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Abstract 

Background: Volunteered geographic information (VGI) has strong potential to be increasingly valuable to scientists 

in collaboration with non-scientists. The abundance of mobile phones and other wireless forms of communication 

open up significant opportunities for the public to get involved in scientific research. As these devices and activities 

become more abundant, questions of uncertainty and error in volunteer data are emerging as critical components for 

using volunteer-sourced spatial data.

Methods: Here we present a methodology for using VGI and assessing its sensitivity to three types of error. More 

specifically, this study evaluates the reliability of data from volunteers based on their historical patterns. The spe-

cific context is a case study in surveillance of tsetse flies, a health concern for being the primary vector of African 

Trypanosomiasis.

Results: Reliability, as measured by a reputation score, determines the threshold for accepting the volunteered 

data for inclusion in a tsetse presence/absence model. Higher reputation scores are successful in identifying areas of 

higher modeled tsetse prevalence. A dynamic threshold is needed but the quality of VGI will improve as more data 

are collected and the errors in identifying reliable participants will decrease.

Conclusions: This system allows for two-way communication between researchers and the public, and a way to 

evaluate the reliability of VGI. Boosting the public’s ability to participate in such work can improve disease surveillance 

and promote citizen science. In the absence of active surveillance, VGI can provide valuable spatial information given 

that the data are reliable.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
We are standing on the apex of a scientific transition as 

technological and communications barriers are toppled 

[1, 2], and the distinction between amateur and profes-

sional scientist is eroded. Neogeography characterizes 

the “blurring of the distinctions between producer, com-

municator, and consumer of geographic information”; the 

separation of scientist and layperson, expert and novice, 

is obscured as citizens engage in the generation of new 

knowledge [3]. As citizens engage in Science, we need to 

reconsider our traditional notions of authority, expertise, 

and purpose.

Neogeography, a type of citizen science, is the democ-

ratization of geographic tools and methods for non-

traditional mapmaking. It has garnered a great deal of 

attention in the literature as we struggle to conceptual-

ize the nature of “geographic expertise”; however, the 

involvement of citizens in science has long been estab-

lished [3, 4]. Participatory science has sought to involve 

citizens directly in academic research and related exploits 

[5–7] on the premise that citizens are more informed 

actors with respect to their local environment than 

researchers operating externally. Citizens are perceived 

to hold authority through experience and status, and are 
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acknowledged for their capacity to convey unique under-

standing, or indigenous knowledge [1, 5].

With the advent of Web 2.0 [8, 9] and the widespread 

availability of new technologies [6, 10], citizens are 

increasingly exposed to geographical information. Citi-

zens also increasingly volunteer spatially explicit (geo-

graphical) information that is of relevance or interest to 

them, often integrating this information with existing 

datasets, or mashups, utilizing it for their own gain [4, 

11]. Boulos [12, 13] first introduced this concept of col-

laboratively developed spatial information as the “Wikifi-

cation of GIS by the masses”. Goodchild coined the term 

“volunteered geographic information” (VGI) to refer to 

spatial data that is contributed by ordinary citizens, irre-

spective of their training in scientific methods [14]. �e 

notion of VGI grew out of recognition of the limitations 

of traditional methodologies for adequately mapping and 

assembling spatial information around the world that 

provided both good coverage and fine temporal resolu-

tion [15–17]. As a framework, VGI encompasses citizen 

participation from a range of social classes and comput-

ing practices with the express purpose of harnessing the 

collective intelligence [5, 18]; it builds on the notion that 

data can be shaped by social and political processes and 

an individual’s expertise, context, and spatial awareness 

[15, 19–21]. Local knowledge is crucial to an accurate 

geographic description of communities and social groups, 

involving the citizen in the process of data collection.

VGI in practice is now commonplace, e.g. Google 

Maps. Arguably one of the most successful, if not the 

most widely cited, outlet for VGI has been Wikimapia 

[14, 16]. Here individuals contribute knowledge of the 

physical, built environment around them in order to cre-

ate as accurate a representation as possible. Recent events 

have also demonstrated the potential for VGI to assist in 

disaster response [22].

