
Citation: da Silva, J.C.F.; Silva, M.C.;

Luz, E.J.S.; Delabrida, S.; Oliveira,

R.A.R. Using Mobile Edge AI to

Detect and Map Diseases in Citrus

Orchards. Sensors 2023, 23, 2165.

https://doi.org/10.3390/s23042165

Academic Editor: Marco Picone

Received: 19 January 2023

Revised: 8 February 2023

Accepted: 11 February 2023

Published: 14 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Using Mobile Edge AI to Detect and Map Diseases in Citrus
Orchards
Jonathan C. F. da Silva , Mateus Coelho Silva * , Eduardo J. S. Luz , Saul Delabrida
and Ricardo A. R. Oliveira

Departamento de Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto,
Rua Diogo Vasconcelos-128-Bauxita, Ouro Preto 35400-000, MG, Brazil
* Correspondence: mateuscoelho.ccom@gmail.com

Abstract: Deep Learning models have presented promising results when applied to Agriculture
4.0. Among other applications, these models can be used in disease detection and fruit counting.
Deep Learning models usually have many layers in the architecture and millions of parameters.
This aspect hinders the use of Deep Learning on mobile devices as they require a large amount of
processing power for inference. In addition, the lack of high-quality Internet connectivity in the
field impedes the usage of cloud computing, pushing the processing towards edge devices. This
work describes the proposal of an edge AI application to detect and map diseases in citrus orchards.
The proposed system has low computational demand, enabling the use of low-footprint models
for both detection and classification tasks. We initially compared AI algorithms to detect fruits
on trees. Specifically, we analyzed and compared YOLO and Faster R-CNN. Then, we studied
lean AI models to perform the classification task. In this context, we tested and compared the
performance of MobileNetV2, EfficientNetV2-B0, and NASNet-Mobile. In the detection task, YOLO
and Faster R-CNN had similar AI performance metrics, but YOLO was significantly faster. In
the image classification task, MobileNetMobileV2 and EfficientNetV2-B0 obtained an accuracy of
100%, while NASNet-Mobile had a 98% performance. As for the timing performance, MobileNetV2
and EfficientNetV2-B0 were the best candidates, while NASNet-Mobile was significantly worse.
Furthermore, MobileNetV2 had a 10% better performance than EfficientNetV2-B0. Finally, we
provide a method to evaluate the results from these algorithms towards describing the disease spread
using statistical parametric models and a genetic algorithm to perform the parameters’ regression.
With these results, we validated the proposed pipeline, enabling the usage of adequate AI models to
develop a mobile edge AI solution.

Keywords: edge AI; mobile edge computing; deep learning; citrus orchards

1. Introduction

Deep Learning (DL) algorithms are increasingly embedded in agriculture [1]. This
sector can benefit from these techniques for more modern, economical, and safe processes.
In this context, DL models associated with edge systems become a tool that enables tech-
nological advances in the area, such as in citrus cultivation. For instance, it helps detect
diseases through images collected in the environment [2].

The orange is one of the most-cultivated fruits in the world and generates a GDP
of USD 6.5 billion in all countries in the production chain [3,4]; this requires efficient
cultivation of these fruits. A crucial aspect of improving the productivity of the orange
crop is detecting diseases through inspection. For instance, estimated losses in citrus crops
can reach up to 22% [5] due to black spots.

Among the primary diseases in orange groves, some main pests are black spots, citrus
canker, and greening. These diseases reduce oranges’ quality, caused by fungi or bacteria
contamination, reducing the production due to the premature falling of the fruit from the
trees.

Sensors 2023, 23, 2165. https://doi.org/10.3390/s23042165 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2214-397X
https://orcid.org/0000-0003-3717-1906
https://orcid.org/0000-0001-5249-1559
https://orcid.org/0000-0002-8961-5313
https://doi.org/10.3390/s23042165
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042165?type=check_update&version=2

Sensors 2023, 23, 2165 2 of 21

In addition, the market is restricted due to these factors, which make it challenging
to produce [6]. Other issues related to these diseases are fruits with acidic and bitter
flavors and a bad appearance on the surface. Thus, these products become unsuitable for
commercialization, such as producing fresh fruits and juices [7]. Figure 1 shows an orange
with contamination by black spot fungi.

Figure 1. An example of black spot disease in an orange. Source: [8].

Agriculture has benefited from tools that use DL models, as they optimize traditional
production processes and reduce losses from attacks from pests and diseases [9], for
example real-time weed spraying using a computer vision application [10,11].

This work proposes a pipeline that allows the creation of a mobile application as an
integrated DL model for identifying diseases in citrus. For this, we review the DL models’
applications in the literature, such as their performance in image detection and classification
task. Then, we propose a set of algorithms to detect citrus fruits in orchards, evaluate the
presence of diseases on each fruit, and map the disease spread among the orchard area.
Finally, we evaluated an algorithm to model the disease spread distribution in the orchard
area. Using these algorithms in a device that does not require cloud services can assist
citrus growers in cultivating citrus in the orchards. Thus, the objective of this text is to:

• Propose and evaluate a path for using mobile edge AI to create an application to
recognize diseases and their spread pattern among orchards.

In this context, we expected to evaluate a complete set of tools to perform the dis-
ease detection and mapping within orchards. Hence, the main contributions of this
work are as follows:

• An evaluation and comparison of Deep Learning algorithms to detect citrus fruits in
an image. At this time, the authors have not found any other authors evaluating such
solutions in this context;

• An evaluation and comparison of lightweight Deep Learning algorithms to classify
fruits as healthy or diseased, within the context of three diseases. The authors also did
not find other authors performing the same kind of study;

• A proposal of a method based on an evolutionary computing algorithm to employ the
gathered data to generate knowledge about the disease distribution throughout the
orchard area. This approach is also unprecedented, although it has theoretical support.

For this, we discuss the theoretical references and related work in Section 2. We
provide the materials and methods used to evaluate this work in Section 3. The results of
these evaluations and preliminary discussions are presented in Section 4. Finally, we assess
the conclusions obtained from this work in Section 5.

Sensors 2023, 23, 2165 3 of 21

2. Theoretical References and Related Work

This section presents some traditional DL models used for image classification and
detection in agriculture. In addition, we provide some of the most-relevant related works
and how they approach the topic and differ from our work.

In the literature, various works use DL for image classification, such as ResNet [12],
Inception [13], VGG [14], MobileNets [15], and NASNet-Mobile [16]. Some models have
thousands of parameters with very deep architectures. This aspect can be a significant
factor in choosing the model for integration into the mobile application. That is because a
mobile device has limited resources that need to be preserved. In the following sections,
we compare the DL models and mobile applications developed in this context.

2.1. Analysis of Deep Learning Models in Agriculture

In an image classification task, with the plant village database with 38 different classes,
including diseased and healthy images of leaves from 14 plants [17], the authors compared
the models VGG 16, Inception V4, ResNet with 50, 101, and 152 layers, and DenseNet with
121 layers. They concluded that DenseNet consistently improved the accuracy with an
increasing number of epochs, with no signs of overfitting and performance deterioration.
In addition, DenseNet requires considerably fewer parameters and achieved an accuracy
of 99.75%, surpassing the other models.

