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Abstract. Mixed gases are used for massive gas injection disruption mitigation

on Alcator C-Mod in order to optimize radiation efficiency, halo current reduction,

and response time. Gas mixtures of helium and argon (argon fraction 0–50%) are

investigated in detail, as well as mixtures of deuterium, argon, krypton, and helium.

Experiments show that injecting He/Ar mixtures leads to faster thermal and current

quenches than with pure helium or argon injection, thus improving the time response

of the disruption mitigation system and reducing the halo current. Small fractions

of argon (∼5–10%) in helium also lead to optimized radiation fractions with large

electron density increases in the core plasma. These results are consistent with the

expectation that small fractions of argon will be entrained with the faster helium in

the early phases of gas flow. The gas mixing allows one to simultaneously exploit

the fast particle delivery rate of light helium gas and the large radiation capability of

argon.
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1. Introduction

In a tokamak, disruptions are the sudden loss of energy confinement caused by

the destruction of magnetic surfaces. The sudden in plasma resistivity associated with

the rapidly falling temperature results in a fast current decay and dissipation of the

plasma’s thermal and poloidal magnetic energy. Disruptions have deleterious effects

through intense localized heat flux to plasma facing components, generation of halo

current in the conducting vessel, and the generation of significant current carried in

multi-MeV runaway electrons that are eventually lost into plasma facing components.

Preventing or mitigating their occurence will be a requirement for any reactor-regime

tokamak [1].

The principle of massive gas injection (MGI) disruption mitigation is to force a

rapid and comparatively benign release of the plasma energy through a forced injection

of a radiative species into the plasma [2]. Massive gas injections also have the potential

to prevent runaway electron formation by creating a strong collisional drag force [3],

induced MHD stochasticity [4, 5], and strong bremsstrahlung and synchrotron radiation

drag [6]. Noble gas species are used because they have low chemical reactivity with

in-vessel components, which are often at elevated temperatures.

The location of the gas reservoir and fast valve is an important design consideration

for MGI systems. For maintenance access and to avoid radiation damage, it is likely

that the reservoir and valve for a burning plasma experiment such as ITER will be

located outside the neutron shielding and toroidal field coil set, 3–5 m from the plasma

edge. This raises concerns about the overall response time of the mitigation system. A

signal can be immediately sent to open the disruption mitigation valve when triggered

by a disruption detection system, but the delivery of the radiative species to the plasma

is delayed by the time it takes the gas to travel down the pipe from the valve to the

plasma edge.

Therefore, it would appear that light gases such as H2 or He, with high gas sound

speeds, would be favored since they will propagate the fastest to the plasma edge [7].

However, light, low atomic number (low-Z) impurities have low radiation rate coefficients

due to their full ionization in the plasma, which can reduce the effectiveness of the

disruption mitigation [8]. On the other hand, heavy, high-Z gases have high radiation

rate coefficients due to their large number of bound electrons, but will move more slowly

to the plasma, introducing an undesirable delay to the initiation of plasma cooling [9].

Previous disruption mitigation experiments on the JT-60U tokamak using a

conventional gas injection system (∼ 100 times smaller injection rate than with massive

gas injection systems) showed that gas mixtures of low-Z and high-Z noble gases resulted

in larger radiated power and a larger density increment, which helped decrease runaway

electron formation [9, 10, 11].

We report here on the use of gas mixtures with the massive gas injection disruption

mitigation system on Alcator C-Mod [8]. In section 2 we discuss the requirements

for disruption mitigation and discuss the benefits of using gas mixtures. In section 3
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we present the results of experiments on C-Mod using a helium/argon mixture,

showing that disruption mitigation can be optimized with respect to the argon gas

fraction. We also present observations of massive gas injection using mixtures of

hydrogen/argon and helium/krypton. In section 4 we interpret the observations using

a zero-dimensional radiation/ionization code in order to illuminate some of the physics

behind the experimental results. Conclusions are given in section 5.

2. Requirements for disruption mitigation

For a disruption mitigation system to qualify as successful, the following three

requirements must be met:

• The fast delivery of a large quantity of radiative species into the plasma. The

delivery time must be faster than the growth time of the plasma instabilities that

lead to the disruption through violation of the tokamak’s operational limits (e.g.

vertical displacement, locked-mode, pressure limit, etc.)