However, the utility of VGI remains limited. In the con-

text of the broader GIS literature, data quality has always 

been a concern [16, 23]. In the case of VGI, this concern 

is exacerbated due to the lack of expertise, or credibility, 

of the individual [23]. Given that VGI is user-generated 

information by non-experts, there is no quality assur-

ance of the data [24]. Others have raised concerns over 

the motivations of the individual, whether data is volun-

teered with intent to inform or mislead, an act of digital 

vandalism [25].

Many approaches have been taken to assess the qual-

ity and reliability of VGI [e.g. 10, 20, 23, 26], but mainly 

conceptual. �e most common of these methods involves 

social trust networks and reputation models [10, 27]. 

Under this approach, data quality is checked by other 

project participants for errors and inconsistencies. In 

this model, no single expert is tasked with reviewing each 

volunteered report. Another approach recommended 

has been to use existing data sets (collected using more 

authoritative methods) to check for inconsistencies in 

data. However, quality is not absolute; a datasets fitness-

for-use is contextual and may have varying degrees of 

suitability for different users [28]. No single metric can be 

used to determine whether a data set is suitable across all 

ranges of potential uses. �us, the context of a user’s par-

ticipation and interaction with VGI must be taken into 

account when considering accuracy/quality of VGI.

Given the concerns raised over the uncertainty of data 

quality in VGI, there is significant debate as to the utility 

of VGI for science. Elwood et al. [16] inventoried 99 pro-

jects utilizing VGI and found only 3% to have academic 

affiliations. One of the most prominent examples of 

VGI in science is the Audubon Society’s Christmas Bird 

Count. �is project has amassed a significant volume of 

volunteered data; however despite attempts to train vol-

unteers in data collection, lingering questions of data 

quality, of reliability, have limited any analytical value and 

integration potential with authoritative datasets [29].

�e credibility (or believability) of VGI can be described 

objectively by traditional measures of data quality—the 

degree to which the information can be considered accu-

rate, or as the subjective perception on the part of the con-

sumer [23]. However, for VGI to be useful for science, it is 

the traditional, objective “credibility-as-accuracy” meas-

ure demanded [23]. To fully quantify error in data, it is 

necessary to have a measure or to make assumptions as to 

the nature of the population being measured, to compare 

the distribution of data against the population as a whole. 

It is in this way we measure attribute accuracy, complete-

ness, thematic resolution, and variability, to name only a 

few. Other measurements rely on feedback from measure-

ment equipment, such as positional accuracy, temporal 

accuracy, spatial and temporal resolution, among oth-

ers. Participatory science and VGI Science (VGIS) often 

involve datasets for which the nature of the population is 

not immediately known. �erefore, a direct quantification 

of the error of VGI is only possible in a post hoc analysis. 

However, it is the immediate benefit VGI can provide us 

that is of interest here and so we must develop a mecha-

nism to evaluate the merits of VGI in real time (as it is 

contributed). In the absence of an ability to directly meas-

ure error and uncertainty parameters of volunteered data, 

we can use a surrogate measure, meta-quality, a measure-

ment of the collective quality of the data [30].

�e objective of our work here is to improve the per-

ceived value of VGI for science by demonstrating a meth-

odology for VGI data quality assessment. We accomplish 

this through a mechanism to explicitly assess the reli-

ability of reporters based upon their respective VGI 

contributions.
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To better illustrate our approach, we apply the method-

ology to a case study in disease ecology where we model 

the distribution of the tsetse fly, the principle vector of 

African Trypanosomiasis in sub-Saharan Africa. �e 

“Tsetse Ecological Distribution model” or TED is based on 

an assessment of environmental characteristics critical for 

the persistence of the fly [31]. �e model is a conservative 

estimation of the population distribution specifically mini-

mizing errors of commission; therefore, the TED model 

is an estimation of the minimum extent of tsetse at each 

point in time. However, the model is reliant on a static land 

cover classification and makes no adjustment for error 

intrinsic to the model [31]. �e TED model produces esti-

mates of the spatial distribution as binary outputs indicat-

ing presence/absence of the fly for each time period.

