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Abstract. The quality of object oriented information systems (OOIS) depends 
greatly on the decisions taken at early phases of their development. As an early 
available artifact the quality of the class diagram is crucial to the success of 
system development. Class diagrams lay the foundation for all later design 
work. So, their quality heavily affects the product that will be ultimately 
implemented. Even though the appearance of the Unified Modeling Language 
(UML) as a standard of modelling OOIS has contributed greatly towards 
building quality OOIS, it is not enough. Early availability of metrics is a key 
factor in the successful management of OOIS development. The aim of this 
paper is to present a set of metrics for measuring the structural complexity of 
UML class diagrams and to use them for predicting their maintainability that 
will heavily be correlated with OOIS maintainability.  
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1 Introduction 

A widely accepted principle in software engineering is that the quality of a software 
product should be assured in the early phases of its life cycle. In a typical OOIS 
design at the early phases, a class diagram is first built. The class diagram is not 
merely the basis of modelling the persistent system data. In OO modelling, where data 
and process are closely linked, class diagrams provide the solid foundation for the 
design and implementation of OOIS.

As an early available, key analysis artifact the quality of the class diagram is 
crtucial to the success of system development. Generally, problems in the artifacts 
produced in the initial phases of system development propagate to the artifacts 
produced in later stages, where they are much more costly to identify and correct [2]. 
As a result, improving the quality of class diagrams, will therefore be a major step 
towards the quality improvement of the OOIS development.  The appearance of UML 
[20], as standard OO modelling language, should contribute to this. Despite this, we 
have to be aware that a standard modelling language can only give us syntax and 
semantics to work with, but it cannot tell us whether a “good” model has been 
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produced. Naturally, even when language is mastered, there is no guarantee that the 
models produced will be good. Therefore, it is necessary to assess their quality. 

The definition of the different characteristics that compose the concept of “quality”
is not enough on its own in order to ensure quality in practice, as people will generally 
make different interpretations of the same concept. Software measurement plays an 
important role in this sense because metrics provide a valuable and objective insight 
into specific ways of enhancing each of the software quality characteristics. 
Measurement data can be gathered and analysed to assess current product quality, to 
predict future quality, and to drive quality improvement initiatives [27]. 

Quality is a multidimensional concept, composed of different characteristics such 
as functionality, reliability, usability, efficiency, maintainability and portability [15]. 
This paper focuses on UML class diagram maintainability, because maintainability 
has been and continues to be one of the pressing challenges facing any software 
development department. For our purpose we  distinguish the following 
maintainability sub-characteristics: 

– UNDERSTANDABILITY. The ease with which the class diagram can be understood. 
– ANALYSABILITY. The capability of the class diagram to be diagnosed for 

deficiencies or to identify  parts to be modified. 
– MODIFIABILITY. The capability of the class diagram to enable a specified 

modification to be implemented. 

But these maintainability sub-characteristics are  external quality attributes that can 
only be measured late in the OOIS life cycle. Therefore it is necessary to find early 
indicators of such qualities based, for example, on the structural properties of class 
diagrams [4].  

The availability of significant measures in the early phases of the software
development life-cycle allows for better management of the later phases, and more
effective quality assessment when quality can be more easily affected by corrective
actions [3]. They allow IS designers:

1. a quantitative comparison of design alternatives, and therefore and objective 
selection among  several class diagram alternatives with equivalent semantic 
content. 

2. a prediction of external quality characteristics, like maintainability in the initial 
phases of the IS life cycle and a better resource allocation based on these 
predictions. 

After performing a thorough review of several OO metric proposals 
[9],[18],[7],19], specially focusing in those that can be  applied to class diagrams at a 
high level design stage we have proposed new ones [14] related to the structural 
complexity of class diagrams due to the usage of relationships (associations, 
dependencies, generalisations, aggregations). But proposing metrics it is not enough 
to assure that they really are  fruitful in practice. Empirical validation is a crucial task 
for the success of software measurement [17],[13],[26],[1].  

Our main motivation is to present metrics [14] for measuring UML class diagram 
structural complexity (internal quality attribute) and secondly demonstrate through 
experimentation that it can be used to predict UML class diagram maintainability 
(external quality attribute), which will strongly influence OOIS maintainability. 

