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Abstract While modern parallel computing systems offer high performance, uti-
lizing these powerful computing resources to the highest possible extent demands
advanced knowledge of various hardware architectures and parallel programming
models. Furthermore, optimized software execution on parallel computing systems
demands consideration of many parameters at compile-time and run-time. Determin-
ing the optimal set of parameters in a given execution context is a complex task, and
therefore to address this issue researchers have proposed different approaches that use
heuristic search or machine learning. In this paper, we undertake a systematic literature
review to aggregate, analyze and classify the existing software optimization methods
for parallel computing systems. We review approaches that use machine learning or
meta-heuristics for software optimization at compile-time and run-time. Additionally,
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we discuss challenges and future research directions. The results of this study may
help to better understand the state-of-the-art techniques that use machine learning and
meta-heuristics to deal with the complexity of software optimization for parallel com-
puting systems. Furthermore, it may aid in understanding the limitations of existing
approaches and identification of areas for improvement.

Keywords Parallel computing · Machine learning · Meta-heuristics · Software
optimization

Mathematics Subject Classification 90C27 Combinatorial optimization · 68T20
Problem solving (heuristics, search strategies, etc.) · 68T05 Learning and adaptive
systems [See also 68Q32, 91E40] · 65Y05 Parallel computation

1 Introduction

Traditionally, parallel computing [73] systems have been used for scientific and
technical computing. Usually scientific and engineering computational problems are
complex and resource intensive. To efficiently solve these problems, utilization of
parallel computing systems that may comprise multiple processing units is needed.
The emergence of multi-core and many-core processors in the last decade led to the
pervasiveness of parallel computing systems from embedded systems, personal com-
puters, to data centers and supercomputers. While in the past parallel computing was
a focus of only a small group of scientists and engineers at supercomputing centers,
nowadays programmers of virtually all systems are exposed to parallel processors that
comprise multiple or many cores [49].

The modern parallel computing systems offer high performance capabilities. In
recent years, the computational capabilities of supercomputing centers have been
increasing very fast. For example, the average performance of the top 10 supercom-
puters in 2010 was 0.84 PFlops/s, in 2014 the average performance climbed to 11.16
PFlops/s, and in 2016 the average performance capability is 20.63 PFlops/s [94]. With
such exciting performance gain, a serious issue of the power consumption of these
supercomputing centers arises. For example, according to the TOP 500 list [94], in
the years 2010 to 2016, the average power consumption of the top 10 supercomputers
has increased from 2.98 to 8.88 MW, that is about 198% increase.

Utilizing these resources to gain the highest extent of performance while keeping
low level of energy consumption demands significant knowledge of vastly different
parallel computing architectures and programming models. Improving the resource
utilization of parallel computing systems (including heterogeneous systems that com-
prise multiple non-identical processing elements) is important, yet difficult to achieve
[50]. For example, for data-intensive applications the limited bandwidth of the PCIe
interconnection forces developers to use the resources on the host only, which leads to
the underutilization of the system. Similarly, in compute-intensive applications, while
utilizing the accelerating device, the host CPUs remain idle, which leads to waste of
energy and performance. Approaches that intelligently manage the resources of host
CPUs and accelerating devices to address such inefficiencies seem promising [68].
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To achieve higher performance, scalability and energy efficiency, engineers often
combine Central Processing Units (CPUs), Graphical Processing Units (GPUs), or
Field Programmable Gate Arrays (FPGAs). In such environments, system developers
need to consider multiple execution contexts with different programming abstractions
and run-time systems. There is a consensus that software development for parallel
computing systems, especially heterogeneous systems, is significantly more complex
than for traditional sequential systems. In addition to the programmability challenges,
performance portability of programs to various platforms is essential and challenging
for productive software development, due to the differences in architectural level of
multi-core and many-core processors [9].

Software development and optimal execution on parallel computing systems expose
programmers and tools to a large number of parameters [83] at software compile-
time and at run-time. Examples of properties for a GPU-accelerated system include:
CPU count, GPU count, CPU cores, CPU core architecture, CPU core speed, memory
hierarchy levels, GPU architecture, GPU device memory, GPU SM count, CPU cache,
CPU cache line, memory affinity, run-time system, etc. Finding the optimal set of
parameters for a specific context is a non-trivial task, and therefore many methods
for software optimization that use meta-heuristics and machine learning have been
proposed. A systematic literature review may help to aggregate, analyze, and classify
the proposed approaches and derive the major lessons learned.

In this paper, we conduct a systematic literature review of approaches for software
optimization of parallel computing systems. We focus on approaches that use machine
learning or meta-heuristics that have been published since the year 2000. We classify
the selected review papers based on the software life-cycle activities (compile-time or
run-time), target computing systems, optimization methods, and period of publication.
Furthermore, we discuss existing challenges and future research directions. The aims
of this systematic literature review are to:

– systematically study the state-of-the-art software optimization methods for parallel
computing systems that use machine learning or meta-heuristics;

– classify the existing studies based on the software life-cycle activities (compile-
time, and run-time), target computing systems, optimization methods, and period
of publication;

– discuss existing challenges and future research directions.

Figure 1 depicts our solution for browsing the results of literature review that we
have developed using SurVis [8] literature visualization tool. The browser is available
on-line at www.smemeti.com/slr/ and enables to filter the review results based on the
optimization methods, software life-cycle activity, parallel computing architecture,
keywords, and authors. A time-line visualizes the number of publications per year.
Publications that match filtering criteria are listed on the right-hand side; the browser
displays for each publication the title, authors, abstract, optimization method, life-
cycle activity, target system architecture, keywords, and a representative figure. The
on-line literature browser is easy to extend with future publications that fit the scope
of this review.

The rest of the paper is organized as follows. In Sect. 2 we describe the research
methodology. In Sect. 3, we give an overview of the parallel computing systems, soft-
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Fig. 1 Our interactive browser of the results of literature review. Results can be filtered by software
optimization method, software life-cycle activity, parallel system architecture, keyword, and author name.
Results are visualized in the form of time-line that indicates the number of publications per year. The right-
hand compartment lists the publications that match the search criteria. The browser is available on-line at
www.smemeti.com/slr/
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Fig. 2 Research methodology

ware optimization techniques, and the software optimization at different life-cycle
activities. For each of the software life-cycle activities, including Compile-Time activ-
ities (Sect. 4), and Run-Time activities (Sect. 5), we discuss the characteristics of
state-of-the-art research, and discuss limitations and future research directions. Finally,
in Sect. 6 we conclude our paper.

2 Research methodology

We perform a literature review based on guidelines by Kitchenham and Charters
[53]. In summary, these guidelines include three stages: Planning, Conducting and
Reporting (see Fig. 2).

During the planning stage the following activities are performed: (1) identifying
the need for a literature review, (2) defining the research questions of the literature
review, and (3) developing/evaluating the protocol for performing the literature review.
The activities associated with conducting the literature review include: (1) identifying
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1. Define search query

List of keywords:

- parallel computing

- machine learning

- metaheuristics

- software optimization

Search Query

2. Search Digital Libraries

2.1 ACM Digital Library

2.2 IEEE Explore

2.3 Google Scholar

List of potentially relevant scientific publications 

(more than 1180 articles)

3. Search Venues

3.1 Conferences:

- SC, ISC, ICAC, PPoPP, 

ICPP, Euro-Par, ParCo, ...

Journal:

3.2 TOCS, JPDC, JOS, ...

4. Manual selection

4.1 Read title, abstract, 

and keywords (209)

4.2 Read full paper (57)

Set of relevant scientific 

publications (57)

5. Chain sampling

- Check the reference 

section of each paper

for relevant scientific

publications

(39 identified, 8 used)

Final set of scientific 

publications (65)

Literature Search and Seleciton Process

Fig. 3 The process of searching and selecting the relevant literature

the research, (2) literature selection, (3) data extraction and synthesis. The reporting
stage includes writing the results of the review and formatting the document. In what
follows, we describe in more details the research method and the major activities
performed during this study.

2.1 Research questions

We have defined the following research questions:

– RQ1: Which software optimization goals for parallel computing systems are
achieved using meta-heuristics and machine learning?

– RQ2: Which are the common algorithms used to achieve such software opti-
mization goals for parallel computing systems?

– RQ3: Which features are considered during software optimization of parallel
computing systems?