For classifying apple leaf diseases, for a dataset containing 3651 images and four
categories, scab, healthy, multiple infections, and apple rust [18], the ResNet50 and VGG19
models reached 87.7% accuracy for the tests performed. In another literature work [19],
for the detection of diseases in rice, ResNet101V2 was the best-performing model with an
accuracy of 86.79%. This work compared the VGG16, VGG19, ResNet50, and ResNet50V2
models. The metrics most used in this literature to calculate the performance of DL models
are the precision, recall, and F1-score.

Mobile devices require models with fewer parameters to preserve device resources
and execution with low latency. On the one hand, they are ideal for detecting diseases using
AI. On the other hand, most works do not evaluate the resource footprint considering the
application on edge devices. This literature review shows how deep models have achieved
desirable performances within the context of agricultural applications.

2.2. Mobile Applications Using Deep Learning in Agriculture

With Agriculture 4.0, intelligent applications are increasingly utilized to solve prob-
lems on plantations, such as disease identification [20]. In the literature, some works use
DL models in this context, such as the one proposed by Chen et al. [21], which uses a
YOLOv3 model on a smartphone to detect pests on plantations and obtained 90% accuracy
in performing the task.

Thai-Nghe et al. [22] used an EfficientNet model integrated with a device, obtaining
an accuracy of 95% and a response time of 1.7s. However, they did not analyze the
application’s processing consumption, considering that this application may be in places
where re-powering the device during the activity is not possible.

Verma et al. [23] proposed a mobile application for diagnosing plant diseases and
compared some DL models: ResNetv2, VGG16, VGG19, ResNet50, and Xception. They
chose ResNet50 as the most accurate to create the mobile application. Although this
model selected by the authors achieved considerable accuracy for them, this model has
significantly more parameters compared to MobileNetV2. This makes the model demand
more resources for processing on the device.

An application for pest detection on plantations can face communication problems if
the processing is performed in the cloud, as proposed by Karar et al. [24]. Contrary to the
cited literature, our work suggests edge processing to avoid communication problems in
the rating system.

Barman and Choudhury [25] designed a smartphone app to detect diseases on citrus
leaves. They relied on CNNs to classify the samples based on the collected images. Their

Sensors 2023, 23, 2165 4 of 21

work is related to ours in aim and in part of the applications, but the authors needed to
segment their leaves manually. Our process is non-intrusive and segments the orange
images while in the orchard.

Pan et al. [26] also developed a smartphone-based solution to classify diseases in
citrus fruits and on their leaves. They relied on a cloud-based solution to perform the
classification task and returned its result to the user. Their results are relate to this work, but
require the user to segment the image manually and require a cloud service. Our proposal
is edge-based and performs the segmentation and classification in scale on its own.

3. Materials and Methods

This section discusses the methodology we propose to find and classify the oranges in
orchards. For this, we split our work into three main stages. In the first one, the task was to
find oranges in an image. The mobile application is capable of associating these samples
with the geolocation. Then, we investigated two networks to infer the diseases from the
citrus in the application. Finally, we evaluated how these inferences could be used to map
diseases in an orchard.

All algorithmic tests were conducted on the same machine. It had an i5-9600K CPU
and 32 GB of RAM. Furthermore, it had an NVidia GeForce RTX 2060 Super graphics card,
supporting CUDA operations for machine learning acceleration. This machine was used to
standardize the tests in both the detection and classification tasks.

3.1. Citrus Detection Methods: YOLO-v3 and Faster R-CNN

The first step in performing this was detecting the citrus fruits within the orchard. For
this, we performed a case study to validate the method to sample the fruits in the orchard
using the image. This step aimed to prove the concept and compare the performance of
two AI detection solutions in this context. We initially chose YOLO-V3 and Faster R-CNN
as the architectures to perform this task. These networks were chosen as they are Deep
Learning alternatives for object detection in images. As this solution is unique to the best
of our knowledge, these models can work as a benchmark for future implementations.

An object detection network is usually composed of two parts, a pre-trained ImageNet
backbone and a head used to predict the classes and bounding boxes [27]. One of the
most-representative models in this context is YOLO [28]. The standard network YOLO has
24 convolutional layers, followed by two fully connected layers. With this, YOLO predicts
multiple bounding boxes. First, it splits an image into a grid of cells. Then, it predicts the
bounding boxes by a threshold, according to the object’s position in the image [29].

In the literature, there are some works for detecting citrus with YOLO. Good accuracy
was achieved by applying this method in edge computing, using the NVidia Jetson Xavier
NX Hardware, in [30]. Other authors showed that YOLO-LITE ran at about 21 FPS on a
non-GPU computer and at 10 FPS after being implemented on a website with only seven
layers and 482 million FLOPS. This speed was 3.8-times faster than the fastest state-of-art-
model, SSD MobilenetV1 [31]. Thus, we decided to use YOLO to implement the mobile
devices for object detection, integrating a mobile application.

We initially established a dataset to work towards this goal. Our choice was to use
a custom-made dataset. We created it by initially downloading images from the Internet
through the Google Images search engine. Then, we used the open-access tool labelImg [32]
to create the annotations for this custom dataset in the Pascal VOC format. Figure 2
displays how this process works. We annotated oranges in 120 images for training and 40
for validation. Although this initial number of images is not very large, it was enough to
establish a proof-of-concept for later development stages.

Sensors 2023, 23, 2165 5 of 21

Figure 2. Images obtained from the annotation system.

Then, we experimented with YOLO-v3 and Faster R-CNN. We used the Keras [33]
weights as the back-end candidates. In this case, we explored two metrics. As the first one,
we evaluated the mean average precision (mAP) in the object detection context. This metric
considers the average percentage of correct predictions by varying the threshold of the
accepted answers based on the intersection over union (IoU). In this case, we are detecting
a single class. Thus, the mAP will be the same as the average precision calculated, varying
the threshold for the accepted predictions. Figure 3 displays how this metric is calculated.

Figure 3. Intersection over union illustration.

We also evaluated the advantage of using one model against another regarding the
timing aspects. For this, we performed 30 rounds of predictions over eight images that
did not belong to the dataset. We tested the models using both back-ends for the same
images, evaluating the average time to perform the predictions for each image. For this, we
performed a t-test analysis for each of the eight images. In these tests, the hypotheses were
as follows:

• H0: The two samplings have no significant timing difference for both models.
• H1: The average times to perform the predictions are different for each model.

We know that if the values of the mAP are similar, the timing can be a constraint in
deciding to use one or the other model. Nonetheless, if there is no significant difference in
the timing, we can choose the model with the best mAP.

Sensors 2023, 23, 2165 6 of 21

3.2. Citrus Classification Methods: MobileNet-V2, EfficientNetV2-B0, and NASNet-Mobile

In this section, we study the options for the classification algorithms for citrus images.
In our context, it is interesting to have models that may have a feasible performance in the
embedded environment. Thus, we evaluated three different models that can solve the issue.
From the available solutions in Keras [33], we selected three different models to work as
backbones to solve this issue:

• MobileNet-V2: This model is a convolutional neural network (CNN) commonly used
to solve classification problems [34]. Without its top layer, this model is 14 MB.

• EfficientNetV2-B0: This model is also a CNN commonly used for classification prob-
lems [35]. It is 29 MB in size without its top layers.

• NASNet-Mobile: This is another lightweight CNN used for classification prob-
lems [36]. This model is 23 MB without its top layers.

