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Using Mutual Information for Selecting 

Features in Supervised Neural Net Learning 
Roberto Battiti 

Abstract-This paper investigates the application of the mutual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
infor“ criterion to evaluate a set of candidate features 
and to select an informative subset to be used as input data 
for a neural network classifier. Because the mutual information 
measures arbitrary dependencies between random variables, it 
is suitable for assessing the “information content” of features 
in complex classification tasks, where methods bases on linear 
relations (like the correlation) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare prone to mistakes. The fact 
that the mutual information is independent of the coordinates 
chosen permits a robust estimation. Nonetheless, the use of 
the mutual information for tasks characterized by high input 
dimensionality requires suitable approximations because of the 
prohibitive demands on computation and samples. An algorithm 
is proposed that is based on a “greedy” selection of the features 
and that takes both the mutual information with respect to the 
output class and with respect to the already-selected features 
into account. Finally the results of a series of experiments are 
discussed. 

Index Terms-Feature extraction, neural network pruning, di- 
mensionality reduction, mutual information, supervised learning, 
adaptive classifiers. 

I. INTRODUCTION 

URING the development of neural net classifiers the D “preprocessing” stage, where an appropriate number of 
relevant features is extracted from the raw data, has a crucial 
impact both on the complexity of the learning phase and on 
the achievable generalization performance. While it is essential 
that the information contained in the input vector is sufficient 
to determine the output class, the presence of too many input 
features can burden the training process and can produce 
a neural network with more connection weights that those 
required by the problem. 

From an application-oriented point of view, an excessive 
input dimensionality implies lengthened preprocessing and 
recognition times, even if the learning and recognition per- 
formance is satisfactory. 

In this paper we consider the use of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmutual informa- 
tion (MI for short) to evaluate the “information content” of 
each individual feature with regard to the output class. The 
approximated evaluation of the mutual information of each 
candidate feature is the starting component of a “pruning” 
algorithm that selects a subset of relevant features from an 
initial set of available features. In addition to their practical 

use for limiting the input dimensionality, the analysis based on 
the mutual information provides the developer with a useful 
diagnosis of the relevance of different features and of the 
mutual dependencies. 

Different feature selection methods have been analyzed in 
the past. For example, in [lo] the irrelevant features are 
eliminated as a consequence of a pruning of the weights, 
that considers the sensitivity of the global error function E 
to the presence or absence of the different synapses. The 
sensitivity is estimated by integrating the partial derivatives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dE/dw on the path in weight space traced during the learning 
process. Our method, while producing similar results in test 
cases, is applied before learning starts and therefore does 
not depend on the learning process. Other techniques are 
based on linear transformations of the input vector. In [14] 

the Karhunen-Loe’ve transformation is applied so that the 
transformed coordinates can be arranged in order of their 
“significance,” considering first the components correspond- 
ing to the major eigenvectors of the correlation matrix. In 
[18] different feature evaluation methods are compared. In 
particular the method based on principal component analysis 
(PCA) evaluates the features according to the projection of 
the largest eigenvector of the correlation matrix on the initial 
dimensions, the method based on Fisher’s linear discriminant 
analysis evaluates.them according to the magnitude of the 
components of the discriminant vector. 

A major weakness of these methods is that they are not 
invariant under a transformation of the variables. For example 
a linear scaling of the input variables (that may be caused 
by a change of units for the measurements) is sufficient to 
modify the PCA results. Feature selection methods that are 
sufficient for simple distributions of the patterns belonging 
to different classes can fail in classification tasks with com- 
plex decision boundaries. In addition, methods based on a 
linear dependence (like the correlation) cannot take care of 
arbitrary relations between the pattem coordinates and the 
different classes. On the contrary, the mutual information 
can measure arbitrary relations between variables and it does 
not depend on transformations acting on the different vari- 
ables. 

In the following sections, first we summarize the relevant 
concepts (Section 11), then we analyze the practical applicabil- 
itv of the mutual information and propose an approximated - -  
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algorithm with a low computational complexity and with 
limited requirements on time and on the number of training 
examples (Section 111). Finally we present some experimental 
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results of our algorithm for a series of classification problems 
(Section IV). 

11. BACKGROUND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  De$nition of the Mutual Information 

An operating classifier (consider for example a multilayer 
perceptron trained to classify pattems from a set of differ- 
ent classes with the backpropagation algorithm described in 
[19]) can be considered as a system that reduces the initial 
uncertainty, to be defined precisely later, by “consuming” the 
information contained in the input vector. In the ideal case the 
final uncertainty will be zero (i.e., the class will be certain), 
in actual “real world” applications the final uncertainty can 
be higher for at least two different reasons, insufficient input 
information or suboptimal operation. In the second case the 
available information can be sufficient to resolve all ambigui- 
ties but the network “wastes” some of it because of insufficient 
training, approximations or failures. While this case can be 
remedied by considering additional training examples, a longer 
training period or different algorithms, the lack of sufficient 
information should be detected as soon as possible in the 
development process because in this case the only remedy is 
that of adding more features or considering more informative 
ones. 

Shannon’s information theory (see [20]) provides a suitable 
formalism for quantifying the above concepts. If the probabili- 
ties’ for the different classes are P(c); c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,. . . Nc, the initial 
uncertainty in the output class is measured by the entropy: 

Nc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H ( C )  = - P(c) logP(c) (1) 

c=l 

while the average uncertainty after knowing the feature vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f (with N f  components) is the conditional entropy: 

where P(clf) is the conditional probability for class c given 
the input vector f. If the feature vector is composed of con- 
tinuous variables, the sum will be replaced by an integral and 
the probabilities by the corresponding probability densities. 
For example, in one dimension, one has: 

H ( F )  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ P(f) logP( f )  df (3) 

Note that the entropies of continuous systems depend on 
coordinates. For a linear transformation with f -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf’ = af, 
the above integral becomes 

H’(F) = - P’(f’)logP’(f’)df’ 1 
= - J P ( f ) l o g ( y ) d f = H ( F ) + l o g a ( 4 )  

‘About the notation: for simplicity we indicate the different probability 
densities with the same P() function. Its meaning is easily derived from the 
variable contained. For example P( c) is the value of the density function for 
the “class” variable (i.e., Pc(c)) ,  P(f) for the “feature” variable (i.e., Pf(f)). 

