed uoneangyuod

wA)sAs [ewndo-reau SururuIeg
suoneordde AL,

10} A391ens Surddew peary) SururuIaldq

speaIy)
Jo roquunu Tewndo oy SurururIeq

syun Surssaooxd a[qe)ns
jsow 2y 03 suoneindwoos Jurddejy

[+8°8S Ly 9v ‘6T 8Tl

[16]

[v]

[12]

[so1vo1°C]

[08]
[sLyL vl

[9¢]

[¢1]

[€0T1°201°86 1]

[86°07]

Suone) I

SNO0,{

SAOUAIRJY

uoneziundo aIem}jos SWI-UnI Joy SONSLINAY-LJAW Puk JUTUILI] QUIYOBW JsN JeY) SAIPNJS SumnsIxa ay) jo suoneyur| gy qel,

pringer

as

930 S. Memeti et al.

and applications (data-bound or compute-bound). Many static scheduling approaches
require retraining of the prediction model for each new architecture, limiting their
general use because training requires a significant amount of data that is not always
available. Approaches that reduce the amount of training data require implementa-
tion of multiple machine learning algorithms (for instance, [71]). Approaches that
use a single execution [21,56] by trying various system configurations during the
program execution are promising, however the introduced overhead is not negligible.
Self-adaptation techniques require the developer to add additional information into the
code so that the software would be able to monitor the system and take decisions. Even
though such code is not difficult to add for the application programmer, the software
development becomes more complex while talking decisions based on these results.
Furthermore, such approaches introduce overhead at runtime, because they need to
run for a certain amount of time until enough data is collected for the framework to
be able to take the most optimal decisions.

Future research should aim at reducing the scheduling and adaption overhead for
dynamic approaches. Run-time optimization techniques for heterogeneous systems
should be developed that utilize all available computing resources to achieve the opti-
mization goals. There is a need for robust run-time optimization frameworks that are
useful for a large spectrum of programs and system architectures. Furthermore, tech-
niques that reduce the amount of data generated from system monitoring are needed
in particular for extreme-scale systems.

6 Conclusion

In this article, we have conducted a systematic literature review that describes
approaches that use machine learning and meta-heuristics for software optimization
of parallel computing systems. We have classified approaches based on the software
life-cycle activities at compile-time and run-time, including the code optimization
and generation, scheduling, and adaptation. We have discussed the shortcomings of
existing approaches and provided recommendations for future research directions.

A high-level overview is provided in Table 13, which lists the advantages and
limitations of the compile-time and run-time software optimization approaches that
use machine learning and meta-heuristics. Our analysis of the reviewed literature
suggests that the use of machine learning and meta-heuristic based techniques for
software optimization of parallel computing systems is capable of delivering perfor-
mance comparable to the manual code optimization or task scheduling strategies in
specific cases. However, many existing solutions are limited to a specific program-
ming language and model, type of application, or system architecture. There is a need

@ Springer

931

Using meta-heuristics and machine learning for software. ..

UONEZI[NNIDPUN WR)SAS [[BIOA0
ur J[nsar Aew yorym ‘sjuawrd]d urssadoid mofs a1oudt soyoeordde swog —

suoneorjdde
IOUIO YIIM SIOINOSAI ks ay) aIeys Aew suonedrjdde prrom-[ear searoym
‘UOTIB[OST UT PAINOAX2 2q [[im suonedrjdde jey) swmnsse soydeordde swog —

sarouapuadap
sk} O ‘UOTBZINN WA)SAS ‘SONSLIOOBILYD dIeMPIRY JOU JNq ‘SoINJeaJ pod
St yons ‘wIsAs ayy Jo syoadse ma) Auo 1opisuod sayoeoidde jo swog —

9SBAIOUI A[[BOTIBWIRIP ABW 9ZIS-9POJ AU, “dwnuni je duo [ewndo jsowr

Q) 199[2S pue ‘Apod Y} JO suolsIdA d[dnnw gerouasd soyoeordde swog —
uonepeidop sduewio)rad ur Jnsar Aew eyep Sururen jo yoe|