MobileNets are different from traditional convolutional networks, being small and
fast [15]. Smaller MobileNets are faster as they use a width and resolution multiplier,
trading a fair amount of precision to reduce the size and latency [15]. Thus, this DL model
becomes a powerful option for integration into mobile applications, such as in image
detection tasks such as for fruit diseases [37].

The NASNet architecture’s background the Neural Architecture Search (NAS) frame-
work [38]. This Deep Learning (DL) model is flexible and scalable for different applications.
In object detection, a miniature version of NASNet also achieved 74% top-1 accuracy,
equivalent to state-of-the-art models for mobile platforms [16].

EfficientNets are a family of convolutional neural network models designed to be
faster and more precise on classification tasks [39]. The most miniaturized model in this
set is EfficientNet B0. It has been used in tasks such as waste classification [40] due to its
efficiency and performance.

All three models were used to obtain a better classification potential considering
the dataset used in Silva et al. [41]. The structure of the prediction model starts with a
normalization layer for a three-channel image. Then, the data flow through the model
backbone. Finally, the output of the backbone is flattened and goes through a dense layer
with 512 neurons. The output is a dense layer with a “softmax” activation function. Figure 4
illustrates how we employed these backbones to build our model.

Figure 4. Classification network structure illustration.

To evaluate these networks, we employed two different evaluations. Initially, we
evaluated the models’ performance according to traditional machine learning metrics:
precision, recall, F1-score, and global average. Then, we studied how each model performed
regarding its timing constraints. As these predictions were performed on images of the
same size, we tested their capability over the whole test dataset, measuring the average
prediction time for each model. Then, we compared each pair of models with a t-test
analysis. In these tests, the hypotheses were:

• H0: The two samplings have no significant timing difference for both models.

Sensors 2023, 23, 2165 7 of 21

• H1: The average times to perform the predictions are different for each model.

If the models performed very similarly regarding their machine learning metrics, the
timing constraint can again be a constraint in the model choice. With these tests and the
previous versions, we could perform the complete detection and classification tasks. In the
following subsection, we discuss how to use these data to evaluate the disease spread in
an orchard.

3.3. Mapping Diseases in Orchards

Once having defined the algorithms used in the mobile tool, the following step was
to evaluate how to use them in a real-world context. We started from the standpoint that
disease detection is a critical task within a citrus orchard. Nonetheless, we also wanted to
produce a further result with these data. Using ground-based measurements with GPS data,
we expected not only to detect the diseases within the orchards, but to understand how
they were affecting the orchard. Thus, comprehending these diseases’ spatial distribution
is a valuable task within this context. Many works in the literature describe the spread of
diseases in orchards [42–46], a fact that supported our decision.

In this work, we considered that each disease happens independently. To our knowl-
edge, we have not found authors studying the presence of multiple diseases in the same
orchard and how they mutually influence each other. Thus, we considered infections as
isolated events in this initial approach.

We considered the possibility of ground-based sampling. As supported by some pre-
vious studies [41,47,48], this sampling can be supported by wearable computing solutions.
Thus, we considered that a user wearing such solutions can perform these measurements
in the field. We considered that these solutions were also paired with GPS data.

We know that as we provide faster information about diseases using AI, we can also
run algorithms to approach this issue faster. We divided this into a few theoretical and
experimental steps:

1. Understanding the probabilistic distribution models that describe the spatial distribu-
tion of diseases in orchards;

2. Selecting a realistic map to represent an “ideal” citrus orchard;
3. Generating samples according to a parametric probabilistic model using a version of

the Monte Carlo method;
4. Performing regressions using various techniques to approach the initial model with

various statistical samplings simulated using the previous method.

The first step towards this goal was to create a probabilistic spatial distribution model
to describe how diseases spread in orchards. At a later stage, we could evaluate the
dynamics of this spread, but this validation application will provide a picture of the
orchard’s current status.

Costa et al. [45] studied the distribution of Diaphorina citri in citrus orchards through
statistical tools. After testing the data for randomness, the authors employed a negative
binomial distribution analysis to study the probabilities of finding this pest in the orchards.
In their work, this distribution had a higher coefficient of determination when compared to
the Poisson distribution.

In the proposal of Charest et al. [43], they evaluated the spatial distribution of a disease
in an apple orchard by dividing the area into blocks. Then, they calculated the probability
of finding disease spores for each block according to a Poisson distribution and a binomial
distribution. A binomial distribution is a discrete probability representation that behaves
similarly to normally distributed events sampled within a discrete number of classes.

As we observe a space according to its coordinates, our modeling works with a
probability within a two-variable space. Thus, the probability for each event in a continuous

Sensors 2023, 23, 2165 8 of 21

bivariate space can be represented similarly to a bivariate normal Probability Function (PF),
represented by Equation (1):

P(x, y) = D0e
(− 1

2(1−ρ2)
[(

x−µx
σx)2−2ρ(

x−µx
σx)(

y−µy
σy)+(

y−µy
σy)2])

(1)

The standard deviations parameterize the above equation among the x and y axes
(σx,σy), the correlation between the two variables (ρ), the mean value on each axis (µx,µy),
and the maximum disease density (D0). These parameters allow determining the disease
distribution D0 according only to its spatial coordinates x, y, using a Gaussian paramet-
ric model.

The value of this maximum density can reach up to even 50% of the fruits [49]. It
represents a probability function instead of a probability density function, as it is normalized
by the maximum density of diseased fruits observed in the orchard. We can initially work
starting from data with zero correlation for simplification purposes. Thus, the previous
equation was simplified to Equation (2), representing non-correlated coordinates:

P(x, y) = D0e
(− 1

2 [(
x−µx

σx)2+(
y−µy

σy)2])
(2)

Another important aspect is to define an experimental area’s configuration. As such
a dataset does not exist, we based our solution on a simulated environment based on
real aspects of orchards. For instance, Marin et al. [50] studied a citrus orchard’s area
of circa 0.63 ha (63 m × 100 m). Osco et al [51] evaluated a larger area, of 70.4 ha. As is
shown, the range of these areas can vary. Our hypothetical citrus orchard sampling area
consisted of a 1 ha square. The tree spacing followed a distance similar to that presented by
Petillo et al. [52], 4 m × 6 m. This configuration’s sampling area consisted of 425 trees, as
illustrated in Figure 5.

Figure 5. Hypothetical orchard illustration. The hypothetical orchard has 425 trees within a 1 ha area,
separated into a 4 m × 6 m grid. The x and y coordinates represent the distance in meters.

We can obtain different results when applying the probability function described in
Equation (2) in the mentioned area with arbitrary parameters. We illustrate some of the
options for these results in Figure 6. As we can see from the images, the five parameters
of the parametric model (D0,σx,σy,µx,µy) made significant alterations to the shapes and

Sensors 2023, 23, 2165 9 of 21

values of the probability function. The complete model, displayed in Equation 1, allows for
further manipulation of the shape of the probability function according to the correlation
between the two variables (ρ). In Figure 7, it is possible to see how this parameter shapes
the curve according to its value in the bivariate normal probability function.

Figure 6. Simplified parameterized probability functions’ plot. These figures were generated using
the function from Equation (2). The x and y axes represent the same coordinates represented in
Figure 5, and the P(x, y) axis represents the values obtained from Equation (2).

Figure 7. Complete parameterized probability functions plot. These figures were generated using the
function from Equation (1). The x and y axes represent the same coordinates represented in Figure 5,
and the P(x, y) axis represents the values obtained from Equation (1). In this figure, we can observe
the effect of the ρ parameter, varying from 0 to 0.9.