In general, the conditional entropy will be less than or 
equal to the initial entropy. It is equal if and only if one 
has independence between features and output class (i.e., if 
the joint probability density is the product of the individual 
densities: P (c , f )  = P(c)P(f) ). The amount by which 
the uncertainty is decreased is, by definition, the mutual 
information I (C; F) between variables c and f: 

I ( C ; F )  = H ( C )  - H(CIF)  ( 5 )  

This function is symmetric with respect to C and F and, 
with simple algebraic manipulations, can be reduced to the 
following expression: 

The mutual information is therefore the amount by which 
the knowledge provided by the feature vector decreases the 
uncertainty about the class. If one considers the uncertainty 
in the combined events (c, f), i.e., H(C; F), in general this 
is less than the sum of the individual uncertainties H(C)  and 
H ( F )  and it is possible to demonstrate the following relation: 

(7) 

The combined uncertainty is reduced because of the infor- 
mation that one variable provides about the other one. If the 
feature vector has continuous components, one obtains: 

H ( C ; F )  = H ( C )  + H ( F )  - I ( C ; F )  

(8) 
The argument of the logarithm in (8) is now dimensionless, so 
that the MI does not depend on a transformation of variables2. 
The MI is a function of the joint probability distribution 
of the two variables c and f. For a qualitative explanation, 
let’s consider a particular value of f. The contribution to 
the integral is large and positive if the distribution P (c , f )  
is “uneven” (at the limit peaked for a single c, the “correct” 
class), and tends to zero for the limit of a flat distribution for 
c, given by P(c)P(f). The MI measures the “lumpiness” of 
the joint distribution. 

Although the main motivation of Information Theory was 
the engeneering of “noisy” communication channels, its con- 
cepts have been applied to different fields, in particular [9] 
considers the implications for statistical decisionmaking, a 
field closely related to pattem recognition and classification, 
[6] uses the mutual information to find the optimal time delay 
to construct a multidimensional phase portrait of a dynamical 
system, with implications for the prediction of temporal series. 
In the field of neural networks, methods and concepts from 
Information Theory have been used, for example, in [ 131 for 
the generation of ordered maps. Training algorithms based on 
the MI are considered in [2], where the training criterion is 
based on the relative entropy (i.e., the likelihood of the targets 
given the networks outputs), in [ l ]  where the minimization 
of the conditional class entropy is the basis of a learning 
algorithm that builds a multilayer network, and in [23] for 
one case of unsupervised learning. 

The transformations considered are invertible and differentiable. 
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B. Advantages over Correlation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It is well known that the main advantage of the multilayer 
perceptron over the simple perceptron model is given by its 
capability of realizing arbitrary continuous mappings between 
inputs and outputs [7]. For classification, this result implies 
that a multilayer perceptron with at least one hidden layer 
can realize arbitrary nonlinear separations between different 
classes3. 

While linear methods of analysis (like the correlation) can 
be useful in particular cases, in general it is essential to 
consider also nonlinear relations between different variables. 
The motivation for considering the MI is its capability to 
measure a general dependence between two variables. 

For example, to realize the classification given by the 
exclusive OR function of two input variables (with equal 
probabilities for the possible inputs), the correlation I? be- 
tween any input variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and the output variable y is zero 
(r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ci CjPijxiyj - ( x i P i x i ) ( & P j y j )  = 0), while 
the MI between the input vector and the output is log,2 
bits, equal to the initial uncertainty of one bit? the input 
vector determines the output class with no ambiguity. In other 
words, two variables x and y are linearly independent if 
E(xy) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(x)E(y) (E being the expectation) and generally 
independent if P(x ,  y) = P(x)P(y). General independence 
implies linear independence, but not vice versa. While the 
difference between MI and correlation for Gaussian random 
variables is trivial (in this case from the correlation C,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U,,/-, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai is the standard deviation and aij the 
covariance matrix, one can derive the MI as I ( X , Y )  = 
-(1/2)log[l - C&], see [5])  and two variables are linearly 
independent if and only if they are generally independent, for 
complex probability densities the concept of linear dependence 
is not a very useful one. A detailed investigation of the 
advantages of the MI versus the correlation is contained in 
[5] and [12]. 

111. SELECTING FEATURES WITH THE MUTUAL INFORMATION 

In the development of a classifier one often is confronted 
with practical constraints on the hardware and on the time that 
is allotted to the task. While many kinds of features can be 
extracted from the raw data (consider for example an Optical 
Character Recognition task) and the information contained in 
them is sufficient to determine the class with low ambiguity, 
one may be forced to reduce an initial set of n features to 
a smaller set of k features, where the number k is related 
to the practical constraints. Let’s abstract from the above 
considerations the following “feature reduction” problem: 

[FRn-k:] Given an initial set of n features, find the subset 
with k < n features that is “maximally informa- 
tive” about the class. 

3 ~ n e  can map pattems of the ith class to an output activation vector with 
value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 in the ith place, and 0 otherwise. Continuity of the mapping can 
be obtained by a thin transition region on the boundaries between different 
classes. 

41n fact, the probability P(f = (f1, f2). y) is different from zero only 
when Y = XOR( f1 , f z ) .  In this cases P((fl,f~),XOR(fi,fz)) = 1/4 
and the argument of the logarithm is 2 = (1/4)/(1/4 1/2).  

- 
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In the framework of Information Theory, remembering ( 5 )  
and the fact that the class uncertainty is fixed, the problem 
can be reformulated as follows: 

[FRn-k] Given an initial set F with n features, find the 
subset S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC F with k features that minimizes 
H(CIS), i.e., that maximizes the mutual informa- 
tion I (C; 5’). 

Unfortunately, the practical applicability of the above so- 
lution to complex classification problems requiring a large 
number of features is limited because of two computational 
problems. First the number of samples and the amount of CPU 
time required for computing the MI become prohibitive when 
the dimensionality of the feature vector f is large. For example 
Fraser’s method (see [6]) ,  that is a computationally efficient 
algorithm for calculating the MI, requires for its convergence 
a number of samples “in the millions” when the number of 
features in the input vector is larger than 3 or 4, clearly an 
exorbitant number for “real world” classifier development. 
Even assuming that a suitable example set can be constructed, 
the consideration of all possible subsets requires a number of 
runs equal to (;) . 