*9p09 2y} Jo Jurgoid JAISUIX? IO BIep JO Junowre A31e| sarmbar Jururery, —
SurSuaqreyo

arow st suonezrundo tofidwod xo[dwod arow pue opdnnuw JuLRPISUO))
suoneziundo 1oridwod ordwis pue 9[3uls uo sndoj sayoeoidde swog —

S[eOZ PAUYIP-IASN UTLIIAD JO3W 0] UOT)
-ndo9x2 Surmp Joraeyaq wersoid ayy o5ueyd Aew sayoeoidde uoneydepy +
Surunm uvoneorjdde 103 paimnbar own ay) 2onpax

pue dourwofrad 101399 UT I[NSAI ABUI 1XAJUOD UONIIXS UIAIT B I0OJ JUBLIBA
uonejuaw[dwr wyjod[e Io suoneIn3yuod walsAs 1s9q Ay} Sunoves +

suonedrjdde 1910 Jo UMOPMOTS Y} 20NpaI ued FUINPaYIs-0)) +
Qouewioyrad 19319q UI JNsax

suonjezrundo yons Iayioym Yo0[q 2Pod OB 10§ SUTULIRp APuadifioiut yey)
sayoroidde 10J paa1asqo st uswaAoxdwr aouewIofrad ‘suonezrundo urerad
WO S}aUaq YO0[q 2POd Yora Jey) wnsse jey) sanbruyde) o) uostredwos uy +
suonezrundo 19[1dwod papod-piey 03 paredwod

doueuriojrad 10139q ur synsar suonezrundo 1orrdwod 1soq oy SunosRs +

9pod UMM A[[en
-uew wrojrodino Aew uonezrundo pue uoneIduaS 9pod 99IN0S-03-90IN0S +

Qwm-uny

swn-oidwo)

suone I

sagejueApy

SOTSLINQY-BJOW puE SUTUIES] duIyorw asn Jey) saydeoidde uoneziundo arem)jos Jo suone)wl] pue sagejueapy €] dqeL

pringer

As

932

S. Memeti et al.

for software optimization frameworks that are applicable to a large spectrum of pro-
grams and system architectures. Future efforts should focus on developing solutions
for widely used general-purpose languages (such as, C/C++) and compilers that are
used and supported by the community.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

10.

11.

12.

16.

17.

. Agakov F, Bonilla E, Cavazos J, Franke B, Fursin G, O’Boyle MF, Thomson J, Toussaint M, Williams

CK (2006) Using machine learning to focus iterative optimization. In: Proceedings of the international
symposium on code generation and optimization, IEEE Computer Society, pp 295-305

Ahmad I, Kwok Y, Ahmad I, Dhodhi M (2001) Scheduling parallel programs using genetic algorithms.
Solutions to parallel and distributed computing problems. Wiley, New York, pp 231-254

Aho AV, Lam MS, Sethi R, Ullman JD (2006) Compilers: principles, techniques, and tools, 2nd edn.
Addison-Wesley Longman Publishing Co., Inc, Boston

Albayrak OE, Akturk I, Ozturk O (2013) Improving application behavior on heterogeneous manycore
systems through kernel mapping. Parallel Comput 39(12):867-878

Ansel J, Chan C, Wong YL, Olszewski M, Zhao Q, Edelman A, Amarasinghe S (2009) PetaBricks:
a language and compiler for algorithmic choice. ACM, New York

Barney B et al (2010) Introduction to parallel computing. Lawrence Livermore National Laboratory,
Livermore, p 10

Beach TH, Avis NJ (2009) An intelligent semi-automatic application porting system for applica-
tion accelerators. In: Proceedings of the combined workshops on UnConventional high performance
computing workshop plus memory access workshop, ACM, pp 7-10

Beck F, Koch S, Weiskopf D (2016) Visual analysis and dissemination of scientific literature col-
lections with survis. IEEE Trans Visual Comput Graphics 22(1):180—189. https://doi.org/10.1109/
TVCG.2015.2467757