These functions display how we can develop probability functions to describe disease
spread in the orchard sampling area. With five or six parameters, depending on the function,
we can obtain several distributions corresponding to how the literature displays functions
that model spatially distributed diseases. The next step should provide a representative
scenario of the hypothetical orchard area. The sampling scenario’s creation was through
the Monte Carlo method, from its features in developing draws from a probability function.
For this, we followed the perspective of the method in a general manner. According to
Harrison [53], there is no unique way of applying the Monte Carlo method, but there are
general lines.

In general terms, it starts from a defined probability function. Then, the simulation
generates multiple random inputs classified according to this probability function. Finally,
according to the interest, the data processing happens after the sampling batch’s creation.
We used this method to simulate a sampling method within the orchard. Our steps within
the Monte Carlo method were as follows:

1. Defining a probability function: We define two sets of parametric models. One uses
the simplified bivariate probability function, while the other uses the complete one.

2. Sampling the data: For each tree, we generated 100 samples. Given the tree (x,y)
coordinate, the probability of the disease being present is given by P(x, y). The
probability of detection from each disease was considered to be its recall (Pr). Thus,
a draw D within a uniform distribution will generate the classification result. The
sample was considered diseased if D <= P(x, y)× Pr.

3. Compute the sampling data: With these sampling data in hand, our objective was
to perform a regression to obtain the parameters from the probability functions

Sensors 2023, 23, 2165 10 of 21

that generated the samples. We tested the sampling considering all three diseases
described by the networks from Section 3.2. Furthermore, we performed the tests
with both simplified and complete PFs. Thus, we performed six tests to evaluate the
results we should expect from the sampling process with the proposed system.

The number of samples was chosen according to the literature analysis. Iglesias et al. [54]
had citrus trees with more than 160 fruits on average. Ouma [55] already studied citrus with
a maximum value of 1400 fruits per tree. Given this variety of possibilities, as the automatic
sampling and classification, we know the possibility of sampling 100 fruits from each tree.
We used a uniform distribution to simulate the sampling of diseased and healthy citrus,
considering the probability function at the spot.

To perform the data computation task, we used the process proposed by Silva et al. [56],
which uses an evolutionary algorithm to perform a regression from samples and obtain
the disease distribution. We designed an algorithm and ran it to obtain the results in
all six cases. As the models were parametric, we considered the solution as a part of a
hyperspace Rn. Thus, to score the obtained solutions, we used the following equation
using the Euclidean distance between the original parameters and the obtained ones. We
followed the definitions below to create this metric:

Definition 1. Let V be the original parameters’ vector.

Definition 2. Let V̂ be the obtained parameters’ vector.

Definition 3. Let vi be the element on the i-th position of the vector V.

Definition 4. Let v̂i be the element on the i-th position of the vector V̂.

The Euclidean distance from the vectors is defined by:

D(V, V̂) =
√

∑
i
(vi − v̂1)2 (3)

The score will be a factor calculated by:

S(V, V̂) =
1

1.03D(V,V̂)
(4)

This score is helpful, as when the values of V and V̂ are very similar, it comes closer
to 1. Nonetheless, as it goes further away, the value asymptotically approaches 0 as the
distance increases. The denominator is thought to dampen the score decay as the distance
increases. Figure 8 illustrates this scoring system.

Figure 8. Scoring system according to Equation (4). The D(V, V′) axis represents the distance between
the ideal and obtained parameters, and the score axis represents the output from S(V, V̂).

Sensors 2023, 23, 2165 11 of 21

4. Results

In this section, we give the results obtained from the methods described in the previous
sections. Initially, we give the results of running the YOLO and Faster R-CNN algorithms
to detect fruits among the tree. Then, we compare the three proposed architectures to solve
the classification issue, which were MobileNet-V2, EfficientNetV2-B0, and NASNet-Mobile.
Finally, we evaluate the expected behavior of this application in the field using the proposed
methodological framework.

4.1. Citrus Detection Method: YOLO-V3 and Faster R-CNN

For the citrus detection system, we trained two different implementations: YOLO-V3
and Faster R-CNN. As we showed in Section 3.1, the first step was creating markings in
the images to compose a dataset. Then, we trained YOLO [57] and Faster R-CNN [58]
according to implementations over the Keras framework. Then, we trained the network to
obtain the average precision according to the selected data. Figure 9 displays the results
obtained by each implementation.

Figure 9. Result of the YOLO-V3 and Faster R-CNN training for this application.

Initially, the results of the mAP metric were similar. The YOLO-V3 achieved 88%,
while Faster R-CNN achieved 90%. Although Faster R-CNN had a better performance
indicator, the YOLO algorithm displayed better results visually. The results were very
similar, bringing the timing aspect as a crucial constraint in evaluating and comparing the
algorithms. As these results were similar, we analyzed this aspect also qualitatively.

We performed 30 predictions using both algorithms on the same set of images to test
the timing constraints. Then, we evaluated the results through a t-test, as described in
Section 3.1. Table 1 displays the obtained results. Initially, our test showed that the times
were statistically different, rejecting the null hypothesis. Analyzing the time averages and
standard deviations, the results displayed a better performance executing the detection
through the YOLO algorithm.

This results are especially significant within the mobile context. The initial results
indicated that using the YOLO algorithm is probably better within the mobile context,
where computing power is limited. The precision of both algorithms was virtually the
same. Nonetheless, from a qualitative view, YOLO might provide more information.

Sensors 2023, 23, 2165 12 of 21

Table 1. Results for the timing comparison tests. The tests show significant statistical separation for
the results of both algorithms.

Faster R-CNN (ms) YOLO-V3 (ms) p-Value

Image 1 2264 ± 56 78 ± 1 p < 2.2× 10−16

Image 2 2059 ± 36 90 ± 1 p < 2.2× 10−16

Image 3 2367 ± 40 75 ± 1 p < 2.2× 10−16

Image 4 2110 ± 29 91 ± 1 p < 2.2× 10−16

Image 5 2246 ± 35 52 ± 1 p < 2.2× 10−16

Image 6 2115 ± 26 53 ± 1 p < 2.2× 10−16

Image 7 2016 ± 34 54 ± 0.4 p < 2.2× 10−16

Image 8 2114 ± 40 67 ± 1 p < 2.2× 10−16

4.2. Citrus Classification Methods: MobileNet-V2, EfficientNetV2-B0, and NASNet-Mobile

In this set of tests, we evaluated the possibility of identifying the diseases in segmented
citrus images. We also compared the performance of multiple candidate backbones within
this context. This work aimed to provide a baseline to perform mobile citrus classification,
as displayed in Figure 10. For this, we evaluated three models using different networks as
the backbones for the application. Figure 4, displayed in Section 3.2, shows the organization
of this model. We chose smaller networks capable of providing suitable solutions within
the mobile context.

Figure 10. Detection of orange diseases with AI on the mobile device. Using a mobile application,
the method could detect Citrus Canker (A), Fresh Oranges (B), Black Spot (C), and Greening (D).

Initially, we trained the networks using the Keras API as the baseline to create our
codes. We trained the networks using the categorical cross-entropy loss function and the
Adam optimizer. As the test set was used only as an indicator, we employed it in the
validation steps in this section. The training was set to stop when the loss from the training
data reached a plateau. Figure 11 displays the results for the training sessions for each
model. These results show no signals of overfitting, displaying a satisfactory convergence
for each model.

