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ABSTRACT: The Minimum Spanning Tree (MST) is one of the famous problems that is 

used mostly as the backbone in many network design problems. Given a graph G(V,E), 

where V is the set of vertices and E is the set of edges connecting vertices in V, and for 

every edge eij there is an associated weight cij ≥0. The Multi Period Degree Constrained 

Minimum Spanning Tree (MPDCMST) is a problem of finding an MST while also 

considering the degree constrained on every vertex, and satisfying vertices installation 

requirement on every period. Two algorithms (WWM1 and WWM2) are proposed for 

solving this problem. GNU OCTAVE is used for coding and visualization. GNU is a 

recursive acronym for "GNU's Not Unix!", and that name is chosen because it is like 

Unix but differs from Unix because it is free and contains no Unix code. Those 

algorithms were implemented using 300 randomly generated problems. Moreover, we 

compare WWM1 and WWM2 algorithms using existing data from the literature and the 

results show that WWM2 is the best.  

ABSTRAK: Minimum Spanning Tree (MST) merupakan salah satu masalah mahsyur 

yang banyak digunakan sebagai tulang belakang kepada masalah banyak rekaan jaringan. 

Menerusi graf G(V,E), di mana V adalah himpunan titik dan E adalah himpunan garis 

yang menghubungkan titik-titik dalam V, dan bagi setiap garis eij terdapat berat 

berhubung cij ≥0, Multi-period Degree Constrained Minimum Spanning Tree 

(MPDCMST) merupakan masalah dalam menentukan MST, pada masa sama turut 

menimbangkan kekangan pada setiap titik vertek, dan memenuhi syarat keperluan 

pemasangan pada setiap detik. Dua algoritma (WWM1 dan WWM2) dicadangkan bagi 

menyelesaikan masalah ini. GNU OCTAVE digunakan bagi pengaturcaraan dan 

visualisasi.  GNU merupakan suatu singkatan kepada “GNU's Not Unix”, dan nama 

tersebut dipilih karena ianya seperti Unix, tetapi berbeza dari Unix kerana ia percuma 

dan tidak mempunyai kod Unix. Algoritma tersebut dilaksana dengan menggunakan 300 

masalah terhasil secara rawak. Tambahan, algoritma WWM1 dan WWM2 dibandingkan 

dengan kajian terdahulu dan hasil kajian menunjukkan WWM2 adalah terbaik. 

       KEYWORDS: multi-period; degree constrained; minimum spanning tree;  

Prims’ algorithms; GNU OCTAVE  

1. INTRODUCTION  

In most network design problems, The Minimum Spanning Tree (MST) is usually 

used as the backbone. If we add degree restriction on the vertices (can represent cities, 
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stations, etc.) of the graph (represents the network), the problem becomes a Degree 

Constrained Minimum Spanning Tree (DCMST) problem. Moreover, if we restrict and 

divide the stages or periods of the network’s installation, the problem emerges as a Multi 

Period Degree Constrained Minimum Spanning Tree (MPDCMST) problem. The later 

constraint usually occurs because of the fund limitation for installing (connecting) the 

network. This problem arises when we want to design a network that requires that every 

vertex (node) restricts the number of connections/interfaces whilst also considering a set 

of vertices that have to be connected/ installed in a certain period due to the fund 

restriction (weather, etc.)  

In this paper, we organize the discussion as follows: in Section, 2 we give the history 

of the problem; in Section 3, we discuss how to apply the algorithms developed using 

GNU Octave and implement them; in Section 4, we discuss the results; followed by a 

conclusion. 

2.   THE CONSTRAINED MINIMUM SPANNING TREE PROBLEM   

It Because of its specific structure and use in many network design problems, the 

Minimum spanning tree problem has been studied extensively and a variety of fast 

algorithms have been developed. An efficient and fast minimum spanning tree algorithm 

that requires computational time nearly linear in the number of edges had been developed 

[1]. The MST problem is one of the classical problems where the objective is to construct 

a minimum cost/weight network. This problem usually arises in network design 

applications that must satisfy other graph parameters such as: degree, distance, diameter, 

connectivity, flow, etc. For instance, in a transportation network, a distance restriction on 

the flow commodities could represent the maximum distance allowed for delivery. 