Benkner S, Pllana S, Triff JL, Tsigas P, Richards A, Namyst R, Bachmayer B, Kessler C, Moloney
D, Sanders P (2011) The PEPPHER approach to programmability and performance portability for
heterogeneous many-core architectures. In: ParCo

Biernacki P, Waldorf D (1981) Snowball sampling: problems and techniques of chain referral sam-
pling. Sociol Methods Res 10(2):141-163

Binotto APD, Wehrmeister MA, Kuijper A, Pereira CE (2013) Sm@rtConfig: a context-aware runtime
and tuning system using an aspect-oriented approach for data intensive engineering applications.
Control Eng Pract 21(2):204-217

Braun TD, Siegel HJ, Beck N, Boloni LL, Maheswaran M, Reuther AI, Robertson JP, Theys MD, Yao
B, Hensgen D et al (2001) A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. J Parallel Distrib Comput 61(6):810-837
Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging it
platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gen Comp Syst
25(6):599-616. https://doi.org/10.1016/j.tuture.2008.12.001

Carretero J, Xhafa F, Abraham A (2007) Genetic algorithm based schedulers for grid computing
systems. Int J Innov Comput Inf Control 3(6):1-19

Castro M, Goes LFW, Ribeiro CP, Cole M, Cintra M, Mehaut JF (2011) A machine learning-based
approach for thread mapping on transactional memory applications. In: 2011 18th International con-
ference on high performance computing (HiPC), IEEE, pp 1-10

Castro M, Gées LFW, Fernandes LG, Méhaut JF (2012) Dynamic thread mapping based on machine
learning for transactional memory applications. In: Euro-Par 2012 Parallel Processing, Springer, pp
465-476

Cavazos J, Moss JEB (2004) Inducing heuristics to decide whether to schedule. In: Conference on
programming language design and implementation, ACM, New York, NY, USA, PLDI *04, pp 183—
194

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TVCG.2015.2467757
https://doi.org/10.1109/TVCG.2015.2467757
https://doi.org/10.1016/j.future.2008.12.001

Using meta-heuristics and machine learning for software. .. 933

—
o

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Cavazos J, Fursin G, Agakov F, Bonilla E, Boyle MF, Temam O (2007) Rapidly selecting good
compiler optimizations using performance counters. In: International symposium on code generation
and optimization, 2007. CGO’07. IEEE, pp 185-197

Chen X, Long S (2009) Adaptive multi-versioning for OpenMP parallelization via machine learning.
In: 15th International conference on parallel and distributed systems (ICPADS), 2009, IEEE, pp
907-912

Chirkin AM, Belloum AS, Kovalchuk SV, Makkes MX, Melnik MA, Visheratin AA, Nasonov DA
(2017) Execution time estimation for workflow scheduling. Future generation computer systems.
https://doi.org/10.1016/j.future.2017.01.011

Cooper KD, Grosul A, Harvey TJ, Reeves S, Subramanian D, Torczon L, Waterman T (2005) ACME:
adaptive compilation made efficient. In: ACM SIGPLAN notices, ACM 40:69-77

Corbalan J, Martorell X, Labarta J (2005) Performance-driven processor allocation. IEEE Trans
Parallel Distrib Syst 16(7):599-611

Danylenko A, Kessler C, Lowe W (2011) Comparing machine learning approaches for context-aware
composition. In: Software composition, Springer, Berlin pp 18-33

Diamos GF, Yalamanchili S (2008) Harmony: An execution model and runtime for heterogeneous
many core systems. In: Proceedings of the 17th international symposium on high performance dis-
tributed Computing, ACM, New York, NY, USA, HPDC ’08, pp 197-200. https://doi.org/10.1145/
1383422.1383447

Diefendorff K (1999) Power4 focuses on memory bandwidth. Microprocess. Rep. 13(13):1-8
Dongarra J, Sterling T, Simon H, Strohmaier E (2005) High-performance computing: clusters, con-
stellations, mpps, and future directions. Comput. Sci. Eng. 7(2):51-59