• Efficient energy removal and density increment during the thermal quench to

prevent localized heat loads to plasma facing components, and to prevent runaway

electron formation during the current quench.

• Rapid and resistive termination of the plasma current to minimize halo currents.

In the following subsections, the details of these requirements are discussed.

2.1. Gas delivery

For a given MGI system (plenum, valve, pipe), the delivery rate of the gas to the

plasma is set by the gas sound speed. The speed of sound in a monatomic gas at a given

temperature depends on the atomic mass M of the gas (cs ∼ 1/M1/2). A summary

of C-Mod disruption mitigation experiments using pure helium and argon gases [8] is

shown in figure 1. Figure 1(a) indicates the effect of gas delivery speeds.

In C-Mod experiments the gas valve is located 2 m from the plasma edge. The gas

travels through a stainless steel tube with 9.4 mm internal diameter (13.0 mm external

diameter). The effective time response, which is desired to be as short as possible,

is measured as the time between the valve opening, tinj (as indicated by the start of

the rise of the pressure waveform just downpipe from the valve), and the time of the

beginning of the current quench, tCQ, which indicates that the plasma has become cold

and highly resistive. The overall response time for pure He injection is found to be

∼ 25% better than for pure Ar injection. However, this relative advantage for He is far

less than the ratio of sound speeds; cs in He is approximately 3 times faster than in Ar.

This indicates a competition between radiation efficiency and the speed of sound in the

different gases. We now examine how we can exploit this competition by using mixed

gases for disruption mitigation.

The particle delivery rate for pure gases can be assessed using a simple analytic

model based on Euler’s equation for adiabatic expansion without friction. We assume

an infinitely large plenum located at x < 0. A fast valve located at x = 0 connects the
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Figure 1. Summary of pure He and Ar gas-jet disruption mitigation experiments on

Alcator C-Mod [8]. (a) Time delay from start of pressure rise in pipe to beginning of

current quench, (b) radiated energy, (c) maximum rate of change of plasma current,

(d) electron density ne at beginning of current quench. Note ne for helium MGI is at

detection limits. Neither He nor Ar can fulfill all disruption mitigation requirements.

plenum to a constant-diameter pipe which runs from x = 0 to x = Lp, where Lp is the

length of the pipe (m). At x = Lp, the pipe empties into a vacuum region of infinite

volume. The sound speed of the gas in the plenum is given by:

c0 =

√

γP0

ρ0

=
√

γRT0 (1)

where c is the sound speed (m s−1), γ is the ratio of specific heats, or adiabatic constant,

P is the gas pressure (Pa), ρ is the mass density of the gas (kg m−3), R = R̄/M is the

gas constant (J kg−1 K−1), and T is the gas temperature (K). The subscript 0 indicates

the stagnation condition, assumed to be valid in the plenum where the velocity of the

gas is always small.

If the valve opens at t = 0, the gas flows into the pipe (initially a vacuum), and a

shock front develops. The evolving sound speed c and fluid velocity u as a function of

x (distance down the pipe) and time t are given by [12]:

c =
2

γ + 1
c0 −

γ − 1

γ + 1

x

t
(2)

u =
2

γ + 1
c0 +

2

γ + 1

x

t
(3)

Examination of (2) shows that at the pipe exit, x = Lp, the solution is physical (c > 0)

only after a minimum elapsed time of:

∆t0 ≥
γ − 1

2

Lp

c0

(4)
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For an ideal monatomic gas, γ = 5/3. Thus, for noble gases, the minimum delay for

gas particles to arrive is ∆t0 = Lp/3c0. The gas particle delivery rate into the infinite

vacuum at x = Lp is given by:

Ṅ
∣

∣

∣

x=Lp

= (nu)x=Lp
A ∼

( ρ

M
A

)

