
IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

USING MODIFICATION OF PRIM’S ALGORITHM AND

GNU OCTAVE AND TO SOLVE THE MULTIPERIODS

INSTALLATION PROBLEM

WAMILIANA1*, MUSTOFA USMAN1, WARSONO1, WARSITO2

AND JAMAL IBRAHIM DAOUD3

 1Department of Mathematics, FMIPA Universitas Lampung, Bandarlampung, Indonesia
2Department of Physics, FMIPA Universitas Lampung, Bandarlampung, Indonesia

3Department of Science in Engineering, Faulty of Engineering,

International Islamic University Malaysia,

P.O. Box 10, 50728 Kuala Lumpur, Malaysia.

*Corresponding author: wamiliana.1963@fmipa.unila.ac.id

(Received: 19th February 2019; Accepted: 28th November 2019; Published on-line: 20th January 2020)

ABSTRACT: The Minimum Spanning Tree (MST) is one of the famous problems that is

used mostly as the backbone in many network design problems. Given a graph G(V,E),

where V is the set of vertices and E is the set of edges connecting vertices in V, and for

every edge eij there is an associated weight cij ≥0. The Multi Period Degree Constrained

Minimum Spanning Tree (MPDCMST) is a problem of finding an MST while also

considering the degree constrained on every vertex, and satisfying vertices installation

requirement on every period. Two algorithms (WWM1 and WWM2) are proposed for

solving this problem. GNU OCTAVE is used for coding and visualization. GNU is a

recursive acronym for "GNU's Not Unix!", and that name is chosen because it is like

Unix but differs from Unix because it is free and contains no Unix code. Those

algorithms were implemented using 300 randomly generated problems. Moreover, we

compare WWM1 and WWM2 algorithms using existing data from the literature and the

results show that WWM2 is the best.

ABSTRAK: Minimum Spanning Tree (MST) merupakan salah satu masalah mahsyur

yang banyak digunakan sebagai tulang belakang kepada masalah banyak rekaan jaringan.

Menerusi graf G(V,E), di mana V adalah himpunan titik dan E adalah himpunan garis

yang menghubungkan titik-titik dalam V, dan bagi setiap garis eij terdapat berat

berhubung cij ≥0, Multi-period Degree Constrained Minimum Spanning Tree

(MPDCMST) merupakan masalah dalam menentukan MST, pada masa sama turut

menimbangkan kekangan pada setiap titik vertek, dan memenuhi syarat keperluan

pemasangan pada setiap detik. Dua algoritma (WWM1 dan WWM2) dicadangkan bagi

menyelesaikan masalah ini. GNU OCTAVE digunakan bagi pengaturcaraan dan

visualisasi. GNU merupakan suatu singkatan kepada “GNU's Not Unix”, dan nama

tersebut dipilih karena ianya seperti Unix, tetapi berbeza dari Unix kerana ia percuma

dan tidak mempunyai kod Unix. Algoritma tersebut dilaksana dengan menggunakan 300

masalah terhasil secara rawak. Tambahan, algoritma WWM1 dan WWM2 dibandingkan

dengan kajian terdahulu dan hasil kajian menunjukkan WWM2 adalah terbaik.

 KEYWORDS: multi-period; degree constrained; minimum spanning tree;

Prims’ algorithms; GNU OCTAVE

1. INTRODUCTION

In most network design problems, The Minimum Spanning Tree (MST) is usually

used as the backbone. If we add degree restriction on the vertices (can represent cities,

100

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

stations, etc.) of the graph (represents the network), the problem becomes a Degree

Constrained Minimum Spanning Tree (DCMST) problem. Moreover, if we restrict and

divide the stages or periods of the network’s installation, the problem emerges as a Multi

Period Degree Constrained Minimum Spanning Tree (MPDCMST) problem. The later

constraint usually occurs because of the fund limitation for installing (connecting) the

network. This problem arises when we want to design a network that requires that every

vertex (node) restricts the number of connections/interfaces whilst also considering a set

of vertices that have to be connected/ installed in a certain period due to the fund

restriction (weather, etc.)