Duda RO, Hart PE et al (1973) Pattern classification and scene analysis, vol 3. Wiley, New York
Eastep J, Wingate D, Santambrogio MD, Agarwal A (2010) Smartlocks: lock acquisition scheduling
for self-aware synchronization. In: Proceedings of the 7th international conference on autonomic
computing, ACM, pp 215-224

Eastep J, Wingate D, Agarwal A (2011) Smart data structures: an online machine learning approach
to multicore data structures. In: Proceedings of the 8th international conference on Autonomic com-
puting, ACM, pp 11-20

Emani MK, Wang Z, O’Boyle MF (2013) Smart, adaptive mapping of parallelism in the presence of
external workload. In: International symposium on code generation and optimization (CGO), IEEE,
pp 1-10

Fonseca A, Cabral B (2013) AminiumGPU: An Intelligent Framework for GPU Programming. In:
Facing the multicore-challenge III, Springer, pp 96—-107

Foster I, Kesselman C (2003) The Grid 2: blueprint for a new computing infrastructure. Elsevier,
Amsterdam

Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree compared. In:
2008 Grid computing environments workshop, pp 1-10. https://doi.org/10.1109/GCE.2008.4738445
Fursin G, Miranda C, Temam O, Namolaru M, Yom-Tov E, Zaks A, Mendelson B, Bonilla E, Thomson
J, Leather H, et al. (2008) MILEPOST GCC: machine learning based research compiler. In: GCC
summit

Fursin G, Kashnikov Y, Memon AW, Chamski Z, Temam O, Namolaru M, Yom-Tov E, Mendelson
B, Zaks A, Courtois E et al (2011) Milepost gcc: machine learning enabled self-tuning compiler. Int
J Parallel Prog 39(3):296-327

Gaussier E, Glesser D, Reis V, Trystram D (2015) Improving backfilling by using machine learn-
ing to predict running times. In: Proceedings of the international conference for high performance
computing, networking, storage and analysis, ACM, p 64

Geer D (2005) Chip makers turn to multicore processors. Computer 38(5):11-13. https://doi.org/10.
1109/MC.2005.160

Gordon MI, Thies W, Amarasinghe S (2006) Exploiting coarse-grained task, data, and pipeline par-
allelism in stream programs. In: ACM SIGOPS Operating Systems Review, ACM 40:151-162
Gould N (2006) An introduction to algorithms for continuous optimization. Oxford University Com-
puting Laboratory Notes

Grewe D, OBoyle MF (2011) A static task partitioning approach for heterogeneous systems using
opencl. In: Compiler Construction, Springer, Berlin, pp 286-305

@ Springer

https://doi.org/10.1016/j.future.2017.01.011
https://doi.org/10.1145/1383422.1383447
https://doi.org/10.1145/1383422.1383447
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.1109/MC.2005.160
https://doi.org/10.1109/MC.2005.160

934

S. Memeti et al.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Grewe D, Wang Z, O’Boyle MF (2011) A workload-aware mapping approach for data-parallel
programs. In: Proceedings of the 6th international conference on high performance and embedded
architectures and compilers, ACM, pp 117-126

Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel programming with the message-
passing interface, vol 1. MIT press, Cambridge

Grzonka D, Kolodziej J, Tao J (2014) Using artificial neural network for monitoring and supporting
the grid scheduler performance. In: ECMS, pp 515-522

Grzonka D, Jakbik A, Kvodziej J, Pllana S (2017) Using a multi-agent system and artificial
intelligence for monitoring and improving the cloud performance and security. Future Generation
Computer Systems. 10.1016/j.future.2017.05.046, http://www.sciencedirect.com/science/article/pii/
S0167739X17310531

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res
3:1157-1182

Hoffmann H, Eastep J, Santambrogio MD, Miller JE, Agarwal A (2010a) Application heartbeats: a
generic interface for specifying program performance and goals in autonomous computing environ-
ments. In: Parashar M, Figueiredo RJO, Kiciman E (eds) ICAC. ACM, New York City