(5)

where Ṅ is the particle delivery rate (s−1), n is the particle density (m−3), and A is

the cross-sectional area of the pipe (m2). The gas density (n ∼ ρ) is obtained from the

adiabatic relationships:

c

c0

=

(

T

T0

)
1
2

=

(

ρ

ρ0

)
γ−1

2

=

(

P

P0

)
γ−1

2γ

(6)

Thus for t > ∆t0, we can combine (2), (3), (5), and (6) to determine the particle delivery

rate. Normalized to the reservoir conditions, this is given for monatomic ideal gases by:

(nu)x=Lp

n0c0

=
3

256

(

1 +
1

t∗

) (

3 −
1

t∗

)3

(7)

where t∗ ≡ t (c0/Lp) is the normalized time, and (nu)x=Lp
×A gives the rate of delivery

of gas particles into the vacuum at x = Lp.

For fixed hardware (A, Lp constant) and fixed reservoir gas pressure (n0 constant),

the particle delivery rate depends only on the gas sound speed at stagnation c0. The

normalized particle delivery rate given by (7), as well as the pipe exit velocity and

pressure normalized to the plenum conditions, are shown graphically in figure 2. It can

be seen that the particle delivery rate has a waveform that is about three times steeper

versus time than the pipe exit pressure in the early phases of injection (t∗ . 1.5). This

is significant in that exit pressure is typically used as the (indirect) indicator of gas flow

in experiments [13]. In particular, the particle delivery rate is ∼ 60% of its steady-state

value after one sonic transit time (t = Lp/c0), while the pressure has only reached ∼ 13%

of its steady-state value.

Taking the C-Mod case of Lp = 2 m, the sonic transit times Lp/c0 for helium

(c0 ≃ 1000 m s−1) and argon (c0 ≃ 250 m s−1) are 2 ms and 8 ms, respectively.

Given that the characteristic timescale for C-Mod disruption quenches is 1–2 ms, the

importance of prompt gas delivery is obvious. In particular, it is important to realize

that it is the initial delivery of gas (at t = Lp/3c0) that initiates the sequence leading

to radiative termination (thermal quench). However, for the case of argon, the “bulk”

of the gas is not delivered until more than 5 ms after this time. This is obviously

undesirable with respect to maximizing the delivered particle inventory in the current

quench. However, this limitation for argon delivery can be overcome by noting that the

gas in the pipe is in a strongly viscous regime. Therefore, for small fractions of argon

mixed with helium, the mixture can be treated as a single fluid with an effective atomic

mass set by the admixture concentration of Ar with He. In such cases (fAr . 10%),

the small concentration of argon will be delivered at nearly the same speed as for pure

helium gas. The argon atoms are efficiently entrained with the helium and are delivered
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Figure 2. Normalized flow rate, pressure, and fluid velocity at the exit of a tube of

length Lp for a reservoir gas of sound speed c0. ∆t0 = Lp/3c0 is the time at which the

gas first arrives at the pipe exit.

at a much faster rate than is possible with pure Ar gas. The rapid delivery of the highly

radiating argon brings advantages that will be explained in the following sections.

2.2. Energy removal

Although the fast delivery of species into the plasma is critical to mitigate the

disruption, it is not enough by itself. The injected species must be effective at radiating

away the plasma energy to prevent localized heat flux, and increase the electron density

at the same time to prevent runaway formation. It has been shown [8] that high-Z

impurities, having large radiation rate coefficients, can radiate the energy of the plasma

efficiently. This is true even when they are injected in low quantities, as with killer pellets

[14] or low-pressure gas puffing [10]. As a result, the radiative fraction of the stored

thermal energy is higher with argon than with helium, as can be seen in figure 1(b).

However, because of their slower particle delivery rate, high-Z impurities do not increase

the electron density as effectively as does He. A high electron density is desirable for

runaway suppression. A summary of density increments before the current quench with

different noble gases is shown in figure 1(d). The highest density increments are obtained

with helium; however, due to the low radiation rate of pure He, these injections are not

as successful at mitigating the localized heat flux by radiative dissipation [8, 9].

