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Abstract

In the transition from industrial to service robotics, robots

will have to deal with increasingly unpredictable and

variable environments. We present a system that is able

to recognize objects of a certain class in an image and to

identify their parts for potential interactions. The method

can recognize objects from arbitrary viewpoints and gen-

eralizes to instances that have never been observed during

training, even if they are partially occluded and appear

against cluttered backgrounds. Our approach builds on

the Implicit Shape Model of Leibe et al. (2008). We ex-

tend it to couple recognition to the provision of meta-data

useful for a task and to the case of multiple viewpoints by

integrating it with the dense multi-view correspondence

finder of Ferrari et al. (2006). Meta-data can be part

labels but also depth estimates, information on material

types, or any other pixelwise annotation. We present ex-

perimental results on wheelchairs, cars, and motorbikes.

Keywords: object class recognition, computer vision

1 Introduction

People can very quickly understand scenes and assess sit-

uations. In particular, we can deal with the substantial

variability which we are bound to be confronted with in

our daily lives. The human ability to recognize object

classes and their functional parts is a vital component in

this. If a new type of car hits the market, we immedi-

ately recognize it as yet another car, without needing any

kind of extra training. Lots of qualitative information can

be derived through mechanisms of generalization, based

on previous exposure to other members of the same ob-

ject class. Coming back to the issue of functional parts,

their relative positions tend to be quite similar indeed and

we won’t be hard-pressed to identify them. Similarly, we

can judge 3D shape from a single image, not very pre-

cisely but at a qualitative level. This is often enough to

allow interaction with an object, possibly in an iterative

way. Qualitative information can serve as a starting point

to obtain more accurate data if needed.

This qualitative rather than quantitative type of scene

analysis is a natural outcome of our need to interact with

the world at a high semantic level. A need for prior, quan-

titatively precise models of the surroundings would put

heavy constraints on the applicability and robustness of a

system. An increasing number of robotic applications call

for similar, semantic capabilities. Yet, much of robotics

so far has been geared towards navigation in precisely

modeled worlds and interactions with precisely modeled

objects. Object class recognition or fast matching of in-

formation (e.g. images) against massive datasets to find

topological similarities was not possible before. But that

is rapidly changing now.

Let us take visual navigation as a case in point for qual-

itative scene analysis. People are known to mainly de-

termine their trajectory relative to landmarks. Robots,

on the other hand, are typically programmed to navigate

via precisely defined paths, calculated in absolute terms,

1



based on a precise 3D world model. New results on very

fast comparisons of images taken by a mobile platform

against masses of reference images, can provide for the

aformentioned relative trajectory planning. Indeed, us-

ing such technologies, the first such implementations for

robot navigation have already been published (Goedemé

et al., 2004, 2007; Fraundorfer et al., 2007; Segvic et al.,

2007). Object class recognition from 2D images still has

not quite put its mark onto robotics to the same degree,

but can be expected to have an even bigger impact. Ef-

forts to classify parts of scenes as trees, buildings, etc.

from mobile platforms have been made, but by taking 3D

point clouds as input, most of this work is still very much

grounded in the quantitative line of thinking (Pantofaru

et al., 2003; Munoz et al., 2008; Brostow et al., 2008).

Even though visual information is gaining interest (Pos-

ner et al., 2007), it is mostly used only to augment the

point clouds. Meger et al. (2008) do use visual informa-

tion in their Curious George platform to augment online

scene mapping with semantically useful information, i.e.

the presence of specific objects. It would be interesting to

extend their approach to object classes and enable inter-

action with the objects.

With this paper, we contribute to this general shift to-

wards more qualitative, but semantically enriched infor-

mation. Our proposed approach recognizes object classes

from single images, regardless of their viewpoint. As an

integral component, our approach detects individual, se-

mantically meaningful object parts and crudely localizes

them on the object. This should allow a robot to approach

these parts in order to engage in an interaction with the

objects. The experiments show results for object classes

like cars, wheelchairs, and motorbikes. In terms of appli-

cations, an automated carwash station could better adapt

to the particular car at hand (Figure 1), or a service robot

could approach a wheelchair, grasp it at the handles, and

bring it to a specified location (Figure 13). Moreover, we

demonstrate that expectations about object classes allow

for the estimation of the overall 3D shape of members of

the same class. All this works for class members that have

never been seen before, and from single images.

The presented work builds on earlier object class recog-

nition work. In particular, we use the Implicit Shape

Model approach of Leibe and Schiele (Leibe et al., 2008),

which is briefly reviewed in Section 3. It models new in-

stances of an object category as a jigsaw puzzle of parts

Figure 1: Humans can quickly analyze a scene from a

single image. Recognizing subparts of an object helps

to recognize the object as a whole, but recognizing the

object in turn helps to gather more detailed information

about its subparts. Knowledge about these parts can then

be used to guide actions. For instance, in the context of a

car wash, a decomposition of the car in its subparts can

be used to apply optimized washing methods to the differ-

ent parts. This figure shows such decomposition obtained

with our system.

from the training instances. A codebook of typical ap-

pearances is constructed from interest points, and their

occurrences on the training images are recorded, allowing

to detect novel objects by means of generalized Hough

voting. As already argued, dealing with higher intra-class

variability implies that robots can no longer rely on rigid,

predefined 3D transformations to interact with those ob-

jects. Instead, we propose a meta-data transfer method

which helps a robot to localize the relevant part for inter-

action based on the actual image observations, rather than

relying on a fixed rigid 3D structure. But other types of

meta-data can be handled as well, such as crude 3D shape

and surface orientation. As will be described, our meta-

data transfer is tightly interwoven with the object class

recognition procedure itself. We attach meta-data to the

votes cast in the Hough space. By collecting the votes

that contributed to an object hypothesis, we can combine

the meta-data fragments into an annotation for the rec-

ognized object. Moreover, we also extend the recogni-

tion procedure to handle multiple viewpoints. Instead of

running a separate detector for each view, we establish

and exploit relations between the views. Indeed, tradi-

tional object class recognition methods, including the Im-

plicit Shape Model, work with a preferred viewpoint only

(e.g. frontal faces or cars seen from the side). The same

multi-viewpoint capabilities are inherited by our meta-
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data transfer.

In this paper, we highlight the use of object class recog-

nition and meta-data transfer for tasks that would require

object-robot interactions. The impact of these procedures

can be expected to be much larger, however. Even ‘low-

level’ processes like motion extraction or ground plane

determination can benefit greatly. As a matter of fact,

this is a major breakthrough that we can expect to hap-

pen over the coming years. When high-level, semantic

information like object class membership (a car) or mate-

rial type (a windshield) can be fed back into lower levels,

these can function more reliably. Cars tend to move on

the ground plane in specific ways, and windshields are

smooth and made of glass, therefore shiny, and stereo in-

formation obtained there can better be discarded. As the

performance of the lower levels improves because of this

feedback from higher levels, they can then also support

these higher levels more effectively. One gets processing

loops that are closed over semantic levels. These observa-

tions are mirrored by neurophysiological findings (Mum-

ford, 1994; Rockland and Hoesen, 1994). In the brain,

‘low-level’ areas do not only feed into the ‘high-level’

ones, but invariably the latter channel their output into

the former. The resulting feedback loops over the seman-

tic level are key for successful scene understanding. The

brain seems keen to bring all levels into unison, from ba-

sic perception up to cognition. It relies on these cognitive

loops for this to happen.

The paper is organized as follows. After discussion

of related work (Section 2), we recapitulate the Implicit

Shape Model of Leibe et al. (2008) for simultaneous ob-

ject recognition and segmentation (Section 3). Then fol-

lows the first contribution of this paper, as we explain

how we transfer meta-data from training images to a pre-

viously unseen image (Section 4) for both discrete and

real-valued meta-data. Next, as the second contribution,

we show how to efficiently extend the recognition and an-

notation procedure to the multi-view case (Section 5) by

integrating it with Ferrari et al. (2006). We demonstrate

the viability of our approach by transferring object part

labels for wheelchairs, cars and motorbikes, as well as

depth maps and surface orientations for cars (Section 6).