Potentially the most important contribution to incor-

porating VGI into a species distribution model of the 

kind here is the fact that we can explicitly address one 

component of model error (omission) without contribut-

ing additional error. TED was developed as a conserva-

tive model of the minimum expected distribution of 

tsetse. By incorporating VGI into the model results, we 

can effectively facilitate the population expanding over 

gaps of unsuitable habitat, either due to actual conditions 

or poor input data. It is known that microclimates pro-

vide refuge for tsetse in areas where the habitat would be 

otherwise unsuitable [32, 33]. �e spatial resolution of 

the underlying MODIS data misses these microsites and 

therefore omits these cells in the estimated distribution. 

Allowing the distribution to be updated based on the 

VGI would allow us to more accurately reflect conditions 

as they exist reflecting sub-pixel dynamic that otherwise 

would not be possible. Incorporating VGI into the model 

results to expand the distribution can therefore reduce 

errors of omission without contributing additionally to 

errors of commission, thereby reducing total error, and 

thus improving data quality. Incorporating VGI into TED 

requires two distinct steps: (1) determine the reliability of 

the reporter to assess whether the VGI meets the thresh-

old for acceptance, and (2) update the tsetse distributions 

by changing the binary tsetse presence/absence value for 

the cell (in which the datum is located) to 1—indicating 

presence of the fly. In cases where VGI reflects the pre-

dicted distribution, no change is made.

Methods
Here we undertake a series of experiments to illustrate 

the integration of VGI into a traditional analytical model. 

First, we explore the characteristics of VGI and its impact 

on model results. Second, we evaluate the sensitivity of 

the model to three types of error common to crowd-

sourced data. Finally, we explore the importance of reli-

ability, as measured by a reputation score [26, 27, 34] 

in determining the threshold for accepting the data for 

inclusion in the model, under both static (a pre-defined 

score) or dynamic (a varying score) conditions.

To simulate the generation of VGI, we first consider the 

different kinds of reporters and the characteristics of the 

data they might contribute (Table  1). We identify four 

basic types of reporters: (1) “always right”, (2) “always, 

intentionally wrong”, (3) “random”, and (4) “normal”. �e 

“always right” reporter represents individuals who are 

judged, post hoc, to be highly reliable and the data they 

contribute are of high quality, often promoted to the role 

of moderator in online forums [27]; there is no (or mini-

mal) spatial or temporal error component to the data they 

contribute. �e “always, intentionally wrong” reporter 

represents individuals who consistently, and/or inten-

tionally provide erroneous data [35, 36]; these reporters 

are unreliable and the data they contribute should always 

be rejected. �e “random” reporter represents individu-

als who generate data, falling on a random distribution, 

reporting tsetse fly presence, for example, at appar-

ently random locations across the landscape (whether 

or not they are actually present) ignorant of underlying 

habitat conditions [37, 38]; due to the random nature 

of the reports, the data are therefore unreliable. Finally, 

the “normal” reporter represents the typical individual 

who volunteers information; the individuals have a high 

degree of credibility and the data are usually high quality 

[23], but there is a spatial and temporal error component 

to the data they contribute. It is this type of reporter that 

we are most interested in evaluating reliability.

In the context of our case study, the simulated data for 

each reporter are based on habitat suitability criteria. In 

a real scenario, it is not possible to assess the accuracy of 

any report by itself; rather we can only assess the fitness-

for-use of the data by placing it in application context and 

asking whether it is plausible [39, 40]. We simulate this 

by evaluating the data based on the likelihood of the data 

being correct given the underlying habitat conditions. 