If a mixture of mostly low-Z gas with small concentrations of high-Z gas can be

delivered quickly to the plasma, it may remove the energy quickly and trigger the current

quench earlier. The radiation power Prad of a plasma contaminated with an impurity

is approximately given by Prad = nenzLz, where ne is the free electron density, nz is

the number density of impurity atoms, and Lz is the radiation rate coefficient for the

impurity. Thus injecting a mixture can lead to large radiation power densities even

if the density of the high-Z mixture is low, because the ionization of the low-Z gas

contributes many free electrons. One obtains a double benefit with the gas mixture:
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the high-Z impurities arrive more quickly due to their viscous transport by the low-Z

carrier gas, and the efficiency of the radiation is improved by the electrons contributed

by the ionization of the carrier gas.

2.3. Resistive termination

After the thermal quench, poloidal halo currents become a concern. These can

be decreased by increasing the current quench rate [15]. After the thermal quench, the

plasma temperature, and hence resistivity and CQ rate, are determined primarily by the

the ionization energy of the injected gas. This is because the plasma is in equilibrium

between ohmic heating and line radiation [3]. This can be seen in figure 1(c). In the case

of mixed gas species, it the species with the lowest ionization potential will primarily

set the temperature. In the case of helium-argon mixtures, then, it is expected that Ar

(ionization energy 16 eV) will dominate over He (ionization energy 24 eV). This holds

even if the argon is a small fraction of the helium, due to the exponential sensitivity of

ionization rate to temperature when the temperature is below the ionization energy. We

therefore expect the gas mixture to cause a reduction in halo current, similar to that

found with pure argon, even at low admixture fractions.

3. Experimental setup and observations

The gas jet disruption mitigation system on Alcator C-Mod consists of a 300 mL

high-pressure plenum that is typically filled to 7 MPa with a noble gas. A fast-response

valve, located at the plenum, delivers the gas into a connecting pipe of 2 m length, and

9.4 mm internal diameter. The valve is open for approximately 1.3–2.0 ms. Technical

details of the disruption mitigation system are presented in [8]. Disruption mitigation

experiments using mixed gases were performed during four runs in 2006, 2007, and 2009.

The 2006 experiments began with pure He injection on the first shot. Then, after

each shot, the plenum was refilled in situ using a 50% He + 50% Ar gas mixture.

This gradually increased the Ar fraction of the plenum, allowing us to do a scan of Ar

concentrations in a single run. The actual fractions of species were measured using

a residual gas analyzer. The main target plasma parameters were Ip = 1.2 MA,

ne0 ∼ 1020 m−3, and Bt = 5.4 T. Further experiments were performed in 2007 and

2009 using an 85% He + 15% Ar gas mixture as well as mixtures of 85% D2 + 15% Ar

and 85% He + 15% Kr into a target plasma with Ip = 1.0 MA, ne0 ∼ 1020 m−3, and

Bt = 5.5 T.

In figure 3 we show waveforms of the electronic trigger to the valve, the pressure

rise at the pipe inlet (just downstream from the high-pressure plenum), the central

soft X-ray signal from the plasma, and plasma current for typical diruption mitigation

experiment using a mixture of 88% He + 12% Ar. The valve opens, indicated by the

rising pressure ∼ 2 ms after the command is given to the valve, and inlet pressure quickly

approaches steady state. After a delay time, set by the gas delivery speed and radiation

efficiency, the core temperature collapses (indicated by soft X-ray emission), and the

plasma current resistively decays. The timing of this sequence is highly reproducible

(variation < 0.1 ms) if the target plasma and injection gas type and pressure are kept
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Figure 3. Waveforms for C-Mod shot 1060622003, a typical disruption mitigation

experiment using a mixture of 88% He + 12% Ar. (a) Current applied to the valve,

(b) pressure at the valve outlet, (c) central soft X-ray intensity, (d) plasma current.

constant.

Waveforms of edge soft X-ray intensity, plasma current, poloidal halo current, and

line-integrated electron density for for disruption mitigation shots using 100% He, a

mixture of 90% He + 10% Ar, and a mixture of 50% He + 50% Ar are shown in figure 4.