One is therefore forced to consider approximated solutions 
of the FRn-k problem. An approximated solution is acceptable 
also because there is no guarantee that the optimal subset 
of features will be processed in the optimal way by the 
learning algorithm and by the operating classifier. Although it 
is necessary, the availability of an “informative” input vector 
is not sufficient for the development of a correct classifier. 

A. Our Algorithm (MIFS) 

Motivated by the above reasons, we considered two approx- 
imations for the FRn-k problem. First the MI between vector 
variables is approximated using the MI between the individual 
components of the vectors. Instead of calculating the mutual 
information I ( F ;  C) between a feature vector f and the class 
variable c we compute only I(f, C) and I(f, f’) where f and 
f’ are individual features. In this case the “computationally 
impossible” calculation of the exact MI is substituted with a 
series of feasible calculations. Then the analysis of all possible 
subsets is substituted by a “greedy” algorithm. Given a set 
of already selected features, the algorithm chooses the next 
feature as the one that maximizes the information about the 
class corrected by subtracting a quantity proportional to the 
average MI with the selected features. In order to be selected, 
a feature must be informative about the class without being 
predictable from the current set of features. For example, if 
two features f and f’ are highly dependent, I ( f , f ’ )  will be 
large and, after the better one is picked, the selection of the 
second one is penalized. 

The MIFS algorithm (“mutual information based feature 
selection”) can be described by the following procedure: 

(Initialization) Set F c “initial set of n features;” S t 
“empty set.” 
(Computation of the MI with the output class) for each 
feature f E F compute I (C; f ) .  
(Choice of the first feature) find the feature f that 
maximizes I ( C ; f ) ;  set F c F\{f};  set S +- {f} 
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4) (Greedy selection) repeat until zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C :  
a) (Computation of the MI between variables) for all 

couples of variables (f,s) with f E F, s E S 
compute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ( f ;  s), if it is not already available. 

b) (Selection of the next feature) choose feature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf as 
the one that maximizes I (C;  f )  - PEsEs I(f; s); 
set F + F \ {f}; set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS c Su{f}  

5) Output the set S containing the selected features. 

The parameter /3 regulates the relative importance of the 
MI between the candidate feature and the already-selected 
features with respect to the MI with the output class. If ,8 is 
zero, only the MI with the output class is considered for each 
feature selection. If P increases, this measure is discounted 
by a quantity proportional to the total MI with respect to the 
already-selected features. In practice, we find that a value for 
,f3 between 0.5 and 1 is appropriate for many classification 
tasks (these are the values used for the tests in Section IV). 

At this point it is important to remark that, while the use of 
the MI between features and output class to rank the relevance 
of each isolated component is theoretically justified, the sum- 
mation of the “two-point” MI’S to consider the dependencies 
between different features during the selection process is an 
heuristic approximation whose effectiveness must be tested in 
the field for the different classification problems. 

B. Estimation of the MI from Samples 

Because the MI is calculated by estimating the probability 
density from a finite number of samples, we must check that 
the errors caused by the estimation do not impair the above 
selection process. 

Let’s assume that we have a number N of examples in the 
training set and that the probability densities P(c). P ( f )  and 
P(c, f )  are approximated by histograms, i.e., by counting the 
number of cases with values of the variables belonging to a 
set of intervals (Pc = n c / N ,  Pf = n f / N ,  Pcf = n c f / N ,  
where n is the number of occurrences for the given interval). 
Finally, let K f  be the number of intervals for the f variable 
and K ,  the number of intervals for the class variable, i.e., the 
number of classes. 

By adapting to our case the analysis of [12], the difference 
between the true value f and the estimation I of the mutual 
information can be approximated as follows: 

TABLE I 
OVERESTIMATION OF THE MI AND COMPARISON 

WITH THE ESTIMATED ERROR AZ = 4/N 

z(x;ciass) AI z(y;class) AI AI = 4 / ~  

10 0.800 0.468 0.315 0.182 0.4 
100 0.513 0.045 0.183 0.050 0.04 
lo00 0.491 0.023 0.147 0.014 0.004 
loo00 0.468 * 0.133 * * 

where the sums are over the discretization intervals and Sn 
are the fluctuations of the countings with respect to the mean 
values (Sn = n - E). The approximation is valid up to the 
second order of the relative fluctuations and if the ratios 
E,../ZcZf do not change very much with c and f (see [12] 
for the details). Now, because the typical fluctuation of the 
countings is of the order of the square root of the mean values, 
we can arrive at the following approximation: 

1 
(10) AI x 3 ( K c K f  - K c  - K f )  

Note that, in this approximation, the MI is overestimated (in 
practical cases K,Kf - K c  - K f  > 0) and this overestimation 
depends only on the number of quantization levels. The fact 
that the MI is overestimated in the same way for the different 
variables limits the estimation effects on the relative ranking of 
the different features5, and therefore the effects on the MIFS 

algorithm. The number of quantization levels K f  has to be 
appropriately chosen. If the statistical distributions have a lot 
of structure, using a small number of levels will cancel these 
details and reduce the estimated MI. But using too many levels 
K j  will produce the estimation problems previously described. 
In practice, we obtained good results by using K f  = 10 levels 
and cutting the range of values into equal-sized intervals6. 

In Table I we present the results of an experiment for a two- 
class discrimination problem. Patterns in two dimensions are 
generated with equal probability for the two classes, where 
one is described by a central Gaussian distribution and the 
other by two lateral Gaussians. With the notation that will be 
introduced in Section IV (see (18)), the two densities are 

In this case N, = 2, N f  = 10, K f  = 10, and the 
approximation in (10) is acceptable (the differences A I  are 
calculated with respect to the “true” value calculated for 

An algorithm for calculating the MI from samples that is 
based on an adaptive discretization (i.e., a variable size of the 
intervals so that a sufficient number of samples is contained in 
each of them) is presented in [6]. Fraser’s algorithm is based on 
the invariance of the MI with respect to transformations acting 
on the individual coordinates and on a recursive sequence of 
partitions of the space of the variables. Each recursive call goes 
deeper in areas where the joint distribution has finer structure 
and is terminated when the number of samples in an element 
of the partition becomes insufficient for an accurate evaluation. 
The computational complexity of the algorithm is N log N for 
a number of samples equal to N ,  and therefore it permits a 
fast evaluation also for large numbers of examples. Fraser’s 
algorithm has been used in the Optical Character Recognition 
tests described in Section IV-E. For the reader’s convenience, a 
short description of the algorithm is provided in the Appendix. 

n = 10000). 