Section 7 concludes the paper.

2 Related Work

The first examples of cognitive feedback in vision have

already been implemented. Hoiem et al. (2006) and Cor-

nelis et al. (2006) proposed frameworks which embed

the separate mechanisms of object detection and scene

geometry estimation into a cognitive loop. Objects can

be detected more reliably and false-positive detections in

improbable locations (e.g. people on trees) are filtered

out based on the automatically estimated geometry of the

scene. In turn, object detections allow to improve scene

geometry estimation. In Leibe et al. (2007), a similar idea

is applied to images taken from a moving vehicle, us-

ing car and pedestrian detections to improve ground-plane

and scene depth estimation in a city environment. How-

ever, these systems only couple recognition and crude 3D

scene information (the position of the groundplane). Here

we set out to demonstrate the wider applicability of cog-

nitive feedback, by inferring ‘meta-data’ such as material

characteristics, the location and extent of object parts, or

even 3D object shape, based on object class recognition.

Given a set of annotated training images of a particular

object class, we transfer these annotations to new images

containing previously unseen object instances of the same

class.

A general framework that allows such inference is the

work on image analogies, where a mapping between two

given images A and A′ is transferred to an image B to get

an ‘analogous’ image B′. As shown in work by Hertz-

mann et al. (2001) and Cheng et al. (2008), mappings

can include texture synthesis, superresolution and image

transformations like blurring and artistic filters. Most

closely related to our work is the mapping that is called

‘texture-by-numbers’, where A is a parts annotation of a

textured image A′. This allows to generate a plausible

textured image from a new annotation B. Even though

no example is shown in the cited works, it should be pos-

sible to do the inverse mapping, i.e. annotate an unseen

image. However, the image analogies framework is lim-

ited to local image statistics, and does not involve a deeper

understanding of the structure of the image.

Related to image analogies is SIFT Flow by Liu et al.

(2008), where the best matching image in a database of

training images is warped to match the structure of a query

image. If the training images are annotated with a type

of meta-data (e.g. motion vectors), an annotation for the
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query image can be inferred. The success of the method

depends on the presence of a sufficiently similar image

in the training set. It cannot integrate information from

multiple images to annotate a given query image.

Other approaches focus on inferring 3D shape from sin-

gle images. Hoiem et al. (2005) estimate the coarse geo-

metric properties of a scene by learning appearance-based

models of surfaces at various orientations. In the same

vein, Saxena et al. (2005) are able to reconstruct coarse

depth maps from a single image of an entire scene by

means of a Markov Random Field. Both these methods

focus purely on geometry estimation, without incorpo-

rating an object recognition process. Like image analo-

gies, they rely solely on the statistics of small image

patches. There are methods which focus on more detailed

3D shape estimation of separate objects from a monocu-

lar image, like Han and Zhu (2003). Their method uses

graph representations for both the geometry of the ob-

jects and their relations to the scene. To extract the graph

representation from the image and estimate the geometry,

a sketch representation of the objects is generated. This

limits the method to objects that can be represented by

a set of lines or that have prominent edges, like trees or

polyhedra. Hassner and Basri (2006) infer 3D shape of an

object in a single image from known 3D shapes of other

members of the object’s class. Their method is specific

to 3D meta-data though, and the object is assumed to be

recognized and segmented beforehand. Their analysis is

not integrated with the detection and recognition of the

objects, as is ours.

Recently, there has been a growing interest in extending

object category recognition to the multi-view case, mir-

roring a similar evolution in the older field of specific ob-

ject detection (e.g. Rothganger et al. (2006); Ferrari et al.

(2006)). Aside from Thomas et al. (2006) which will form

the basis of the multi-view recognition and annotation ex-

tension in this paper (Section 5), other approaches have

been proposed to handle multi-view object class recog-

nition. Hoiem et al. (2007) have extended their Lay-

out Conditional Random Field framework to input a 3D

model. They demonstrate recognition on cars from mul-

tiple viewpoints. Although the aspect of meta-data is not

explored, their method could potentially be applied to es-

timate 3D-related meta-data like a depth map for the rec-

ognized object. Other methods for viewpoint-independent

object recognition have been proposed as well, e.g. based

on Partial Surface Models (Kushal et al., 2007), canoni-

cal object parts (Savarese and Fei-Fei, 2007), a rigid 3D

model with features from different object instances at-

tached to it (Yan et al., 2007) and a set of CAD mod-

els (Liebelt et al., 2008). However, all of these focus on

recognition only and are not suited for deriving meta-data,

in that there is no obvious mechanism for adapting the

metadata to the appearance of the new object instance.

Preliminary versions of the two main components of

this work appeared in Thomas et al. (2008, 2009) (meta-

data transfer) and Thomas et al. (2006) (multi-view). This

paper for the first time discusses their full integration into

a single system and shows experimental results obtained

with this integrated method.

3 Object Class Detection with an

Implicit Shape Model

In this section we briefly summarize the Implicit Shape

Model (ISM) approach proposed by Leibe et al. (2008),

which we use as the object class detection technique at

the basis of our approach (see also Figure 2).

Given a training set containing images of several in-

stances of a certain category (e.g. side views of cars)

as well as their segmentations, the ISM approach builds

a model that generalizes over intra-class variability and

scale. The modeling stage constructs a codebook of lo-

cal appearances, i.e. of local structures that occur repeat-

edly across the training images. Codebook entries are

obtained by clustering image features sampled at interest

point locations. Instead of searching for correspondences

between a novel test image and model views, the ISM ap-

proach maps sampled image features onto this codebook

representation. We refer to all features in every training

image that are mapped to a single codebook entry as oc-

currences of that entry. The spatial intra-class variability

is captured by modeling spatial occurrence distributions

for each codebook entry. Those distributions are esti-

mated by recording all locations of codebook entry oc-

currences, relative to the object centers (which are given

as training annotation). Together with each occurrence,

the approach stores a local segmentation mask, which is

later used to infer top-down segmentations.
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Figure 2: The recognition procedure of the ISM system.

3.1 ISM Recognition

The ISM recognition procedure is formulated as a prob-

abilistic extension of the Hough transform (Leibe et al.,

2008). Let e be an image patch observed at location ℓ.

The probability that e matches to codebook entry ci can

be expressed as p(ci|e). Patches and codebook entries are

represented by feature descriptors. In our implementa-

tion, two descriptors match if their distance or similar-

ity (Euclidean or correlation, depending on the descrip-

tor type), respectively, is below or exceeds a fixed thresh-

old. Each matched codebook entry ci casts votes for in-

stances of the object category on at different locations and

scales λ = (λx, λy, λs) according to its spatial occur-

rence distribution P (on,λ|ci, ℓ). The votes are weighted

by P (on,λ|ci, ℓ)p(ci|e), and the total contribution of a

patch to an object hypothesis (on,λ) is expressed by the

following marginalization:

p(on,λ|e, ℓ) =
∑

i

p(on,λ|ci, ℓ)p(ci|e) (1)

where the summation is over all entries ci in the code-

book. The votes are collected in a continuous 3D voting

space (translation and scale). Maxima are found using

Mean Shift Mode Estimation with a kernel K with scale-

adaptive bandwidth h and a uniform profile (Cheng, 1995;

Leibe and Schiele, 2005):

p̂(on,λ) =
1

h(λ)3

∑

k

∑

j

p(on,λj |ek, ℓk)K

(

λ − λj

h(λ)

)

(2)

In this equation, λj are the locations of the votes, stem-

ming from image patches ek. Each local maximum in this

voting space yields an hypothesis for an object instance at

a certain location and scale in the image.