Edge soft X-ray signals, as a qualitative measure of temperature, show simultaneous

thermal quenches with pure He and a mixture of 90% He + 10% Ar. This indicates

that the pure He gas and the 90% He + 10% Ar mixture gas front arrives at the plasma

column at approximately the same time. The thermal quench with 50% He + 50% Ar

starts approximately 2 ms later than for the others, indicating a lower gas front velocity,

as would be expected from the increase in effective atomic mass. However, the current

quench with 90% He + 10% Ar starts ∼ 1 ms earlier than with pure He, indicating

improved radiation efficiency. The electron density increment with the mixture at the

early phase of injection nearly overlaps with that of pure He. Poloidal halo currents are

smallest with the 90% He + 10% Ar mixture. These observations are all consistent with

expectations for low-fraction admixtures of high-Z gas, as discussed in section 2. In the

following subsections we explore these observations in detail.

3.1. Gas delivery speed

The time of the start of the thermal quench (indicated by the delay between the

start of the pressure rise at the valve and the collapse of the edge soft X-ray signal on

SXR chords 5, 6, and 7, at r/a = 0.96, 0.91, and 0.87 respectively) is plotted versus the

sound speed for several gas mixtures in figure 5. Also shown is the signal from when

radiation was first observed on a fast ultraviolet diode pointing at the gas jet [16]. It
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Figure 4. Waveforms of (a) edge soft X-ray signal, (b) plasma current, (c) halo

current, (d) chord-integrated electron density for 3 disruption mitigations using pure

helium (blue circle), a mixture of 90% He + 10% Ar (red square), and a mix of

50% He + 50% Ar (green triangle).

can be seen that the gas arrives at the plasma at a time very close to the predicted

time ∆t0 = Lp/3c0, but that the edge soft X-ray collapse is delayed by a time known

as the pre-thermal quench (pre-TQ) time [17]. The mixture of 15% Ar + 85% D2 used

in one set of MGI experiments has a specific heat ratio γ ≃ 1.44 and thus the shock

arrives after a delay ∆t0 ≃ 0.22Lp/c0 = 0.7 ms, more quickly than for the mixtures of

monatomic ideal gases.

The time of the start of the thermal quench and the arrival of the gas at the plasma

is shown in figure 6 for just the argon/helium mixtures. It can be seen that the time

the gas takes to arrive at the plasma increases as the sound speed of the gas decreases.

3.2. Thermal quench and radiation power

As discussed in section 2.2, the ability of the gas to effectively radiate the plasma

energy away during the thermal quench is critical to prevent localized heat loads to

plasma facing components. The time-integrated radiation power during the thermal

quench versus the argon fraction for a series of Ar/He disruption mitigation shots is

shown in figure 7(a). As expected, the lowest radiated energy is seen for pure helium.

In all of these shots, total stored energy (thermal + poloidal magnetic energy) is

approximately 0.65 MJ. The radiation power increases with the fraction of argon in

the mixture, up to an argon fraction of approximately 10%. For larger fractions, the
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radiation power is nearly constant.

In figure 7(b), the time elapsed from the triggering signal being sent to the

disruption mitigation valve to the start of the current quench (defined as the maximum

measured plasma current) is shown for the same series of Ar/He discharges. This

delay time reaches a minimum for argon fractions of 10–15%. This demonstrates the

advantages of gas mixtures: high radiation efficiency with a fast global response time.

The density increment before the current quench is particularly important for

runaway electron suppression. The free electron density measured during 3 disruption

mitigation experiments using He/Ar mixtures in C-Mod is shown in figure 4(d). The

highest density increment is obtained with pure helium and the lowest with the

50% He + 50% Ar mixture. These signals show the free electron density in the plasma.

However, for runaway electron suppression, it is the total electron density ne,T (including

bound electrons) that is significant. There exists no measurement technique for the

total electron density, and therefore we have investigated ne,T using the KPRAD 0-D

transport code in section 4.2.

3.3. Current quench and resistivity

The halo currents measured during the experiments are shown in figure 8(c) for
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using gas mixtures.

helium/argon gas mixtures. The highest halo current is observed during pure He

injections, although this is still an improvement from unmitigated VDE disruptions

with Ihalo ∼ 225 kA. This is consistent with previous experimental observations [8].