2.2 Search and selection of literature

The literature search and selection process are depicted in Fig. 3. Based on the objec-
tives of the study, we have selected an initial set of keywords (see activity 1) that is used
to search for articles, such as: parallel computing, machine learning, meta-heuristics

and software optimization. To improve the result of the search process, we consider
synonyms for the keywords during the search. The search query is executed on digital
electronic databases (such as, ACM Digital Library, IEEEXplore, and Google Scholar),
conference venues (such as, SC, ISC, ICAC, PPoPP, ICDCS, CGO, ICPP, Euro-Par,
and ParCo), and scientific journals (such as, TOCS, JPDC, JOS). The outcome of the
search process is a list of potentially relevant scientific publications. Manual selection
of these publications by reading the title, abstract, and keywords (activity 4.1) first,
then the full paper (activity 4.2) is performed, which results in a filtered list of relevant
scientific publications. Furthermore, a recursive procedure of searching for related
articles is performed using the corresponding related articles section of each digital
library (for example, the ACM Digital Library related papers function powered by
IBM Watson, or the Related articles function of Google Scholar).

The initial automatic search on the ACM digital library (see Fig. 3, activity 2.1)
returned a list of total 25970 entries (articles). We sorted the entries by relevance,
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such that the most relevant articles will show up first. As expected, the most relevant
articles were found in the first part of the list, and after hundreds of articles, the
suggested entries were not relevant to our study. Therefore, we decided to consider
only the first 1000 articles. Out of these articles, only 130 were selected for further
study based on reading the title and abstract (activity 4.1), and after reading the full
article (activity 4.2), 22 were selected as relevant articles. The IEEEXplore returned
40 potentially relevant articles (activity 2.2), 20 of them were selected for further study
based on reading the title and abstract (activity 4.1), and 16 were selected as relevant
after reading the full paper (activity 4.2). The Google Scholar returned 140 potentially
relevant articles (activity 2.3), 31 of them were selected after reading the title and
abstract (activity 4.1), and 11 were selected as relevant after reading the full paper
(activity 4.2). Searching the conference venues (activity 3.1) and scientific journals
(activity 3.2), we selected 28 articles based on reading the title and abstract (activity
4.1), and 8 of them were selected as relevant after reading the full paper (activity 4.2).
So, out of more than 1180 articles returned from various sources (activity 2 and 3),
209 were selected manually based on reading the title and abstract (activity 4.1), out
of which, after reading the full content (activity 4.2), 57 were selected as relevant to
the scope of this paper.

Additionally, the chain sampling technique (also known as snowball sampling, see
Fig. 3, activity 5) is used to search for related articles. 39 articles were identified using
this technique by reading the title and abstract (activity 4.1), and 8 of them were selected
as relevant after reading the full paper (activity 4.2). Chain sampling is a recursive
technique that considers existing articles, usually found in the references section of
the research publication under study [10]. In total, 65 publications are considered in
this review.

2.3 The focus and scope of the literature review (selection process)

The scope of this literature review includes:

– publications that investigate the use of machine learning or meta-heuristics for
software optimization of parallel computing systems;

– publications that contribute to compile-time activities (code optimization and code
generation), and run-time activities (scheduling and adaptation) of software life-
cycle;

– research published since the year 2000, because in literature, the year 2000 is
considered as the starting point of the multi-core era. IBM Power 4 [25], the first
industry dual-core processor, is introduced in 2001 [37].

While other optimization methods (such as, linear programming, dynamic program-
ming, control theory), and other software optimization activities (such as, design-time
software optimization) may be of interest, they are left out of scope to keep the sys-
tematic review focused.
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Table 1 An excerpt of data items collected for each of the selected publications

Data item Description

1 Date Date of the data extraction

2 Bibliographic reference Author, Year, Title, Research Center, Venue

3 Type of article Journal article, conference paper, workshop paper,
book section

4 Problem, objectives, solution What is the problem; what are the objectives of the
study; how the proposed solution works?

5 Optimization Technique Which Machine Learning or Meta-heuristic
algorithm is used?

6 Considered features The list of considered features used for optimization

7 Life-cycle Activity Code Optimization, Code Generation, Scheduling,
Adaptation?

8 Target architecture Single/Multi-node system, Grid Computing, Cloud
Computing

9 Findings and conclusions What are the findings and conclusions?

10 Relevance Relevance of the study in relation to the topic under
consideration

2.4 Data extraction

In accordance with the classification strategy (described in Sect. 3.3) and the defined
research questions (described in Sect. 2.1), for each of the selected primary studies
we have collected information that we consider important to be recorded in order to
perform the literature review.

Table 1 shows an excerpt of the data items (used for quantitative and qualitative
analysis) collected for each of the selected studies. Data items 1-3 are used for the
quantitative analysis related to RQ1. Data item 4 is used to answer RQ2. Data collected
for item 5 is used to answer RQ3, whereas data collected for item 6 is used to answer
RQ4. Data item 7 is used to classify the selected scientific publications based on
the software life-cycle activities (see Table 3), whereas data item 8 is used for the
classification based on the target architecture (see Fig. 6).

3 Taxonomy and terminology

In this section, we provide an overview of the parallel computing systems and soft-
ware optimization approaches with focus on machine learning and meta-heuristics.
Thereafter, we present our approach for classifying the state-of-the-art optimization
techniques for parallel computing.

3.1 Parallel computing systems

A parallel computing system comprises a set of interconnected processing elements
and memory modules. Based on the system architecture, generally parallel computers
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can be categorized into shared and distributed memory. Shared memory parallel com-
puting systems communicate through a global shared memory, whereas in distributed

memory systems every processing element has its own local memory and the commu-
nication is performed through message passing. While shared memory systems have
shown limited scalability, distributed memory systems have demonstrated to be highly
scalable. Most of the current parallel computing systems use shared memory within a
node, and distributed memory between nodes [6].

According to Top500 [94] in the 90s the commonly used parallel computing sys-
tems were symmetric multi-processing (SMP) systems and massive parallel processing

(MPP) systems. SMPs are shared memory systems where two or more identical
processing units share other system resources (main memory, I/O devices) and are
controlled by a single operating system. MPPs are distributed memory systems where
a larger number of processing units (or separate computers) are housed in the same
place. The disparate processing units share no system resources, they have their own
operating system, and communicate through high-speed network. The main comput-
ing models within the distributed parallel computing systems include cluster [26,89],
grid [13,32,82,86], and cloud computing [33,59,82].

Nowadays, the mainstream platforms for parallel computing, at their node level
consist of multi-core and many-core processors. Multi-core processors may have mul-
tiple cores (two, four, eight, twelve, sixteen…) and are expected to have even more
cores in the future. Many-core systems consist of larger number of cores. The individ-
ual cores of the many-core systems are specialized to efficiently perform operations
such as, SIMD, SIMT, speculations, and out-of-order execution. These cores are more
energy efficient because they usually run at lower frequency.

Systems that comprise multiple identical cores or processors are known as homo-

geneous systems, whereas heterogeneous systems comprise non-identical cores or
processors. As of November 2017, the TOP500 list [94] contains several supercomput-
ers that comprise multiple heterogeneous nodes. For example, a node of Tianhe-2 (2nd
most powerful supercomputer) comprises Intel Ivy-Bridge multi-core CPUs and Intel
Xeon Phi many-core accelerators; Piz Daint (3rd) consists of Intel Xeon E5 multi-core
CPUs and NVIDIA Tesla P100 many-core GPUs [66,96].

Programming parallel computing systems, especially heterogeneous ones, is signif-
icantly more complex than programming sequential processors [78]. Programmers are
exposed to various parallel programming languages (often implemented as extensions
of general-purpose programming languages such as C and C++), including, OpenMP
[72], MPI [42], OpenCL [90], NVIDIA CUDA [70], OpenACC [100] or Intel TBB
[97]. Additionally, the programmer is exposed to different architectures with differ-
ent characteristics (such as the number of CPU/GPU devices, the number of cores,
core speed, run-time system, memory and memory levels, cache size). Finding the
optimal system configuration that results in the highest performance is challenging. In
addition to the programmability challenge, heterogeneous parallel computing systems
bring the portability challenge, which means that programs developed for a proces-
sor architecture (for instance, Intel Xeon Phi) may not function on another processor
architecture (such as, GPU). Manual software porting and performance tuning for
various architectures may be prohibitive.