3.2 Top-Down Segmentation

After the voting stage, the ISM approach computes a

probabilistic top-down segmentation for each hypothesis,

in order to determine its spatial support in the image. This

is achieved by backprojecting to the image the votes con-

tributing to the hypothesis and using the stored local seg-

mentation masks to infer the probability that each pixel

p is figure or ground given the hypothesis at location

λ (Leibe et al., 2008). More precisely, the figure prob-

ablity for p is only affected by codebook entries ci that

match to a patch e containing p, and only by their oc-

currences that contribute to the hypothesis at location λ.

The probability is calculated as a weighted average over

the corresponding pixels in these occurrences’ segmenta-

tion masks. The weights correspond to the contribution of

each occurrence to the hypothesis:

p(p = figure|on,λ)

=
∑

e:p∈e

∑

ci

p(p = figure|e, ci, on,λ)p(e, ci|on,λ)

=
∑

e:p∈e

∑

ci

p(p = figure|ci, on,λ)p(on,λ|ci)p(ci|e)p(e)
p(on,λ)

(3)

We underline here that a separate local segmentation mask

is kept for every occurrence of each codebook entry. Dif-

ferent occurrences of the same codebook entry in a test

image will thus contribute different local segmentations,

based on their relative location with respect to the hypoth-

esized object center.

In early versions of their work, Leibe et al. (2008) in-

cluded an optional processing step, which refines the hy-

pothesis by a guided search for additional matches (Fig-

ure 2). This improves the quality of the segmentations, but

at a high computational cost. Uniform sampling was used

in Leibe and Schiele (2003), which became untractable

once scale-invariance was later introduced into the sys-

tem. Instead, in this paper we propose a more efficient

refinement algorithm (Section 4.3).

3.3 MDL Verification

In a last processing stage of the ISM system, the computed

segmentations are exploited to refine the object detection
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scores, by taking only figure pixels into account. More-

over, this last stage also disambiguates overlapping hy-

potheses. This is done by a hypothesis verification stage

based on Minimum Description Length (MDL), which

searches for the combination of hypotheses that together

best explain the image. This step prevents the same local

image structure to be assigned to multiple detections (e.g.

a wheel-like image patch cannot belong to multiple cars).

For details, we again refer to Leibe et al. (2008).

4 Transferring Meta-data

The power of the ISM approach lies in its ability to rec-

ognize novel object instances as approximate jigsaw puz-

zles built out of pieces from different training instances.

In this paper, we follow the same spirit to achieve the new

functionality of transferring meta-data to new test images.

Example meta-data is provided as annotations to the

training images. Notice how segmentation masks can be

considered as a special case of meta-data. Hence, we

transfer meta-data with a mechanism inspired by that used

above to segment objects in test images. The training

meta-data annotations are attached to the occurrences of

codebook entries, and are transferred to a test image along

with each matched feature that contributed to an hypoth-

esis (Figure 3). This strategy allows us to generate novel

annotations tailored to the new test image, while explicitly

accommodating for the intra-class variability.

Unlike segmentations, which are always binary, meta-

data annotations can be either binary (e.g. for delineating

a particular object part or material type), discrete multi-

valued (e.g. for identifying all object parts), real-valued

(e.g. depth values), or even vector-valued (e.g. surface ori-

entations). We first explain how to transfer discrete meta-

data (Section 4.1), and then extend the method to the real-

and vector-valued cases (Section 4.2).

4.1 Transferring Discrete Meta-data

In case of discrete meta-data, the goal is to assign to each

pixel p of the detected object a label a ∈ {aj}j=1:N . We

first compute the probability p(p = aj) for each label

aj separately. This is achieved by extending eq. (3) for

p(p = figure) to the more general case of discrete meta-

Figure 3: Transferring (discrete) meta-data. Left: two

training images and a test image. Right: the annotations

for the training images, and the partial output annotation.

The corner of the license plate matches with a codebook

entry which has occurrences on similar locations in the

training images. The annotation patches for those loca-

tions are combined and instantiated in the output annota-

tion.

data:

p(p = aj |on,λ)

=
∑

p∈N(e)

∑

i

p(p = aj |ci, on,λ)

× p
(

â(p) = ae(p)|e
)

p(e, ci|on,λ) (4)

The components of this equation will be explained in de-

tail next. The first and last factors are generalizations of

their counterparts in eq. (3). They represent the annota-

tions stored in the codebook, and the voting procedure,

respectively. One extension consists in transferring anno-

tations also from image patches near the pixel p, and not

only from those containing it. With the original version,

it is often difficult to obtain full coverage of the object,

especially when the number of training images is lim-

ited. By extending the neighbourhood of the patches, this

problem is reduced. This is an important feature, because

producing the training annotations can be labor-intensive.

Our notion of proximity is defined relative to the size of

the image patch, and parameterized by a scale-factor sN .

More precisely, let an image patch e = (ex, ey, es) be

defined by the three-dimensional coordinates of its cen-

ter (ex, ey) and scale es obtained from the interest point
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detector. The neighbourhood N(e) of e is defined as:

N(e) = {p|p ∈ (ex, ey, sN · es)} (5)

A potential disadvantage of the above procedure is that

for p = (px, py) outside the actual image patch, the trans-

ferred annotation is less reliable. Indeed, the pixel may lie

on an occluded image area, or small misalignment errors

may get magnified. Moreover, some differences between

the object instances shown in the training and test images

that were not noticeable at the local scale can now affect

the results. To compensate for this, we add the second

factor to eq. (4), which indicates how probable it is that

the transferred annotation ae(p) still corresponds to the

‘true’ annotation â(p). This probability is modeled by a

Gaussian, decaying smoothly with the distance from the

center of the patch e, and with variance related to the size

of e by a scale factor sG:

p
(

â(p) = ae(p) | e
)

=
1

σ
√

2π
exp

(

−dx
2 + dy

2

2σ2

)

with σ = sG · es

(dx, dy) = (px − ex, py − ey) (6)

Once we have computed the probabilities p(p = aj)
for all possible labels {aj}j=1:N , we come to the actual

assignment: we select the most likely label for each pixel.

Note how for some applications, it might be better to keep

the whole probability distribution {p(p = aj)}j=1:N

rather than a hard assignment, e.g. when feeding back the

information as prior probabilities to low-level image pro-

cessing.

An interesting possible extension is to enforce spa-

tial continuity between labels of neighboring pixels, e.g.

by relaxation or by representing the image pixels as a

Markov Random Field. In our experiments (Section 6),

we achieved good results already without enforcing spa-

tial continuity.

The practical implementation of this algorithm requires

rescaling the annotation patches. In the original ISM sys-

tem, bilinear interpolation is used for rescaling opera-

tions, which is justified because segmentation data can be

treated as continuous probability values between 0 and 1.

However, interpolating over discrete labels such as ‘wind-

shield’ or ‘bumper’, which in practice are numerical val-

ues too, does not make sense. Therefore, rescaling must

be carried out without interpolation.

4.2 Transferring Real- or Vector-valued

Meta-data

In many cases, the meta-data is not discrete, but real-

valued (e.g. 3D depth) or vector-valued (e.g. surface ori-

entation). We will first explain how we obtain a real-

valued annotation from quantized training data, and then

how fully continuous meta-data is processed.