5Let us suppose that features a and b have “true” mutual informations with 
respect to the output I ,  > I b ,  in the approximation of equation 10 we will 
still have (I, + AZ) > (Zb + AI) for the estimated quantities. 

61f the distribution for the values of one variable is not known a priori, 
we calculate its mean p and standard deviation U ,  and cut the interval 
[p - 20, p + 2u] into Kf equal segments. The rare points falling outside are 
assigned to the extreme left (or right) segment when histograms are calculated. 
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IV. EXPERIMENTAL RESULTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Simple Test Cases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We show here the results for two test cases derived from 
[lo]. 

Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI :  The first classification problem is illustrated in 
Fig. 1. The feature vector ( X , Y )  is uniformly distributed in 
[0,1] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx [0,1], one pattern belongs to class “1” if the two 
inequalities z < a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy < /3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p  = 1/(2a) ), to class “2” 
otherwise. By calculating the MI between each feature and 
the class, one obtains the following result: 

I ( X ;  C )  = 1 + a log - - - log(2a - 1) (1 1) (“2) ; 
I ( Y ;  C )  is obtained from (1 1) by substituting a with p = 
1/(2a). From (11) one derives that feature X is more infor- 
mative than y as long as 1/2 5 Q < 1/& Because the better 
feature is selected before the learning process is started, the 
choice does not depend on the details of the learning algorithm 
(like the initial weight values and a proper convergence). 

In this case the same choice of the most informative feature 
is obtained by using the Fisher linear discriminant vector. The 
Fisher linear discriminant is defined as that linear function 
y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwtz for which the criterion function 

is maximum, where 7ti; is the sample mean for the projected 
points (7ti; = (l/n;) Eyeclass, y) and .F; the scatter for the 
projected samples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5; = EyEclasst(y - ni;)’ ). The task is 
that of maximizing the ratio of between-class to within-class 
scatter. The difference of the projected means has to be large 
relative to a measure of the standard deviation for each class. 
The solution (see [3]) is: 

w = S&Ll - mz) (13) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi is the d-dimansional sample mean for class i and 
SW is the sum of the two scatter matrices S; defined as follows 

si = (E-m; ) (z  -may (14) 
ZEclass, 

For the above classification problem the expected scatter 
matrices Si for N sample points are given by (15) and (16). 

If we rate the “importance” of the ith feature according to 
the ith component of the Fisher vector, the more informative 
feature is z if the value of the parameter Q is between 1/2 
and l / f i  and y for larger values, as it was the case by using 
the MI. In Fig. 1 we compare the graphs of the magnitude of 
the z and y components of the normalized Fisher vector and 
of the value of the MI for the z and y coordinates. 

The ClawifKntion Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 7  

0 X 1 

Fisher Vector 

0 . 5  0.6 0.7 0.8 0.9 1 .o 
alpha 

Mutual Information I(X;class), I(Y;class) 

alpha = sqrt(0.5) 

0.5 0 .6  0.7 0.9 1 .o 
a I phaO.’ 

Fig. 1 .  Comparison of mutual information and Fisher’s linear discriminant 
analysis for feature selection. The two-class discrimination problem is illus- 
trated at the top. The components of the normalized Fisher vector and the 
MI below. Both methods select T as the more informative feature if a is less 
than 1/&, y in the other case. 

Note that the patterns are scattered in the same way along 
the X and Y coordinates, so that the Principal Component 
Analysis (whose result does not depend on a)  does not help 
in choosing the most appropriate feature. 

Example 2: This example (the “rule-plus-exception’’ prob- 
lem) is derived from [16] and used in [lo]. The classification 
problem on an input space with four binary variables is defined 

) (16) 
sz = ( &(2a4 - (3Q - q3 + - 1)(2 - a)3) -$33a - 1 - 2 a 2 )  

&(I - 4 3  - 4 4 3  + (1 - a)(4a - 1)3) 0 
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_ _ _ _  
by the Boolean function AB + A B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. The output class 
is “true” when the “rule” A B  is true or when the “exception” 
A B C D occurs. Clearly the “rule” is more important than 
the “exception” because it accounts for 15 out of 16 correct 
decisions and therefore the relevant variables are A and B. 
This is confirmed by calculating the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmutual information. One 
obtains I (A ;  OUT) = I (B;  OUT) = 0.124, I (C; OUT) = 
I ( D ;  OUT) = 0.013. Again the fact that variables A and B 
are more relevant can be detected from the beginning, thereby 
“pruning” the network before learning is started. 

- _ _ _  
TABLE II 

COMPONENTS OF NORMALEEDRSHER VECroR AND MUTUAL INFORMATION 

Cl2 WZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, I(z; class) I( y; class) 

0.1 0.999 -0.032 0.964 0.001 

0.2 0.999 -0.028 0.792 0.001 

0.4 0.999 -0.012 0.539 0.001 

0.8 0.998 0.048 0.612 0.001 

1.6 0.952 0.304 0.692 0.001 

3.2 0.489 0.87 1 0.679 0.001 

6.4 0.049 0.998 0.728 0.001 

B. Mixture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Gaussian Densities 

In a mixture of Gaussian densities the samples are assumed 
to be generated by selecting a “prototype” ci with probability 
P ( q )  and then selecting a pattem z with a normal (Gaussian) 
probability P(z1c;). A general multivariate normal density in 
d dimensions can be written as: 

where m is the mean vector (m = E[z ] )  and C is the 
covariance matrix (C = E [ ( ~ - m ) ( z - m ) ~ ] ) .  We now present 
the results of some two-class discrimination experiments, 
where each class is described by a simple mixture of Gaussian 
densities, showing the robustness of the MI criterion with 
respect to different distributions of the class densities. 