This paper is organised in the following way:  In section 2 we will present a set of 
metrics for measuring UML class diagram structural complexity. In section 3 we 
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describe a controlled experiment, carried out  in order to build fuzzy deformable 
prototypes, using a new approach to Knowledge Discovery [21],[22], that characterise 
UML class diagram maintainability from the metric values. In section 4 we will use 
this prototypes to predict UML class diagram maintainability. Lastly, section 5 
summarises the paper, draws our conclusions, and presents future trends in metrics for 
object modelling using UML. 

2. A Proposal of Metrics for UML Class Diagrams 

We only present here the metrics [14] that can be applied to the class diagram as a
whole . They were called “Class Diagram-Scope metrics”. Also we consider
traditional ones like, the number of classes, the number of attributes, etc... We classify
them in two categories: open-ended metrics, whose values are not bounded in an
interval, and close-ended metrics whose values are bounded, in our case in the
interval [0,1].

2.1 Open-Ended Metrics 

– NUMBER OF CLASSES. (NC) is the total number of classes within a class diagram. 
– NUMBER OF ATTRIBUTES. (NA) is the total number of attributes within a class 

diagram. 
– NUMBER OF METHODS. (NM) is the total number of methods within a class 

diagram. 
– NUMBER OF ASSOCIATIONS. (NAssoc) is defined as the total number of 

associations within a class diagram.  
– NUMBER OF AGGREGATION. (NAgg) is defined as the total number of aggregation 

relationships within a class diagram (each whole-part pair in an aggregation 
relationship). 

– NUMBER OF DEPENDENCIES. (NDep) is defined as the total number of 
dependencies relationship within a class diagram. 

– NUMBER OF GENERALISATIONS. (NGen) is defined as the total number of 
generalisation relationships within a class diagram (each parent-child pair in a 
generalisation relationship). 

– NUMBER OF GENERALISATIONS HIERARCHIES. (NGenH) is defined as the total 
number of generalisations hierarchies in a class diagram 

– MAXIMUM DIT. The Maximum DIT in a class diagram is the maximum between 
the DIT value obtained for each class of the class diagram. The DIT value for a 
class within a generalisation hierarchy is the longest path from the class to the 
root of the hierarchy. 

2.2 Close-Ended Metrics 

– NUMBER OF ASSOCIATIONS VS. CLASSES. (NAssocVC) is defined as the ratio 
between the number of associations in a class diagram (NAssoc) divided by the 
total number of classes in the class diagram (NC). 
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– NUMBER OF DEPENDENCIES VS. CLASSES. (NDepVC) is defined as the ratio 
between the number of dependencies in a class diagram (NDep) divided by the 
total number of classes in the class diagram (NC). 

– NUMBER OF AGGREGATIONS VS. CLASSES. (NAggVC) is defined as the ratio 
between the number of aggregations in a class diagram (NAgg) divided by the 
total number of classes in the class diagram (NC). 

– NUMBER OF GENERALISATIONS VS. CLASSES. (NGenVC) is defined as the ratio 
between the number of generalisations in a class diagram (NGen) divided by the 
total number of classes in the class diagram (NC). 

3. A Comprehensive Controlled Experiment to Build  
  a Prediction Model for UML Class Diagram Maintainability 

Taking into account some suggestions provided in [4],[5] about how to do empirical 
studies in software engineering, we carried out a controlled experiment with the goal 
of predicting UML class diagrams maintainability from metric values obtained at the 
early phases of OOIS life cycle. 

3.1 Subjects 

The experimental subjects used in this study were: 7 professors and 10 students 
enrolled in the final-year of Computer Science in  the Department of Computer 
Science at the University of Castilla-La Mancha in Spain. All of the professors belong 
to the Software Engineering area and they have enough experience in the design and 
development of OO software. By the time the experiment was done all of the students 
had had two courses on Software Engineering, in which they learnt in depth how to 
build OO software using UML. Moreover, subjects were given an intensive training 
session before the experiment took place. 