Then, we evaluated the machine learning classification metrics. For each class, we
evaluated the precision, recall, and F1-score. We also evaluated the global average for
each case. Table 2 displays the metrics for MobileNetV2. Table 3 displays the metrics for
EfficientNetV2-B0. Table 4 displays the metrics for NASNet-Mobile. The results indicated
that NASNet-Mobile had a slightly worse performance when compared with the two other
options. The metrics of MobileNetV2 and EfficientNetV2-B0 indicated they had the same
performance on these examination metrics.

Sensors 2023, 23, 2165 13 of 21

Table 2. Metrics for the MobileNetV2 model.

Precision Recall F1-Score Support

Citrus Canker 1.00 1.00 1.00 201
Fresh Oranges 1.00 1.00 1.00 388
Greening 1.00 1.00 1.00 369
Black Spot 1.00 1.00 1.00 206

Macro Average 1.00 1.00 1.00 1164
Weighted Average 1.00 1.00 1.00 1164

Global Accuracy: 100%

Figure 11. Evaluation of the accuracy and loss values for the training and validation sets. In all cases,
the horizontal axes represent the training epochs. The vertical axes represent the accuracy or the loss
function value, according to each title label.

Table 3. Metrics for the EfficientNetV2-B0 model.

Precision Recall F1-Score Support

Citrus Canker 1.00 1.00 1.00 201
Fresh Oranges 1.00 1.00 1.00 388
Greening 1.00 1.00 1.00 369
Black Spot 1.00 1.00 1.00 206

Macro Average 1.00 1.00 1.00 1164
Weighted Average 1.00 1.00 1.00 1164

Global Accuracy: 100%

Our final evaluation in this step of the research was to analyze the timing constraints
of each application. For this, we measured the time required to predict the classes of all
images in the dataset. As the difference between each model was only the backbone, all
timing differences were related to this aspect. Table 5 displays the results from this set
of tests.

Sensors 2023, 23, 2165 14 of 21

Table 4. Metrics for the NASNet-Mobile model.

Precision Recall F1-Score Support

Citrus Canker 0.98 0.91 0.95 201
Fresh Oranges 1.00 1.00 1.00 388
Greening 1.00 1.00 1.00 369
Black Spot 0.92 0.99 0.95 206

Macro Average 0.98 0.97 0.97 1164
Weighted Average 0.98 0.98 0.98 1164

Global Accuracy: 98%

Table 5. Results for the time analysis from the classification models. The tests display significant
statistical separation for the results of each pair of algorithms.

First Model Second Model p-Value

MobileNetV2 NASNet-Mobile
times (ms) 30 ± 3 44 ± 2 p < 2.2× 10−16

MobileNetV2 EfficientNetV2-B0
times (ms) 30 ± 3 34 ± 2 p < 2.2× 10−16

EfficientNetV2-B0 NASNet-Mobile
times (ms) 34 ± 2 44 ± 2 p < 2.2× 10−16

The results indicated a statistically significant difference between the times of each
sampling set. The model with the best timing performance was MobileNetV2, while the
worst was obtained with NASNet-Mobile. The relative difference between MobileNetV2
was circa 10%. As both MobileNetV2 and EfficientNetV2-B0 had the same performance
considering the machine learning metrics, our result indicated that MobileNetV2 should
perform better in the context of this application.

4.3. Mapping Diseases in Orchards

As we showed in Section 3.3, we started by defining arbitrary probability functions
for each disease in this stage. As we discussed, in the initial stage, we started from the
simplified equation considering a non-correlated distribution among the axes, represented
by Equation (2). These equations are parametric models based on five parameters: the
maximum density D0, the mean value on the x and y axes (µx,µy), and the standard
deviation among each axis (σx,σy). We individually evaluated the distributions of each
disease, considering them to be independent. In Table 6, we display the parametric values
used to obtain the PFs, which are displayed in Figure 12.

Figure 12. PFs displayed in Table 6 for each studied disease. The x and y axes represent the
same coordinates represented in Figure 5, and the P(x, y) axis represents the values obtained from
Equation (2).

Sensors 2023, 23, 2165 15 of 21

Table 6. Parameters of the probability functions used in the first test.

Disease D0 µx µy σx σy

Black spot 0.3 20 20 10 10
Greening 0.2 20 80 5 30
Citrus canker 0.1 80 80 10 20

After this stage, we sampled 100 points for each tree, representing the sampling of the
segmentation algorithm upon the tree. On each point, we used the bivariate probability as
the criterion for the existence of a diseased fruit according to this function. Then, we used
the recall value as the probability of correctly classifying the diseased fruit, given that it is a
positive sample from the class. The number of diseased fruits in that tree represents the
disease density at the given point.

We performed this regression with the help of an evolutionary algorithm. For each
distribution, we performed a genetic algorithm that searched for the best fit for the arbitrary
probability function that describes the density of diseased fruits per tree. Figure 13 displays
the organization of this algorithm.

Figure 13. Evolutive algorithm organization.

Initially, we started a population with random parameters. The genotype from this
solution was a set of five or six integers, according to the presence or absence of the ρ
parameter. The population size was a parameter from the algorithm and the number of
offspring. Then, the algorithm eliminated the worst individuals and replaced them with the
offspring of the remaining ones. Each gene of the offspring was the mean value between
the parents’ genes. The new offspring can have mutations, which are minor changes in the
values of their genes. After that, the algorithm allows a five-round local search for minor
improvements in the value. Finally, the algorithm evaluates the population and finishes
in case it meets the convergence criteria or reaches the maximum epochs. For this, the
parameters of this algorithm were:

• Population size: 800 individuals;
• Maximum number of epochs: 1000 epochs;
• Number of offspring: 200 individuals;

The fitness function was calculated as the integral of the absolute error between the
predicted density p(i) and the measured density d(i) at each i tree. As we studied discrete
samples, it was measured as the sum of the errors among each sample, as presented in
Equation (5):

IAE = ∑
i
|d(i)− p(i)| (5)

Sensors 2023, 23, 2165 16 of 21

We tested the sampling generated using the described version of the Monte Carlo
method. Our reference parameters were the ones presented in Table 6. Figure 14 displays
the obtained results for each distribution. The upper row displays the distributions used to
generate the sampling. The lower row displays the results after the regression using the
genetic algorithm.

Figure 14. Predictions of the simplified PF using the evolutionary algorithm. The x and y axes
represent the same coordinates represented in Figure 5, and the P(x, y) axis represents the values
obtained from Equation (2).

From the second perspective, we experimented with the function containing the
correlation term ρ. For this, we employed the complete version of the probability function,
given in Equation (1). Table 7 displays the parameters chosen for the following part of this
experiment. Furthermore, Figure 15 displays the behavior of these distributions in space.
As the figure shows, they slightly differed from the behaviors shown in Figure 12 due to
the correlation term.

Figure 15. PFs displayed in Table 7 for each studied disease. The x and y axes represent the
same coordinates represented in Figure 5, and the P(x, y) axis represents the values obtained from
Equation (1).

Table 7. Parameters of the probability density functions used in the second test.