Let’s consider an input space with N j  = 2 features and 
two categories, where the first one is described by a Gaussian 
distribution with zero mean that is progressively elongated 
along the z dimension in the different tests (by increasing 
01~) .  and the second one is a normal distribution with a fixed 
standard deviation that is displaced in the z direction with 
respect to the first one. After introducing the one dimensional 
distribution 

N(v ,p ,a )  = ( 2 ~ a ~ ) - ~ / ~ e x p  (U - PI2  (18) 

that is a Gaussian with mean p and variance u2, the probability 
densities for classes 1 and 2 are 

P l b ,  Y) = N ( z ,  0, alr)N(Y, 070.1); 

p 2 ( z ,  Y )  = ~ ( z ,  0.5, o . ~ ) N ( Y ,  0 ~ 0 . 1 )  

To simulate a real classification task, we extracted 1000 
pattems with equal probability from the two distributions for 
each of a series of tests with increasing values of air. as 
illustrated in Fig. 2 (for the cases with 0 1 ~  from 0.1 to 0.8). 
From the classes’ definition, it is apparent that the y component 
of the pattern is completely useless because the pattems are 
distributed in the same way for the two classes along the y 
coordinate, while the IC component is sufficient to determine 
the class with a low degree of error. 

The approximated MI between the two input variables and 
the class (I(z; class) and I(y; class)) are listed in Table 11. 
As expected, the MI is close to zero for the y variable and 
significant for the IC variable. In fact, it is close to 1 (the output 
uncertainty) if the two classes are well separated (olZ = O.l), 

it decreases when the first class “expands” and covers the 
second one, and increases again for large values of air. In 

this last case the probability that the z coordinate of a pattem 
belonging to class “two” falls in the region of class “one” 
becomes small and smaller. For comparison, the results of 
Fisher’s linear discriminant analysis are listed in the second 
and third columns of Table 11. For large values of 0 1 ~  the 
magnitude of the components of the Fisher vector is not related 
to the discrimination capability of the two coordinates. For 
example, for alz = 3.2 the more informative feature appears 
to be the second one. This is due to the increasing spread of 
class “one” along the IC dimension: although the difference 
of the means for the two classes has a y component equal 
to zero (and therefore the criterion function (12) is zero for a 
vector along the y direction), the difference estimated from the 
finite number of samples has a small (random) y component 
that is causing the misleading result. In addition, the linear 
discriminant analysis is not defined if the classes have the 
same mean and it encounters serious estimation problems for 
small values of the between-class scatter, measured by the 
difference between the means. If this is small with respect to 
the standard deviations of the classes the results will depend 
on random fluctuations. 

The above considerations can be extended to the n- 
dimensional case (the two-dimensional case was chosen 
only for display purposes) and to the mixture of different 
distributions. 

C.  Classification of Sonar Targets 

The task is to train a network to discriminate between 
sonar retums bounced off a metal cylinder and those bounced 
off a roughly cylindrical rock. The data set has been used 
in [8], where a multilayer neural network is trained for the 
classification7. The purpose of the following tests is that of 
comparing the relative advantages of different techniques for 
dimensionality reduction. Our training and testing sets refer to 
the “aspect angle dependent” series of experiments in [8]: the 
104 training and 104 testing patterns are selected to include 
all target aspect angle. 

Mutual Information Diagram and Feature Selection: The 
original sonar signal is filtered, Fourier transformed and a 
set of 60 features is extracted by integrating the spectrogram 
over sampling apertures with varying temporal offsets (to 
correspond to the slope of the FM chirp). 

’The data set was obtained from the “neural net benchmark collection” 
organized by Scott E. Fahlman at the Camegie Mellon University. It was 
contributed by Terry Sejnowski, now at the Salk Institute and the University 
of Califomia at San Diego, who developed it in collaboration with R. Paul 
Gorman of Allied-Signal Aerospace Technology Center. 
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Fig. 2. Discrimination task with Gaussian densities. The standard deviation along the z axis of the distribution for class 1 is increasing from the top zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(ulZ = 0.1) to the bottom (u12 = 0.8). 

In Fig. 3 we show the mutual information diagram of 
the signal, i.e., the value of the MI between the different 
features and the output class. The MI diagram provides useful 
information to the developer of a classification system. In this 
case there are peaks in the MI for the region corresponding 
roughly to the “attack” and “decay” features of [8], although 
we did not investigate the possible correlations with human 
perceptual cues. It is also apparent that some features have 
a very low MI. The developer can use the MI diagram to 
diagnose the feature extraction phase, for example to eliminate 
some features that have a very low information content. 

A different type of diagnosis is provided by the MZfunction, 
of the mutual information between each feature and the other 
ones, as a function of a parameter describing the relative 
feature location (in this case the parameter is given by the 
relative times at which the different sampling apertures are 
positioned). The MZfunction can be compared to the more 

traditional correlation function, with the difference that the 
MZfunction measures a general dependence between variables, 
in comparison with a linear dependence. In addition, the MI 
function can be applied equally well to numerical and symbolic 
sequences, like the sequence of letters in a text (see [12]). 

In Fig. 4(a) we show the MZfunction for one particular 
feature (feature 8) with respect to the other ones. One can 
identify a peak that is decaying for near features (this result is 
related to the temporal superposition of the different sampling 
windows and to the dependence between the characteristics of 
the signal at contiguous times) and a more complex structure 
for “distant” features. This behavior is qualitatively similar 
for the other features. In Fig. 4(b) the MZfunction is shown in 
more detail for the first feature. Again the MI decays gradually 
for features corresponding to later times until a plateau with a 
complex structure is reached. The MZfunction can be used to 
identify relations between different features. If some features 
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Fig. 4. Mutual information function for the sonar classification task. The MI 
between feature 8 and the others is shown in (a), the MI between feature 0 
and the nearrest features in (b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are highly dependent it is possible that some of them are 
redundant and can be eliminated. 

It is interesting to compare the selection order given by the 
MIFS algorithm presented in Section I11 (with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 1) and 
the ranking scheme based only on the values of the MI with 
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MIFS (beta=O) MIFS (beta=l) 

Fig. 5. Selection order by the MIFS algorithm with p = 0 (left) and p = 1 
(right). The number IC of selected features increases from the top ( E  = 1) 
to the bottom ( E  = 60). The line for a given E shows the chosen features 
(with "#"). 

respect to the output class (i.e., ,f3 = 0 ). In the first case, after 
the feature with the highest MI is selected, the choice tends 
to jump to distant places because the subsequent features are 
chosen by taking into account both the MI with respect to 
the class and the MI with the already-selected features. In the 
second case, all features in a peak of the MI diagram are picked 
before the other candidates are considered (see Fig. 5, where 
each line specifies the selected features, with their number IC 
growing from the top to the bottom). For example, if four 
features are selected, in the first case all four come from the 
tallest peak and are extracted from a small time interval, in 
the second case they correspond to sampling apertures spread 
over the entire signal. 