The Degree Constrained Minimum Spanning Tree (DCMST) problem is a Minimum 

Spanning Tree with a degree restriction on every vertex. This problem arises when 

designing networks where the degree restriction represents the number of allowable links 

on that vertex, i.e. the handling capacity of each of the vertices imposes a restriction on 

the number of edges (or wires/roads) that can be connected to a vertex. For example, the 

application of The DCMST is present in designing the road system, where the set of roads 

must connect a collection of suburbs/towns, but there is a restriction that no more than a 

certain number of roads (example: four roads) are allowed to meet at an intersection.  

There are lots of investigations regarding the DCMST problem. This problem is 

considered to be an NP-Complete problem. An NP-complete problem is any of a class of 

computational problems for which no efficient solution algorithm has been found. 

Because of its NP-completeness [2], heuristic methods have dominated such as: the 

greedy algorithm based on Prim’s and Kruskal’s algorithm by [3], the Genetic Algorithm 

by Zhou and Gen[4], the Iterative Refinement by Deo and Kumar [5], the Simulated 

Annealing by Krishnamoorthy et al [6], the Modified Penalty by Wamiliana [7], and the 

Tabu Search by Caccetta and Wamiliana [8], Wamiliana and Caccetta [9-10]. 

In real situations, connecting all components in a network requires a certain time and 

process in order to be completed. The time of completion can vary depending on the need 

and priority of the network itself. The Multi Period Degree Constrained Minimum 

Spanning Tree (MPDCMST) problem was introduced in 2002 by Kawatra [11] and it 

proposed the hybrid of branch exchange and Lagrangean relaxation method to solve the 

problem on directed graph with vertex order ranging from 40 to 100. By modifying the 

problem in using the undirected graph, some algorithms based on Kruskal’s and Prim’s 
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algorithms were developed. WADR1 and WADR2 algorithms were developed by doing 

some modifications on Kruskal’s algorithm [12], while WADR3 and WADR4 are the 

algorithms developed as varians of WADR1 and WADR2 [13]. Motivated by the 

connectivity property on the process of finding MST by Prim’s algorithm, some 

algorithms were developed by Wamiliana et al. [14-16]. Wamiliana et al. [17] illustrated 

why the quality of the solution also depends on the number of vertices in HVTi (the set of 

vertices that must be installed/connected in ith period or before). The comparison of some 

algorithms developed and implemented on undirected graphs was given in Wamiliana et al 

[18] especially on the process of installation/connection of vertices in HVTi. 

3.   GNU OCTAVE, MPDCMST AND IMPLEMENTATION 

3.1  GNU OCTAVE 

GNU Octave is a free software that runs on GNU/Linux, macOS, BSD, and windows. 

This software originally was intended as a companion to a chemical reactor design course, 

but the one who first developed it is John W. Eaton [19]. Since this is free software, users 

are encouraged to modify and develop this software and are free to distribute it as well.  

The difference in using GNU Octave as opposed to other language programming 

(such as Java), is that GNU Octave is more rigid. Certain rules must be followed (such as 

converting to matrix form or others). Java is more flexible to development of the program. 

For example, the data used for implementation represent the edges of the complete graph 

for certain vertex orders. For vertex order 10, the number of edges is 45, which is obtained 

from the formula n(E) =  , n =10. Before putting in GNU Octave, we have to modify 

this equation to be . This is a quadratic equation and to find n, 

 is used. Thus, to read the data, the source code for reading the data (vertex 

order) is as follows ( let  n(E) = Un): 

function vertex = check_vertex(matrix) 

bykedge=length(matrix);%bykedge=Un 

  c=2*bykedge; 

  n=(1+sqrt(1+(4*c)))/2; 

  vertex=n; 

end 

In GNU Octave, the graph was represented using a matrix, therefore a source code 

was designed so that when a problem is entered as a data problem, then the program would 

automatically detect the data and arrange it as two matrices, one as the matrix for original 

vertices (X) and the other for terminal vertices (Y). For example, if the data of a complete 

graph with order ten (consists of 45 edges) is entered, then the program automatically 

defines X and Y as follows: 

X = 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 3 

3 3 3 3 3 3 4 4 4 

4 4 4 5 5 5 5 5 6 

6 6 6 7 7 7 8 8 9 

Y = 2 3 4 5 6 7 8 9 10 

 3 4 5 6 7 8 9 10 4 
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After the X and Y are generated, the value of the weight will be put to connect X and 

Y in the form of a symmetrical matrix K, as follows (example for datafile 10.dat):  

 

 
 

For implementation, the same data used as in [12, 14, 16]. The data are generated 

randomly with the edge weight varying from 1 to 1000. For every vertex order, 30 

problems were generated. 