123



Using meta-heuristics and machine learning for software… 901

Existing approaches, discussed in this study, propose several solutions that use
machine learning or meta-heuristics during compile-time and run-time to alleviate
the programmability and performance portability challenges of parallel computing
systems.

3.2 Software optimization approaches

In computer science selecting the best solution considering different criteria from a set
of various available alternatives is a frequent need. Based on what type of values the
model variables can take, the optimization problems can be broadly classified in con-
tinuous and discrete. Continuous optimization problems are concerned with the case
where the model variables can take any value permitted by some given constraints.
Continuous optimization problems are easier to solve. Given a point x , using contin-
uous optimization techniques one can infer information about neighboring points of
x [39].

In contrast, in discrete optimization (also known as combinatorial optimization)
methods the model variables belong to a discrete set (typically subset of integers)
of values. Discrete optimization deals with problems where we have to choose an
optimal solution from a finite number of possibilities. Discrete optimization problems
are usually hard to solve and only enumeration of all possible solutions is guaranteed
to give the correct result. However, enumerating across all available solutions in a
large search space is prohibitively demanding.

Heuristic-guided approaches are designed to solve optimization problems more
quickly by finding approximate solutions when other methods are too slow or fail
to find any exact solution. These approaches select near-optimal solutions within a
time frame (that is, they trade-off optimality for speed). While heuristics are designed
to solve a particular problem (problem-dependent), meta-heuristics can be applied
to a broad range of problems. They can be thought as higher-level heuristics that are
designed to determine a near-optimal solution to an optimization problem, with limited
computation capacity and knowledge about the problem.

In what follows, we first describe the meta-heuristics and list commonly used
algorithms, and thereafter, we describe machine learning in the context of software
optimization.

3.2.1 Meta-heuristics

Meta-heuristics are high-level algorithms that are capable to determine a sufficiently
satisfactory (near-optimal) solution to an optimization problem with limited domain
knowledge and computation capacity. As meta-heuristics are problem-independent
they can be used for a variety of problems. Meta-heuristics algorithms are often used
for the management and efficient use of resources to increase productivity [79,101]. In
cases where the search space is large, exhaustive search, iterative methods, or simple
heuristics are impractical, whereas meta-heuristics can often find good solutions with
less computational effort. Meta-heuristics have shown to provide efficient solution
to different problems, such as the minimum spanning tree (MST), traveling salesman
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Metaheuristics Machine Learning

Regression

Decision Tree

Support Vector Machines

Bayesian

K-Nearest Neighbor

k-Means

Random Forest

Neural Networks

Other Approaches

Linear Programming

Non-Linear Optimization

Dynamic Programming

Quadratic Programming

Fractional Programming

Geometric Programming

...

......

The focus of this paper Not the focus of this paper

Software Optimization Approaches

Control Theory

Simulated Annealing

Genetic Algorithms

Differential Evolution

Ant Colony Opt.

Bee Algorithms

Particle Swarm Opt.

Tabu Search

Harmony Search

Fig. 4 Classification of the software optimization approaches. While there exist many different optimization
approaches, in this study we focus on meta-heuristics and machine learning

problem (TSP), shortest path trees, and matching problems. Selecting the most suitable
heuristic for a specific problem is important to reach a near-optimal solution more
quickly. However, this process requires consideration of various factors, such as the
domain type, search space, computational time, and solution quality [12,65].

In the context of software optimization, the commonly used meta-heuristics include
Genetic Algorithms, Simulated Annealing, Ant Colony Optimization, Local Search,
Tabu Search, and Particle Swarm Optimization (see Fig. 4).

3.2.2 Machine learning

Machine Learning is a technique that allows computing systems to learn (that is,
improve) from the experience (available data). Mitchell [67] defines Machine Learning
as follows, “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E”.

Machine learning programs operate by building a prediction model from a set
of training data, which later on is used to make data-driven predictions, rather than
following hard-coded static instructions. Some of the most popular machine learn-
ing algorithms (depicted in Fig. 4) include regression, decision tree, support vector
machines, Bayesian inference, random forest, and artificial neural networks.

An important process while training a model is the feature selection, because the
efficiency of models depends on the selected variables. It is critical to choose fea-
tures that have significant impact on the prediction model. There are different feature
selection techniques that can find features that contain the most useful information to
distinguish between classes, for example mutual information score (MIS) [27], greedy
feature selection [87], or information gain ratio [45].

Depending on the way the prediction model is trained, machine learning may be
supervised or unsupervised. In supervised machine learning the prediction model
learns from examples that are labeled, which means that the input and the output
are known in the training data set. Supervised learning uses classification techniques
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Fig. 5 Software life-cycle activities. At design and implementation the selection of the programming
languages, models, and the parallelization strategy occurs. We focus on software optimization that occurs
during software compile-time (that includes code optimization and generation), and during run-time (that
includes scheduling and adaptation)

to predict discrete responses (such as, determining whether an e-mail is genuine or
spam, determining whether a tumor is malign or benign), and regression techniques to
predict continuous responses (such as, changes in temperature, fluctuations in power
demand). The most popular supervised learning algorithms for classification problems
include Support Vector Machines, Naive Bayes, Nearest Neighbor, and Discriminant
Analysis, whereas for regression problems algorithms such as Linear Regression,
Decision Trees, and Neural Networks are used. Selecting the best algorithm depends
on the size and type of input data set, the desired output (insight), and how those
insights will be used.

The unsupervised machine learning models have no or very little knowledge of how
the results should look like. Basically, correct results (that is labeled training data sets)
are not used for model training, but the model aims at finding hidden patterns in data
based on statistical properties (for instance, intra-cluster variance) of the training data
sets. Unsupervised learning can be used for solving data clustering problems in various
domains, for example, sequence analysis, market research, object recognition, social
network analysis, and astronomical data analysis. Some commonly used algorithms for
data clustering include K-Means, Hierarchical Clustering, Neural Networks, Hidden
Markov Model, and Density-based Clustering.

3.3 Software optimization at different software life-cycle activities

Software optimization can happen during different activities of the software life-cycle.
We categorize the software optimization activities by the time of their occurrence:
Design and Implementation-time, Compile-time, Run-time (Fig. 5).

During the design and implementation activity, decisions such as selection of the
programming language/model and selection of the parallelization strategy are consid-
ered.
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The compile-time activities include decisions of selecting the optimal compiler
optimization flags and source code transformations (such as loop unrolling, loop
nest optimization, pipelining, and instruction scheduling) such that the executable
program is optimized to achieve certain goals (performance or energy) on a given
context.

The run-time activities include decisions of selecting the optimal data and task
scheduling on parallel computing systems, as well as taking decisions (such as switch-
ing to another algorithm or changing the clock frequency) that help the system to adapt
itself during the program execution and improve the overall performance and energy
efficiency.

While software design and implementation activities are performed by the program-
mer, software activities at compile-time and run-time are completed by tools (such as
compilers and run-time systems). Therefore, in this paper we focus on tool-supported
software optimization approaches that use approximate techniques (machine learning
and meta-heuristics) at compile-time and run-time.

For each of the software optimization life-cycle activities, including Compile-Time

(Sect. 4) and Run-Time (Sect. 5), we will describe the context for software optimization
goals, discuss the state-of-the-art research, and discuss limitations and future research
directions.

3.4 Classification based on architecture, software optimization approach, and

life-cycle activity

In this section we classify the considered scientific publications based on the archi-
tecture, software optimization approach, and life cycle activities.

To provide an overview of the current state of the art, we have grouped the scientific
publications that use machine learning and meta-heuristics for software optimization
of parallel computing systems in the following time periods: 2000–2005, 2006–2011,
and 2012–2017. Each of the periods, correspond to the type of the processors that
were used the most in the TOP list during that time. For example, even though the
first multi-core processor was introduced in 2001 [37], most of the super computers
in TOP500 list during years 2000–2005 comprised multiple single-core processors
[94]. Further filtering and classification of the considered scientific publications, and
visualization of the results in the form of a time-line can be performed using our
on-line interactive tool (see Fig. 1).