3.2 Experimental Materials and Tasks 

The subjects were given twenty eight UML class diagrams of the same universe of 
discourse, related to Bank Information Systems.  Each diagram has a test enclosed 
which includes the description of maintainability sub-characteristics, such as: 
understandability, analysability, modifiability. Each subject has to rate each sub-
characteristic using a scale consisting of seven linguistic labels. For example for 
understandability we proposed the following linguistic labels: 

Extremely 
difficult to 
understand

Very 
difficult to 
understand 

A bit 
difficult to 
understand

Neither 
difficult 

nor easy to 
understand

Quite easy 
to

understand

Very easy 
to

understand

Extremely 
easy to 

understand
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We allowed one week to do the experiment, i.e., each subject had carry out the test 
alone, and could use unlimited time to solve it. 

After completion of the tasks subjects were asked to complete a debriefing 
questionnaire. This questionnaire included (i) personal details and experience, (ii) 
opinions on the influence of different components of UML Diagrams, such as: 
classes, attributes, associations, generalisations, etc... on their maintainability. 

3.3 Experimental Design and Data Collection 

The INDEPENDENT VARIABLES are those metrics proposed in sections 2.1 and 2.2. 
The DEPENDENT VARIABLES are three of the maintainability sub-characteristics: 

understandability, analysability and modifiability measured according to subject’s
rating.  

We decided to give our subjects as much time as they needed to finish the test they 
had to carry out. All tests were considered valid because all of the subjects have at 
least medium experience in building UML class diagrams and developing OOIS (this 
fact was corroborated analysing the responses of the debriefing questionnaire). 

3.4 Construction of Fuzzy Deformable Prototypes  
      to Characterise UML Class Diagram Maintainability 

We have used an extension of the traditional Knowledge Discovery in Databases 
(KDD) [12]: the Fuzzy Prototypical Knowledge Discovery (FPKD) that consists of 
the search for fuzzy prototypes [28] that characterise the maintainability of an UML 
class diagram. 

In the rest of this section we will explain each of the steps we have followed in the 
FPKD (see figure 1). 

Selection of the Target Data.  We have taken as a start set a relational database that 
contains 476 records (with 16 fields,13 represent metrics values, 3 represent 
maintainability sub-characteristics) obtained from the calculation of the metric values 
(for each class diagram) and the responses of the experiment given by the subjects. 

Preprocessing. The Data-Cleaning was not necessary because we didn´t find any 
errors. 

Transformation. This step was performed doing different tasks: 

– SUMMARISING  SUBJECT RESPONSES. We built a unique table with 28 records (one 
record for each class diagram) and 17 fields (13 metrics and 3 maintainability 
sub-characteristics).  This table is shown in Appendix A). The metric values were 
calculated measuring each diagram, and the values for each maintainability sub-
characteristics were obtained aggregating subjects´s rating using the mean of 
them. 
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– CLUSTERING BY REPERTORY GRIDS. In order to detect the relationships between the 
class diagrams, for obtaining those which are easy, medium or difficult to 
maintain (based on subject rates of each maintainability sub-characteristics), we 
have carried out a hierarchical clustering process by Repertory Grids. The set of 
elements is constituted by the 28 class diagrams, the constructions are the 
intervals of values of the subjects´rating. To accomplish an analysis of clusters on 
elements, we have built a proximity matrix that represents the different 
similarities of the elements, a matrix of 28 x 28 elements (the diagrams) that 
above the diagonal represents the distances between the different cycles. 
Converting these values to percentages, a new table is created and the application 
of Repertory Grids Analysis Algorithm returns a graphic as a final result (see 
figure 1). 

0%

94%

100%
0 A 5 6 14 B C F 24 26 16 D E 19

88%

82%

75%

57%

25%

E M D

Fig. 1. Clustering results (E: Easy to maintain, M: Medium to maintain, D: Difficult to maintain) 

(*) We have grouped some class diagrams assigning them one letter because they have  100% 
of similarity (see appendix A) 

– DATA MINING. The selected algorithm for data mining process was summarise 
functions. Table 1 shows the parametric definition of the prototypes. These 
parameters will be modified taking into account the degree of affinity of a new 
class diagram with the prototypes. With the new modified prototype we will be 
able to predict the maintainability of a new class diagram.  