Hoffmann H, Maggio M, Santambrogio MD, Leva A, Agarwal A (2010b) SEEC: A framework for
self-aware computing. http://hdl.handle.net/1721.1/59519

Takymchuk R, Jordan H, Bo Peng I, Markidis S, Laure E (2016) A particle-in-cell method for automatic
load-balancing with the allscale environment. In: The Exascale applications & Software conference
(EASC2016)

Jeffers J, Reinders J (2015) High Performance Parallelism Pearls Volume Two: Multicore and Many-
core Programming Approaches. Morgan Kaufmann, Burlington

Jin C, de Supinski BR, Abramson D, Poxon H, DeRose L, Dinh MN, Endrei M, Jessup ER (2016)
A survey on software methods to improve the energy efficiency of parallel computing. In: The inter-
national journal of high performance computing applications p 1094342016665471. https://doi.org/
10.1177/1094342016665471

Kessler C, Lowe W (2012) Optimized composition of performance-aware parallel components. Con-
curr Comput Pract Exp 24(5):481-498

Kessler C, Dastgeer U, Thibault S, Namyst R, Richards A, Dolinsky U, Benkner S, Tréff JL, Pllana
S (2012) Programmability and performance portability aspects of heterogeneous multi-/manycore
systems. In: Design, automation & test in Europe conference & exhibition (DATE), 2012, IEEE, pp
1403-1408

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software
engineering. In: Technical Report EBSE 2007-001, Keele University and Durham University Joint
Report

Lee BD, Schopf JM (2003) Run-time prediction of parallel applications on shared environments. In:
IEEE International conference on cluster computing, 2003. Proceedings. 2003, IEEE, pp 487491
LiL, Dastgeer U, Kessler C (2012) Adaptive off-line tuning for optimized composition of components
for heterogeneous many-core systems. In: High performance computing for computational science-
VECPAR 2012, Springer, pp 329-345

Li M, Zeng L, Meng S, Tan J, Zhang L, Butt AR, Fuller N (2014) Mronline: Mapreduce online
performance tuning. In: Proceedings of the 23rd international symposium on High-performance
parallel and distributed computing, ACM, pp 165-176

Liu B, Zhao Y, Zhong X, Liang Z, Feng B (2013) A Novel Thread Partitioning Approach Based on
Machine Learning for Speculative Multithreading. In: IEEE international conference on embedded
and ubiquitous computing high performance computing and communications & 2013 (HPCC_EUC),
2013 IEEE 10th International Conference on, IEEE, pp 826-836

Luk CK, Hong S, Kim H (2009) Qilin: Exploiting parallelism on heterogeneous multiprocessors
with adaptive mapping. In: Proceedings of the 42nd annual IEEE/ACM international symposium
on microarchitecture, ACM, New York, NY, USA, MICRO 42, pp 45-55. https://doi.org/10.1145/
1669112.1669121

Malawski M, Juve G, Deelman E, Nabrzyski J (2015) Algorithms for cost- and deadline-constrained
provisioning for scientific workflow ensembles in iaas clouds. Future Generation Computer Sys-
tems 48:1-18. https://doi.org/10.1016/j.future.2015.01.004, special Section: Business and Industry
Specific Cloud

@ Springer

http://www.sciencedirect.com/science/article/pii/S0167739X17310531
http://www.sciencedirect.com/science/article/pii/S0167739X17310531
http://hdl.handle.net/1721.1/59519
https://doi.org/10.1177/1094342016665471
https://doi.org/10.1177/1094342016665471
https://doi.org/10.1145/1669112.1669121
https://doi.org/10.1145/1669112.1669121
https://doi.org/10.1016/j.future.2015.01.004

Using meta-heuristics and machine learning for software. .. 935

60.

61.

62.

63.

64.

65.

66.

67.
68.

69.

70.

71.