Architecture Figure 6 shows a classification of the reviewed papers based on the target
architecture, including multi-node, single-node, grid, and cloud parallel computing
systems. The horizontal axis on the top delineates the common types of processors
used during the corresponding time period. For instance, from 2000 to 2005 grids and
clusters employed single or multiple sequential processors at node level, whereas dur-
ing the period from 2006 to 2011 nodes employed multi-core processors. Accelerators
combined with multi-core processors can be seen during time period 2012–2017. We
may observe that most of the work is focused on optimization of resource utilization
at the node level (single-node). Optimization of the resources of multi-node comput-
ing systems (including clusters) is addressed by several research studies continuously
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Fig. 6 Classification of state-of-the-art work based on the architecture (multi-node, single-node, grid, and
cloud computing systems, as described in Sect. 3.1). Please note that a single paper may target more than
one architecture (for instance, [36,60])

Table 2 Classification of state-of-the-art work based on the intelligent technique (machine learning or
meta-heuristics) used during compile-time and/or run-time of software optimization

Machine learning [17,22,54,69,87,91,
102,103]

[1,5,7,9,15,18,19,23,
24,28,29,34,35,40,
41,46,47,58,76,77,
80,95,98]

[11,16,30,31,31,36,
43,44,51,52,55,57,
60,61,63–
65,71,81,84,99]

Meta-heuristics [2,21,74,75,88,104,
105]

[14,38,85,92,93] [4,43,44,56,62,63,
65]

2000–2005 2006–2011 2012–2017

during the considered periods of time. The optimization of grid computing systems
using machine learning and meta-heuristic approaches has received less attention,
whereas optimization of cloud computing systems has received attention during the
period 2012–2017.
Software optimization approach In Table 2 we classify the selected publications that
use intelligent techniques (such as, machine learning and meta-heuristics) for software
optimization at compile-time and run-time. We may observe that machine learning is
used more often for software optimization during compile-time and run-time compared
to meta-heuristics.

Life-cycle activity A classification of the reviewed papers based on the software
life-cycle activities (including, code optimization, code generation, scheduling, and
adaptation) is depicted in Table 3. We may observe that the scheduling life-cycle activ-
ity has received the most attention, especially during 2012–2017 period. The use of
machine learning and meta-heuristics for code optimization during compile-time has
been addressed by many researchers, especially during the period between 2006 and
2011. Similar trend can be observed for research studies that focus on using intelligent
approaches to optimize code generation. Optimization of software through adaptation
is addressed during the year of 2006–2011.
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Table 3 Classification of state-of-the-art work based on the software life-cycle activities (code optimiza-
tion, code generation, scheduling, and adaptation)

Code Optimization [17,21,69,87,88] [1,18,34,35,38,92,
93,95]

[57,99]

Code Generation [5,7,19,58,77,95] [31,81]

Scheduling [2,22,54,74,75,102–
105]

[7,9,15,23,24,40,41,
76,80,85,98]

[4,11,16,30,31,36,
43,44,51,52,55,56,
60–65,71,84]

Adaptation [91] [28,29,46,47,58]

2000–2005 2006–2011 2012–2017

Please note that a single paper may contribute to more than one software life-cycle activities (for instance,
[7,58])

4 Compile-time

Compiling [3] is the process of transforming source code from one form into another.
Traditionally, compiler engineers exploited the underlying architecture by manually
implementing several code transformation techniques. Furthermore, decisions that
determine whether to apply a specific optimization or not were hard-coded manually.
At each major revision or implementation of new instruction set architecture, the
set of such hard-coded compiler heuristics must be re-engineered (a time-consuming
process). In the modern era, the architectures are continuously evolving trying to bring
higher performance while keeping shorter time to market, therefore developers do not
prefer to do the re-engineering, which requires significant time investment.

Modern parallel computing architectures are complex due to higher core counts,
different multi-threading, memory hierarchy, computation capabilities, and processor
architecture. This disparity of architecture increases the number of available com-
piler optimization flags and makes compilers unable to efficiently utilize the available
resources. Tuning these parameters manually is not just unfeasible, but also introduces
scalability and portability issues. Machine learning and meta-heuristics promise to
address compiler problems, such as, selecting compiler optimization flags or heuristic-
guided compiler optimizations.

In what follows, we discuss the existing state-of-the-art approaches that use machine
learning and meta-heuristics for software optimization for code optimization and code
generation. Thereafter, we discuss the limitations and identify possible future research
directions.

4.1 Code optimization

Code optimization will not change the program behavior but will optimize the code
to reach optimization goals (reducing the execution time, energy consumption, or
required resources).

Compiler optimization techniques include loop unrolling, splitting and collapsing,
instruction scheduling, software pipelining, auto-vectorization, hyper-block forma-
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tion, register allocation, and data pre-fetching [88]. Different device-specific code
optimization techniques may behave differently in various architectures. Furthermore,
choosing more than one optimization technique does not necessarily result in bet-
ter performance, sometimes combination of different techniques may have negative
impact on the final output. Hence, manually writing hard-code heuristics is impracti-
cal, and techniques that intelligently select the compiler transformations that result in
higher application benefits in a given context are required.

Within the scope of this survey, scientific publications that use machine learning
for code optimization at compile time include [1,17,34,35,57,69,87,95,99], whereas
scientific publications that use meta-heuristics for code optimization include [21,88,
92,93]. Table 4 lists the characteristics of the selected primary studies that address
code optimization at compile time. Such characteristics include: the algorithm used
for optimization, the optimization objectives, the considered features that describe the
application being optimized, and type of optimization (on-line or off-line). We may
observe that besides the approach proposed by Tiwari and Hollingsworth [92], the rest
of them focus on off-line optimization approaches and they are based on historical
data (knowledge) that is gathered from previous runs.

RQ1: Software optimization goals for compile-time code optimization:

– loop unrolling; instruction scheduling; partitioning of irregular and stream appli-
cations; determining the best compilation parameters; determining whether
parallelism is beneficial; tuning compiler heuristics;

As we mentioned earlier, different optimizations can be performed during compila-
tion. We may see that some researchers focus on using intelligent techniques to identify
loops that would potentially execute more efficiently when unrolled [69], or selecting
the loop unroll factor that yields the best performance [87]. Instruction scheduling [17],
partitioning strategy for irregular [57] and streaming [99] applications, determining
the list of compiler optimizations that results in the best performance [21,35,92] are
also addressed by the selected scientific publications. Furthermore, Tournavitis et al.
[95] use SVMs to determine whether parallelization of the code would be beneficial,
and which scheduling policy to select for the parallelized code.

RQ2: Software optimization algorithms used for compile-time code optimiza-

tion:

– machine learning - nearest neighbor classifier; support vector machines; decision
trees; ruled set induction; predictive search distribution;

– meta-heuristics - genetic algorithms; hill climbing; greedy algorithm; parallel
rank order;

With regards to the machine learning algorithms used for code optimization, Nearest
Neighbor (NN) classifier [1,57,87,99], Support Vector Machine (SVM) [87,95], and
Decision Tree (DT) [69] are the most popular. Other algorithms, such as Ruled Set
Induction (RSI) [17], and Predictive Search Distribution (PSD) [34,35] are also used
for code optimization during compilation. Whereas, approaches that are based on
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search-based algorithms use Genetic Algorithm (GA), Hill Climbing (HC), Greedy
Algorithm (GrA), and Parallel Rank Ordering (PRO) for code optimization during
compile-time [21,92,93].

RQ3: Considered features during compile-time code optimization:

– loop characteristics - number of memory accesses, arithmetic operations, state-
ments, loop iterations, floating point operations, operands;

– code-block characteristics - number of instructions, branches, calls, stores,
returns, instructions;

– program features - type of nested loop; loop bound; loop stride; nest depth;
– static program features - number of basic blocks in a method, CFG edges,

operations, load/store operations; data dependency; loop and branch probability;
– dynamic program features - number of data accesses, instructions, branches;
– architectural parameters - cache capacity; register capacity;
– application specific parameters; hyper-block formation features; register allo-

cation features; data pre-fetching features;

To achieve the aforementioned objectives, a representative set of program features is
extracted through static code analysis, which are considered to be the most informative
with regards to the program behavior. The selection of such features is closely related
to the optimization goals. For example, to identify loops that benefit from unrolling,
Monsifrot et al. [69] use loop characteristics such as, number of memory accesses,
arithmetic operations, code statements, control statements, and loop iterations. Such
loop characteristics are also used to determine the loop unroll factor [87]. Character-
istics related to a specific code block (such as number of instructions, branches, calls,
stores) are used when deciding whether applications benefit from instruction schedul-
ing [17]. Determining the partitioning strategy of irregular applications is based on
static program features related to basic block, loop characteristics, and the data depen-
dency [57]. Features such as pipeline depth, load/store operations per instruction,
number of computations, and computation-communication ratio are used when deter-
mining partitioning strategy of streaming applications [99]. Tiwari and Hollingsworth
[92] consider architectural specifications such as cache and register capacity, in addi-
tion to the application specific parameters, such as tile size in a matrix multiplication
algorithm.