3.2  WWM1 and WWM2 Algorithms 

We developed two algorithms to solve the MPDCMST based on Prim’s algorithm 

and modified them to satisfy the given constraints. The reason for choosing Prim’s 

algorithm was that Prim’s maintains the connectivity property during the 

connection/installation process. In these algorithms, we used the terminologies HVTi as 

the set of vertices that must be installed/connected on ith period or before, and MAXVTi as 

the maximum number of vertices that can be connected on the ith period. The reason for 

using HVTi was that in reality, it is possible to add some requirements that some 

components in the network be connected early due to public needs or other reasons. For 

example, in designing a fresh water pipe or electricity network, there is a requirement that 

some buildings (hospitals, police stations, government buildings, etc.) must be 

installed/connected within a certain period or earlier in the network.  

3.2.1 WWM1 Algorithm 

The WWM1 algorithm starts by setting vertex 1 as the root and puts it in set V. V is 

the set of vertices in the network. Initially, V only contains vertex 1 as the central vertex, 

V ={1}, and no edges in T, T ={}. Then, the algorithm checks the nearest vertices in HVTi 

to be connected/installed in V and the corresponding edges to the network (T). The 

algorithm will continue connecting/installing those vertices in HVTi as long as the 

connection neither violates the degree restriction nor constitutes a cycle. If degree 

violation occurs, then edge exchange will be performed while also maintaining the 

connectivity of vertices in HVTi. Next, the algorithm will check the MAXVTi, and 

connect the edges with the smallest edge weight to T, as long as the connection neither 

violates the degree constraint nor constitutes a cycle. If the number of vertices connected 

on that period is already the same as MAXVTi, the algorithm will continue to the next 

period, and the process is similar to the previous period until all vertices are 

connected/installed. To illustrate the WWM1 algorithm we used one problem with vertex 

 5 6 7 8 9 10 5 6 7 

 8 9 10 6 7 8 9 10 7 

 8 9 10 8 9 10 9 10 10 
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order 10 in the data (datafile.22 dat). The weight of the problem is given in Table 1. The 

data represents a complete graph of order 10, and the graph is illustrated in the Fig. 1. 

Moreover, we use the same set of HVTi as in [12-17] as given in Table 2, and also use 

MaXVTi as the floor function of ,   . 

 

Table 1: datafile.22.dat (graph with order 10) 

Edge e12 e13 e14 e15 e16 e17 e18 e19 e1,10 e23 e24 e25 e26 e27 e28 

Weight 740 572 447 835 427 807 362 832 120 221 109 276 741 978 352 

Edge e29 e2,10 e34 e35 e36 e37 e38 e39 e3,10 e45 e46 e47 e48 e49 e4,10 

Weight 368 403 505 921 757 884 369 886 545 639 253 750 251 187 857 

Edge e56 e57 e58 e59 e5,10 e67 e68 e69 e6,10 e78 e79 e7,10 e89 e8,10 e9,10 

Weight 807 926 781 605 112 559 411 473 743 882 693 851 509 434 828 

 

 
 

Fig. 1: The graph of datafile.22.dat. 

 

Table 2: Element of HVTi  for every period 

n HVT1  HVT2  HVT3  

10 2 3 4 

20 2 3 4 

30 2,3  4,5  6,7  

40 2,3,4  5,6,7  8,9,10  

50 2,3,4,5  6,7,8,9  10,11,12,13  

60 2,3,4,5,6  7,8,9,10,11  12,13,14,15  

70 2,3,4,5,6,7  8,9,10,11,12,13  14,15,16,17,18,19  

80 2,3,4,5,6,7,8  9,10,11,12,13,14,15  16,17,18,19,20,21,22  

90 2,3,4,5,6,7,8  9,10,11,12,13,14,15  16,17,18,19,20,21,22  

100 2,3,4,5,6,7,8,9  10,11,12,13,14,15,16,17  18,19,20,21,22,23,24,25  

 

For the first period, the algorithm checks the vertices in HVT1= {2}. Vertex 2 is the 

only vertex in HVT1 then the algorithm connects vertex 2 to T using edge e12 with weight 

740. V and T are updated to V= {1,2} and T ={e1-2}. Next, the algorithm checks the 

difference of MAXVT1 = = 3 and the number of vertices in HVT1.  HVT1  is the 

number of vertices in HVT1,  HVT1  =1. Since the difference of MAXVT1 and HVT1  is 2, 

then it is possible to add two more vertices. Therefore, the algorithm searches for the next 

smallest edge with the vertices in the network which is e2-4 with weight 109. Adding e2-4 to 
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T neither creates a cycle on T nor violates degree restriction on the vertices in V. Then, e2-