In this paper, we organize the discussion as follows: in Section, 2 we give the history

of the problem; in Section 3, we discuss how to apply the algorithms developed using

GNU Octave and implement them; in Section 4, we discuss the results; followed by a

conclusion.

2. THE CONSTRAINED MINIMUM SPANNING TREE PROBLEM

It Because of its specific structure and use in many network design problems, the

Minimum spanning tree problem has been studied extensively and a variety of fast

algorithms have been developed. An efficient and fast minimum spanning tree algorithm

that requires computational time nearly linear in the number of edges had been developed

[1]. The MST problem is one of the classical problems where the objective is to construct

a minimum cost/weight network. This problem usually arises in network design

applications that must satisfy other graph parameters such as: degree, distance, diameter,

connectivity, flow, etc. For instance, in a transportation network, a distance restriction on

the flow commodities could represent the maximum distance allowed for delivery.

The Degree Constrained Minimum Spanning Tree (DCMST) problem is a Minimum

Spanning Tree with a degree restriction on every vertex. This problem arises when

designing networks where the degree restriction represents the number of allowable links

on that vertex, i.e. the handling capacity of each of the vertices imposes a restriction on

the number of edges (or wires/roads) that can be connected to a vertex. For example, the

application of The DCMST is present in designing the road system, where the set of roads

must connect a collection of suburbs/towns, but there is a restriction that no more than a

certain number of roads (example: four roads) are allowed to meet at an intersection.

There are lots of investigations regarding the DCMST problem. This problem is

considered to be an NP-Complete problem. An NP-complete problem is any of a class of

computational problems for which no efficient solution algorithm has been found.

Because of its NP-completeness [2], heuristic methods have dominated such as: the

greedy algorithm based on Prim’s and Kruskal’s algorithm by [3], the Genetic Algorithm

by Zhou and Gen[4], the Iterative Refinement by Deo and Kumar [5], the Simulated

Annealing by Krishnamoorthy et al [6], the Modified Penalty by Wamiliana [7], and the

Tabu Search by Caccetta and Wamiliana [8], Wamiliana and Caccetta [9-10].

In real situations, connecting all components in a network requires a certain time and

process in order to be completed. The time of completion can vary depending on the need

and priority of the network itself. The Multi Period Degree Constrained Minimum

Spanning Tree (MPDCMST) problem was introduced in 2002 by Kawatra [11] and it

proposed the hybrid of branch exchange and Lagrangean relaxation method to solve the

problem on directed graph with vertex order ranging from 40 to 100. By modifying the

problem in using the undirected graph, some algorithms based on Kruskal’s and Prim’s

101

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

algorithms were developed. WADR1 and WADR2 algorithms were developed by doing

some modifications on Kruskal’s algorithm [12], while WADR3 and WADR4 are the

algorithms developed as varians of WADR1 and WADR2 [13]. Motivated by the

connectivity property on the process of finding MST by Prim’s algorithm, some

algorithms were developed by Wamiliana et al. [14-16]. Wamiliana et al. [17] illustrated

why the quality of the solution also depends on the number of vertices in HVTi (the set of

vertices that must be installed/connected in ith period or before). The comparison of some

algorithms developed and implemented on undirected graphs was given in Wamiliana et al

[18] especially on the process of installation/connection of vertices in HVTi.

3. GNU OCTAVE, MPDCMST AND IMPLEMENTATION

3.1 GNU OCTAVE

GNU Octave is a free software that runs on GNU/Linux, macOS, BSD, and windows.

This software originally was intended as a companion to a chemical reactor design course,

but the one who first developed it is John W. Eaton [19]. Since this is free software, users

are encouraged to modify and develop this software and are free to distribute it as well.

The difference in using GNU Octave as opposed to other language programming

(such as Java), is that GNU Octave is more rigid. Certain rules must be followed (such as

converting to matrix form or others). Java is more flexible to development of the program.