Learning and Generalization for Different Pruning Tech- 
niques: We consider here the effect of different dimensionality 
reduction techniques on the performance of a multilayer per- 
ceptron neural network trained for the sonar classification 
problem. The training algorithm and parameters are the same 
as those used in [8], the network architecture has an input layer 
of variable size (corresponding to the dimension of the reduced 
pattem), one hidden layer with three units, and two output units 
coding for the two classes. In three series of experiments, the 
input vector is reduced to lo%, 20%, and 30% of its original 
size and, for each size, a set of 10 runs is executed (by varying 
the seed of a random number generator used for initializing the 
weights and - in the case of a random pruning - for selecting 
the features). We then calculate the average performance and 
its standard deviation. 

The training curves (percent classification as a function of 
the number of on-line pattem presentations) are similar to 
those of [8]. In Fig. 6 we show an example of a learning 
stage (for the 10% cut) and the average on 10 tests. 

The following results refer to the generalization perfor- 
mance of the networks (measured on the disjointed test set) as 



BAmTI: USING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMUTUAL INFORMATION FOR SELECTING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFEATURES IN SUPERVISED NEURAL NET LEARNING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Sonar) Learning Curves (Sonar) Learning Curves (Average of 10) 

545 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-- . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 loo00 20000 30000 

pattern presentations (on-line) 

(a) 

: 
E 
8 

0 10000 20000 30000 
-- . 

pattern presentations (on-line) 

(b) 

60-3-2 
6-3-2 MlFS 
6-3-2 r a n “  

. ... . . . .. . 

Fig. 6. Training curves in the sonar problem, for the original architecture (60-3-2) and for the reduced net (6-3-2). Single run (above) and aver- 
age of ten (below). 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIII 
COMPARISON OF FEATURE SELEC~ON TECHNIQUES FOR THE SONAR PROBLEM 

number of features method performance on test set standard deviation 

6 MIFS 75.1 4.1 

random 68.1 4.1 

FTA 63.2 4.0 
12 MIFS 78.9 3.0 

random 76.9 4.1 
PCA 63.7 3.2 

18 MIFS 79.2 1.3 

random 78.5 5.1 

PCA 72.7 3.1 

a function of the number of iterations. Learning is executed 
for 120 000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon-line pattem presentations. The training period 
is increased with respect to [8] because the over-training 
phenomenon (i.e., a decrease in generalization performance 
because of an excessive training causing the “memorization” 
of the training set) is quite difficult to observe in this particular 
case, if it is present at all, and we wanted to be reasonably 
sure that the net reached the maximum generalization per- 
formance. The three methods that we compare are the MIFS 
algorithm in Section 111, the scheme based on the Principal 
Component Analysis (PCA) (see [18]) and, finally, a random 
dimensionality reduction (see Fig. 7). 

The performance of the networks at the end of the training 
period is listed in Table 111. The performance of the original 
network (60 inputs) with the architecture 60-3-2 is 86.5% 
(standard deviation 3.0). 

In this case the superiority of the MIFS technique emerges 
more clearly for significant reductions of the number of 
features (e.g., when they are reduced from 60 to 6-12), 

while the difference with respect to a random reduction tends 
to decrease for smaller reductions (although the standard 
deviation for the random reduction is larger). This is to be 
expected for this particular problem where there is a high 
degree of dependence between features extracted from near 
time intervals of the signals: if a large fraction of the original 

‘ 

set of features is maintained and if these are “spread” over the 
entire signal duration, the information loss with respect to the 
amount contained in the original signal will be very small and 
will not depend on the selection method in a crucial manner. 

The PCA method of [18] is not to be confused with the use 
of the Karhunen-Loe’ve transformation in [14]. In our case 
we are not considering feature transformations but only the 
selection of a subset of optimal features from a given vector. 

D.  The Iris Data 

The data were listed and used by R. A. Fisher in his 
classic paper on discriminant analysis [4]. They are from 
measurements by E. Anderson on 150 samples of three species 
of iris8. The input pattem is composed of four features’. 

In this case (given the limited number of features) we reduce 
the input vector by 50% and present the results for all possible 
(six) selections of two features. A multilayer perceptron with 
the architecture 2-4-3 is trained on a subset of 100 cases and 
tested on the remaining 50 cases. The learning rate for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon- 
line backpropagation algorithm is 0.002 (no momentum) and 
weights are randomly initialized in the range [-0.5,0.5]. The 
results are an average on ten runs. 

In Fig. 8 we present the generalization results for all subsets 
of two features (indicated by a binary number, where “ 1 ”  

means that the corresponding feature is present). It is manifest 
that there are two optimal subsets (“1001” and “1010”) with a 
correctness of approximately 93%, three suboptimal selections 
with performance in the region 80-90% and a bad selection 
(“1100”) that reaches only 60%. The standard deviation is 
approximately 2.0 for the case “0011” and 1.0 for all other 
cases. The MIFS algorithm chooses one of the two optimal 
sets (precisely the set composed of features 1 and 3). 

8The data were obtained from Russel Leighton at MITRE Signal Processing 
Center. They are in the examples that come with the “AspirinMIGRANES” 
neural network simulator made available free from the MITRE Corporation. 

’The sepal length, sepal width, petal length, and petal width were measured 
on 50 iris specimens from each of three species, Iris setosa, Iris versicolor, 
and Iris virginica. 
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Fig. 7. Generalization curves for the sonar problem, for three values of the dimension of the reduced input vector (6, 12, 18). In each case the selection 
methods MJFS, PCA and random are compared. 

The difference in the amount of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmutual information 
between the set of features and the class, for two different 
cases (the best case “1010 and the worst case “1100”) can 
be examined by the 
regions corresponding to the different classes are clear (apart 
from a limited contact zone) in the second case two of the 
three classes are almost overlapped. 