4.2 Code generation

The process of transforming code from one representation into another one is called
code generation. We call “machine code generation” the code transformation from the
high level to low level representation (that is ready for execution), whereas “source
code generation” indicates in this paper the source-to-source code transformation.

In the context of parallel computing, a source-to-source compiler is an automatic
parallelization compiler that can automatically annotate a sequential code with paral-
lel code annotations (such as, OpenMP pragma directives or MPI code statements).
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Source-to-source compilers may alleviate the portability issue, by enabling to auto-
matically translate the code into an equivalent representation of the code that is ready
to be compiled and executed on target architectures.

In this section, we focus on source code generation techniques that can:

– generate device-specific code from other code representations,
– generate multiple implementations of the same code, or
– automatically generate parallel code from sequential code.

During the process of porting applications, programmers are faced with the fol-
lowing problems: (1) demand of device-specific knowledge and API; (2) difficulties
to predict whether the application will have performance benefits before it is ported;
(3) there exist a large number of programming languages and models that are device
(types and manufacturer) specific.

To address such issues, researchers have proposed different solutions. In Table 5, we
list the characteristics of these solutions such as, optimization algorithm, optimization
objectives, and considered features during optimization.

RQ1: Software optimization goals for compile-time code generation:

– generating device-specific code; mapping applications to accelerating devices;
generating multi-threaded loop versions; source-to-source transformations;
determining the list of program method transformations; enabling writing multi-
ple versions of algorithms and algorithmic choices at language level; auto-tuning
algorithmic choices and switching between them during program execution;
determining optimal work distribution between CPU and GPU.

The optimization objectives are derived from the aforementioned portability chal-
lenges. For example, to alleviate the demand for device-specific knowledge, Beach and
Avis [7] aim to identify candidate kernels that would likely benefit from paralleliza-
tion, generate device-specific code from high-level code, and map to the accelerating
device that yields the best performance. Similarly, Fonseca and Cabral [31] propose
the automatic generation of OpenCL code from Java code. Ansel et al. [5] propose the
PetaBricks framework that enables writing multiple versions of algorithms, which are
automatically translated into C++ code. The runtime can switch between the avail-
able algorithms during program execution. Luk et al. [58] introduce Qilin that enables
source-to-source transformation from C++ to TBB and CUDA. It uses machine learn-
ing to find the optimal work distribution between the CPU and GPU on a heterogeneous
system.

RQ2: Software optimization algorithms used for compile-time code generation:

– machine learning - decision trees; near neighbors; linear regression;

Decision Trees (DT) [7,31], k-Nearest Neighbor (kNN) [19], Cost Sensitive Deci-
sion Table (CSDT), Naive Bayes (NB), Support Vector Machine (SVM), Multi-layer

123



912 S. Memeti et al.

T
a

b
le

5
C

ha
ra

ct
er

is
tic

s
of

th
e

ap
pr

oa
ch

es
th

at
us

e
m

ac
hi

ne
le

ar
ni

ng
or

m
et

a-
he

ur
is

tic
s

fo
r

co
de

ge
ne

ra
tio

n

R
ef

er
en

ce
s

A
lg

or
ith

m
O

bj
ec

tiv
es

Fe
at

ur
es

O
n/

O
ff

-l
in

e

[7
]

D
T

G
en

er
at

e
de

vi
ce

-s
pe

ci
fic

co
de

fr
om

hi
gh

-l
ev

el
co

de
;

m
ap

ap
pl

ic
at

io
ns

to
ac

ce
le

ra
tin

g
de

vi
ce

s.
L

oo
p

(k
er

ne
l)

ch
ar

ac
te

ri
st

ic
s

(d
at

a
pr

ec
is

io
n,

am
ou

nt
of

co
m

pu
ta

tio
n

pe
rf

or
m

ed
an

d
m

em
or

y
ac

ce
ss

ch
ar

ac
te

ri
st

ic
s)

O
ff

-l
in

e
(s

up
.)

[1
9]

kN
N

G
en

er
at

e
m

ul
ti-

th
re

ad
ed

lo
op

ve
rs

io
ns

;s
el

ec
tt

he
m

os
ts

ui
ta

bl
e

on
e

at
ru

n-
tim

e
St

at
ic

co
de

fe
at

ur
es

(l
oo

p
ne

st
de

pt
h,

#
ar

ra
ys

us
ed

);
dy

na
m

ic
fe

at
ur

es
(d

at
a

se
ts

iz
e)

of
f-

lin
e

(s
up

.)

[3
1]

N
B

,S
V

M
,M

PL
,C

SD
T,

L
R

So
ur

ce
-t

o-
so

ur
ce

tr
an

sf
or

m
at

io
n

of
da

ta
-p

ar
al

le
l

ap
pl

ic
at

io
ns

;p
re

di
ct

th
e

ef
fic

ie
nc

y
an

d
se

le
ct

th
e

su
ita

bl
e

de
vi

ce
.

St
at

ic
pr

og
ra

m
fe

at
ur

es
(o

ut
er

/in
ne

r
ac

ce
ss

/w
ri

te
;

ba
si

c
op

er
at

io
ns

;…
);

dy
na

m
ic

pr
og

ra
m

fe
at

ur
es

(d
at

a-
to

;d
at

a-
fr

om
;…

)

O
ff

-l
in

e
(s

up
.)

[ 5
]

–
E

na
bl

e
w

ri
tin

g
m

ul
tip

le
ve

rs
io

ns
of

al
go

ri
th

m
s

an
d

al
go

ri
th

m
ic

ch
oi

ce
s

at
th

e
la

ng
ua

ge
le

ve
l;

au
to

-t
un

in
g

of
th

e
sp

ec
ifi

ed
al

go
ri

th
m

ic
ch

oi
ce

s;
sw

itc
h

be
tw

ee
n

th
e

av
ai

la
bl

e
al

go
ri

th
m

s
du

ri
ng

pr
og

ra
m

ex
ec

ut
io

n

–
O

ff
-l

in
e

[5
8]

L
R

D
et

er
m

in
e

th
e

op
tim

al
w

or
k

di
st

ri
bu

tio
n

be
tw

ee
n

th
e

C
PU

an
d

G
PU

R
un

tim
e

al
go

ri
th

m
pa

ra
m

et
er

s
(i

np
ut

si
ze

)
an

d
ha

rd
w

ar
e

co
nfi

gu
ra

tio
n

pa
ra

m
et

er
s

O
n-

lin
e

[ 8
1]

–
D

is
tr

ib
ut

e
da

ta
-p

ar
al

le
lp

or
tio

ns
of

a
pr

og
ra

m
ac

ro
ss

he
te

ro
ge

ne
ou

s
co

m
pu

tin
g

re
so

ur
ce

s;
–

–

[ 7
7]

L
R

PR
D

et
er

m
in

e
th

e
lis

to
f

pr
og

ra
m

m
et

ho
d

tr
an

sf
or

m
at

io
ns

th
at

re
su

lt
in

lo
w

er
co

m
pi

la
tio

n
tim

e

G
en

er
al

pr
og

ra
m

fe
at

ur
es

(#
in

st
ru

ct
io

ns
;#

lo
ad

/s
to

re
op

er
at

io
ns

;#
flo

at
op

er
at

io
ns

);
lo

op
-b

as
ed

fe
at

ur
es

(#
lo

op
s

ty
pe

s;
#

lo
op

st
at

em
en

ts
)

O
ff

-l
in

e
(s

up
.)

Pl
ea

se
no

te
th

at
,b

ec
au

se
of

sp
ac

e
lim

ita
tio

n,
w

e
do

no
tl

is
ta

ll
of

th
e

co
ns

id
er

ed
op

tim
iz

at
io

n
fe

at
ur

es

123



Using meta-heuristics and machine learning for software… 913

Perceptron (MPL) [31], Linear Regression (LR) [31,58], and Logistic Regression
(LRPR) [77] machine learning algorithms are used during the code-generation.