Disease D0 µx µy σx σy ρ

Black spot 0.3 20 20 10 10 0.2
Greening 0.2 20 80 5 30 0.5
Citrus canker 0.1 80 80 10 20 0.8

Again, we tested the sampling generated using the described version of the Monte
Carlo method. Our reference parameters were the ones presented in Table 7. Figure 16

Sensors 2023, 23, 2165 17 of 21

displays the obtained results for each distribution. In the other case, the upper row displays
the distributions used to generate the sampling, and the lower row displays the results
after the regression using the genetic algorithm.

Figure 16. Predictions of the complete PF using the evolutionary algorithm. The x and y axes
represent the same coordinates represented in Figure 5, and the P(x, y) axis represents the values
obtained from Equation (1).

In both experiments, we initially performed a qualitative analysis according to the
images from the distributions. What Figure 14 shows is that the algorithm could approxi-
mate the original distributions with good performance. Figure 16 shows that the addition
of the correlation factor ρ impaired the performance of the predictions, but they still could
approximate several features from the distributions.

Then, we started with a quantitative analysis of the first experiment. Table 8 dis-
plays the results for each class in the first experiment. The score was obtained according
to Equation (4), which is a radial gradient that diminishes as the solution goes further
away from the original data. The scoring indicates that the approximations were suitable.
Furthermore, the proximity of these values shows that the ranges probably can precisely
describe the distribution of this disease throughout the orchard.

Table 8. Results for the score and obtained parameter considering the first experiment.

Disease D0 µx µy σx σy

Black spot
score: 0.9457

Original values 0.3 20 20 10 10
Predicted values 0.25 20.88 20.97 11.30 9.70

Greening
Score: 0.9630

Original values 0.2 20 80 5 30
Predicted values 0.20 19.74 80.38 4.92 28.78

Citrus canker
score: 0.9262

Original values 0.1 80 80 10 20
Predicted values 0.10 81.31 80.49 10.60 18.29

Finally, we also analyzed the results for the densities considering the existence of a
correlation between the directions. For this, we added arbitrary values to the ρ parameter.
Table 9 displays the results for each class in the second experiment. The scoring values
indicated that the algorithm had a lower performance considering distributions marked by
this correlation factor. We should expect that this technique is limited to distributions where
the disease is distributed with low correlation among the coordinates. Nonetheless, the
effect of this parameter in discovering the other configuration aspects of these distributions

Sensors 2023, 23, 2165 18 of 21

was minor, and it still gave a fair understanding of the disease spread’s geolocation and
conditions.

With these results, we described how the proposed algorithms, methods, and appli-
cations could be employed in the field to describe the conditions of local citrus and the
disease incidence in the orchard. Although the proposed technique has some limitations,
it provides valuable information considering the disease’s geolocation and the spread’s
dispersion.

Table 9. Results for the scores and obtained parameters considering the second experiment.

Disease D0 µx µy σx σy ρ

Black spot
score: 0.8983

Original values 0.3 20 20 10 10 0.2
Predicted values 0.29 20.91 21.90 11.56 11.86 0.46

Greening
score: 0.7998

Original values 0.2 20 80 5 30 0.5
Predicted values 0.20 14.86 77.56 6.47 28.60 0.39

Citrus canker
score: 0.7531

Original values 0.1 80 80 10 20 0.8
Predicted values 0.10 81.79 82.30 15.93 18.29 0.47

5. Conclusions and Discussions

In this article, we proposed a complete pipeline that allows a mobile application to use
AI processing at the edge to detect and map diseases in citrus orchards. This pipeline starts
with the detection of citrus fruits throughout the orchard. Then, the application performs a
classification of these images. Finally, the combination of AI data and geolocation allows
an understanding of the distribution of these diseases in the orchard area.

Although some traditional models have achieved good performance, by reviewing
the literature, we saw that a large number of parameters, for example the depth of the
model, may require greater processing power for the AI when applied to mobile devices,
which are limited in resources. Thus, we integrated a model that, despite not having the
best accuracy among the deep models, reached an answer in a short time and did not need
high-processing-power hardware.

Our initial evaluation showed that YOLO-V3 was suitable for detecting the citrus
fruits within an image. This model outperformed Faster R-CNN regarding the timing
constraints, with a similar result in the detection aspect. On average, this model can detect
oranges in an orchard image in less than 100 ms. Thus, it is more adequate for creating a
mobile application, as it is computationally restrained.

Then, we evaluated a set of classification algorithms. We observed that all algorithms
had a global accuracy between 98% and 100% and concluded that MobileNetV2 has a good
balance between accuracy and timing to perform this task in a mobile application. With a
10% worse timing performance, EfficientNetV2-B0 is still an eligible candidate to perform
this task. Given the conditions, the performance of NASNet-Mobile was significantly
worse.

Finally, we were able to map the disease’s spread considering parametric models sam-
pling the disease spread within the orchard. We performed this task through a regression
to a probability function based on the bivariate normal distribution. These results were
better for more simplified models without spatial correlation among the coordinates within
the disease.

This application can be used to optimize the cultivation of oranges, expanding the
opportunity to visualize the spatial distribution of fruits affected by diseases quickly and
accurately. Thus, the citrus grower can take some measures to manage the orange trees,
such as spraying before the diseases spread throughout the orchard. Future works can
explore this pipeline in a realistic context, applying the proposed technologies in orchards
to identify their strengths and weaknesses.

The employment of this sensing technology can also evolve the solution into a risk-
management tool for non-infected citrus. Users can evaluate the temporal dynamics of

Sensors 2023, 23, 2165 19 of 21

disease spread in an orchard. With such information, the measurement of a stationary
condition can support the orchard management in taking more efficient measures to stop
the disease’s spread.

Author Contributions: Conceptualization, M.C.S., E.J.S.L. and R.A.R.O.; methodology, J.C.F.d.S. and
M.C.S.; software, J.C.F.d.S. and M.C.S.; validation, S.D., R.A.R.O. and E.J.S.L.; formal analysis, M.C.S.;
investigation, M.C.S.; resources, R.A.R.O.; data curation, M.C.S.; writing—original draft preparation,
J.C.F.d.S. and M.C.S.; writing—review and editing, E.J.S.L., S.D. and M.C.S.; visualization, M.C.S. and
J.C.F.d.S.; supervision, M.C.S., S.D., E.J.S.L. and R.A.R.O.; project administration, R.A.R.O.; funding
acquisition, R.A.R.O. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by CAPES (Finance Code 001) and CNPq (306572/2019-2
and 308219/2020-1).

Data Availability Statement: The partial or total data and the codes will be made available in the
case of manuscript approval.

Acknowledgments: The authors would like to thank FAPEMIG, CAPES, CNPq, and the Federal
University of Ouro Preto for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DL Deep Learning
GDP Gross Domestic Product
AI Artificial Intelligence
PF Probability Function

References
1. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
2. Zhao, S.; Peng, Y.; Liu, J.; Wu, S. Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention

Module. Agriculture 2021, 11, 651. [CrossRef]
3. Neves, M.F.; Trombin, V.G. Anuário da Citricultutura 2017, 1st ed.; Citrusbr: São Paulo, Brazil, 2017.
4. CitrusBr. Laranja e Suco A Fruta; CitrusBr: São Paulo, Brazil, 2020.
5. Brentu, F.C.; Oduro, K.A.; Offei, S.K.; Odamtten, G.T.; Vicent, A.; Peres, N.A.; Timmer, L.W. Crop loss, aetiology, and epidemiology

of citrus black spot in Ghana. Eur. J. Plant Pathol. 2012, 133, 657–670. [CrossRef]
6. Fundecitrus. Cancro Cítrico; Fundecitrus: Araraquara, Brazil, 2021.
7. United States Department of Agriculture Animal and Plant Health Inspection Service , Citrus Greening. Available online: https://

www.aphis.usda.gov/aphis/resources/pests-diseases/hungry-pests/the-threat/citrus-greening/citrus-greening-hp (accessed
on 4 July 2022).