E. Optical Character Recognition 

The features for this problem are derived from a real- 
world task of handwritten digits recognition. The original 
images are normalized to fit a window of l6 (horizontallY) 
x 28 (vertically) pixels. The area is then divided into 4 x 7 
nonoverlapping windows of size 4 x 4, and from each window 

Fig. 9. While in the first 
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Fig. 8. Generalization curves for the Iris problem. All possible selections of 
two features are compared. 
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Fig. 9. The Iris classification task. Projection of the original data for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
three classes on dimensions 1 and 3 (above) or 1 and 2 (below). 

a feature is extracted as the percent of black pixels in the 
given window. A set of 6496 patterns (equally distributed in 
the ten classes) is used for the training, a distinct set of 12 981 
is used for testing the generalization performance. Here we 
are not interested in reaching the best accuracy (that demands 

TABLE IV 
COMPARISON OF FEATURE SELurrrON TECHNIQU!SS FOR THE OPnCAL 

CHARACTER RECOGNITION PROBLEM WlTH BACKPROPAGATION TRAINING. THE 

10 TESTS WlTH DrPFERENT SEEDS FOR THE RANDOM NUMBER GENERATOR 
DATA FOR THE RANDOM CUT ARE THE AVERAGE AND STANDARD DEVIATION OF 

number of MIFS h4IFS pcA random ave. prob. > 
features pd.0 p d . 5  (st.dev.) MIFf 

3 39.4 39.6 40.6 38.03 (3.21) 0.312 
6 55.9 66.0 56.2 59.78 (3.96) 0.058 
8 61.4 73.9 64.9 68.43 (4.13) 0.092 
11 74.0 83.2 79.0 78.33 (3.95) 0.108 
14 82.5 88.3 87.4 83.19 (2.05) 0.006 
20 90.0 91.9 91.7 90.73 (0.70) 0.047 

3 6 8 
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Fig. 10. Feature selection by the MIFS algorithm for the OCR problem. The 
different figures correspond to increasing numbers of features extracted from 
28 windows on the image plane. Latest added features are gray, previously 
added are black. 

the use of rejection schemes, where the uncertain patterns 
are discarded) but in comparing different feature selection 
techniques when the classification of all patterns is required. 
The generalization performance of networks trained with on- 
line backpropagation (learning rate=l.2, momentum=O.O) is 
94.7%. 

The maximum generalization in this parameter setting is 
obtained for a number of pattern presentations equal to about 
150000. For a number of presentations larger than 250000 
there is a slight performance reduction caused by over- 
learning. Pattems are presented to a network with a single 
hidden layer of 28 units after extracting them randomly from 
the training set. 

In the following tests we execute a total of 250000 it- 
erations, check the generalization every 50000 and list the 
maximum obtained. In Table IV we show the comparison of 
the MIFS technique with respect to the Principal Component 
Analysis and to a set of random selections. The position on 
the image plane of the windows corresponding to the selected 
features is shown in Fig. 10. Note that the "better" features 
are preferably located in the top, central, and bottom part 
(see the cases with 3, 6, and 8 features). This corresponds 
approximately to the position of the most informative strokes 
in the image. 

In the last column we show the probability that an accuracy 
greater than or equal to that of MIFS is obtained by using 
a random cut (in the assumption of a normal distribution of 
values). It is apparent that tens or hundreds of random cuts 
have to be tested (by training the network) before reaching 
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TABLE V 
COMPARISON OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFEATURE SELECTION TECHNIQUES FOR THE OFTICAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACHARACTER 

RECOGNlTION PROBLEM WITH LEARNINO VECTOR QUANTIZATION TRAINING 

number of features MIFS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(+OS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ olvql random + olvql 

3 
6 

8 
11 

14 

20 

32.1 32.29 (4.23) 

62.9 55.66 (3.17) 
70.9 61.97 (4.32) 

81.3 75.53 (3.55) 
86.7 80.62 (1.46) 
91.3 90.02 (0.69) 

a comparable result. Because the feature selection time of 
MIFS is negligible with respect to the training time, this 
amounts to a sizable reduction in CPU resources to obtain a 
given performance. For the case of 14 features, in the normal 
distribution hypothesis, approximately 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 random selections 
(out of a total of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9:) = 40 116 600)) have to be tested to find 
a performance equivalent to or better than that of MIFS, with 
a probability greater than 0.5. 

The PCA method performs less than the average random 
cut in some cases (with 6 or 8 features), while it is close 
to the MIFS results for 14 and 20 features. Let us note that 
the presence of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp value larger than zero is crucial in order 
to obtain good results. If the mutual dependencies between 
features are not taken into account, selecting the features with 
the highest MI with respect to the output tends to produce a set 
of redundant features that leaves out useful “complementary” 
information. 

To test the robustness of the MIFS algorithm with respect 
to different neural net models, we repeated the training and 
generalization tests with the same feature vectors used for the 
previous results but using the Learning Vector Quantization 
technique for training the classifier. The LVQ method is 
described in [ 111. In particular we used an optimized version 
of the method (OLVQl), that is part of a software package 
obtained from the Helsinky University of Technology’o. In this 
optimized version, an individual learning rate is assigned to 
each codebook vector” and properly adjusted during training. 

A performance comparable (although inferior) to that of 
MLP was obtained with a total of 2000 codebook vectors. 
These vectors were appropriately initialized and balanced 
(see the package manual), before executing a total of 20000 
iterations, an empirical number corresponding to the maximum 
generalization. 

While the absolute results for this problem are better when 
using the MLP neural net (and a large number of codebook 
vectors has to be used to obtain a near performance), the MIFS 
technique remains superior in relative terms. 

from Information Theory for the supervised training of neural 
networks. In the machine learning literature the entropy and 
mutual information concepts are used for example in [17] 
and [15] to introduce relevant features for learning Boolean 
formulas with a tree representation. In this case and, in general, 
in complex recognition tasks one encounters many forms of the 
“curse of dimensionality” problem (see e.g., [3]): approaches 
that are suitable for a low pattern dimensionality may become 
unworkable for large dimension because of unrealistic needs of 
computation and data. Therefore it is crucial to reduce the input 
dimensionality of a classification problem either by eliminating 
features with low information content or high redundance with 
respect to other features or by constructing more powerful 
features in the preprocessing phase. 

Our objective was less ambitious, because only the first of 
the above options was considered (leaving the second for the 
capabilities of the neural net to build complex features from 
simple ones). We assumed that a set of candidate features 
with globally sufficient information is available and that the 
problem is that of extracting from this set a suitable subset 
that is sufficient for the task, thereby reducing the processing 
times in the operational phase and, possibly, the training times 
and the cardinality of the example set needed for a good 
generalization. 