RQ3: Considered features during compile-time code generation:

– loop characteristics - data precision; amount of computation performed; mem-
ory access characteristics; loop type; loop statement

– general program features - number of instructions; load/store operations; float-
ing point operations

– static code features - loop nest depth; number of arrays; outer/inner access/write;
basic operations;

– dynamic features - data set size; data-to; data-from;
– runtime algorithm parameters; hardware configuration parameters

Beach and Avis [7] considered static loop characteristics to achieve their objectives,
whereas Chen and Long [19] use both static and dynamic program features to generate
the multi-threaded versions of a selected loop, and then select the most suitable loop
version at run-time. Combination of static code features (extracted at compile time),
and dynamic features (extracted at run-time) are also used to determine the most suit-
able processing device for a specific application [31]. To determine the best workload
distribution of a parallel application, Luk et al. [58] consider algorithm parameters
and hardware configuration parameters. Pekhimenko and Brown [77] consider gen-
eral and loop-based features to determine the list of program method transformation
during code generation that would reduce the compilation time.

4.3 Observations, challenges, and future directions

In this section, we first discuss the advantages of meta-heuristics and machine learning
methods for software optimization at compile-time, followed by a discussion about
their limitations. Thereafter, we discuss the future directions.

In Table 6, we list each of the machine learning and meta-heuristic methods used
for compile-time software optimization. For each of the used methods, we provide the
advantages, such as performance improvement, speedup, and prediction accuracy.

While most of the approaches discussed in this review present significant perfor-
mance improvement, which is important towards having intelligent compilers that
require less engineering effort to provide satisfactory code execution performance,
indications that there is still room for improvement can be observed in Stephenson
et al. [88] and andWang and O’boyle [99].

Limitations of the compile-time software optimization approaches that use machine
learning or meta-heuristics are listed in Table 7, which include: (1) limitation to a
specific programming language or model [95], (2) forcing developers to use extra
annotations on their code [58], or use not widely known parallel programming lan-
guages [5], (3) focusing on single or simpler aspects of optimizations techniques (ex:
loop unrolling, unrolling factor, instruction scheduling) [17,69,87], whereas more
complex compiler optimizations (that are compute-intensive) are not addressed suffi-
ciently.
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Furthermore, optimizations based on features derived from static code analysis pro-
vide poor global characterization of the dynamic behavior of the applications, whereas
using dynamic features requires application profiling, which adds additional execution
overhead to the program under study. This additional time can be considered negligi-
ble for applications that are executed multiple times after the optimization, however
it represents overhead for single-run applications. Approaches that generate many
multi-threaded versions of the code [19] might end up with dramatic code increases
that make difficult the applicability to embedded parallel computing systems with lim-
ited resources. Adaptive compilation techniques [21] add non-negligible compilation
overhead.

Future research should address the identified shortcomings in this systematic review
by providing intelligent compiler solutions for general-purpose languages (such as,
C/C++) and compilers (for instance, GNU Compiler Collection) that are widely used
and supported by the community. Many compiler optimization issues are complex and
require human resources that are usually not available within a single research group
or project.

5 Run-time

The run-time program life-cycle is the time during which the program is running
(that is, being executed) and it is also known as execution-time. Software systems
that enable running programs to interact with the execution environment are known
as run-time systems. The run-time environment contains environment information,
such as, the available resources, existing workload, and scheduling policy. A running
program can access the execution environment information via the run-time system.

In the past, the choice of architecture and the algorithms was considered during the
design and implementation phase of software life-cycle. Nowadays, there are various
multi- and many-core processing devices, with different performance and energy con-
sumption characteristics. Furthermore, there is no single algorithm implementation
that can exploit the full processing potential of these diverse processing elements.
Often it is not possible to know if an application performs better on device X or Y
before the execution. The performance of a program is determined by the properties
of the execution context (program input, type of available processing elements, cur-
rent system utilization…) that is known at run-time. Some programs perform better
on device X when the input size is large enough, but worse for smaller input sizes.
Hence, decisions whether a program should be run on X or Y, or which algorithm to
use are postponed to run-time.

In this study, we focus on optimization methods used in different run-time systems
that use machine learning or meta-heuristics to optimize the program execution. Such
run-time systems may be responsible for partitioning programs into tasks and schedul-
ing these tasks to different processing devices, selecting the most suitable device(s) for
a specific task, selecting the most suitable algorithm or the size of the input workload,
selecting the number of processing elements or clock frequency, and many more differ-
ent system run-time configuration parameters to achieve the specified goals including
the performance, energy efficiency, and fault tolerance. Specifically, we focus on two
major run-time activities: scheduling and adaptation.
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In what follows, we discuss the related state-of-the-art run-time optimization
approaches for scheduling and adaptation. Thereafter, we summarize the limitations
of the current approaches and discuss possible future research directions.

5.1 Scheduling

According to the Cambridge Dictionary,1 scheduling is “the job or activity of planning
the times at which particular tasks will be done or events will happen”. In context of
this paper, we use the term scheduling to indicate mapping the tasks onto the pro-
cessing elements and determining the order of task execution to minimize the overall
execution time.

Scheduling may strongly influence the performance of parallel computing systems.
Improper scheduling can lead to load imbalance and consequently to sub-optimal
performance. Researchers have proposed different approaches that use meta-heuristics
or machine learning to find the best scheduling within a reasonable time.

Based on whether the scheduling algorithms can modify the scheduling policy
during program execution, generally scheduling algorithms are classified in static and
dynamic.

5.1.1 Static scheduling

Static scheduling techniques retain an unchanged policy until the end of program
execution. Static approaches assume that the number of tasks is fixed, known before
execution starts, and that accurate information of their running times is known. Static
approaches usually use analytical models to estimate the computation and communi-
cation cost, where the work distribution is performed based on these estimations.
The program execution time is essential for job scheduling. However, accurately
predicting/estimating the program execution time is difficult to achieve in shared
environments where system resources can dynamically change over time. Inaccurate
predictions may lead to performance degradation [20].

Table 8 lists the characteristics (such as optimization algorithm, objective, and
features) of scientific publications that use machine learning and/or meta-heuristics
for static scheduling.

RQ1: Software optimization goals for run-time static scheduling:

– mapping program parallelism to multi-core architectures; determining the opti-
mal number of threads; mapping applications to the most appropriate processing
device; reducing memory latency and contention; mapping threads to specific
cores; determining workload distribution on heterogeneous systems; determin-
ing near-optimal system configuration parameters;

With regards to static scheduling, the attention of recent research that use machine
learning and meta-heuristics is in the following optimization objectives: mapping pro-
gram parallelism to multi-core architectures [98], mapping applications to the most

1 Cambridge Dictionary, http://dictionary.cambridge.org/dictionary/english/scheduling.
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appropriate processing device [40,71], mapping threads to specific cores [15], and
determining workload distribution on heterogeneous parallel computing systems [62–
65].

RQ2: Software optimization algorithms used for run-time static scheduling:

– machine learning - artificial neural networks; support vector machines; (boosted)
decision trees; logistic; multi-layer perceptron; IB1; IBk; KStar; Random Forest;
LogitBoost; multiclass classifier; NNge; ADTree; random tree;

– meta-heuristics - simulated annealing; genetic algorithms;

To achieve the aforementioned optimization objectives, machine learning algorithm
such as, Artificial Neural Networks (ANN), Support Vector Machines (SVM), and
(Boosted) Decision Trees (BDTR) are used [15,40,64,98]. An approach that combines
a number of machine learning algorithms, including, Logistic (L), Multilayer Per-
ceptron (MP), IB1, IBk, KStar, Random Forest, Logit Boost, Multi-Class-Classifier,
Random Committee, NNge, ADTree, and RandomTree, to create an active-learning
query-committee with the aim to reduce the required amount if training data is pro-
posed by Ogilvie et al. [71]. A combination of Simulated Annealing (SA) and boosted
decision tree regression to determine near optimal system configurations is proposed
by Memeti and Pllana [63]. The use of Genetic Algorithms (GA) for task scheduling
has been extensively addressed by several researchers [2,14,104,105].