8. Fundecitrus. Sete Erros No Controle da Pinta Preta; Fundecitrus: Araraquara, Brazil, 2018.
9. Santos, L.; Santos, F.N.; Oliveira, P.M.; Shinde, P. Deep Learning Applications in Agriculture: A Short Review. In Proceedings of

the Robot 2019: Fourth Iberian Robotics Conference, Porto, Portugal, 20–22 November 2020; Silva, M.F., Luís Lima, J., Reis, L.P.,
Sanfeliu, A., Tardioli, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 139–151.

10. Abdulsalam, M.; Aouf, N. Deep Weed Detector/Classifier Network for Precision Agriculture. In Proceedings of the 2020 28th
Mediterranean Conference on Control and Automation (MED), Saint-Raphaël, France, 16–19 June 2020; pp. 1087–1092. [CrossRef]

11. Zheng, Y.Y.; Kong, J.L.; Jin, X.B.; Wang, X.Y.; Su, T.L.; Zuo, M. CropDeep: The Crop Vision Dataset for Deep-Learning-Based
Classification and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [CrossRef] [PubMed]

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

13. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

14. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
15. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
16. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.

http://doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.3390/agriculture11070651
http://dx.doi.org/10.1007/s10658-012-9944-1
https://www.aphis.usda.gov/aphis/resources/pests-diseases/hungry-pests/the-threat/citrus-greening/citrus-greening-hp
https://www.aphis.usda.gov/aphis/resources/pests-diseases/hungry-pests/the-threat/citrus-greening/citrus-greening-hp
http://dx.doi.org/10.1109/MED48518.2020.9183325
http://dx.doi.org/10.3390/s19051058
http://www.ncbi.nlm.nih.gov/pubmed/30832283

Sensors 2023, 23, 2165 20 of 21

17. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning Deep Learning models for plant disease
identification. Comput. Electron. Agric. 2019, 161, 272–279. . [CrossRef]

18. Subetha, T.; Khilar, R.; Subaja Christo, M. WITHDRAWN: A comparative analysis on plant pathology classification using deep
learning architecture—Resnet and VGG19. Mater. Today Proc. 2021. [CrossRef]

19. Burhan, S.A.; Minhas, S.; Tariq, A.; Hassan, M.N. Comparative study of Deep Learning algorithms for disease and pest detection
in rice crops. In Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence
(ECAI), Bucharest, Romania, 25–27 June 2020; pp. 1–5.

20. Mohameth, F.; Bingcai, C.; Sada, K.A. Plant disease detection with Deep Learning and feature extraction using plant village. J.
Comput. Commun. 2020, 8, 10–22. [CrossRef]

21. Chen, C.J.; Huang, Y.Y.; Li, Y.S.; Chang, C.Y.; Huang, Y.M. An AIoT Based Smart Agricultural System for Pests Detection. IEEE
Access 2020, 8, 180750–180761. [CrossRef]

22. Thai-Nghe, N.; Tri, N.T.; Hoa, N.H. Deep Learning for Rice Leaf Disease Detection in Smart Agriculture. In Proceedings of the
International Conference on Artificial Intelligence and Big Data in Digital Era, Ho Chi Minh, Vietnam, 18–19 December 2022;
Springer: Berlin/Heidelberg, Germany, 2022; pp. 659–670.

23. Verma, S.; Chug, A.; Singh, A.P.; Sharma, S.; Rajvanshi, P. Deep learning-based mobile application for plant disease diagnosis: A
proof of concept with a case study on tomato plant. In Applications of Image Processing and Soft Computing Systems in Agriculture;
IGI Global: Hershey, PA, USA, 2019; pp. 242–271.

24. Karar, M.E.; Alsunaydi, F.; Albusaymi, S.; Alotaibi, S. A new mobile application of agricultural pests recognition using deep
learning in cloud computing system. Alex. Eng. J. 2021, 60, 4423–4432. [CrossRef]

25. Barman, U.; Choudhury, R.D. Smartphone assist deep neural network to detect the citrus diseases in agri-informatics. Glob.
Transit. Proc. 2022, 3, 392–398. [CrossRef]

26. Pan, W.; Qin, J.; Xiang, X.; Wu, Y.; Tan, Y.; Xiang, L. A smart mobile diagnosis system for citrus diseases based on densely
connected convolutional networks. IEEE Access 2019, 7, 87534–87542. [CrossRef]

27. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
28. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073.

[CrossRef]
29. Jamtsho, Y.; Riyamongkol, P.; Waranusast, R. Real-time Bhutanese license plate localization using YOLO. ICT Express 2020,

6, 121–124. [CrossRef]
30. Lyu, S.; Li, R.; Zhao, Y.; Li, Z.; Fan, R.; Liu, S. Green Citrus Detection and Counting in Orchards Based on YOLOv5-CS and AI

Edge System. Sensors 2022, 22, 576. [CrossRef] [PubMed]
31. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers.

In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 2503–2510. [CrossRef]

32. Lin, D. GitHub-Tzutalin/LabelImg: LabelImg Is a Graphical Image Annotation Tool and Label Object Bounding Boxes in
Images—github.com. 2015. Available online: https://github.com/tzutalin/labelImg (accessed on 4 July 2022).

33. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 10 February 2023).
34. Xiang, Q.; Wang, X.; Li, R.; Zhang, G.; Lai, J.; Hu, Q. Fruit image classification based on Mobilenetv2 with transfer learning

technique. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering, Sanya, China,
22–24 October 2019; pp. 1–7.

35. Furqon, M.; Nugroho, S.M.S.; Rachmadi, R.F.; Kurniawan, A.; Purnama, I.K.E.; Aji, M.H.S.B. Arrhythmia Classification Using
EFFICIENTNET-V2 with 2-D Scalogram Image Representation. In Proceedings of the 2021 TRON Symposium (TRONSHOW),
Tokyo, Japan, 8–10 December 2021; pp. 1–9.

36. Çakmak, M.; Tenekecı, M.E. Melanoma detection from dermoscopy images using Nasnet Mobile with Transfer Learning. In
Proceedings of the 2021 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 9–11 June
2021; pp. 1–4.

37. Bi, C.; Wang, J.; Duan, Y.; Fu, B.; Kang, J.R.; Shi, Y. MobileNet based apple leaf diseases identification. Mob. Networks Appl. 2020,
1–9. [CrossRef]

38. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578.
39. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.
40. Mulim, W.; Revikasha, M.F.; Hanafiah, N. Waste Classification Using EfficientNet-B0. In Proceedings of the 2021 1st International

Conference on Computer Science and Artificial Intelligence (ICCSAI), Jakarta, Indonesia, 28 October 2021; Volume 1, pp. 253–257.
41. Silva, M.; da Silva, J.F.; Oliveira, R. IDiSSC: Edge-computing-based Intelligent Diagnosis Support System for Citrus Inspection.