To simulate the data, we identify a set of conditions that 

would be consistent with reports made for each reporter 

type, and use these conditions to identify points that can 

be used in our sample data set. Table  1 fully describes 

Table 1 Reporter types and  the criteria used to  simulate 

their behavior

Reporter Type Model criteria

1 Always right Tsetse predicted

2 Always, intentionally wrong Tsetse not predicted, habitat 
unsuitable

3 Random Spatially random

4 Normal Suitable habitat + one 
occupied neighbor
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the types of reporters and the set of conditions used to 

simulate data. For completeness, we explore the impact 

on the predicted occurrence of tsetse by simulating data, 

not only from the four reporter types but also from data 

generated from all combinations of habitat suitability 

criteria. It is based, in part, on these simulations that we 

identified the specific combination of criteria that would 

be used to render simulated VGI (Table 2). 

�e simulated data are based on the underlying con-

ditions present at each time step in the model, but not 

necessarily on the predicted occurrence for that simula-

tion. For each set of criteria and combination thereof, we 

ran 100 simulations, identifying 100 points in each time 

step to serve as mock reports. Pooling these data points 

together results in 10,000 potential locations (some 

locations are represented more than once in the pool 

due to random selection in the simulations) for reports 

for each time step from which we randomly draw from 

when simulating reporters. �is allows us to incorporate 

a minimum amount of stochasticity that would exist with 

reporters in a real-world scenario.

�e basic TED model was implemented in GRASS 

based on the methods outlined by DeVisser et  al. [31]. 

Building on our implementation of the TED model, we 

model the predicted distribution of tsetse, incorporating 

VGI, and evaluate the magnitude of the difference. Each 

model was written in BASH, a UNIX shell-scripting lan-

guage. �e models were run on the High Performance 

Computing Center (HPCC) cluster at Michigan State 

University for a total of 9321 simulations representing an 

estimated 13,981 h of computing time.

�e normal reporter is defined as an individual who 

usually provides credible data, but has the potential to 

submit erroneous data. Incorporating these inaccuracies 

into the data stream produces some degree of error in 

the model output. In reality, it is not possible determine 

the truthfulness of the data; therefore we must be able 

to determine the influence of error on the model output. 

�e standard “normal” reporter is assigned an error rate 

of 10% (an arbitrary assignment); we measure the effects 

of this error by evaluating the impact on the resulting 

distribution when the “normal” reporter is assigned an 

error rate of 50%. �e arbitrary choice would likely have 

an impact on the results because higher error rates would 

require more trials to identify credible reporters. How-

ever, since this presents a proof-of-concept just to see if 

the process works, we did not perform a sensitivity analy-

sis on these error rates yet. As the data are constructed 

based on the combination of habitat suitability criteria, 

we evaluate introducing error into the model in different 

ways. Erroneous data are simulated by selecting points in 

areas of unsuitable habitat by shifting the location of the 

point (simulating positional error), or by holding the data 

until the following time step (simulating temporal error). 

A z-score is computed comparing each set of criteria 

against a simulation where points are selected at random, 

as well as a test of significance against the output from 

the TED model alone (no VGI data incorporated).

An assessment of the reliability of the VGI requires us 

to first generate a dynamic history for each reporter that 

reflects the plausibility of the data as determined by habi-

tat suitability criteria. Each reporter is assigned a score, 

a measurement of their reputation, which is a product 

of these criteria (slightly modified from Langley and 

Messina 2013 [26] to allow for negative changes in rep-

utation). �e index returns an ordinal measurement of 

reliability; it is not constraint to a particular range, rather 

is structured such that positive scores convey reliability. 

It is computed as:

θ = reporter’s score, ρ = the number of times a cell was 

previously occupied (− 1 if 0), κ = the number of occu-

pied cells in 4-cell neighborhood (− 1 if 0), γ = the num-

ber of supporting reports (− 1 if 0).