72.
73.
74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Mantripragada K, Binotto APD, Tizzei LP (2014) A self-adaptive auto-scaling method for scientific
applications on HPC environments and clouds. CoRR abs/1412.6392

Mastelic T, Fdhila W, Brandic I, Rinderle-Ma S (2015) Predicting resource allocation and costs for
business processes in the cloud. In: 2015 IEEE world congress on services, pp 47-54. https://doi.org/
10.1109/SERVICES.2015.16

Memeti S, Pllana S (2016a) Combinatorial optimization of dna sequence analysis on heterogeneous
systems. Concurrency and computation: practice and experience pp n/a-n/a. https://doi.org/10.1002/
cpe.4037, cpe.4037

Memeti S, Pllana S (2016b) Combinatorial optimization of work distribution on heterogeneous sys-
tems. In: 2016 45th international conference on parallel processing workshops (ICPPW), pp 151-160.
https://doi.org/10.1109/ICPPW.2016.35

Memeti S, Pllana S (2016c) A machine learning approach for accelerating dna sequence analysis.
The International Journal of High Performance Computing Applications 0(0):1094342016654,214.
https://doi.org/10.1177/1094342016654214

Memeti S, Pllana S, Kotodziej J (2016) Optimal worksharing of DNA sequence analysis on accelerated
platforms. Springer, Cham, pp 279-3009. https://doi.org/10.1007/978-3-319-44881-7_14

Memeti S, Li L, Pllana S, Kolodziej J, Kessler C (2017) Benchmarking opencl, openacc, openmp,
and cuda: Programming productivity, performance, and energy consumption. In: Proceedings of the
2017 workshop on adaptive resource management and scheduling for cloud computing, ACM, New
York, NY, USA, ARMS-CC 17, pp 1-6. https://doi.org/10.1145/3110355.3110356

Mitchell TM (1997) Machine learning, 1st edn. McGraw-Hill Inc, New York, NY, USA

Mittal S, Vetter JS (2015) A survey of cpu-gpu heterogeneous computing techniques. ACM Comput
Surv (CSUR) 47(4):69

Monsifrot A, Bodin F, Quiniou R (2002) A machine learning approach to automatic production of
compiler heuristics. In: Artificial intelligence: methodology, systems, and applications, Springer, pp
41-50

Nvidia C (2015) CUDA C programming guide. NVIDIA Corp 120:18

Ogilvie W, Petoumenos P, Wang Z, Leather H (2015) Intelligent heuristic construction with active
learning. In: Compilers for parallel computing (CPC’15). London, United Kingdom

OpenMP A (2013) OpenMP 4.0 specification, June 2013

Padua D (2011) Encyclopedia of parallel computing. Springer, Berlin

Page AJ, Naughton TJ (2005a) Dynamic task scheduling using genetic algorithms for heterogeneous
distributed computing. In: 19th International parallel and distributed processing symposium, IEEE,
pp 189a-189a

Page AJ, Naughton TJ (2005b) Framework for task scheduling in heterogeneous distributed computing
using genetic algorithms. Artif Intell Rev 24(3):415-429. https://doi.org/10.1007/s10462-005-9002-
X

Park Yw, Baskiyar S, Casey K (2010) A novel adaptive support vector machine based task schedul-
ing. In: Proceedings the 9th International Conference on Parallel and Distributed Computing and
Networks, Austria, pp 16-18

Pekhimenko G, Brown AD (2011) Efficient program compilation through machine learning tech-
niques. In: Software Automatic Tuning, Springer, pp 335-351

Pllana S, Benkner S, Mehofer E, Natvig L, Xhafa F (2008) Towards an intelligent environment
for programming multi-core computing systems. Euro-Par Workshops, Springer, Lecture Notes in
Computer Science 5415:141-151

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: the art
of scientific computing, 3rd edn. Cambridge University Press, Cambridge