All mixtures lead to lower halo current than with pure He. However, there is little

additional reduction in halo current for argon fractions above 10%. This is consistent

with the physical picture presented in section 2.2 – the argon dominates the thermal

balance of the CQ plasma even at low admixture fractions.

4. Discussion

We have used a simple 0-D transport code with energy balance (KPRAD) to

calculate the response of a plasma with similar experimental parameters to the target

plasmas used in the disruption mitigation experiments. The flow rate of the injected

species is obtained from the analytical equations given in section 2.1. There are no free

parameters in the calculation.

4.1. Gas delivery speed

In section 3.1 we used the soft X-ray signals at the edge (chords 5–7) as an indication

of the time when the radiation power from the injected gas species has become much

higher than the ohmic power. A fast photodiode looking directly at the gas jet showed

that the actual arrival of the gas at the plasma was described well by the analytic model

presented in section 2.1.

As can be seen in figure 5, the timing of the soft X-ray collapse correlates with the

time when the gas arrives at the plasma, although with a different numerical coefficient
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Figure 9. (a) The simulated free electron density agrees well with the experimental

results (see figure 4d). In the case of helium-argon gas mixtures, the contribution of

the argon to the density increment is ∼ 20%. (b) Similar total (free + bound) electron

density is obtained using pure He and 90% He + 10% Ar.

(∆tSXR ∼ Lp/2c0). This difference is likely due to the time required for the gas injection

to accumulate to sufficient density in the plasma to cause the edge plasma to suddenly

cool. The delay from the arrival of the gas at the plasma to the onset of the thermal

quench is discussed further in [17]. For analyzing the flow rate of gas mixtures, (7) is

adequate.

4.2. Thermal quench and radiation power

In figure 5 it was shown that the thermal quench starts earlier using mixtures

with higher sound speeds. The second critical requirement for disruption mitigation is

the electron density increment. The free electron density increment gives a qualitative

indication of the particle delivery; however, it is the total electron density (free + bound)

which is required for suppression of runaway electrons. The results of a 0-D simulation

are shown in figure 9, with results similar to the experimental data (figure 4). Figure 9(b)

shows an interesting result: the total electron density is with 90% He + 10% Ar is

nearly identical to that from pure He injection, despite the total delivered atoms with

90% He + 10% Ar being low. The contribution of the argon in increasing the total

electron density in the 90% He + 10% Ar mixture is approximately 20%. The total

electron density with 50% He + 50% Ar is very low during the thermal quench (see

figure 4(d)).

4.3. Current quench and resistivity

The 0-D KPRAD code was also used to calculate the plasma resistivity immediately

after the thermal quench for simulated injections of helium-argon mixtures. The
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Figure 10. Observed (from current decay L/R timescale) and calculated (KPRAD)

resistivity of the plasma immediately after the thermal quench, for helium-argon

mixtures. Using a mixture of approximately 15–20% Ar forces the plasma to a highly

resistive phase.

experimental post-TQ resistivity was calculated from the observed R/L current decay

timescale during the current quench. The two are compared in figure 10. There are no

free parameters in the KPRAD model. Agreement is better for gas mixtures than for

pure helium due to (explanation).

5. Conclusions

Helium-argon and other gas mixtures were used in disruption mitigation

experiments on Alcator C-Mod to investigate the advantages of mixtures versus

single-species injections. Through comaprison to pure-gas experiments and numerical

calculations, the following results have been obtained:

• The speed of gas delivery for a variety of gas mixtures is well described by assuming

that the gas mixture is in a highly viscous regime, and acts as a single gas with an

effective sound speed set by the effective atomic mass and adiabatic constant for

the mixture.

• Helium-argon mixtures with a low argon fraction approach the plasma at nearly the

same speed as pure helium. They produce a similar total (free + bound) electron

density increment, which is critical to suppress runaway electrons.

• The radiation power and current quench time using helium-argon mixtures are

similar to those when using pure argon. Halo currents are mitigated for pure Ar

and He-Ar mixtures.

• Helium-argon mixtures trigger the current quench faster than pure helium or pure

argon.

• Intrinsic impurities appeared to contribute less to the radiation power than with

pure helium injection.
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