(1)Reliability = θ + ρ +
κ

4
+ γ

Table 2 Simulation results for simulated conditions

Values represent percent increase over the base TED model

Sim Criteria % Gain Variance

Overall 2004 2005 2006 Overall 2004 2005 2005

1 Random 9.81 4.23 13.66 11.85 144.02 76.83 105.73 106.62

2 Suitable habitat 14.06 7.22 17.94 17.58 108.26 73.41 80.88 77.11

3 One neighbor 0.29 0.17 0.39 0.32 93.37 27.62 66.28 65.48

4 Suitable habitat + one neighbor 0.03 0.02 0.04 0.05 19.65 10.86 16.52 13.97

5 Tsetse present 0 0 0 0 0.01 0.01 0.01 0.01

6 Tsetse not present 10.59 4.78 14.57 12.71 128.16 75.51 97.03 91.45

7 Habitat unsuitable 8.23 3.46 11.75 9.66 138.43 79.15 112.02 109.58
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We arbitrarily selected threshold scores of 5 and 8 for 

incorporation of the VGI into the TED model results. 

�is arbitrary choice would affect results when exercised 

in a real-world case; however, for our purposes, we merely 

needed threshold scores of any value to see whether or not 

the process actually worked. Higher or lower threshold 

scores would just require fewer or more trials to assess cor-

rectness. A paired t test is used to measure the significance 

of adjusting the threshold and the potential importance 

the specific selection has on the resulting predicted occur-

rence. An alternative approach to the arbitrary assignment 

of scores is to determine the threshold at which reporter 

types can be distinguished from each other. We subject the 

history of reporter scores to a k-means test; this analysis 

tries to iteratively place each reporter into one of two clus-

ters (we define these clusters to mean reporters of “plausi-

ble” or “erroneous” data). Cluster centers were defined at 

random from the set of scores for each test. As reporter 

scores increase over time, we expect it will take a certain 

number of model time steps before they will group prop-

erly. �e average reporter score (for the plausible group) 

from 100 iterations can be interpreted as a reasonable 

threshold score under a static model.

Over time, the scores for reporters quickly exceed the 

small thresholds we set (reaching values > 100 at the end 

of the simulation), which results in unqualified accept-

ance of the VGI into the model. As such, we cannot 

detect or respond (within a reasonable time) to chang-

ing behavior among reporters, reflecting the inability of 

arbitrary, static thresholds to capture potential declining 

reliability and reputation of reporters over time. In the 

final set of simulations, we explore the possibility of using 

a dynamic score model, where the threshold for accept-

ance is drawn from the distribution of all reporter scores 

at each time step. For each simulation, we set a thresh-

old equal to the 1st quartile score, mean, or 3rd quartile 

score from the distribution of all reporters’ scores at that 

time. �is allows us to include only the most reliable 

reporters from our total pool of participants, and the 

longer the model operates over time, the more reliable 

our output becomes. �e net benefit to the model should 

thus improve over time. Sets of paired t-tests are used to 

measure the significance of the difference in predictions 

from the three threshold models.

In our case, the likelihood that tsetse are present in 

an area (the subject of the VGI in question) is corre-

lated with the habitat suitability as measured by land 

cover, land-surface temperature, and NDVI (Normal-

ized Difference Vegetation Index). A reporter’s score is 

a measurement of their reputation, akin to eBay’s rat-

ings system, which quantifies the history of the individ-

ual to perform in a manner that is perceived positively 

by their peers [27]. We assume that if a reliable reporter 

contributes information that confirms another’s data, 

the likelihood that datum being accurate is improved. 

However, this method of confirmation by peers necessi-

tates a set of reporters who have attained a data history. 

Until a reporter attains a certain reputation, we do not 

have enough information to assess data quality; however, 

we have seen that different reporters themselves quickly 

separate from each other, allowing us to partition out 

individuals who are either reporting randomly (and thus 

frequently inaccurately) or are simply providing errone-

ous data intentionally. Partitioning out these two types of 

reporters alone immediately improves the quality of the 

contributed data.