4.2.1 Quantized Meta-data

If the available training meta-data is quantized, we can

use the discrete system as in the previous section, but still

obtain a continuous estimate for the output by means of

interpolation. Treating the quantized values as a fixed set

of ‘value labels’, we infer for each pixel a probability for

each discrete value (4). Next, we select the discrete value

label with the highest probability, as before. To refine this

value, a parabola is fitted to the probability scores for the

maximum value label and the two immediate neighbour-

ing value labels. The value corresponding to the maxi-

mum of the parabola yields the final estimate. This is a

similar method as used in interest point detectors (Lowe,

2004; Bay et al., 2006) to determine continuous scale co-

ordinates and orientations from discrete values. Thanks to

this interpolation procedure, we obtain real-valued output

even though the training meta-data is quantized.

4.2.2 Continuous and Vector-valued Meta-data

Processing fully real-valued or vector-valued meta-data

requires a different approach. Instead of building prob-

ability maps for discrete labels, we store for each pixel all

values that have been voted for, together with their vote

weights. We again use Eq. 6 to decrease the influence of

votes with increasing distance from their patch location.

By storing all votes, we obtain a sampling of the proba-

bility distribution for each pixel. To extract a final value

for each pixel, we estimate the mode of this distribution,

using a Mean Shift Procedure. This is more robust to out-

liers than e.g. taking the value with the heighest weight or

the average.

We use a Mean Shift procedure (Cheng, 1995) with a

fixed window radius to estimate the mode for each pixel.

This method works for 1-dimensional as well as vector-

valued data. The mode estimation procedure uses a set

7



1D Meta-data

Votes per pixel

d

w

3D Meta-data

...

...

Initialization Mean-Shift iteration Convergence

1D

3D

Figure 4: Mean-Shift mode estimation for continuous and vector-valued meta-data. The top left shows a 3x3 pixel

fragment from an image, with 1D vote distributions for each pixel. The top right shows another possible distribution

where each vote is a 3D normal vector (the size of the circles indicates the vote weights). The middle and bottom row

show the Mean-Shift mode estimation procedure for both types of data. In the rightmost figures, the line width of the

windows corresponds to their scores and the black dot is the final value.
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of candidate windows, which are iteratively shifted to-

wards regions of higher density until convergence occurs.

Because the number of votes is small, in the order of

one hundred, there is no need to initialize the windows

through random sampling as done in other works (Cheng,

1995). Instead, we cover the entire distribution with can-

didate windows by considering the location of each vote

as a candidate window, and removing all overlapping win-

dows. Two windows overlap if their distance is less than

the window radius. Depending on the type of data, dis-

tance can be defined as Euclidean distance, or as the an-

gle between vectors. Next, we iterate over all windows by

moving each window to the weighted mean of all votes

within its radius, until convergence occurs. The score of

a window is the sum of the weights of all its votes. The

coordinates of the window with the highest score yield the

position â of the mode. The estimate for the final value

for p can be formulated as:

â(p) = argmax
a

∑

d(a,ai(p))<θ

w
(

ai(p)
)

(7)

The scalar or vector value ai(p) expresses the i-th vote

for the value of pixel p. The function d(x, y) is a dis-

tance measure between meta-data values, θ is the mean-

shift window radius, and w
(

ai(p)
)

is the weight of the

i-th vote. In case there are multiple modes with the same

score, we take the average position (this occurs rarely in

our experiments). The label ‘background’ is assigned if

the score of the window around â is smaller than the sum

of the weights of background votes.

Figure 4 illustrates the mode estimation procedure for

both 1-dimensional meta-data (e.g. depth values) and 3-

dimensional normal vectors. In the latter case, the win-

dows are circles on a unit sphere, and the distance mea-

sure between the votes and windows is the angle between

their vectors. When updating the window positions, care

must be taken to keep the resulting vectors normalized.

When the meta-data consists of vectors that need to be

compared using Euclidean distance (e.g. 3D points), the

windows are (hyper)spheres of the same dimension as the

vectors.

4.3 Refining Hypotheses

When large areas of the object are insufficiently covered

by interest points, no meta-data can be assigned to them.

Using a large value for sN will only partially solve this

problem, because there is a limit as to how far informa-

tion from neighboring points can be reliably extrapolated.

Too large an sN may cause the annotation to ‘leak’ into

the background and small details to be drowned out. A

better solution is to actively search for additional code-

book matches in these areas. The refinement procedure

in early, fixed-scale versions of the ISM system (Leibe

and Schiele, 2003) achieved this by means of uniform

sampling. A dense 2D grid of candidate points was gen-

erated around the hypothesis, which is intractable in the

scale-invariant (3D) case. Therefore we have developed a

more efficient refinement algorithm which only searches

for matches at promising locations.

For each hypothesis, new candidate points are gener-

ated by backprojecting all occurrences in the codebook,

excluding points nearby existing interest points. When

the feature descriptor for a new point matches with the

codebook cluster(s) that backprojected it, an additional

hypothesis vote is cast. The confidence for this new vote

is reduced by a penalty factor to reflect the fact that it was

not generated by an actual interest point. This penalty fac-

tor is 0.5 in all our experiments. The additional votes en-

able the meta-data transfer to cover those areas that were

initially missed by the interest point detector. This proce-

dure is illustrated in Figure 5. As can be seen from fig-

ure 5, this refinement step is a vital part to obtain a good

coverage of the object.

This refinement step can either be performed on the fi-

nal hypotheses that result from the MDL verification, or

on all hypotheses that result from the initial voting. In the

latter case, it will improve MDL verification by enabling

it to obtain better figure area estimates of each hypothe-

sis (Leibe et al., 2008). Therefore, we perform refinement

on the initial hypotheses in all our experiments.

5 Multi-View extension of the ISM

In this section, we describe how we can achieve multi-

view object class detection and annotation in a more ef-

ficient and higher performance way than simply running

a battery of single-view detectors. We establish relations

between different views of the same object. There are sev-

eral approaches to this problem, e.g. the view clustering

method by Lowe (2001) and the image exploration algo-
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Refined annotation

Interest points

Figure 5: Refining a hypothesis. An image with poor con-

trast (top left) produces insufficient interest points to cover

the whole object (top right). By backprojecting the occur-

rence locations from the detected peak in the Hough space

(bottom left), additional points can be found (bottom cen-

ter), and a more complete annotation can be constructed

(bottom right).

rithm proposed by Ferrari et al. (2004, 2006). We build

upon the latter method, which is designed for estabilish-

ing dense correspondences among multiple model views

of a specific object. In this work, we apply image explo-

ration in the following fashion: for each specific training

object, a set of region tracks is produced, densely con-

necting its model views. Each such track is composed of

the image regions of a single physical surface patch along

the model views in which it is visible.

The global scheme of the multi-view system is as fol-

lows. Initially, both a set of ISM models and explo-

ration systems are trained separately on the same dataset.

This dataset consists of images of M object instances,

taken from N viewpoints. The viewpoints should approx-

imately correspond to a fixed set of poses, but each in-

stance does not need to have all viewpoints. In practice,

it is sufficient to walk around each of the objects with a

camera, and take images at approximately corresponding

viewpoints. The total set of training images can be con-

sidered as an M×N matrix, with each row corresponding

to an object instance and each column to a viewpoint (fig-

ure 6). A set of N ISMs are then trained independently

1

2

3

4

5

0°
30° 60°

90°

120°

input

images

model

(codebook,

links)

objects

viewpoints

tracks

Figure 6: Visualization of our multi-view model. Only

viewpoints lying on a circle around the object are shown.

However, the proposed method supports the general case

of viewpoints distributed over the whole viewing sphere.

(one ISM for each column), and M sets of region tracks

are extracted (one set for each row). The next step is to

establish relations between the single-view ISM models,

consisting of so-called activation links.

In Section 5.1, we first summarize how to obtain multi-

view tracks with the method of Ferrari et al. (2004, 2006).

Next, we explain in Section 5.2 how the tracks are in-

tegrated in the ISM system, to construct activation links

during training (Section 5.2.1) and to use these for im-

proving recognition of a test image (Section 5.2.3).