– FORMAL REPRESENTATION OF CONCEPTUAL PROTOTYPES. The prototypes have 
been represented as fuzzy numbers, which are going to allow us to obtain a 
degree of membership in the concept. For the sake of simplicity in the model, 
they have been represented by triangular fuzzy numbers. Therefore, in order to 
construct the prototypes (triangular fuzzy numbers) we only need to know their 
centerpoints (“center of the prototype”), which are obtained by normalising and 
aggregating the metric values corresponding to the class diagrams of each of the 
prototypes (see figure 2). 

Diagram  
number (*) 

Similarity  
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Table 1. Prototypes “Easy, medium and difficult to manitain”

Understandbility Analisability Modifiability 

Difficult       

Average 6 6 6 

Max. 6 6 7 

Min. 6 5 6 

Medium

Average 5 5 5 

Max. 5 6 5 

Min. 4 4 4 

Easy 

Average 2 2 3 

Max. 3 3 3 

Min. 2 2 2 

Fig. 2. Representation of the prototypes 

– FORMAL REPRESENTATION OF CONCEPTUAL PROTOTYPES. The prototypes have 
been represented as fuzzy numbers, which are going to allow us to obtain a 
degree of membership in the concept. For the sake of simplicity in the model, 
they have been represented by triangular fuzzy numbers. Therefore, in order to 
construct the prototypes (triangular fuzzy numbers) we only need to know their 
centerpoints (“center of the prototype”), which are obtained by normalising and 
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aggregating the metric values corresponding to the class diagrams of each of the 
prototypes (see figure 2). 

3.5 Threats to Validity 

Following several empirical studies [10],[5],[6] we will discuss the empirical study’s
various threats to validity and the way we attempted to alleviate them. 
− CONSTRUCT VALIDITY.  The degree to which the independent and the dependent 

variables accurately measure the concepts they purport to measure. 
− INTERNAL VALIDITY. The degree to which conclusions can be drawn about the 

causal effect of independent variables on the dependent variables. 
− EXTERNAL VALIDITY. The degree to which the results of the research can be 

generalised to the population under study and other research setting. 

Threats to Construct Validity. The dependent variables we used are maintainability 
sub-characteristics: understandability, analysability and modifiability. We propose 
subjective metrics for them (using linguistic variables), based on the judgement of the 
subjects (see section 3.3). As the subjects involved in this experiment have medium 
experience in OOIS design and implementation we think their ratings could be 
considered significant. For construct validity of  the independent variables, we have to 
address the question to which degree the metrics used in this study measure the 
concept they purport to measure. Our idea is to use metrics presented in section 2.1 
and 2.2 to measure the structural complexity of an UML class diagram. From a 
system theory point of view, a system is called complex if it is composed of many 
(different types of elements), with many (different types of) (dynamically changing) 
relationships between them [25]. According to this, we think that the construct 
validity of our independent variables can thus be considered satisfactory. In spite of 
this, we consider that more experiments must be done, in order to draw a final 
conclusion to assure construct validity. 

Threats to Internal Validity. The following issues have been dealt with: 

– DIFFERENCES AMONG SUBJECTS. Using a within-subjects design, error variance 
due to differences among subjects is reduced. As Briand remarks in [5] in 
software engineering experiments when dealing with small samples, variations in 
participant skills are a major concern that is difficult to fully address by 
randomisation or blocking. In this experiment, professors and students had the 
same degree of experience in modelling with UML. 

– KNOWLEDGE OF THE UNIVERSE OF DISCOURSE AMONG CLASS DIAGRAMS. Class 
diagrams were designed for the same universe of discourse, only varying the 
number of attributes, classes, associations, i.e. their constitutents parts. So that, 
the knowledge of the domain doesn’t attempt to the internal validity. 

– ACCURACY OF SUBJECT RESPONSES. Subjects assumed the responsibility for rating 
each maintainability sub-characteristics. As they have medium experience in OO 
software design and implementation, we think their responses could be 
considered valid. However we are aware that not all of them have exactly the 
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same degree of experience, and if the subjects have more experience minor 
inaccuracies could be introduced by subjects. 

– LEARNING EFFECTS. All the tests in each experiment were put in a different order, 
to avoid learning effects. Subjects were required and controlled to answer in the 
order in which test appeared. 