Results
Varying the criteria for spatially locating VGI greatly 

influences the overall impact on the predicted occur-

rence of tsetse, however the impact varies markedly from 

year to year due to environmental conditions and shifts in 

the habitat suitability. Randomly locating points results 

in an overall 9.81% (4.23–13.66% for individual model 

years) increase in the number of cells in which tsetse are 

predicted to occupy over the time period in the model 

(recall that incorporating VGI into the TED model can 

only increase the prevalence of tsetse). However target-

ing specific locations where habitat is suitable and at least 

one neighbor is predicted to be occupied (the criteria we 

assign to our normal reporter), yields an overall 0.03% 

(0.02–0.05%) increase in occupied cells. Notably, select-

ing suitable habitat alone as our criteria influenced the 

results the most, with an overall 14.06% (7.22–17.94%) 

increase in predicted occurrence. Likely this speaks to 

the design goal of the TED model to minimize errors of 

commission. Predictably, constraining report locations 

to only those cells in which tsetse are predicted to occur 

(the condition for our “always right” reporter) yields no 

increase in the predicted occurrence of tsetse over the 

base model. Selecting locations in which tsetse are not 

predicted to occur or where habitat is unsuitable (condi-

tions for the “wrong” reporter or a component of error 

in the normal reporter, respectively) yields an overall 

10.59% and 8.23% increase in the predicted occurrence. 

All criteria tested yielded significantly different results 

over the random model (p < 0.001 in each case).

In the static threshold score model, there was no sig-

nificant difference in the overall predicted occurrence of 

tsetse (p  >  0.4). However, utilizing a dynamic threshold 

score model resulted in significant differences between all 

three models (1st quartile, mean, and 3rd quartile) with p 

values < 0.001 in each case. �e overall increase in pre-

dicted occurrence was 0.8, 0.43, and 0.12% respectively; 

however, the results varied widely from year to year for 

both static and dynamic threshold models (see Table 3). 
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[Note: simulations 8 through 12 in the table consider the 

cases for only normal reporters].

�e four types of reporters cluster into two groups—

see simulations 13 and 14 (Table 4) for the cases where 

all reporter types are considered. �e four reporters are 

not fully distinguishable from each other at any time in 

our models (k-means with four clusters). Figure  1 pre-

sents the distribution curve (for all 100 replications) for 

the time step, at which point the reporters can be dis-

tinguished using a k-means clustering approach. For 

simulation 13, where a threshold score of 5 is used, the 

reporters can be separated, on average, in the 5th time 

step (mean  =  4.93, median  =  5). �e average reputa-

tion score in the 5th time step is 10.87 for the “plausible” 

group. Reporters in simulation 14 (50% error rate) do not 

consistently cluster together into two groups.

�e arbitrary 10% error threshold

Considering the dynamic score models, there were no 

significant differences in the time needed for reporters 

to group together. For the 1st quartile threshold score 

(simulation 10), reporters clustered into two groups, on 

average, in the 5th time step (mean = 4.61, median = 5). 

�e average score for the “correct” reporters in the 5th 

time step was 18.87 (Fig. 2). In the mean threshold score 

models (simulation 11), reporters clustered together in 

the 4th time step (mean = 4.32, median = 4). �e aver-

age reputation score for reporters in this time step was 

15.06 (Fig. 3). Finally, for the 3rd quartile threshold score 

model, reporters clustered together in the 4th time step 

(mean = 4.21, median = 4) with an average reputation of 

15.14 (Fig. 4).

�e nature of error (positional vs. temporal) intro-

duced into our models through incorporating VGI did 

not appear to change the magnitude of the impact on 

predicted occurrence. �is was also true when varying 

the magnitude of the error, at least for the range tested 

(5–25%). We did observe a significant increase in the 

predicted occurrence of tsetse when the magnitude of 

the error introduced was 50% (where each reporter had 

a 50% chance of contributing erroneous data); intro-

ducing error of any type, though, results in a significant 

Table 3 The percentage increase in the prevalence of tsetse over the base TED model for simulations 8–12

Sim Score % Gain Variance

Overall 2004 2005 2006 Overall 2004 2005 2006

8 5 1.28 0.27 1.94 1.68 139.56 46.8 113.56 100.52

9 8 1.22 0.23 1.88 1.6 138.6 44.09 112.57 99.1

10 1st quartile 0.8 0.13 1.15 1.2 120.62 37.76 92.9 95.07

11 Mean 0.43 0.05 0.6 0.68 109.46 28.92 83.06 83.27

12 3rd quartile 0.12 0 0.14 0.24 77.36 10.47 55.49 66.11

Table 4 The percentage increase in the prevalence of tsetse over the base TED model for simulations 13–20