5.1 Dense Multi-View Correspondences by

Image Exploration

Finding relations between the different views of an ob-

ject instance is a two-stage process. First, dense two-view

matches are produced between each model image and all

other images within a limited neighborhood on the view-
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Figure 7: Top: some of the region-tracks found across 3

views of a motorbike; bottom: all of them.

ing sphere. Next, all pairwise sets of matches are inte-

grated into a single multi-view model.

Region correspondences between two model views vi

and vj are obtained via Ferrari et al. (2004). The method

first generates a large set of low confidence, initial re-

gion matches, and then gradually explores the surround-

ing areas, trying to generate more and more matches, in-

creasingly farther from the initial ones. The exploration

process exploits the geometric transformations of exist-

ing matches to construct correspondences in view vj , for

a number of overlapping circular regions, arranged on a

grid completely covering view vi (coverage regions). This

is achieved by iteratively alternating expansion phases,

which construct new matching regions in vj , with con-

traction phases that remove mismatches. With each it-

eration, the correct matches cover more and more of the

object, while the ratio of mismatches progressively de-

creases. The result is a large set of reliable region corre-

spondences, densely covering the parts of the object visi-

ble in both views.

Pairs of model views are matched within a limited

neighborhood around each view. Next, the resulting two-

view correspondences are organized into multi-view re-

gion tracks (Ferrari et al., 2006). The crucial point is to

use always the same coverage regions when matching a

certain view to any of the other model views. As a conse-

quence, each region-track is directly defined by a cover-

age region together with all regions it matches in the other

views (figure 7).

5.2 Integrating the Multi-View Correspon-

dences with the ISM

With the tracks learnt from the image exploration algo-

rithm, we can make the different single-view codebooks

communicate with each other by means of activation

links. This results in additional votes being inserted into a

codebook’s voting space, based on activations in the other

codebooks. Section 5.2.1 explains how to generate the

activation links. Sections 5.2.2 and 5.2.3 explain how the

multi-view model is used during recognition.

5.2.1 Training: Establishing Activation Links

The image exploration system (Section 5.1) produces a

set of tracks per training object, each containing regions

corresponding across the object’s model views. These re-

gions are described by ellipses, i.e. affine transformations

of the unit circle (figure 7). Regions are constructed so

that the affine transformation between two regions in a

track approximates the transformation between the image

patches they cover. The goal of the linking stage is to es-

tablish connections between the different ISMs. These

connections consist of activation links between the oc-

currences, indicating which occurrences in different ISMs

correspond to the same object part. Because the ISM and

image exploration systems have different goals, they use

different features, so there is no one-to-one correspon-

dence between regions and occurrences.

Before explaining how to use multi-view tracks to pro-

duce activation links, we first report on a subproblem:

how to find the region Ri closest to an occurrence Oi.

This problem boils down to finding in a set of ellipses (all

regions in an image) the one nearest to a point (the cen-

ter of Oi). An analytical solution for this problem exists,

but is computationally expensive. Therefore, we use as

an approximation the distance to a line segment of length

‖l‖ − ‖s‖, aligned with the major axis of the ellipse, with

l and s the major and minor axes respectively.

Occurrences are assigned to the nearest region only if

they are within a distance 2 · ‖s‖. This assumes that the

affine transformation of a region is typically valid within

a small area around it (figure 8).

With this approximate distance measure, we are now

ready to link the different ISMs together, by creating ac-

tivation links between occurrences in different training
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Figure 8: Attraction zones for regions. The figure shows

the areas in which occurrences would be assigned to one

of three elliptical regions, using the distance to a line seg-

ment as an approximation for the distance to an ellipse.
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Figure 9: Establishing links between occurrences. Aij is

the affine transformation between the region Ri in view i
and Rj in view j. O′

i is obtained by mapping occurrence

Oi from view i to view j using Aij . In this example, a link

between occurrences Oi and O2
j is created, because O2

j is

sufficiently similar to O′
i.

views. Activation links are created per object instance,

i.e. one link only connects occurrences belonging to a

specific training object. The algorithm iterates over all

occurrences Oi in all training views of this object. For

each Oi, it looks for the nearest region Ri, using the ap-

proximate distance measure described above. Then, we

treat every other view vj in the region’s track as follows

(figure 9). The circular region corresponding to Oi is first

transformed with the affine transformation Aij between

Ri and Rj , i.e. O′
i = Aij · Oi. Next, we look for oc-

currences Ok
j in view vj whose geometry is sufficiently

similar to O′
i. All Oi → Ok

j are then stored as activation

links.

Again, matching the occurrences Ok
j to O′

i involves the

comparison between circles and an ellipse. However, this

time we do not look for the nearest circle to the ellipse,

but for all circles sufficiently similar to the ellipse. We

Refinement (optional)

Single−view voting spaces

Working view selection

Vote transfer

Single−view codebooks
Linked

MDL−score MDL−scoreMDL verification

Figure 10: Overview of the multi-view recognition

scheme. After performing voting in all views, the most

promising views are selected (Section 5.2.2). Evidence

is transferred from all other views towards each working

view, using the activation links (Section 5.2.3). After an

optional refinement step (Section 4.3), the MDL procedure

(Section 3.3) produces the final detection scores.

use the following heuristics to determine whether a circle

with center pc and radius R matches an ellipse with center

pe and major/minor axis lengths ‖l‖, ‖s‖:

‖pc − pe‖ < a · R (8)
∣

∣1 − (‖s‖ · ‖l‖)/R2
∣

∣ < b (9)

‖s‖/R > 1/c (10)

‖l‖/R < d (11)

with a, b, c, d parameters, set to a = 0.35, b = 0.25, c =
d = 3.0 in all reported experiments. These formulas put

constraints on the distance between the centers, the ratio

between the areas, the ratio between the minor axis and

the radius, and the ratio between the major axis and the

radius, respectively.

5.2.2 Recognition: Selecting Working Views

The early processing stages for detecting an instance of

the object class in a novel image are similar to those of

the original ISM framework (Section 3). Features are ex-

tracted from the image, and matched to all the codebooks

of the different ISMs. Next, votes are cast in the Hough

spaces of each ISM separately, and initial hypotheses are

12



Figure 11: Voting spaces for three neighbouring view-

points at a certain scale. Note how strong hypotheses

appear at similar locations.

detected as local density maxima in these spaces. Up to

this point, our system works in a similar fashion as a bank

of independent single-view detectors.

Figure 10 illustrates the different steps in the multi-

view recognition procedure, which will be explained in

detail next. After initial hypotheses are found in each

view separately, our system estimates which views are

likely to match the actual pose(s) of the object(s) in the

test image. We will refer to these views as working views.

We observed that a correct strong hypothesis is often

corroborated by other strong hypotheses at similar loca-

tions in the voting spaces of neighbouring views (fig-

ure 11). This can be explained by the fact that there is

some continuity in the voting spaces from one viewpoint

to the next. Moreover, the pose of an object in a test image

may fall in between the canonical poses of two training

views. We tested a few different criteria to select working

views. We assumed that by detecting clusters of nearby

hypotheses across views, a more stable estimation of the

correct pose may be possible. Surprisingly however, this

is not the case: the most straightforward criterion proves

to be the best performing. Instead of clustering nearby

hypotheses across views like in Thomas et al. (2006), we

pick the strongest hypothesis across all views, and define

a threshold τ = T · smax, with smax the score of the

strongest hypothesis and T = 0.7 in our experiments. The

set of working views is defined as all views that contain at

least one hypothesis whose score is above τ .

5.2.3 Recognition: Transferring Votes Across Views

The next stage is to augment the Hough spaces of each

working view, by inserting additional votes that stem from

codebook matches in other views. This is where the acti-

vation links come into play. Since working views are can-

didates for the actual pose of the object to be detected, the

following process is repeated for each working view. Af-

ter augmenting the Hough space of a working view, local

peaks are detected again, and the MDL stage of Section 3

is performed on the resulting hypotheses. Detections after

the MDL stage are the output of our system.