– FATIGUE EFFECTS. On average the experiment lasted for less than one hour, so 
fatigue was not very relevant. Also, the different order in the tests helped to avoid 
these effects. 

– PERSISTENCE EFFECTS. In order to avoid persistence effects, the experiment was 
run with  subjects  who had never done a similar experiment. 

– SUBJECT MOTIVATION. All the professors who were involved in this experiment 
have participated voluntarily, in order to help us in our research. We motivated 
students to participate in the experiment, explaining to them that similar tasks to 
the experimental ones could be done in exams or practice by students, so they 
wanted to take the most of the experiment. 

– OTHER FACTORS. Plagiarism and influence between students really could not be 
controlled. Students were told that taking with each other was forbidden, but they 
did the experiment alone without any control, so we had to trust them as far as 
that was concerned.

Seeing the results of the experiment we can conclude that empirical evidence of the 
existing  relationship between the independent and the dependent variables exists.  
But only by replicating controlled experiments, where the measures would be varied 
in a controlled manner and all the other factors would be kept constant, could really 
demonstrate causality.  

Threats to External Validity. The greater the external validity, the more the results 
of an empirical study can be generalised to actual software engineering practice. Two 
threat of validity have been identified which limit the ability to apply any such 
generalisation: 

– MATERIALS AND TASKS USED. In the experiment we tried to use class diagrams 
and tasks which can be representative of real cases, but more empirical studies 
taking “real cases” from software companies must be done. 

– SUBJECTS. To solve the difficulty of obtaining professional subjects, we used 
professors and advanced students from software engineering courses. We are 
aware that more experiments with practitioners and professionals must be carried 
out in order to be able to generalise these results. However, in this case, the tasks 
to be performed do not require high levels of industrial experience, so, 
experiments with students could be appropriate [1]. 

In general in order to extract a final conclusion we need to replicate this 
experiment with a greater number of subjects, including practitioners. After doing 
replication we will have a cumulative body of knowledge; which will lead us to 
confirm if the presented metrics could really be used as early quality indicators, and 
could be used to predict UML class diagrams maintainability. 
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4  Prediction of UML Class Diagram Maintainability 

Using Fuzzy Deformable Prototypes [21],[22], we can deform the most similar 
prototype to a new class diagram, and define the factors for a new situation, using a 
linear combination with the degrees of membership as coefficients. We will show an 
example of how to deform the fuzzy prototypes found in section 3.5. Given the 
normalised values corresponding to a new class diagram: 
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The final average is 0.64. The affinity with the prototypes is shown in figure 3.

Fig. 3. Affinity of the real case with the prototypes 

The most similar prototype for this new class diagram  is “Difficult to maintain”,
with a degree of membership of 0.98. Then, the prediction is: 

 Understandability Analisability Modifiability 

Average 6 6 6 

Maximum 6 6 7 

Minimum 6 5 6 

We want to highlight that this a first approach to predict UML class diagram 
maintainability, we need “real data” about UML class diagram maintainability efforts, 
like time spent in maintenance tasks in order to predict data that can be highly useful 
to software designers and developers.  

Degree of 
membership 
of the new 
diagram 

Most 
similar 

prototype 
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5  Conclusions and Future Work 

Due to the growing complexity of OOIS, continuous attention to and assessment of 
class diagrams is necessary to produce quality information systems. The fact that 
UML has emerged is a great step forward in object modelling. However this does not 
guarantee the quality of the models produced through the IS life cycle. Therefore, it is 
necessary to have metrics in order to evaluate their quality from the early phases in 
the OOIS development process.  

In this paper we have presented a set of metrics for assessing the structural 
complexity of UML class diagrams, obtained at early phases of the OOIS life cycle.  

We have also carried out a controlled experiment, with the objective of predicting 
UML class diagram maintainability based on the metrics values and the expert’s
rating of each of the maintainability sub-characteristics. The prediction model is an 
extension of the traditional KDD called FPKD and a novel technique which can be 
used for prediction based on Fuzzy Deformable Prototypes [21],[22]. This model have 
been used for different kinds of real problems, such as forest fire prediction, financial 
analysis or medical diagnosis, with very good results. 