Sim Error type % Gain Variance

Overall 2004 2005 2006 Overall 2004 2005 2006

13 10% 1.38 0.39 2.07 1.74 139.44 48.86 116.26 95.18

14 50% 5.23 1.88 7.94 5.95 144.9 70.59 124.32 99.84

15 Spatial shift 5% 1.39 0.39 2.13 1.7 137.33 49.43 112.58 92.83

16 Spatial shift 10% 1.39 0.44 2.22 1.52 142.05 54.59 118.36 97.97

17 Spatial shift 25% 1.41 0.44 2.18 1.65 131.66 50.61 108.22 95.31

18 Temporal shift 5% 1.46 0.43 2.21 1.79 135.71 50.68 112.63 97.89

19 Temporal shift 10% 1.54 0.45 2.4 1.81 149.88 52.54 124.28 97.73

20 Temporal shift 25% 1.61 0.5 2.47 1.9 148.95 55.65 119.68 97.55

Fig. 1 A frequency plot representing the time-step in which report-

ers cluster into two groups, for 100 replications of simulation 13
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increase in the predicted occurrence compared to the 

case where no error is considered (simulation 4). �ere-

fore, at least in our case study, the error introduced 

from VGI is not expected to a statistically significant 

effect on the prevalence of tsetse. �is suggests that our 

models are resilient to the introduction of some errone-

ous data. Adaptations of our model to different studies 

will nevertheless necessitate an exploration of the role 

of introduced error from VGI to assess the resiliency of 

scientific models.

While the analysis reveals significant differences in the 

predicted tsetse occurrence from incorporating VGI into 

the TED model, global metrics are difficult to interpret 

given the importance of spatial structure in the dataset. 

To this extent, visualizing the structure of tsetse distri-

bution patterns can lead to novel interpretations of the 

influence of VGI. Figures 5, 6 and 7 present the predicted 

distribution of tsetse over our study area (for simula-

tions 10, 11, and 12 respectively); cell values indicate 

the proportion of time steps in the model (every 16 days 

between 2004 and 2006) where tsetse are predicted to 

occur, averaged across 100 replications. �e distributions 

incorporating VGI closely mirror the base TED model 

with marked differences between core tsetse areas. �ese 

maps illustrate specific areas where VGI is particularly 

influential, likely due to the ability of tsetse populations 

to “jump” patches of unsuitable habitat.

Time is a significant factor to consider when evaluat-

ing the results of our models. In describing the output of 

Fig. 2 A frequency plot representing the time-step in which report-

ers cluster into two groups, for 100 replications of simulation 10

Fig. 3 A frequency plot representing the time-step in which report-

ers cluster into two groups, for 100 replications of simulation 11

Fig. 4 A frequency plot representing the time-step in which report-

ers cluster into two groups, for 100 replications of simulation 12

Fig. 5 The theoretical maximum and minimum extent (respectively) 

for the distribution of tsetse for simulation 10. Values represent the 

proportion of time-steps in the model where tsetse were present; this 

is a rough approximation of the probability of tsetse occurrence
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TED model predictions, DeVisser et  al. [31] noted that 

tsetse populations tended to reach their maximum extent 

at the end of the long rains (ending the beginning of 

June). Populations tended to reach their minimum extent 

at the end of the cool dry season (mid- to late-October). 

�is interpretation of tsetse population distributions 

comports with what is observed in my simulations, and is 

grounded in an ecological understanding of tsetse popu-

lation dynamics.

Conclusions
Volunteered geographic information can make valuable 

contributions to science, enhancing datasets from more 

authoritative sources. However, integrating VGI data 

necessitates assessing the error and uncertainty of those 

data. Direct quantification of data quality in this context 

is difficult; the traditional components (e.g. accuracy, 

precision, and variance) typically cannot be ascertained 

for VGI. It is critical for us to at least be able to qualify 

data quality, as it serves as the foundation from which we 

assess fitness-for-use. We have proposed using reputa-

tion or reliability (of the reporter) as a surrogate measure 

of meta-quality. As an initial assessment, meta-quality 

allows us to begin to break through the cloud of uncer-

tainty inherent with VGI.