The key idea for augmenting the Hough spaces is the

following. If a feature matches to a codebook entry in

view vi, we look if that entry has occurrences linking to

our working view vj . If we find such activation links,

we cast additional votes in view vj . We call this process

transferring votes (see Figure 12). In other words, if we

detect an object part in the codebook of view vi, but we

have found view vj to be a more likely pose for the object,

we transfer the evidence of the part to view vj . Therefore,

to cast the transferred vote we use information from both

vi’s and vj’s ISMs. Remember that during the original

voting stage, votes are cast for possible object positions.

These are computed as the sum of the position where a

codebook entry matches in the test image, and the rela-

tive positions of the occurrences to the center of the ob-

ject in the training images. To determine the position of

a transferred vote, we assume that when detecting a part

in view vi, the same part may be present in view vj at

approximately the same position. Therefore, the position

of the transferred vote is calculated as the sum of the co-

ordinates where the codebook entry matched in view vi,

and the relative coordinates of the occurrence in view vj .

Since the estimate for the object center is inevitably less

accurate than in the single-view case, we use a larger ker-

nel size when detecting peaks in the augmented Hough

spaces. This compensates for the larger variance in the

votes’ positions.

The weight of the transferred votes is determined by

extending eq. (1) to the multi-view system. This formula

expresses the contribution of a patch e to an object hy-

pothesis (on, λ):

p(on,λ|e, ℓ) =
∑

k

p(on,λ|cj
k, ℓ)p(cj

k|e) +

∑

k

∑

l

P (on,λ|cj
k, ci

l, ℓ)p(ci
l|e) (12)

with vj the current working view. The first term is as in

eq. (1). The summation over k runs over all codebook

entries for view vj . The summation over l runs over all
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Figure 12: Vote tranfer. The codebook entry containing

occurrence Oi matches to the test image, but another view

is selected as working view. Therefore, a vote for Oj is

cast.

other codebooks’ entries, i.e. for views vi 6= vj . In this

summation, the factor p(ci
l|e) is the probability that en-

try ci
l is a correct interpretation for patch e. Just like in

the original ISM system, we assume a uniform distribu-

tion here. P (on,λ|cj
k, ci

l, ℓ) is non-zero only if there ex-

ists an activation link between ci
l and cj

k. It expresses the

spatial distribution of transferred votes from occurrences

in codebook entry ci
l to occurrences in codebook entry

cj
k. This distribution consists of a set of weighted Dirac-

impulses in the 3D Hough space at locations as described

above. The weights of these impulses are derived as fol-

lows. Each of the K occurrences in codebook entry ci
l

has probability 1/K to yield the correct vote for the object

center (under the uniform distribution assumption). If this

occurrence has L links towards view vj , the probability

for each link to be valid is 1/L. Therefore, each impulse

in the transferred vote distribution should be weighted by

1/(KL). Note that, compared to the weights of the direct

votes, which originate from view vj itself, there is an ad-

ditional factor of 1/L. The weights of transferred votes

are lower than direct ones, which adequately mirrors the

fact that they are more numerous and less reliable individ-

ually.

5.2.4 Multi-view Meta-data Transfer

Transferring meta-data in the multi-view case is analo-

gous to the single-view case from Section 4. Naturally,

votes originating from within each working view are used

to construct the output annotation. Moreover, transferred

votes contribute as well, as if they were regular votes in-

side a working view. Transferred votes are treated as if

they would originate directly from the interest point that

triggered the vote transfer (see Figure 12). Thanks to this

mechanism, even if there was no direct match from the

working view for that point, the patch can still be anno-

tated, leading to a more complete meta-data annotation.

6 Experimental evaluation

We evaluate our approach with several experiments on

three different object classes: wheelchairs, cars, and mo-

torbikes. Each experiment is designed to test a specific

aspect of the system. We start with two experiments in

a controlled scenario to assess the annotation ability of

the system. In the first experiment we perform part de-

composition for wheelchairs, which is a discrete label-

ing problem (6.1). The second experiment shows dis-

crete, continuous, and vector-valued meta-data transfer on

cars, where in addition to part decomposition (6.2.1) we

also recover depth and 3D orientation information (6.2.2).

Next, we demonstrate simultaneous recognition and anno-

tation on challenging real-world images (6.3). Finally, in

Section 6.4 we use the class of motorbikes to demonstrate

the multi-view extension from Section 5.2.

These experiments demonstrate how the recognition of

previously unseen object class instances can be coupled

with the inference of additional information about the rec-

ognized object. The possibilities are not limited to the

examples shown. Any type of information that can be at-

tached to images in a pixel-wise fashion can be used as

meta-data. Other possible examples include the expected

motion vector field or a temperature map for a recognized

object. The inferred data can be used for action planning

or can be compared with actual measurements to detect

unusual events, e.g. in a surveillance application.

6.1 Wheelchairs: Indicating Areas of Inter-

est for a Service Robot

In the first experiment, the goal is to delineate certain ar-

eas of interest on the objects, which is a discrete anno-

tation task. For the class of wheelchairs, a possible ap-

plication is a service robot. This robot’s task could be

to retrieve a wheelchair, for instance in a hospital or to

help a disabled person at home. In order to retrieve the
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Test image Ground truth Result

Figure 13: Results for the annotation experiment on

wheelchair images. From left to right: test image, ground-

truth, and output of our system. White areas are unlabeled

and can be considered background.

wheelchair, the robot must be able to both detect it and de-

termine where to grab it. Our method will help the robot

to approach the grabbing position, after which a detailed

analysis of the scene geometry in a small region can be

used to finetune the grasp (e.g. Saxena et al., 2006).

We collected 141 images of wheelchairs from Google

Image Search. We chose semi-profile views because they

were the most widely available. All images were anno-

tated with ground-truth part segmentations of the grab

area, wheels, armrests, seat, and frame. In our assistive

robot scenario, the grab area is the most important one.

A few representative images and their ground-truth an-

notations can be seen in the left and middle columns of

Figure 13.

The images are randomly split into training and test set.

We train an ISM on 80 images using the Hessian-Laplace

interest point detector (Mikolajczyk and Schmid, 2004)

and local Shape Context descriptors (Belongie et al.,

2000), because this combination has been shown to per-

form best in Seemann et al. (2005). Next, we test the

system on the remaining 61 images, using the method

from Section 4.1. In this experiment and all the follow-

ing, sN = 3 and sG = 1.4. The goal of this first exper-

iment is to assess the quality of the annotations only, not

the recognition performance, which will be demonstrated

in Section 6.3. Because each image only contains one

object, we select the detection with the highest score for

meta-data transfer. Some of the annotations produced by

our system can be seen in the third column of Figure 13.

The grab area is accurately localized.

To evaluate this experiment quantitatively, we use the

ground-truth annotations to calculate the following error

measures. We define leakage as the percentage of back-

ground pixels in the ground-truth annotation that were la-

beled as non-background by the system. The leakage for

this experiment, averaged over all test images, is 3.75%.

We also define a coverage measure, as the percentage of

non-background pixels in the ground-truth images labeled

non-background by the system. The coverage obtained by

our algorithm is 95.1%. This means our method is able to

accurately segment the wheelchair from the background.