For example, the data used for implementation represent the edges of the complete graph

for certain vertex orders. For vertex order 10, the number of edges is 45, which is obtained

from the formula n(E) = , n =10. Before putting in GNU Octave, we have to modify

this equation to be . This is a quadratic equation and to find n,

 is used. Thus, to read the data, the source code for reading the data (vertex

order) is as follows (let n(E) = Un):

function vertex = check_vertex(matrix)

bykedge=length(matrix);%bykedge=Un

 c=2*bykedge;

 n=(1+sqrt(1+(4*c)))/2;

 vertex=n;

end

In GNU Octave, the graph was represented using a matrix, therefore a source code

was designed so that when a problem is entered as a data problem, then the program would

automatically detect the data and arrange it as two matrices, one as the matrix for original

vertices (X) and the other for terminal vertices (Y). For example, if the data of a complete

graph with order ten (consists of 45 edges) is entered, then the program automatically

defines X and Y as follows:

X = 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 3

3 3 3 3 3 3 4 4 4

4 4 4 5 5 5 5 5 6

6 6 6 7 7 7 8 8 9

Y = 2 3 4 5 6 7 8 9 10

 3 4 5 6 7 8 9 10 4

102

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

After the X and Y are generated, the value of the weight will be put to connect X and

Y in the form of a symmetrical matrix K, as follows (example for datafile 10.dat):

For implementation, the same data used as in [12, 14, 16]. The data are generated

randomly with the edge weight varying from 1 to 1000. For every vertex order, 30

problems were generated.

3.2 WWM1 and WWM2 Algorithms

We developed two algorithms to solve the MPDCMST based on Prim’s algorithm

and modified them to satisfy the given constraints. The reason for choosing Prim’s

algorithm was that Prim’s maintains the connectivity property during the

connection/installation process. In these algorithms, we used the terminologies HVTi as

the set of vertices that must be installed/connected on ith period or before, and MAXVTi as

the maximum number of vertices that can be connected on the ith period. The reason for

using HVTi was that in reality, it is possible to add some requirements that some

components in the network be connected early due to public needs or other reasons. For

example, in designing a fresh water pipe or electricity network, there is a requirement that

some buildings (hospitals, police stations, government buildings, etc.) must be

installed/connected within a certain period or earlier in the network.

3.2.1 WWM1 Algorithm

The WWM1 algorithm starts by setting vertex 1 as the root and puts it in set V. V is

the set of vertices in the network. Initially, V only contains vertex 1 as the central vertex,

V ={1}, and no edges in T, T ={}. Then, the algorithm checks the nearest vertices in HVTi

to be connected/installed in V and the corresponding edges to the network (T). The

algorithm will continue connecting/installing those vertices in HVTi as long as the

connection neither violates the degree restriction nor constitutes a cycle. If degree

violation occurs, then edge exchange will be performed while also maintaining the

connectivity of vertices in HVTi. Next, the algorithm will check the MAXVTi, and

connect the edges with the smallest edge weight to T, as long as the connection neither

violates the degree constraint nor constitutes a cycle. If the number of vertices connected

on that period is already the same as MAXVTi, the algorithm will continue to the next

period, and the process is similar to the previous period until all vertices are

connected/installed. To illustrate the WWM1 algorithm we used one problem with vertex

 5 6 7 8 9 10 5 6 7

 8 9 10 6 7 8 9 10 7

 8 9 10 8 9 10 9 10 10

103

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

order 10 in the data (datafile.22 dat). The weight of the problem is given in Table 1. The

data represents a complete graph of order 10, and the graph is illustrated in the Fig. 1.

Moreover, we use the same set of HVTi as in [12-17] as given in Table 2, and also use

MaXVTi as the floor function of , .