In Proceedings of the 23rd International Conference on Enterprise Information Systems, SCITEPRESS-Science and Technology
Publications, Online, 26–28 April 2021. [CrossRef]

42. Gottwald, T.; Avinent, L.; Llácer, G.; Hermoso-De-Mendoza, A.; Cambra, M. Analysis of the spatial spread of sharka (plum pox
virus) in apricot and peach orchards in eastern Spain. Plant Dis. 1995, 79, 266–278. [CrossRef]

43. Charest, J.; Dewdney, M.; Paulitz, T.; Philion, V.; Carisse, O. Spatial distribution of Venturia inaequalis airborne ascospores in
orchards. Phytopathology 2002, 92, 769–779. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.compag.2018.03.032
http://dx.doi.org/10.1016/j.matpr.2020.11.993.
http://dx.doi.org/10.4236/jcc.2020.86002
http://dx.doi.org/10.1109/ACCESS.2020.3024891
http://dx.doi.org/10.1016/j.aej.2021.03.009
http://dx.doi.org/10.1016/j.gltp.2021.10.004
http://dx.doi.org/10.1109/ACCESS.2019.2924973
http://dx.doi.org/10.1016/j.procs.2022.01.135
http://dx.doi.org/10.1016/j.icte.2019.11.001
http://dx.doi.org/10.3390/s22020576
http://www.ncbi.nlm.nih.gov/pubmed/35062541
http://dx.doi.org/10.1109/BigData.2018.8621865
https://github.com/tzutalin/labelImg
https://keras.io
http://dx.doi.org/10.1007/s11036-020-01640-1
http://dx.doi.org/10.5220/0010444106850692
http://dx.doi.org/10.1094/PD-79-0266
http://dx.doi.org/10.1094/PHYTO.2002.92.7.769
http://www.ncbi.nlm.nih.gov/pubmed/18943274

Sensors 2023, 23, 2165 21 of 21

44. Ben-Hamo, M.; Ezra, D.; Krasnov, H.; Blank, L. Spatial and temporal dynamics of Mal Secco disease spread in lemon orchards in
Israel. Phytopathology 2020, 110, 863–872. [CrossRef] [PubMed]

45. Costa, M.G.; Barbosa, J.C.; Yamamoto, P.T.; Leal, R.M. Spatial distribution of Diaphorina citri Kuwayama (Hemiptera: Psyllidae)
in citrus orchards. Sci. Agric. 2010, 67, 546–554. [CrossRef]

46. Molin, J.P.; Colaço, A.F.; Carlos, E.F.; Mattos Junior, D.D. Yield mapping, soil fertility and tree gaps in an orange orchard. Rev.
Bras. Frutic. 2012, 34, 1256–1265. [CrossRef]

47. Da Silva, J.C.; Silva, M.C.; Delabrida, S.; da Silva Luz, E.J.; Oliveira, R.A. A novel intelligent mobile application using human-
centered AR: A case study in orange inspection. In Proceedings of the Anais Estendidos do XXI Simpósio Brasileiro de Fatores
Humanos em Sistemas Computacionais, SBC, Diamantina, MG, Brazil, 17–21 October 2021; pp. 72–75.

48. da Silva, J.C.F.; Silva, M.C.; Oliveira, R.A. Towards a novel wearable solution for citrus inspection using Edge AI. In Proceedings
of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA, USA, 27
June–1 July 2022; pp. 966–971.

49. Leelasuphakul, W.; Hemmanee, P.; Chuenchitt, S. Growth inhibitory properties of Bacillus subtilis strains and their metabolites
against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biol. Technol. 2008, 48, 113–121.
[CrossRef]

50. Marin, F.R.; Angelocci, L.R. Irrigation requirements and transpiration coupling to the atmosphere of a citrus orchard in Southern
Brazil. Agric. Water Manag. 2011, 98, 1091–1096. [CrossRef]

51. Osco, L.P.; Nogueira, K.; Marques Ramos, A.P.; Faita Pinheiro, M.M.; Furuya, D.E.G.; Gonçalves, W.N.; de Castro Jorge, L.A.;
Marcato Junior, J.; dos Santos, J.A. Semantic segmentation of citrus-orchard using deep neural networks and multispectral
UAV-based imagery. Precis. Agric. 2021, 22, 1171–1188. [CrossRef]

52. Petillo, M.G.; Castel, J. Water balance and crop coefficient estimation of a citrus orchard in Uruguay. Span. J. Agric. Res. 2007,
5, 232–243. [CrossRef]

53. Harrison, R.L. Introduction to monte carlo simulation. In Proceedings of the AIP Conference Proceedings; American Institute of
Physics: College Park, MD, USA, 2010; Volume 1204, pp. 17–21.

54. Iglesias, D.J.; Tadeo, F.R.; Primo-Millo, E.; Talon, M. Fruit set dependence on carbohydrate availability in citrus trees. Tree Physiol.
2003, 23, 199–204. [CrossRef] [PubMed]

55. Ouma, G. Fruit thinning with specific reference to citrus species: A review. Agric. Biol. J. N. Am. 2012, 3, 175–191. [CrossRef]
56. Silva, M.C.; da Silva, J.C.; Delabrida, S.; Bianchi, A.G.; Ribeiro, S.P.; Silva, J.S.; Oliveira, R.A. Wearable edge AI applications for

ecological environments. Sensors 2021, 21, 5082. [CrossRef] [PubMed]
57. GitHub-Experiencor/Keras-yolo3: Training and Detecting Objects with YOLO3—github.com. 2018. Available online: https:

//github.com/experiencor/keras-yolo3 (accessed on 11 July 2022).
58. GitHub-Shadow12138/Faster-rcnn-keras: Faster rcnn Based on Keras That Can Train Your Own Dataset—github.com. 2019.

https://github.com/shadow12138/faster-rcnn-keras (accessed on 11 July 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1094/PHYTO-06-19-0195-R
http://www.ncbi.nlm.nih.gov/pubmed/31821113
http://dx.doi.org/10.1590/S0103-90162010000500008
http://dx.doi.org/10.1590/S0100-29452012000400035
http://dx.doi.org/10.1016/j.postharvbio.2007.09.024
http://dx.doi.org/10.1016/j.agwat.2011.02.002
http://dx.doi.org/10.1007/s11119-020-09777-5
http://dx.doi.org/10.5424/sjar/2007052-243
http://dx.doi.org/10.1093/treephys/23.3.199
http://www.ncbi.nlm.nih.gov/pubmed/12566270
http://dx.doi.org/10.5251/abjna.2012.3.4.175.191
http://dx.doi.org/10.3390/s21155082
http://www.ncbi.nlm.nih.gov/pubmed/34372319
https://github.com/experiencor/keras-yolo3
https://github.com/experiencor/keras-yolo3
https://github.com/shadow12138/faster-rcnn-keras

	Introduction
	Theoretical References and Related Work
	Analysis of Deep Learning Models in Agriculture
	Mobile Applications Using Deep Learning in Agriculture

	Materials and Methods
	Citrus Detection Methods: YOLO-v3 and Faster R-CNN
	Citrus Classification Methods: MobileNet-V2, EfficientNetV2-B0, and NASNet-Mobile
	Mapping Diseases in Orchards

	Results
	Citrus Detection Method: YOLO-V3 and Faster R-CNN
	Citrus Classification Methods: MobileNet-V2, EfficientNetV2-B0, and NASNet-Mobile
	Mapping Diseases in Orchards

	Conclusions and Discussions
	References