4 is added to T and vertex 4 to V. V and T are again updated to V= {1,2,4} and T = {e1-2, 

e2-4}. Since vertex 4 was already added to V, then only one more vertex can be added, and 

e1-10 is the next smallest edge with weight 120. Adding e1-10 neither creates a cycle in T 

nor violates degree restriction on vertices in V. Therefore e1-10 was added to T and vertex 

10 to V. V and T are updated to V= {1,2,4,10} and T = {e1-2, e2-4, e1-10}. Since MAXVT1 

is achieved, the first period is finished. The following figure shows the network after the 

first period is finished. 

 

                Fig. 2: The network after the first period of WWM1 algorithm is done. 

On the second period, HVT2 ={3}, therefore the algorithm connects vertex 3 to the 

network using the smallest edge of incidence with vertex 3; edge e2-3 is the smallest.  

Adding e2-3 to T neither violates the degree condition nor constitutes a cycle, therefore e2-3 

is added to T and vertex 3 to V. V and T are updated to V= {1,2,4,10,3} and T = {e1-2, e2-

4, e1-10, e2-3}. Then, the algorithm checks MAXVT2   HVT2  which is 2. Therefore, in 

this period, we can add two more edges to T and two more vertices in V. The next 

smallest edge of incidence with the vertices in V is e5-10 with a weight of 112. Adding e5-

10 to T neither violates the degree condition nor constitutes a cycle, therefore e5-10 is added 

to T and vertex 5 to V. V and T are updated to V= {1,2,4,10,3,5} and T = {e1-2, e2-4, e1-10, 

e2-3, e5-10}. Next, the algorithm searches the smallest edge of incidence with the vertices in 

V which is e4-9 with a weight of 187. Adding e4-9 to T neither violates the degree condition 

nor constitutes a cycle, therefore e4-9 is added to T and vertex 9 to V. V and T are updated 

to V= {1,2,4,10,3,5,9} and T = {e1-2, e2-4, e1-10, e2-3, e5-10, e4-9 }. This is the end of the 

second period, and the network is illustrated in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: The network after the second period of WWM1 algorithm is done. 

Now, there are seven vertices already in the network, which are vertex 1, 2, 10, 4, 3, 

5, and 9; and there are three more vertices that need to be connected. Those vertices are 

vertex 6, 7, and 8. Please note here that vertex is 4 already in the network (installed on the 
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first period). After the second period was done, vertex 3 (the member of vertices in HVT2) 

was in the network, as well as vertex 4 (an element in HVT3). Therefore, the algorithm is 

just searching for the smallest edges of incidence to the uninstalled vertices and to connect 

them to the network. Three edges that satisfy that condition and also neither create a cycle 

nor violate the degree condition (maximum degree is 3 for every vertex) are e4-8, e6-8, e6-7 

with weight 251, 411, and 559 respectively. V and T are updated to V= 

{1,2,4,10,3,5,9,8,6,7} and T = {e1-2, e2-4, e1-10, e2-3, e5-10, e4-9, e4-8, e6-8, e6-7}. All vertices 

are then in set V, so the algorithm stops. Figure 4 represents the network when the third 

period is finished.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The network when the third period is finished. 

Table 3 gives the information about the period when the edges are installed/connected, the 

weight, and the total weight after the connection are done. 

                    

 Table 3: The period when the vertices were connected in WWM1 algorithm 

Period From 

vertex 

To 

vertex 

Weight 

1 1 2 740 

1 1 10 120 

1 2 4 109 

2 2 3 221 

2 10 5 112 

2 4 9 187 

3 4 8 251 

3 8 6 411 

3 6 7 559 

Total 2710 

 

 

3.2.2 WWM2 Algorithm 

The WWM2 algorithm is similar with the WWM1 algorithm, except in the WWM2, 

the process of connecting the vertices in HVTi  is more flexible. Those vertices in HVTi 
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can be installed in the beginning of the period or at the end, as long as the 

installation/connection process is still within that period or before. In the first period of 

the WWM2 algorithm, vertex 2 is not installed first, but the algorithm searches for 

possible smallest edges among those in the data that connect to vertex 1. This is possible 

because MAXVT1 = 3 and the number of HVT1 = HVT1  =1 (only consist of vertex 2). 

Therefore, it is possible to add two more vertices (but not vertex 2) in the network. 