Table 1: datafile.22.dat (graph with order 10)

Edge e12 e13 e14 e15 e16 e17 e18 e19 e1,10 e23 e24 e25 e26 e27 e28

Weight 740 572 447 835 427 807 362 832 120 221 109 276 741 978 352

Edge e29 e2,10 e34 e35 e36 e37 e38 e39 e3,10 e45 e46 e47 e48 e49 e4,10

Weight 368 403 505 921 757 884 369 886 545 639 253 750 251 187 857

Edge e56 e57 e58 e59 e5,10 e67 e68 e69 e6,10 e78 e79 e7,10 e89 e8,10 e9,10

Weight 807 926 781 605 112 559 411 473 743 882 693 851 509 434 828

Fig. 1: The graph of datafile.22.dat.

Table 2: Element of HVTi for every period

n HVT1 HVT2 HVT3

10 2 3 4

20 2 3 4

30 2,3 4,5 6,7

40 2,3,4 5,6,7 8,9,10

50 2,3,4,5 6,7,8,9 10,11,12,13

60 2,3,4,5,6 7,8,9,10,11 12,13,14,15

70 2,3,4,5,6,7 8,9,10,11,12,13 14,15,16,17,18,19

80 2,3,4,5,6,7,8 9,10,11,12,13,14,15 16,17,18,19,20,21,22

90 2,3,4,5,6,7,8 9,10,11,12,13,14,15 16,17,18,19,20,21,22

100 2,3,4,5,6,7,8,9 10,11,12,13,14,15,16,17 18,19,20,21,22,23,24,25

For the first period, the algorithm checks the vertices in HVT1= {2}. Vertex 2 is the

only vertex in HVT1 then the algorithm connects vertex 2 to T using edge e12 with weight

740. V and T are updated to V= {1,2} and T ={e1-2}. Next, the algorithm checks the

difference of MAXVT1 = = 3 and the number of vertices in HVT1. HVT1 is the

number of vertices in HVT1, HVT1 =1. Since the difference of MAXVT1 and HVT1 is 2,

then it is possible to add two more vertices. Therefore, the algorithm searches for the next

smallest edge with the vertices in the network which is e2-4 with weight 109. Adding e2-4 to

104

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

T neither creates a cycle on T nor violates degree restriction on the vertices in V. Then, e2-

4 is added to T and vertex 4 to V. V and T are again updated to V= {1,2,4} and T = {e1-2,

e2-4}. Since vertex 4 was already added to V, then only one more vertex can be added, and

e1-10 is the next smallest edge with weight 120. Adding e1-10 neither creates a cycle in T

nor violates degree restriction on vertices in V. Therefore e1-10 was added to T and vertex

10 to V. V and T are updated to V= {1,2,4,10} and T = {e1-2, e2-4, e1-10}. Since MAXVT1

is achieved, the first period is finished. The following figure shows the network after the

first period is finished.

 Fig. 2: The network after the first period of WWM1 algorithm is done.

On the second period, HVT2 ={3}, therefore the algorithm connects vertex 3 to the

network using the smallest edge of incidence with vertex 3; edge e2-3 is the smallest.

Adding e2-3 to T neither violates the degree condition nor constitutes a cycle, therefore e2-3

is added to T and vertex 3 to V. V and T are updated to V= {1,2,4,10,3} and T = {e1-2, e2-

4, e1-10, e2-3}. Then, the algorithm checks MAXVT2 HVT2 which is 2. Therefore, in

this period, we can add two more edges to T and two more vertices in V. The next

smallest edge of incidence with the vertices in V is e5-10 with a weight of 112. Adding e5-

10 to T neither violates the degree condition nor constitutes a cycle, therefore e5-10 is added

to T and vertex 5 to V. V and T are updated to V= {1,2,4,10,3,5} and T = {e1-2, e2-4, e1-10,

e2-3, e5-10}. Next, the algorithm searches the smallest edge of incidence with the vertices in

V which is e4-9 with a weight of 187. Adding e4-9 to T neither violates the degree condition

nor constitutes a cycle, therefore e4-9 is added to T and vertex 9 to V. V and T are updated

to V= {1,2,4,10,3,5,9} and T = {e1-2, e2-4, e1-10, e2-3, e5-10, e4-9 }. This is the end of the

second period, and the network is illustrated in Fig. 3.