RQ3: Considered features during run-time static scheduling:

– static program features - number of static instructions; number of load/store
operations; number of branches; barriers; memory accesses; compute-memory
ratio; transaction time ratio; transaction abort ratio; conflict detection and reso-
lution policy;

– data and dynamic features - L1 data cache miss rate; branch miss rate;
– hardware characteristics - number of threads, cores, threads per core; thread

affinity;
– system configuration parameters - input size; workload fraction on host and

accelerating devices;

The list of considered system features for optimizing of parallel computing systems
is closely related to the optimization objectives, target applications and architecture.
For example, Castro et al. [15] consider transaction time and abort ratio, conflict detec-
tion and resolution policy to map thread to specific cores and reduce memory latency
and contention in software transactional memory applications running on multi-core
architectures. Static code features, such as number of instruction, memory operations,
math operations, and branches, are considered during the mapping of applications to
the most suitable processing devices [40,98]. While such approaches consider appli-
cation specific features, researchers have demonstrated positive improvement results
in approaches that do not require code analysis. Instead, they rely on features such as
the available system resources and program input size during the optimization process
(that is determining the workload distribution of data-parallel applications) [62–64].
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5.1.2 Dynamic scheduling

Dynamic scheduling algorithms take into account the current system state and modify
themselves during run-time to improve the scheduling policy. Dynamic scheduling
does not require prior knowledge of all task properties. To overcome the limitations
of the static scheduling, various dynamic approaches are proposed, including work
stealing, partitioning and assigning tasks on the fly, queuing systems, and task-based
approaches. Dynamic scheduling is usually harder to implement; however, the perfor-
mance gain may be better than static scheduling.

Table 9 lists the characteristics (such as optimization algorithm, objective, and
features) of scientific publications that use machine learning and/or meta-heuristics
for dynamic scheduling.

RQ1: Software optimization goals for run-time dynamic scheduling:

– mapping tasks to processing devices; partitioning tasks between performance
clusters and the cloud; determining resource allocation; predicting thread map-
ping strategy; predicting the optimal number of threads; improving scheduling
algorithms; determining scheduling policy; minimizing the make-span; mapping
computation kernels to heterogeneous GPU accelerated systems; determining
optimal system configuration; load balancing; determining performance aspects,
such as execution time ad power consumption; selecting the best algorithm
implementation variant; reducing the number of training data required to build
prediction models;

With regards to the optimization objectives, considered scientific publications
aim at: (1) determining the optimal number of threads for a given application
[30,41,102,103]; (2) determining the application execution time [9,23,51,52,54];
(3) mapping tasks to processing devices [4,15,76,80]; (4) partitioning tasks between
high performance clusters [60]; (5) predicting resource allocation in the cloud
[61]; (6) improving scheduling algorithms [36,43]; (7) minimizing the make-span
[11,24,44,74,75,85,104]; (8) selecting near optimal system configurations [56]; and
(9) reducing the number of training examples required to build prediction models [55].

RQ2: Software optimization algorithms used for run-time dynamic scheduling:

– machine learning - artificial neural networks; regression and filtering techniques;
support vector machines; (boosted) decision trees; logistic; multi-layer percep-
tron; IB1; IBk; KStar; Random Forest; LogitBoost; multiclass classifier; NNge;
ADTree; random tree; dispatch tables; Naive Bayesian classifier; decision dia-
grams;

– meta-heuristics - (adaptive) greedy algorithm; simulated annealing; genetic
algorithms; hill climbing; particle swarm optimization;

Artificial neural network (ANN) [30,41,43,44], regression (LR, QR, PR) [9,24,
36,52,54], support vector machines (SVM) [23,51,76], and decisiontrees (DT) [16,
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23,51,55] are the most popular machine learning algorithms used for optimization
in the scientific publications considered in this study. Whereas, genetic algorithms
(GA) [44,74,75,104], greedy-based algorithms (GrA) [4,60], hill-climbing (HC) [56],
particle swarm optimization (PSO) [85], and simulated annealing (SA) [85] are used
as heuristic based optimization approaches for dynamic scheduling.

RQ3: Considered features during run-time dynamic scheduling:

– static and dynamic features - number of load/store operations; number of instruc-
tions and branches; number of processors and workload threads; run-queue
length;

– task related features - number of tasks in the queue; machine ready time; esti-
mated task execution time; task performance; arrival time; dependency;

– runtime information - metrics of a process and its behavior; last level cache
misses; job arrival time; running jobs; data transfers; inter-thread data locality;
instruction mix and load imbalance; execution time; data-transfer time; fitness
function;

– application specific and workload characteristics - transactional time and abort
ratio; conflict detection and resolution policy; required resources; input data;
number of mappers and reducers in map-reduce applications;

– hardware characteristics - machine computing capability; occupied resources;
platform features; network properties; processor properties;

Approaches such as [16,56,60,61,102,103] focus on features collected dynami-
cally during program execution, such as, estimated execution time determined through
analysis of profiling data, information related to tasks (arrival time, number of cur-
rently running tasks). Whereas other approaches combine static features collected
at compile-time with dynamic ones collected at run-time [30,43,74–76], program
input parameters, and hardware related information [11,24,41,54,80]. Similar to
the static scheduling techniques, the selection of such features is closely related to
the optimization objectives. For example, Zhang et al. [102,103] consider the inter-
thread data locality when tuning OpenMP applications for hyper-threaded SMPs;
Page and Naughton [74,75] consider task properties, such as, task arrival time and
task dependency, when scheduling dynamically tasks in heterogeneous distributed
systems. Features such as security demands, workload of tasks, and the output size are
considered to train the ANN for optimization of scheduling process and maximization
of resource usage in the cloud [44].

5.2 Adaptation

According to the Cambridge Dictionary,2 adaptation is “the process of changing to suit
different conditions”. In this paper, we use the term adaptation to refer to the property of
systems that are capable of evaluating and changing their behavior to achieve specified
goals with respect to performance, energy efficiency, or fault tolerance. In dynamic

2 Cambridge Dictionary, http://dictionary.cambridge.org/dictionary/english/adaptation.
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environments, modern parallel computing systems may change their behavior by:
(1) changing the number of used processing elements to optimize system resource
allocation; (2) changing the algorithm or implementation variant that yields to better
results with respect to the specified goals; (3) reducing the quality (accuracy) of the
output to meet the performance goals; or (4) changing the clock frequency to reduce
energy consumption.

The studied literature in this paper provide examples that adaptation (also referred
to as self-adaptation) proved to be an effective approach to deal with the complex-
ity, variability, and dynamism of modern parallel computing systems. Table 10 lists
the characteristics (such as, adaptation method and objectives, monitored and tuned
parameters) of the scientific publications that use adaptation for software optimization
of parallel computing systems.

RQ1: Software optimization goals for run-time adaptation:

– selecting the most suitable algorithm implementation; applying user defined
actions to change the program behavior; adapting lock’s internal implementa-
tion mechanisms; determining the ideal data structure knob settings; adaptive
mapping of computations to processing elements; adapting applications to meet
the user defined goals;

With regards to the adaptation objectives, Thomas et al. [91] use a custom adaptation
loop to adaptively select the most suitable algorithm implementation for a given input
data set and system configuration. Hoffmann et al. [46,47] use an observe-decide-act
(ODA) feedback loop to adaptively apply user defined actions to change the program
behavior in favor of achieving some user-defined goals, such as energy efficiency and
throughput. Adaptation methods are used in the smart-locks library [28], which can
change its behavior at run-time to achieve certain goals. Similarly, in [29] adaptation
methods are used for optimizing data structure knobs. Adaptive mapping of computa-
tions to the processing units is proposed by Luk et al. [58]. The Antarex [84] project
aims at providing means for application tuning and adaptation for energy efficient
heterogeneous high-performance computing systems, by providing a domain specific
language that allows specifying adaptation goals at compile-time.

RQ2: Software optimization algorithms used for run-time adaptation:

– machine learning - decision trees; reinforcement learning; linear regression;
– other - custom adaptation loop; observe-act-decide loops; lock acquisition

scheduling;

During the process of adaptation, all of the approaches proposed in the consid-
ered scientific publications, have at least three components of an adaptation loop,
including monitoring, deciding, and acting. For example, Thomas et al. [91] monitor
architecture and environment parameters, then uses a decision tree to analyze such
information, and perform the required changes (in this case selecting an algorithm
implementation). Similarly, Hoffmann et al. [47] use the so called observe-decide-act
(ODA) feedback loop to monitor performance related information (retrieved using the
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application heartbeats [46]) and use the heart-rate to take some user defined actions,
such as adjusting the clock speed, allocating cores, or change the algorithm. Reinforce-
ment learning (RL), an on-line machine learning algorithm, is used to help with the
adaptation decisions in both smart-locks [28] and smart data-structures [29], whereas
linear regression (LR) is used by Luk et al. [58] for choosing the mapping scheme of
computations to processing elements.