Therefore vertex (node) 10 was connected first, followed by vertex 5, and finally, because 

vertex 2 must be installed/connected in the first period, then vertex 2 is installed. Figure 5 

shows the network after the first period of the WWM2 algorithm is done. 

 
Fig. 5: The network after the first period of WWM2 algorithm is done. 

For the second period of the WWM2 Algorithm, the vertex in HVT2 is vertex 3. 

However, the algorithm first checks the difference between MAXVT2 and the number of 

HVT2. Since MAXVT2 -  HVT2  = 2, then it is possible to add the other two vertices 

(besides vertex 3). However, if vertex 3’s incidence with the smallest edge that connected 

with the vertices already in the network during the first period, then vertex 3 will be 

installed/connected first on the second period (of course, without violating the degree 

requirement on the vertices that are already in the network). Since the smallest edge on 

the second period is edge e24 then that edge is connected first on the second period, 

followed by edge e49. After edge e49 was added in the network, then there are no more 

choices except adding the smallest edge of incidence with vertex 3, because vertex 3 must 

be installed/connected on the second period or before. Figure 6 shows the network after 

the second period of the WWM2 algorithm is done. 

Similar with the WWM1 algorithm, on the third period of the WWM2 there are 7 

vertices already in the network and there are three more vertices still uninstalled. Those 

vertices are vertex 6, 7, and 8. The difference between WWM1 and WWM2 is that vertex 

4 in WWM1 is installed/connected on the first period, while in WWM2, vertex 4 is 

connected on the second period. The next three smallest are e48, e28, and e210. There are no 

degree restrictions and cycle occurrences by adding e48, therefore vertex 8 is connected. 

However, there is a problem with adding e28. The degree of vertex 2 is already 3, then 

adding e28 will violate the degree restriction, therefore e28 is omitted, and not connected. A 

different reason is applied to e210. Adding e210 will create a cycle, therefore e210 is also 

omitted. Now, the algorithm is just searching for the next two smallest edges of incidence 

to the uninstalled vertices to connect them to the network (as long as the connection 

neither violates the degree restriction nor creates a cycle).  The next two smallest are e68 

and e67. Figure 7 shows the network after the third period is finished.  
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Fig. 6: The network after the second period of WWM2 algorithm is done. 

 

Fig. 7: The network after the second period of WWM2 algorithm is done. 

 Table 4: The period when the vertices were connected in the WWM2 algorithm 

Period From 

vertex 

To 

Vertex 

Weight 

1 1 10 120 

1 10 5 112 

1 5 2 276 

2 2 4 109 

2 4 9 187 

2 2 3 221 

3 4 8 251 

3 8 6 411 

3 6 7 559 

Total 2246 

Table 4 gives the information about the period when the edges are installed/connected, the 

weight, and the total weight after the WWM2 Algorithm finishes the process. 
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4.   RESULTS AND DISCUSSION  

The WWWM1 and WWM2 algorithms were compared against WADR5, WAC1 and 

WAC2 algorithms because those three algorithms are developed based on the same 

algorithm (Prim’s algorithm). Moreover, those algorithms were implemented using the 

same data, same set of HVTi,, MAXVTi and the number of periods. The data used for 

implementation was random problems generated using uniform distribution with weight  

ranging from 1 to 1000 (integer). For every vertex order, there are 30 problems generated 

and the vertex order used are 10 to 100 in increments of 10. Therefore, there are a total of 

300 problems implemented. The solution taken is the average solution from 30 problems 

for every vertex order. The following table shows the result: 