Fig. 3: The network after the second period of WWM1 algorithm is done.

Now, there are seven vertices already in the network, which are vertex 1, 2, 10, 4, 3,

5, and 9; and there are three more vertices that need to be connected. Those vertices are

vertex 6, 7, and 8. Please note here that vertex is 4 already in the network (installed on the

105

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

first period). After the second period was done, vertex 3 (the member of vertices in HVT2)

was in the network, as well as vertex 4 (an element in HVT3). Therefore, the algorithm is

just searching for the smallest edges of incidence to the uninstalled vertices and to connect

them to the network. Three edges that satisfy that condition and also neither create a cycle

nor violate the degree condition (maximum degree is 3 for every vertex) are e4-8, e6-8, e6-7

with weight 251, 411, and 559 respectively. V and T are updated to V=

{1,2,4,10,3,5,9,8,6,7} and T = {e1-2, e2-4, e1-10, e2-3, e5-10, e4-9, e4-8, e6-8, e6-7}. All vertices

are then in set V, so the algorithm stops. Figure 4 represents the network when the third

period is finished.

Fig. 4: The network when the third period is finished.

Table 3 gives the information about the period when the edges are installed/connected, the

weight, and the total weight after the connection are done.

 Table 3: The period when the vertices were connected in WWM1 algorithm

Period From

vertex

To

vertex

Weight

1 1 2 740

1 1 10 120

1 2 4 109

2 2 3 221

2 10 5 112

2 4 9 187

3 4 8 251

3 8 6 411

3 6 7 559

Total 2710

3.2.2 WWM2 Algorithm

The WWM2 algorithm is similar with the WWM1 algorithm, except in the WWM2,

the process of connecting the vertices in HVTi is more flexible. Those vertices in HVTi

106

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

can be installed in the beginning of the period or at the end, as long as the

installation/connection process is still within that period or before. In the first period of

the WWM2 algorithm, vertex 2 is not installed first, but the algorithm searches for

possible smallest edges among those in the data that connect to vertex 1. This is possible

because MAXVT1 = 3 and the number of HVT1 = HVT1 =1 (only consist of vertex 2).

Therefore, it is possible to add two more vertices (but not vertex 2) in the network.

Therefore vertex (node) 10 was connected first, followed by vertex 5, and finally, because

vertex 2 must be installed/connected in the first period, then vertex 2 is installed. Figure 5

shows the network after the first period of the WWM2 algorithm is done.

Fig. 5: The network after the first period of WWM2 algorithm is done.

For the second period of the WWM2 Algorithm, the vertex in HVT2 is vertex 3.

However, the algorithm first checks the difference between MAXVT2 and the number of

HVT2. Since MAXVT2 - HVT2 = 2, then it is possible to add the other two vertices

(besides vertex 3). However, if vertex 3’s incidence with the smallest edge that connected

with the vertices already in the network during the first period, then vertex 3 will be

installed/connected first on the second period (of course, without violating the degree

requirement on the vertices that are already in the network). Since the smallest edge on

the second period is edge e24 then that edge is connected first on the second period,

followed by edge e49. After edge e49 was added in the network, then there are no more

choices except adding the smallest edge of incidence with vertex 3, because vertex 3 must

be installed/connected on the second period or before. Figure 6 shows the network after

the second period of the WWM2 algorithm is done.

Similar with the WWM1 algorithm, on the third period of the WWM2 there are 7

vertices already in the network and there are three more vertices still uninstalled. Those

vertices are vertex 6, 7, and 8. The difference between WWM1 and WWM2 is that vertex

4 in WWM1 is installed/connected on the first period, while in WWM2, vertex 4 is

connected on the second period. The next three smallest are e48, e28, and e210. There are no

degree restrictions and cycle occurrences by adding e48, therefore vertex 8 is connected.