We evaluate the annotation quality of the individual

parts with a confusion matrix. For each test image, we

count how many pixels of each part aj in the ground-

truth are labeled by our system as each of the possible

parts (grasp, wheels, etc.), or remain unlabeled. Unla-
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backgrnd frame seat armrest wheels grab-area unlabeled

backgrnd 32.58 1.90 0.24 0.14 1.10 0.37 63.67

frame 15.29 66.68 6.47 0.46 6.90 0.10 4.10

seat 2.17 15.95 74.28 0.97 0.33 1.55 4.75

armrest 11.22 5.62 29.64 49.32 1.25 0.63 2.32

wheels 13.06 9.45 0.36 0.07 71.39 0.00 5.67

grab-area 6.48 1.28 9.77 0.11 0.00 76.75 5.62

Table 1: Confusion matrix for the wheelchair part annotation experiment. The rows represent the annotation parts in

the ground-truth maps, the columns the output of our system. The last column shows how much of each class was left

unlabeled. For most evaluations, those areas can be considered as “background”.

beled areas can be due to lack of codebook matches at

that location, or because they are too far away from any

detected object. This pixel count is normalized by the to-

tal number of pixels of that label in the ground-truth âj .

We average the confusion table entries over all images, re-

sulting in Table 1. The diagonal elements show how well

each part was recovered in the test images. Not consid-

ering the armrests, the system performs well as it labels

correctly between 67% and 77% of the pixels, with the

highest score being for the part we are the most interested

in, i.e. the grab area. Performance is lower for the arm-

rests because they are the smallest parts in most images.

Small parts have a higher risk of being confused with the

larger parts in their neighborhood.

6.2 Cars: Indicating Areas of Interest for

an Automated Car Wash

To show the versatility of our system, we present results

on the object class ‘car’ for three different types of meta-

data. The first is a part decomposition as before. Next, we

infer 3D properties, consisting of a depth map and surface

orientations, from a single image of a previously unseen

car. A possible application is the automated car wash from

Figure 1. A decomposition into parts can be used to apply

optimized washing methods to the different car parts. The

3D information would allow to optimize the washing pro-

cess beforehand, based on the car’s shape inferred by our

system (both depth and orientations). This is an improve-

ment over existing systems which are in most cases based

on sensors to measure distances to the car, and they are

only used locally while the machine is already running.

As a dataset we adopt a subset of the one used in Leibe

et al. (2007). It was obtained from the LabelMe website

(Russell et al., 2005) by extracting images labeled as ‘car’

and sorting them according to their pose. There are gener-

ally no images of the same car from different viewpoints.

Therefore, we only use the ‘az300deg’ pose, which is

a semi-profile view. In this pose both the car’s front

(windscreen, headlights, license plate) and side (wheels,

windows) are visible. This allows for more interesting

depth/orientation maps and part annotations compared to

pure frontal or side views. The dataset contains a total of

139 images. We randomly picked 79 for training and 60

for testing.

6.2.1 Parts Decomposition

In a similar fashion as in Section 6.1, we annotated our

car dataset with ground-truth part segmentations for body,

windshield/windows, wheels, bumper, lights and license

plate. The ISM is trained using the same interest point

detector and descriptor as in Section 6.1. The testing

phase is again performed with the method presented in

Section 4.1. Results are shown in Figure 14. The leakage

for this experiment is 6.83% and coverage is 95.2%.

Table 2 shows the confusion matrix for this experiment.

Labeling performance is good, except for the headlights.

Similarly to the armrests in the wheelchair experiment,

this is as expected because the headlights are very small.

They are therefore easily confused with the larger parts

(body, bumper) surrounding them.

6.2.2 Inferring 3D Shape

To obtain ground-truth data for training and testing, for

both depth and orientation, we manually align a 3D model

16



bkgnd body bumper headlt window wheels license unlabeled

bkgnd 23.56 2.49 1.03 0.14 1.25 1.88 0.04 69.61

body 4.47 72.15 4.64 1.81 8.78 1.86 0.24 6.05

bumper 7.20 4.54 73.76 1.57 0.00 7.85 2.43 2.64

headlt 1.51 36.90 23.54 34.75 0.01 0.65 0.23 2.41

window 3.15 13.55 0.00 0.00 80.47 0.00 0.00 2.82

wheels 11.38 6.85 8.51 0.00 0.00 63.59 0.01 9.65

license 2.57 1.07 39.07 0.00 0.00 1.04 56.25 0.00

Table 2: Confusion matrix for the car parts annotation experiment. (cfr. Table 1)

on top of each training image. The most suitable 3D

model for each image is selected from a freely avail-

able collection1. Depth is extracted from the OpenGL

Z-buffer. In general, any 3D scanner or active lighting

setup could be used to automatically obtain 3D shape an-

notations during training. We normalize the depths based

on the dimensions of the 3D models by assuming that

the width of a car is approximately constant. Orienta-

tions are encoded by mapping each surface normal vector

n = (x, y, z) to a 24 bit color c = (r, g, b) (e.g. with a

fragment shader):

c = 255 ·
(

n/2 + (0.5, 0.5, 0.5)
)

(13)

We train an ISM in a similar fashion as for the discrete

annotation experiments, but with the real-valued (depth)

and vector-valued (orientation) meta-data above. The sys-

tem is tested on the 60 test images, using the method from

Section 4.2.2. For the Mean Shift mode estimation, we

use a window radius θ of 24% of the total depth range,

and 60 degrees for the orientations. Some of the resulting

annotations can be seen in the third and fifth columns of

figure 15. For both the depthmap and orientation experi-

ment, leakage is 5.7% and coverage is 94.6%, hence the

segmentation performance is again very good.

It is possible to estimate the depth error in real-world

units by scaling the normalized depth maps by a factor

based on the average width of a real car, which we found

to be approximately 1.80m. All depth maps are scaled to

the interval [0, 1] such that their depth range is 3.5 times

the width of the car. In this scale, the average depth er-

ror is 3.94%. In order to eliminate bias from the back-

ground, this is only measured inside areas labeled as non-

background both by the ground-truth and by our method.

1http://dmi.chez-alice.fr/models1.html

A plausible real-world depth error can therefore be calcu-

lated by multiplying this measure by 3.5 · 1.80m, which

yields a mean error of 24.8cm. To better visualize how

the output compares to the ground-truth, Figure 16 shows

a few horizontal slices through two depth maps of Fig-

ure 15. Moreover, Figure 17 shows some views of a 3D

model created by mapping the image of the recognized

car onto the depth map produced by our system.

For the surface orientation experiment, we can calcu-

late the average angular error over the area labeled as fore-

ground both by the ground-truth and test image. The av-

erage error over all test images is 21.6 degrees. Part of

this error is inherent to the dataset, because there is quite

a large variability in the rotation of both training and test

instances. Because our system combines the information

from several different training examples, the orientations

derived for a test image will be subject to a certain degree

of averaging.

6.3 Combined recognition and annotation

in cluttered images

To illustrate our system’s ability to simultaneously detect

objects in cluttered scenes and infer meta-data annotation,

we report here another part decomposition experiment for

wheelchairs and cars, this time on challenging, uncon-

trolled real-world images.

For wheelchairs, we collected 34 test images with con-

siderable clutter and/or occlusion. The same ISM trained

in Section 6.1 was used to detect and annotate wheelchairs

in these images. Example results are shown in Figure 18.

We consider a detection as correct when its bounding box

overlaps at least 50% with the ground-truth bounding box.

Out of the 39 wheelchairs present in the images, 30 were
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Body     Windows    Wheels     Bumper      Lights      License    Backgnd

Test image Ground truth Result

Figure 14: Results for the car parts annotation experi-

ment. From left to right: test image, ground-truth, and

output of our system. White areas are unlabeled and can

be considered background.

detected, and there were 7 false positives. This corre-

sponds to a recall of 77% and a precision of 81%. Results

for the cars on real-world images are shown in Figures 1

and 19.