Table 5: The Comparative Solutions  

Vertex 

order 
MST DCMST WWM1 WWM2 WADR5 WAC1 WAC2 

10 1129.43 1178.8 1498.6 1286.6 1341.93 1495.1 1359.93 

20 1196.1 1299 1804.97 1428.57 1557.63 1790.37 1437.5 

30 1177.43 1319.53 2039.97 1490.03 1755.40 2018.9 1516.43 

40 1151.23 1286.3 2117.1 1440.03 1719.27 2079.73 1455.3 

50 1223.43 1356.47 2427.27 1566.6 1844.10 2381 1603.7 

60 1175.57 1320.73 2389.87 1573.57 1851.20 2364.4 1639.53 

70 1242.1 1410.03 2558.5 1612.27 1963.83 2520.2 1671.9 

80 1236.83 1410.23 2579.4 1675.2 1942.40 2547.8 1722.23 

90 1248 1404.93 2618.43 1613.23 1941.33 2588.07 1649.33 

100 1234.1 1370.8 2564.07 1567.53 1992.40 2535.2 1597.63 

Average 1201.42 1335.68 2259.82 1525.36 1790.95 2232.08 1565.35 

From Table 5 we can see the average solutions for MST, DCMST, WWM1, WWM2, 

WADR5, WAC1, and WAC2. For the algorithms developed for solving MPDCMST 

(WWM1, WWM2, WADR5, WAC1, and WAC2) the best performance is gained by the 

WWM2 algorithm, which is slightly close to the performance of WAC2, while the 

WWM1 and WAC1 are the two worse algorithms compared in this study. WWM1 and 

WAC1 are two algorithms developed based on the Modified Prim’s algorithm where the 

priority vertices in the set HVTi must be installed/connected as soon as possible, while 

WWM2 is a modification of WWM1, and WAC2 is a modification of WAC1. The 

modification made for those two algorithms is the same: relaxing the process of 

connecting the priority vertices in HVTi whilst also maintaining those vertices to be 

connected in the ith period or before. WADR5 is an algorithm developed based on 

Modified Prim’s algorithm where the algorithm searches two smallest edges for being 

considered to be connected in the network, except the last one in the period. In this study, 

we compared the ratio of the algorithms (WWM1, WWM2, WADR5, WAC1, and 

WAC2) against their lower bound (DCMST). The ratio is 
LB

LBH  , where H is the heuristic 

(algorithm) and LB is the lower bound (DCMST). Table 6 below shows the ratio of 
LB

LBH

. 
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Table 6: The value of ratio 
LB

LBH  of the algorithms against the lower bound 

Vertex 

order 
MST DCMST WWM1 WWM2 WADR5 WAC1 WAC2 

 

   

 

   

10 1129.43 1178.8 1498.6 1286.6 1341.93 1495.1 1359.93 27.129% 9.145% 13.839% 26.832% 15.366% 

20 1196.1 1299 1804.97 1428.57 1557.63 1790.37 1437.5 38.950% 9.974% 19.910% 37.827% 10.662% 

30 1177.43 1319.53 2039.97 1490.03 1755.40 2018.9 1516.43 54.598% 12.921% 33.032% 53.001% 14.922% 

40 1151.23 1286.3 2117.1 1440.03 1719.27 2079.73 1455.3 64.588% 11.952% 33.660% 61.683% 13.138% 

50 1223.43 1356.47 2427.27 1566.6 1844.10 2381 1603.7 78.940% 15.491% 35.949% 75.530% 18.226% 

60 1175.57 1320.73 2389.87 1573.57 1851.20 2364.4 1639.53 80.950% 19.143% 40.165% 79.022% 24.138% 

70 1242.1 1410.03 2558.5 1612.27 1963.83 2520.2 1671.9 81.450% 14.342% 39.276% 78.733% 18.572% 

80 1236.83 1410.23 2579.4 1675.2 1942.40 2547.8 1722.23 82.906% 18.789% 37.736% 80.665% 22.124% 

90 1248 1404.93 2618.43 1613.23 1941.33 2588.07 1649.33 86.374% 14.826% 38.180% 84.213% 17.396% 

100 1234.1 1370.8 2564.07 1567.53 1992.40 2535.2 1597.63 87.049% 14.352% 45.346% 84.943% 16.548% 

Average 

 

68.293% 14.094% 33.709% 66.245% 17.109% 

 

From Table 6 we see that average ratio of the WWM1 and WAC1 algorithms against 

the lower bound are above 50%. These values show that the performance of the algorithm 

is not good. The performance of WWM2 and WAC2 are below 20%, while the ratio of 

WADR5 is around 34%. The smaller the value of the ratio, the better the performance. 

The closer the solution of the algorithm to the solution of the DCMST, the better the 

algorithm.  Figure 8 shows the performance of the algorithm. 

 

Fig. 8: Performance of WWM1, WWM2, WADR5, WAC1, and WAC2 algorithms. 

5.   CONCLUSIONS  

From the results and discussion we can see that among WWM1, WWM2, WADR5, 

WAC1, and WAC2 algorithms, WWM2 performs the best, followed by WAC2 

algorithm. These two algorithms have similar approaches: relaxing the time of installation 

for vertices in HVTi or adding flexibility to the algorithm. Accepting flexibility in the 

process of connecting/installing the vertices without violating the rules gives a better 

solution rather than sticking with the schedule of connecting the vertices in a certain 

order.  
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