However, there is a problem with adding e28. The degree of vertex 2 is already 3, then

adding e28 will violate the degree restriction, therefore e28 is omitted, and not connected. A

different reason is applied to e210. Adding e210 will create a cycle, therefore e210 is also

omitted. Now, the algorithm is just searching for the next two smallest edges of incidence

to the uninstalled vertices to connect them to the network (as long as the connection

neither violates the degree restriction nor creates a cycle). The next two smallest are e68

and e67. Figure 7 shows the network after the third period is finished.

107

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

Fig. 6: The network after the second period of WWM2 algorithm is done.

Fig. 7: The network after the second period of WWM2 algorithm is done.

 Table 4: The period when the vertices were connected in the WWM2 algorithm

Period From

vertex

To

Vertex

Weight

1 1 10 120

1 10 5 112

1 5 2 276

2 2 4 109

2 4 9 187

2 2 3 221

3 4 8 251

3 8 6 411

3 6 7 559

Total 2246

Table 4 gives the information about the period when the edges are installed/connected, the

weight, and the total weight after the WWM2 Algorithm finishes the process.

108

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

4. RESULTS AND DISCUSSION

The WWWM1 and WWM2 algorithms were compared against WADR5, WAC1 and

WAC2 algorithms because those three algorithms are developed based on the same

algorithm (Prim’s algorithm). Moreover, those algorithms were implemented using the

same data, same set of HVTi,, MAXVTi and the number of periods. The data used for

implementation was random problems generated using uniform distribution with weight

ranging from 1 to 1000 (integer). For every vertex order, there are 30 problems generated

and the vertex order used are 10 to 100 in increments of 10. Therefore, there are a total of

300 problems implemented. The solution taken is the average solution from 30 problems

for every vertex order. The following table shows the result:

Table 5: The Comparative Solutions

Vertex

order
MST DCMST WWM1 WWM2 WADR5 WAC1 WAC2

10 1129.43 1178.8 1498.6 1286.6 1341.93 1495.1 1359.93

20 1196.1 1299 1804.97 1428.57 1557.63 1790.37 1437.5

30 1177.43 1319.53 2039.97 1490.03 1755.40 2018.9 1516.43

40 1151.23 1286.3 2117.1 1440.03 1719.27 2079.73 1455.3

50 1223.43 1356.47 2427.27 1566.6 1844.10 2381 1603.7

60 1175.57 1320.73 2389.87 1573.57 1851.20 2364.4 1639.53

70 1242.1 1410.03 2558.5 1612.27 1963.83 2520.2 1671.9

80 1236.83 1410.23 2579.4 1675.2 1942.40 2547.8 1722.23

90 1248 1404.93 2618.43 1613.23 1941.33 2588.07 1649.33

100 1234.1 1370.8 2564.07 1567.53 1992.40 2535.2 1597.63

Average 1201.42 1335.68 2259.82 1525.36 1790.95 2232.08 1565.35

From Table 5 we can see the average solutions for MST, DCMST, WWM1, WWM2,

WADR5, WAC1, and WAC2. For the algorithms developed for solving MPDCMST

(WWM1, WWM2, WADR5, WAC1, and WAC2) the best performance is gained by the

WWM2 algorithm, which is slightly close to the performance of WAC2, while the

WWM1 and WAC1 are the two worse algorithms compared in this study. WWM1 and

WAC1 are two algorithms developed based on the Modified Prim’s algorithm where the

priority vertices in the set HVTi must be installed/connected as soon as possible, while

WWM2 is a modification of WWM1, and WAC2 is a modification of WAC1. The

modification made for those two algorithms is the same: relaxing the process of

connecting the priority vertices in HVTi whilst also maintaining those vertices to be

connected in the ith period or before. WADR5 is an algorithm developed based on

Modified Prim’s algorithm where the algorithm searches two smallest edges for being

considered to be connected in the network, except the last one in the period. In this study,

we compared the ratio of the algorithms (WWM1, WWM2, WADR5, WAC1, and

WAC2) against their lower bound (DCMST). The ratio is
LB

LBH , where H is the heuristic

(algorithm) and LB is the lower bound (DCMST). Table 6 below shows the ratio of
LB

LBH

.