Ravi VT, Agrawal G (2011) A dynamic scheduling framework for emerging heterogeneous systems.
In: 18th International conference on high performance computing (HiPC), 2011, IEEE, pp 1-10
Rossbach CJ, Yu Y, Currey J, Martin JP, Fetterly D (2013) Dandelion: a compiler and runtime for
heterogeneous systems. In: Proceedings of the twenty-fourth ACM symposium on operating systems
principles, ACM, pp 49-68

Sadashiv N, Kumar SMD (2011) Cluster, grid and cloud computing: A detailed comparison. In: 2011
6th International conference on computer science education (ICCSE), pp 477-482. https://doi.org/
10.1109/ICCSE.2011.6028683

Sandrieser M, Benkner S, Pllana S (2012) Using explicit platform descriptions to support program-
ming of heterogeneous many-core systems. Parallel Comput 38(1-2):52-56

@ Springer

https://doi.org/10.1109/SERVICES.2015.16
https://doi.org/10.1109/SERVICES.2015.16
https://doi.org/10.1002/cpe.4037
https://doi.org/10.1002/cpe.4037
https://doi.org/10.1109/ICPPW.2016.35
https://doi.org/10.1177/1094342016654214
https://doi.org/10.1007/978-3-319-44881-7_14
https://doi.org/10.1145/3110355.3110356
https://doi.org/10.1007/s10462-005-9002-x
https://doi.org/10.1007/s10462-005-9002-x
https://doi.org/10.1109/ICCSE.2011.6028683
https://doi.org/10.1109/ICCSE.2011.6028683

936

S. Memeti et al.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.
95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

Silvano C, Agosta G, Cherubin S, Gadioli D, Palermo G, Bartolini A, Benini L, Martinovi¢ J, Palkovi¢
M, Slaninova K, Bispo Ja, Cardoso JaMP, Abreu R, Pinto P, Cavazzoni C, Sanna N, Beccari AR,
Cmar R, Rohou E (2016) The antarex approach to autotuning and adaptivity for energy efficient hpc
systems. In: Proceedings of the international conference on computing frontiers, ACM, New York,
NY, USA, CF ’16, pp 288-293. https://doi.org/10.1145/2903150.2903470

Sivanandam SN, Visalakshi P (2009) Dynamic task scheduling with load balancing using parallel
orthogonal particle swarm optimisation. Int J Bio-Inspired Comput 1(4):276-286. https://doi.org/10.
1504/1JBIC.2009.024726

Smanchat S, Indrawan M, Ling S, Enticott C, Abramson D (2013) Scheduling parameter sweep
workflow in the grid based on resource competition. Future Gen Comput Syst 29(5):1164—1183.
https://doi.org/10.1016/j.future.2013.01.005

Stephenson M, Amarasinghe S (2005) Predicting unroll factors using supervised classification. In:
International Symposium on code generation and optimization, 2005. CGO 2005, IEEE, pp 123-134
Stephenson M, Amarasinghe S, Martin M, O’Reilly UM (2003) Meta optimization: improving com-
piler heuristics with machine learning. SIGPLAN Not 38(5):77-90

Sterling T, Becker DJ, Savarese D, Dorband JE, Ranawake UA, Packer CV (1995) Beowulf: A parallel
workstation for scientific computation. In: Proceedings of the 24th international conference on parallel
processing, pp 11-14

Stone JE, Gohara D, Shi G (2010) OpenCL: a parallel programming standard for heterogeneous
computing systems. Comput Sci Eng 12(1-3):66-73

Thomas N, Tanase G, Tkachyshyn O, Perdue J, Amato NM, Rauchwerger L (2005) A framework for
adaptive algorithm selection in STAPL. In: Proceedings of the tenth ACM SIGPLAN symposium on
principles and practice of parallel programming, ACM, pp 277-288

Tiwari A, Hollingsworth JK (2011) Online adaptive code generation and tuning. In: 2011 IEEE
international parallel distributed processing symposium, pp 879—892. https://doi.org/10.1109/IPDPS.
2011.86