6.4 Multi-View Meta-data Annotation

In the last experiment, we demonstrate the multi-view ex-

tension to the ISM system as described in Section 5.2,

to achieve multi-view annotation of meta-data. As a test

case, we use a part decomposition experiment on mo-

torbikes. Possible applications are in the field of traffic

surveillance, or e.g. an automated parking system where

the motorbike could be lifted by a robot and stored in a

warehouse.

As training set we use the one of Thomas et al. (2006),

and add 11 extra motorbikes. This amounts to a total of

41 instances, photographed from 16 positions on a circle

around the object, approximately 22.5 degrees apart. Be-

cause it was impossible to collect all 16 viewpoints for

every motorbike, there are 11 views on average for each

motorbike, and only 4 bikes have all 16 images. As a re-

sult, there are on average 29 object instances available to

train the ISM for a single viewpoint. This is a rather small

number for training ISMs, but the refinement procedure

(Section 4.3) compensates for the reduced number of oc-

currences. Each image was annotated with a part decom-

position as in 6.1, discerning between the front, wheels,

seat, body and background, as shown in Figure 20.

First, we perform recognition and parts annotation on

the same motorbike testset as in Thomas et al. (2006).

This set consists of the ‘motorbikes-test2’ subpart of

the PASCAL Visual Object Classes (VOC) 2005 Chal-

lenge (Everingham et al., 2006), with duplicates removed.

We again use the Hessian-Laplace interest point detector

and Shape Context descriptor to train our multi-view sys-

tem. We use the discrete meta-data transfer method of

Section 4.1 combined with the multi-view method of Sec-

tion 5.2 to achieve multi-view recognition and annotation.

Using the same overlap removal and evaluation method

as in Thomas et al. (2006), we obtain the precision-recall

curve from Figure 21. Although this curve outperforms

all other VOC2005 contestants on the same challenge, it

cannot be immediately compared to those results. The

other systems reported in Everingham et al. (2006) were

trained on different instances, and evaluated on the en-
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Test image Ground truth Result Ground truth Result

Figure 15: Results for the car depth map and surface orientation experiments. From left to right: test image, ground-

truth and output of our system for the depth map experiment, and ground-truth and output for the surface orientation

experiment. The R,G,B colors represent the components of the surface normal according to Eq. 13. White areas are

unlabeled and can be considered background. The lines in the last two rows indicate the slices from Figure 16.
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Figure 16: Horizontal slices through the ground-truth and

output depth maps of the fifth car (top) and sixth car (bot-

tom) in Figure 15.

Figure 17: Some views of a texture mapped 3D model,

generated from the depth map of the recognized car in the

top left corner.

tire VOC2005 set. The equal error rate (EER) is 71.8%
and the average precision (AP) 73.8%. The improvement

over Thomas et al. (2006), where the EER was 55.9% and

the AP 56.0%, is due to the increased number of training

images, the higher performance working view selection

(Section 5.2.2), and the refinement step. Figure 21 also

shows a confusion matrix for the estimated pose of the

detections. Allowing a deviation of 22.5 degrees, our sys-

tem estimated the correct pose for 86.9% of the correctly

detected motorbikes. Figure 22 shows some detections to-

gether with their annotations. Despite the relatively small

number of training instances, the quality of the annota-

tions is good, and occlusions are handled correctly.

We report some additional qualitative results on the

more recent VOC2007 Challenge (Everingham et al.,

2007), using the same set-up as in the previous experi-

ment. We test on the images marked as containing one

or more motorbikes that can be recognized without the

need of using context information. This amounts to a to-

tal of 222 images. The images contain various motorbikes

in very diverse environments and poses, making this a

very difficult test set. Figure 23 shows some detections

with corresponding annotations. Again, our technique

successfully localizes the motorbikes and delivers rather

complete part decompositions over a wide range of view-

points. Figure 24 shows a few images for which either

detection, annotation or both failed. Many of the failures

are due to objects that are in a pose that deviates too much

from the set of training poses.

6.5 Processing Speed

Because our main focus is on proving the good detec-

tion and annotation ability of our system, our current im-

plementation does not yet include any optimizations for

speed nor memory usage. Although some parts of the al-

gorithm have been multi-threaded, there is a lot of un-

exploited potential for parallel processing. Given the in-

creasing trend towards multi-core computing, this means

a substantial speed-up is certainly achievable. The refine-

ment step (section 4.3) is the most computationally ex-

pensive. With refinement disabled, the average processing

time per image for the multi-view algorithm (16 views) is

about 2 minutes on an Intel Core 2 Quad Q6600 CPU.

When refinement is enabled, the average time is about 8

minutes. Within the refinement step, calculating the de-
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Figure 18: Wheelchair detection and annotation results on challenging real-world test images. All detections are

correct except for the two topmost ones in the center left image. Note how one wheelchair in the middle right image

was missed because it is not in the pose used for training.
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Figure 19: Car detection and annotation results on real-

world test images. See also Figure 1.

Front Wheels Seat Body Backgnd

Figure 20: Some of the multi-view motorbike images used

for training, and their ground-truth part annotations.
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Figure 21: Left: precision-recall curve for detection per-

formance on the VOC2005 motorbikes test set. Right:

confusion matrix for pose estimation within correct detec-

tions. The poses go counter-clockwise around the object

starting at the frontal view. The best possible result would

be a black main diagonal, and white everywhere else.

scriptors for all points is the largest bottleneck, followed

by the generating of the candidate points. For calculating

the descriptors, we use a general purpose binary2 which

was not constructed with efficiency in mind. An opti-

mized implementation (e.g. on a graphics card) could be

an order of magnitude faster. In general, cluttered im-

ages require more processing time because they generate

more hypotheses, and processing time is approximately

linear in the number of hypotheses. By placing bounds on

the number of working views and hypotheses per working

view, the processing time and memory requirements per

image can be bounded.

7 Conclusions

We have developed a method to transfer meta-data an-

notations from training images to test images containing

previously unseen objects in arbitrary poses, based on ob-

ject class recognition. Multi-view recognition is achieved

by embedding relations between different views in our

model. We have proposed a natural extension of the ISM

method for the inference of meta-data directly as a re-

sult of the recognition process. The low-level cues that

can lead to the detection of an object class instance in an

image, are enriched with part labels, depths, orientations

or any other type of meta-data. During recognition, our

2Available at http://www.robots.ox.ac.uk/˜vgg/research/affine/
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Figure 22: Multi-view motorbike detection and annota-

tion results on the VOC2005 dataset.
Figure 23: Multi-view motorbike detection and annota-

tion results on the VOC2007 dataset.
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a
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c

Figure 24: Some failed detections and/or annotations on

the VOC2007 dataset. Detections with a correct position

are marked with a yellow (light) box, false positives with

a red (dark) box. In (a) and (b) the motorbike is correctly

detected, but the estimated pose is the reverse of the true

pose. In (c) the scale is too small. The pose of (d) was not

in the training set.

system employs these cues to infer a similar meta-data

annotation for previously unseen instances. Most other

systems that allow automatic annotation of images, rely

on local image statistics relative to an entire scene. The

scene geometry needs to be consistent between the test

and training images. This often prohibits reliable detec-

tion and/or accurate annotation of separate objects within

the scene. Our system on the other hand cannot label an

entire scene, but allows to focus on specific object classes

without posing constraints on the scene. By coupling the

detection and annotation processes, a reasonably accurate

annotation can be inferred for detected objects. The al-

lowed types of meta-data offer a wide range of possible

applications. For instance, part, depth or surface normal

annotations can be used to help a robot manipulate ob-

jects, or as input for other systems, forming a cognitive

loop (e.g. priors for a 3D reconstruction algorithm).

Future work includes integration of these results in a

real robotics application scenario, which will require op-

timizing the implementation and investigating ways to

place bounds on the number of views and hypotheses

without sacrificing performance. Also worth investigating

is whether adding relaxation or Markov Random Fields

can further improve the quality of the results.
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