109

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

Table 6: The value of ratio
LB

LBH of the algorithms against the lower bound

Vertex

order
MST DCMST WWM1 WWM2 WADR5 WAC1 WAC2

10 1129.43 1178.8 1498.6 1286.6 1341.93 1495.1 1359.93 27.129% 9.145% 13.839% 26.832% 15.366%

20 1196.1 1299 1804.97 1428.57 1557.63 1790.37 1437.5 38.950% 9.974% 19.910% 37.827% 10.662%

30 1177.43 1319.53 2039.97 1490.03 1755.40 2018.9 1516.43 54.598% 12.921% 33.032% 53.001% 14.922%

40 1151.23 1286.3 2117.1 1440.03 1719.27 2079.73 1455.3 64.588% 11.952% 33.660% 61.683% 13.138%

50 1223.43 1356.47 2427.27 1566.6 1844.10 2381 1603.7 78.940% 15.491% 35.949% 75.530% 18.226%

60 1175.57 1320.73 2389.87 1573.57 1851.20 2364.4 1639.53 80.950% 19.143% 40.165% 79.022% 24.138%

70 1242.1 1410.03 2558.5 1612.27 1963.83 2520.2 1671.9 81.450% 14.342% 39.276% 78.733% 18.572%

80 1236.83 1410.23 2579.4 1675.2 1942.40 2547.8 1722.23 82.906% 18.789% 37.736% 80.665% 22.124%

90 1248 1404.93 2618.43 1613.23 1941.33 2588.07 1649.33 86.374% 14.826% 38.180% 84.213% 17.396%

100 1234.1 1370.8 2564.07 1567.53 1992.40 2535.2 1597.63 87.049% 14.352% 45.346% 84.943% 16.548%

Average

68.293% 14.094% 33.709% 66.245% 17.109%

From Table 6 we see that average ratio of the WWM1 and WAC1 algorithms against

the lower bound are above 50%. These values show that the performance of the algorithm

is not good. The performance of WWM2 and WAC2 are below 20%, while the ratio of

WADR5 is around 34%. The smaller the value of the ratio, the better the performance.

The closer the solution of the algorithm to the solution of the DCMST, the better the

algorithm. Figure 8 shows the performance of the algorithm.

Fig. 8: Performance of WWM1, WWM2, WADR5, WAC1, and WAC2 algorithms.

5. CONCLUSIONS

From the results and discussion we can see that among WWM1, WWM2, WADR5,

WAC1, and WAC2 algorithms, WWM2 performs the best, followed by WAC2

algorithm. These two algorithms have similar approaches: relaxing the time of installation

for vertices in HVTi or adding flexibility to the algorithm. Accepting flexibility in the

process of connecting/installing the vertices without violating the rules gives a better

solution rather than sticking with the schedule of connecting the vertices in a certain

order.

0

500

1000

1500

2000

2500

3000

20 30 40 50 60 70 80 90 100

S
o

lu
ti

o
n

Vertex order

Performance of some Algorithms for the MPDCMST

MST DCMST WWM1 WWM2 WADR5 WAC1 WAC2

110

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

ACKNOWLEDGEMENT

This research work was supported by Research Grant No: 582/ UN26.21/KU/2017. The

authors would also like to acknowledge the contributions and financial support from the

Directorate General of Higher Education, Ministry of Research, Technology and Higher

Education, Republic of Indonesia.

REFERENCES

[1] Gabow H.N and R.E. Tarjan.(1984) Efficient algorithms for a family of matroid intersection

problems. Journal of Algorithms, 5:80-131.

[2] Garey, M.R.,and Johnson, D.S.(1979) Computers and Intractibility, A Guide to the Theory

of NP-Completeness. Freemann, San Francisco.

[3] Narula, S.C., and C. A.Ho.(1980) Degree-Constrained Minimum Spanning Tree. Computer

and Operation Research, 7:239-249.