Tiwari A, Chen C, Chame J, Hall M, Hollingsworth JK (2009) A scalable auto-tuning framework
for compiler optimization. In: Proceedings of the 2009 IEEE international symposium on parallel&
distributed processing, IEEE Computer Society, Washington, DC, USA, IPDPS *09, pp 1-12. https://
doi.org/10.1109/IPDPS.2009.5161054

TOPS500 (2016) TOP500 Supercomputer Sites. http://www.top500.org/. Accessed Jan 2016
Tournavitis G, Wang Z, Franke B, O’Boyle MF (2009) Towards a holistic approach to auto-
parallelization: integrating profile-driven parallelism detection and machine-learning based mapping.
In: ACM Sigplan notices 44:177-187

Viebke A, Pllana S (2015) The potential of the intel (r) xeon phi for supervised deep learning. In: 2015
IEEE 17th international conference on high performance computing and communications (HPCC),
pp 758-765. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.45

Voss M, Kim W (2011) Multicore desktop programming with intel threading building blocks. IEEE
Softw 28(1):23-31. https://doi.org/10.1109/MS.2011.12

Wang Z, O’Boyle MF (2009) Mapping parallelism to multi-cores: a machine learning based approach.
In: ACM Sigplan notices, ACM 44:75-84

Wang Z, O’boyle MF (2013) Using machine learning to partition streaming programs. ACM Trans
Archit Code Optim (TACO) 10(3):20

Wienke S, Springer P, Terboven C, an Mey D (2012) Openacc: First experiences with real-world
applications. In: Proceedings of the 18th international conference on parallel processing, Springer-
Verlag, Berlin, Heidelberg, Euro-Par’12, pp 859-870

Wolsey LA, Nemhauser GL (2014) Integer and combinatorial optimization. Wiley, Hoboken

Zhang Y, Burcea M, Cheng V, Ho R, Voss M (2004) An adaptive openmp loop scheduler for hyper-
threaded smps. In: ISCA PDCS, pp 256-263

Zhang Y, Voss M, Rogers E (2005) Runtime empirical selection of loop schedulers on hyperthreaded
smps. In: Proceedings of 19th IEEE International parallel and distributed processing symposium,
2005, IEEE, pp 44b—44b

Zomaya AY, Teh YH (2001) Observations on using genetic algorithms for dynamic load-balancing.
IEEE Trans Parallel Distrib Syst 12(9):899-911

Zomaya AY, Lee RC, Olariu S (2001) An introduction to genetic-based scheduling in parallel processor
systems. Solutions to Parallel and Distributed Computing Problems pp 111-133

@ Springer

https://doi.org/10.1145/2903150.2903470
https://doi.org/10.1504/IJBIC.2009.024726
https://doi.org/10.1504/IJBIC.2009.024726
https://doi.org/10.1016/j.future.2013.01.005
https://doi.org/10.1109/IPDPS.2011.86
https://doi.org/10.1109/IPDPS.2011.86
https://doi.org/10.1109/IPDPS.2009.5161054
https://doi.org/10.1109/IPDPS.2009.5161054
http://www.top500.org/
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.45
https://doi.org/10.1109/MS.2011.12

	Using meta-heuristics and machine learning for software optimization of parallel computing systems: a systematic literature review
	Abstract
	1 Introduction
	2 Research methodology
	2.1 Research questions
	2.2 Search and selection of literature
	2.3 The focus and scope of the literature review (selection process)
	2.4 Data extraction

	3 Taxonomy and terminology
	3.1 Parallel computing systems
	3.2 Software optimization approaches
	3.2.1 Meta-heuristics
	3.2.2 Machine learning

	3.3 Software optimization at different software life-cycle activities
	3.4 Classification based on architecture, software optimization approach, and life-cycle activity

	4 Compile-time
	4.1 Code optimization
	4.2 Code generation
	4.3 Observations, challenges, and future directions

	5 Run-time
	5.1 Scheduling
	5.1.1 Static scheduling
	5.1.2 Dynamic scheduling

	5.2 Adaptation
	5.3 Observations, challenges and research directions

	6 Conclusion
	References