Nevertheless, despite of the encouraging obtained results we are aware that we 
need to do more metric validation, both empirical and theoretical in order to assess if 
the presented metrics could be really used as early quality indicators. Also could be 
useful “real data” about UML class diagram maintainability efforts, like time spent in 
maintenance tasks in order to predict data that can be highly fruitful to software 
designers and developers. But the scarce of such data continues to be a great problem 
we must tackle to validate metrics. In [8] suggested the necessity of a public 
repository of measurements experiences, which we think that could be a good step 
towards the success of all the work done about software measurement.  

It will possible to that when more “real data” on systems developed using UML 
will be available, which is the challenge of most of the researchers in this area.  

In future work, we will focus our research on measuring other quality factors like 
those proposed in the ISO 9126 (1999), which not only tackle class diagrams, but also 
evaluate other UML diagrams, such as use-case diagrams, state diagrams, etc. To our 
knowledge, little work has been done towards measuring dynamic and functional 
models [11],[23],[24]. As is quoted in [8] this is an area which lacks in depth 
investigation.  
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Appendix A 

The following table shows in each row the number of the class diagrams used in the 
experiment described in section 3, and in each column their metric values. Attached to 
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some diagrams appear one letter. The diagrams which have the same letter mean that 
they have 100% of  similarity. 
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D0 2 4 8 1 0.5 0 0 0 0 0 0 0 0 1 1 1 

D1 (A) 3 6 12 1 0.33 1 0.33 1 0 0 0 0 0 2 2 2 

D2 (A) 4 9 15 1 0.25 2 0.5 1 0 0 0 0 0 2 2 2 

D3 (A) 3 7 12 3 1 0 0 0 0 0 0 0 0 2 2 2 

D4 (A) 5 14 21 1 0.2 3 0.6 2 0 0 0 0 0 2 2 2 

D5  3 6 12 2 0.66 0 0 0 0 0 0 0 0 2 2 2 

D6 4 8 12 3 0.75 0 0 0 1 0.25 0 0 0 2 3 3 

D7 (B) 6 10 14 2 0.33 2 0.33 1 0 0 2 1 1 3 3 3 

D8 (A) 3 9 12 1 0.33 0 0 0 1 0.33 0 0 0 2 2 2 

D9 (B) 7 14 20 2 0.28 3 0.42 1 0 0 2 1 1 3 3 3 

D10 (B) 9 18 26 2 0.22 3 0.33 1 0 0 4 2 1 3 3 3 

D11 (B) 7 18 37 3 0.42 3 0.42 1 0 0 2 1 1 3 3 3 

D12 (B) 8 22 35 3 0.37 2 0.25 1 1 0.12 2 1 1 3 3 3 

D13 (A) 5 9 26 0 0 0 0 0 0 0 4 1 2 2 2 2 

D14 8 12 30 0 0 0 0 0 0 0 10 1 3 2 3 3 

D15 (C) 11 17 38 0 0 0 0 0 0 0 18 1 4 4 4 4 

D16 20 42 76 10 0.5 6 0.3 2 2 0.1 10 3 2 6 6 6 

D17 (D) 23 41 88 10 0.43 6 0.23 2 2 0.06 16 3 3 6 6 6 

D18 (E) 21 45 94 6 0.28 6 0.28 2 1 0.04 20 2 4 6 5 6 

D19 29 56 98 12 0.41 7 0.24 3 3 0.1 24 4 4 6 6 7 

D20 (B) 9 28 47 1 0.11 5 0.55 2 0 0 2 1 1 3 3 3 

D21 (F) 18 30 65 3 0.16 5 0.27 1 0 0 19 2 4 5 5 5 

D22 (D) 26 44 79 11 0.42 6 0.23 2 0 0 21 5 3 6 6 6 

D23 (F) 17 32 69 1 0.05 5 0.19 1 0 0 19 1 5 5 5 5 

D24 23 50 73 9 0.4 7 0.3 3 2 0.08 11 4 1 5 6 5 

D25 (E) 22 42 84 14 0.63 4 0.18 2 4 0.18 16 3 3 6 5 6 

D26 14 34 77 4 0.28 9 0.64 2 0 0 7 2 4 4 5 5 
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