RQ3: Considered features during run-time dynamic scheduling:

– hardware characteristics - available memory; cache size; number of processors;
resource availability

– performance characteristics - heartbeat reward signal; throughput; external per-
formance monitors; execution time;

– contextual information; requirements;

In Table 10 we list two types of parameters, the monitored parameters, used to
evaluate whether adaptation goals have been met, and tuned parameters, which are
basically defined actions that will change the program behavior until the desired goals
are achieved. For monitoring, architecture and environment variables (such as, avail-
able memory, cache size, number of processors), and performance characteristics are
considered by Thomas et al. [91]. Performance related information retrieved from the
heartbeats monitor are used as monitoring parameters in the following scientific articles
[28,29,47]. Luk et al. [58] rely on the execution time of parts of the program, whereas
the Antarex framework uses contextual information, requirements, and resource avail-
ability for monitoring the program behavior. As tuning parameters, the following are
considered, selecting the algorithm implementation [47,91], adjusting the clock speed,
core allocation, select algorithm [47], change lock scheduling policy [28], adjust the
scancount [29], change mapping scheme [58], and altering resource allocation and
task mapping [84].

5.3 Observations, challenges and research directions

In this section, we first discuss the advantages of meta-heuristics and machine learning
methods for software optimization at run-time, followed by a discussion about their
limitations. Thereafter, we discuss the future directions.

In Table 11, we list each of the machine learning and meta-heuristic methods used
for run-time software optimization. For each of the used methods, we provide the
advantages, including performance improvement, speedup, or prediction accuracy.
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Table 11 Advantages of meta-heuristics and machine learning methods for run-time software optimization

Method Advantages

Machine Learning Artificial Neural
Network

Emani et al. [30] report speedup of up to 3.2×

compared to OpenMP default scheme, and 2.3×

compared to Hill Climbing on-line adaptation
technique. Grzonka et al. [43] show that the ANN can
be used to reduce the time required to find the best
possible solutions by approximately 30–40%. Grewe
et al. [41] show that their neural network is aware of
existing workload and can reduce the slowdown to
existing workload from 4.5 to 0.5% at a cost of
reducing the speedup from 1.66× to 1.59×

Support Vector
Machines

Grewe and O’Boyle [40] report performance
achievement of 80.6% compared to the optimal one.
Wang and O’Boyle [98] use ANN and SVM to
determine the best number of threads and show
performance achievements of up to 96% compared to
the optimal performance. Kessler and Löwe [51] show
that the SVMs can be used to select the best
optimization variant with 0% inaccuracy, however the
decision overhead is high

Decision Trees Castro et al. [15] show performance improvement of up
to 18.46% compared to the worst case scenario.
Memeti and Pllana [64] can determine a near-optimal
workload distribution on heterogeneous system,
which results in performance improvement of up to
35.6× compared to sequential version. Thomas et al.
[91] show that a performance accuracy between 86
and 100% is capable to dynamically optimize the
execution time by choosing the most suitable
algorithm in a given context

Regression Gaussier et al. [36] can predict the execution time,
which help to achieve up to 28% makespan reduction.
Zhang et al. [103] show performance improvement up
to 27% when using regression techniques to predict
the optimal number of threads and scheduling policy.
Luk et al. [58] use regression techniques to map
computations to processing units, which result in
performance improvement up to 40% compared to
mapping always to CPU, 25% compared to
GPU-always, and within 94% of the near optimal
mapping

Reinforcement
Learning

Eastep et al. [28] reported up to 1.2× speedup compared
to other approaches for lock acquisition scheduling.
Eastep et al. [29] show the ability to adapt scancount
to changing application needs, which result in up to
1.5× speedup compared to state-of-the-art approaches
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Table 11 continued

Method Advantages

Meta-heuristics Simulated Annealing Memeti and Pllana [63] use simulated annealing to
optimize the workload distribution on heterogeneous
systems. By evaluating only about 5% of all possible
configurations it can achieve average speedup of 1.6×

and 2× compared with the host-only and device-only
execution

Genetic Algorithms Zomaya and Teh [104] show that GA performs better
than First Fit for dynamic scheduling using various
number of tasks and available processing elements.
Page and Naughton [74,75] show that their
evolutionary based scheduler outperforms other
schedulers

Greedy Algorithm Mantripragada et al. [60] predicts the application
execution time, and allows to dynamically shift part of
the workload from the cluster to be computed in the
cloud, in order to meet the deadline. Albayrak [4]
show that nine out of ten times the mapping algorithm
based on GrA performs better than single-device
mapping

Hill Climbing Li et al. [56] shows performance improvement of up to
30% compared to the default configurations used by
YARN

Particle Swarm
Optimization

Sivanandam et al. [85] uses PSO and SA for task
scheduling. The hybridization of these algorithms
outperforms other algorithms, including GA

At run-time, many execution environment parameters influence the performance
behavior of the program. Exploring this huge parameter space is time consuming
and impractical for programs with long execution times and large demand for sys-
tem resources. Different computing capabilities and energy efficiency of processing
elements of heterogeneous parallel computing systems make the scheduling a diffi-
cult challenge. Table 12 lists the limitations of the run-time software optimization
approaches for parallel computing systems considered in this paper.

We may observe that some of the existing scheduling techniques often assume that
the program is executed on a dedicated system and all system resources are available
for use. The approach proposed by Grewe et al. [41] propose a co-scheduling tech-
nique, which considers that the resources are shared with other applications. However,
the adaptation occurs only when the application is executed, but not during program
execution. We believe that better results could be achieved if they consider to adapt to
changes while the application is being executed. Another issue is that commonly used
scheduling techniques ignore slow processing elements due to their low performance
capabilities. Mapping computations always to processing units that offer higher per-
formance capability is not optimal, because slower processing elements may never get
work to perform. Furthermore, most of the reviewed approaches target specific features
of the code only (for example, loops), or are limited to specific programming models
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and applications (data-bound or compute-bound). Many static scheduling approaches
require retraining of the prediction model for each new architecture, limiting their
general use because training requires a significant amount of data that is not always
available. Approaches that reduce the amount of training data require implementa-
tion of multiple machine learning algorithms (for instance, [71]). Approaches that
use a single execution [21,56] by trying various system configurations during the
program execution are promising, however the introduced overhead is not negligible.
Self-adaptation techniques require the developer to add additional information into the
code so that the software would be able to monitor the system and take decisions. Even
though such code is not difficult to add for the application programmer, the software
development becomes more complex while talking decisions based on these results.
Furthermore, such approaches introduce overhead at runtime, because they need to
run for a certain amount of time until enough data is collected for the framework to
be able to take the most optimal decisions.

Future research should aim at reducing the scheduling and adaption overhead for
dynamic approaches. Run-time optimization techniques for heterogeneous systems
should be developed that utilize all available computing resources to achieve the opti-
mization goals. There is a need for robust run-time optimization frameworks that are
useful for a large spectrum of programs and system architectures. Furthermore, tech-
niques that reduce the amount of data generated from system monitoring are needed
in particular for extreme-scale systems.

6 Conclusion

In this article, we have conducted a systematic literature review that describes
approaches that use machine learning and meta-heuristics for software optimization
of parallel computing systems. We have classified approaches based on the software
life-cycle activities at compile-time and run-time, including the code optimization
and generation, scheduling, and adaptation. We have discussed the shortcomings of
existing approaches and provided recommendations for future research directions.

A high-level overview is provided in Table 13, which lists the advantages and
limitations of the compile-time and run-time software optimization approaches that
use machine learning and meta-heuristics. Our analysis of the reviewed literature
suggests that the use of machine learning and meta-heuristic based techniques for
software optimization of parallel computing systems is capable of delivering perfor-
mance comparable to the manual code optimization or task scheduling strategies in
specific cases. However, many existing solutions are limited to a specific program-
ming language and model, type of application, or system architecture. There is a need
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for software optimization frameworks that are applicable to a large spectrum of pro-
grams and system architectures. Future efforts should focus on developing solutions
for widely used general-purpose languages (such as, C/C++) and compilers that are
used and supported by the community.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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