[4] Krishnamoorthy, M.,A.T. Ernst and Y. M Sharaila.(2001) Comparison of Algorithms for

the Degree Constrained Minimum Spanning Tree. Journal of Heuristics, 7(6): 587-611.

[5] Deo N. and N. Kumar.(1997) Computation of Constrained Spanning Trees: A Unified

Approach. Network Optimization (Lecture Notes in Economics and Mathematical Systems.

Editor : Panos M. Pardalos, et al. ,Springer-Verlag, Berlin, Germany: 194 – 220.

[6] Zhou, G. and M Gen. (1997) A Note on Genetics Algorithms for Degree- Constrained

Spanning Tree Problems. Networks, Vol. 30: 91 – 95.

[7] Wamiliana. (2004) Solving the Degree Constrained Minimum Spanning Tree Using Tabu

and Penalty Method. Jurnal Teknik Industri:1-9.

[8] Caccetta L. and Wamiliana.(2001) Heuristics Algorithms for the Degree Constrained

Minimum Spanning Tree Problems.Proceeding of the International Congress on Modelling

and Simulation (MODSIM),Canberra, Editors: F. Ghassemi et.al:2161-2166.

[9] Wamiliana and L. Caccetta. (2003)Tabu search Based Heuristics for the Degree Constrained

Minimum Spanning Tree Problem.Proceeding of South East Asia Mathematical

Society:133-140.

[10] Wamiliana and L. Caccetta.(2012) The Modified CW1 Algorithm for The Degree Restricted

Minimum Spanning Tree Problem, Proceeding of International Conference on Engineering

and Technology Development, Bandarlampung 20-21 June:36-39.

[11] Kawatra R. (2002)A multi period degree constrained Minimum Spanning Tree Problem,

European Journal of Operational Research,143: 53 – 63.

[12] [Wamiliana, D. Sakethi, and R. Yuniarti,(2010) Computational Aspect of WADR1 and

WADR2 Algorithms for The Multi Period Degree Constrained Minimum Spanning Tree

Problem. Proceeding SNMAP, Bandar lampung 8 – 9 December:208 – 214.

[13] Wamiliana, Amanto, and M. Usman.(2013) Comparative Analysis for The Multi Period

Degree Constrained Minimum Spanning Tree Problem. Proceeding The International

Conference on Engineering and Technology Development (ICETD):39 – 43.

[14]]Wamiliana, F. A.M. Elfaki, M. Usman, and M. Azram. (2015) Some Greedy Based

Algorithms for Multi Periods Degree Constrained Minimum Spanning Tree Problem. ARPN

Journal of Engineering and Applied Sciences, 2015: 10 (21): 10147 – 10152.

[15] Wamiliana, M. Usman, D. Sakethi, R. Yuniarti, and A. Cucus.(2015) The Hybrid of Depth

First Search Technique and Kruskal’s Algorithm for Solving The Multiperiod Degree

Constrained Minimum Spanning Tree Problem. The 4th International Conference on

Interactive Digital Media (ICIDM). IEEE Explore, Dec 2015

[16] Wamiliana, Asmiati, M. Usman, A. Hijriani, and W. C. Hastono. (2018) Comparative

Analysis of Some Modified Prim’s Algorithms to Solve the Multiperiod Degree Constrained

Minimum Spanning Tree Problem. Indian Journal of Science and Technology,11(11):1-6.

111

IIUM Engineering Journal, Vol. 21, No. 1, 2020 Wamiliana et al.
https://doi.org/10.31436/iiumej.v21i1.1088

[17] Wamiliana, Warsono, Asmiati, A. Hijriani, and W. C. Hastono.(2018) Different Time

Installation Effect on The Quality Of The Solution For The Multiperiod Installation Problem

Using Modified Prim’s Algorithm. Far East Journal of Electronics and Communications,

18(2): 291-300.

[18] GNU Octave. Available: https://www.gnu.org/software/octave.

112