We build on the power of the reliability/reputation 

assessment by considering a dynamic threshold-scor-

ing model. While we considered three different criteria 

for establishing a threshold (defined as the 1st quartile, 

mean, and 3rd quartile values in the distribution of 

reporter scores in each time step), we did not find a sig-

nificant difference between them—as measured by an 

overall increase in the prevalence of tsetse in our models. 

In considering only those individuals whose reliability 

exceeds the mean score for all reporters, we only incor-

porate VGI from a subset of reporters we deem the most 

reliable. As scores improve for all individuals (regardless 

whether we have incorporated their data into our mod-

els), the threshold for acceptance/inclusion in our models 

Fig. 6 The theoretical maximum and minimum extent (respectively) 

for the distribution of tsetse for simulation 11. Values represent the 

proportion of time-steps in the model where tsetse were present; this 

is a rough approximation of the probability of tsetse occurrence

Fig. 7 The theoretical maximum and minimum extent (respectively) 

for the distribution of tsetse for simulation 12. Values represent the 

proportion of time-steps in the model where tsetse were present; this 

is a rough approximation of the probability of tsetse occurrence
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also increases (approximately linearly in our models—

Fig.  8 shows the trend for one simulation). Over time, 

the quality of VGI data that we incorporate will improve, 

and the impact of any erroneous data we have included 

should decrease. Most importantly, a dynamic threshold 

model facilitates detection of declining performance (of a 

reporter) and a rapid response to limit the acceptance of 

poor quality data. Figure 8 illustrates that over time, ran-

dom or erroneous reporters get consistently lower scores, 

with accurate reporters get consistently higher scores. 

�is shows that this approach produces strong and clear 

divergence separating out erroneous reporting.

�e potential value of a means to assess data quality of 

VGI is immense. �e strongest hurdle to fully utilizing 

VGI has been our inability to measure data quality and 

uncertainty. In demonstrating a valuation system for VGI 

(based on the reputation of reporters themselves), we 

have, in part, overcome this hurdle. To date, the utiliza-

tion of VGI for science has been reserved for those cases 

only where the performance of reporters is controlled 

through training and guidance while closely monitor-

ing the entire process from data collection to commu-

nication [7, 20, 29]. But this runs contrary to many of 

the perceived strengths of VGI, the dissolution of tradi-

tional roles [1, 3, 6, 41] and the establishment of a two-

way communication model for geographical information 

[14]. Projects that have tried to embrace VGI have done 

so under the old model of participatory science, and thus 

are subject to all the perceived and actual limitations [5, 

11]. Many factors influencing quality remain difficult to 

measure, including rates of participation and motivation 

to participate; the value of VGI cannot be fully appreci-

ated until we can reliably assess these factors and the role 

they play in determining data quality.

It is our position that incorporating VGI into standard 

scientific models, particularly those where available data 

are sparse, can significantly improve the performance 

of the models and the predictive or explanatory power 

of the results. Consider the case of “Digital Earth”; first 

conceived by then US Vice-President Al Gore, it repre-

sented a push to represent the planet in high-resolution, 

multi-dimensional space for the primary purpose of 

improving our predictive capabilities of Earth’s ecosys-

tems [24, 42]. Twelve years later, significant gaps still 

exist, particularly in terms of our capacity to collect 

certain types of data of sufficient quality and resolution 

[42]. Harnessing the collective power of earth’s citizens, 

the aggregate power of “six billion sensors”, we can make 

significant strides to improving the predictive capacity of 

our models through incorporating new types of informa-

tion [14]. �erefore, it is critical we continue to explore 

ways to assess the credibility of VGI, to embrace the new 

geographical traditions, while respecting the scientific 

paradigms of the past.

Fig. 8 This figure overlays the scores of 100 reporters for simulation 8
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