In particular we were interested in the applicability of the 
mutual information measure. For this reason we considered the 
estimation of the MI from a finite set of samples, showing that 
the MI for different features is over-estimated in approximately 
the same way. This estimation is the building block of the 
MIFS algorithm, where the features are selected in a “greedy” 
manner, ranking them according to their MI with respect to the 
class discounted by a term that takes the mutual dependencies 
into account. 

In the neural networks literature, concepts from Infor- 
mation Theory have been used both to construct learning 
algorithms and to analyze the functionality of the classifier 
(some examples from the literature have been cited in Section 
11). The present approach is different from pruning methods 
acting during the learning phase (e.g., [16], [21]) because the 
dimensionality reduction is executed before learning starts. 
The main advantage is that irrelevant features are eliminated 
from the beginning and that a fast informative feedback about 
the relevance and dependencies of the different features is 
available to the developer of a neural net classifier. In addition, 
it is different from methods that use some form of entropy 
estimation during the learning phase (e.g., [I]), in that the 
usual backpropagation algorithm is used for learning. Although 
the availability of sufficient information does not guarantee the 
convergence of a neural net training algorithm to a satisfactory 
performance level, we presented some examples in different 
classification areas where the method is satisfactory. V. CONCLUDING REMARKS 

The main motivation for this research was to investigate 
the practical applicability of the mutual information concept 

‘“The LVQJAK Package Version 2.0 was by the LVQ propram- 
ming Team of the Helsinki University of Technology and kindly made avail- 
able through the network at the Internet site cochlea.hut.fi (130.233.168.48), 
in the directory /pub/lvq-pak. 

the input space. 
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Fig. 11. Recursive partitioning of the X-Y plane executed by Fraser’s 
algorithm. If substructure is found, an element is subdivided into four 
subelements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Processing Center. The Learning Vector Quantization program 
package was developed by the LVQ Programming Team of the 
Helsinky University of Technology. 

APPENDIX 

FRASER’S ALGORITHM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I ( X , Y )  between two variables X and Y: 

Let us start from the definition of the mutual information 

I ( X ,  Y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= / P,,(x, y )  log, ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApzy(”7 ) dx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(19) 
PX(X)PY (Y) 

If the various probability distributions are not known, they 
can be approximated by a piece-wise constant function by 
counting the number of events in rectangular boxes. For 
example, if a box in the X - Y plane of size Ax Ay 
contains NZy events, the probability density in the region can 
be estimated by Pzy(x,y)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx N,,/NoAxAy, where NO is 
the total number of events. The box size at a given point 
must be large enough to contain a number of points that is 
sufficient for a robust estimation, but not too large, otherwise 
part of the structure in the mutual probability density function 
Pz,(z, y )  will be cancelled and the mutual information will be 
underestimated. In general, no single size is appropriate over 
the whole X - Y plane. Fraser’s algorithm is based on an 
adaptive partition of the plane in which the size of each box 
is chosen according to the local situation. 

Although the algorithm can be modified for a general 
case, for illustrative purposes it is easier to consider the 
case where the number of points NO is a power of 2, 

say No = 2n. Let us consider a sequence of partitions 
of the X - Y plane, such that each partition consists 
of 4m boxes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(Km), obtained by dividing each axis 
into 2m equi-probable segments. Km is an index that 
uniquely identifies one of the 4m element. It is useful to 
organize the partition as a tree, so that when an element 
Rm(Km) is divided into four parts it generates four children 

see the illustration in Fig. 1 1 .  
The approximation of the mutual information corresponding 

to the mth recursive step, with a partition consisting of 4m 

&+1(Km,O);Rm+1(Km, 1);Rm+1(Km,2);Rm+1(Km,3), 

~ 
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elements, is: 

(20) 
Let us introduce N K ~ ,  equal to the number of events 

in the Rm(Km) element of the partition and N K ~ ~  (for 
j = 0,1,2,3) equal to the number of events in the four 
sectors of elment &(K,) when this is subdivided by cutting 
both its 2 and y intervals into two equi-probable parts. After 
substituting the probability densities with their piece-wise 
constant approximations and remembering that, because of 
the subdivision procedure, P, (Rm (Km)) = Py (R, (K,)) = 
4-m, the above expression becomes: 

- log,(No) 

When a single element &(ITm) of the partition is subdi- 
vided into four sectors, its contribution to the mutual informa- 
tion changes from: 

(NKm log~(NKm) + NKm m logz(4)) 

to: 

3 

x ( N K m j  lo&(NKmj) + NKmj  (m -t 1) l O d 4 ) )  
j = O  

3 

= x ( N K m j  logp(NKmj)) + NKm(m + 1) log2(4) 
j=O 

where the fact that C,”=, N K ~ ~  = N K ~  has been used. 
Starting from (21), and using the above result, it is imme- 

diate to check that the mutual information can be estimated 
by the following formula, that uses the recursive function F ( )  
introduced in [6]: 

where the function F ( )  takes a partition element as argument 
and returns a real value (a floating point number). If the 
element has no substructure: 

where N K ~  is the number of events contained in the element, 
otherwise the function calls itself four times in a recursive 
way, and retums: 

3 

F(Rm(Km)) = NKm 10&(4) + xF(Rm+I (Km) j ) )  
j = O  

The x-square test is used to check for substructure. Let us 
introduce the following variables, that count the number of 
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events in the initial element and in the elements of the first 
and second subdivision: 

[6] A. M. Fraser and H. L. Swinney, “Independent coordinates for strange 
attractors from mutual information,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPhysical Review A, vol. 33, no. 2, 
pp. 1134-1140, 1986. 

[7] K. Funahashi, “On the approximate realization of continuous mappings 
by neural networks,” Neural Networks, vol. 2, pp. 183-192, 1989. 

[8] R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered 
network trained to classify sonar targets,” Neural Networks, vol. 1, pp. 
75-89, 1988. 

191 F. Kanaya and K. Nakagawa, “On the practical implication of mutual 
information for statistical decisionmaking,” IEEE Trans. Information 
Theory, vol. 37, pp. 1151-1156, 1991. 

[lo] E. D. Kamin, “A simple procedure for pruning back-propagation trained 
neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 239-242, 
1990. 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= “n(Km)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ai = N(&n+l(K“)) 

bij  = “ n + 2 ( K n ,  i, j)) 

The null hypothesis that pz,(x, y) is flat Over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(Km)  
is disproved if at least one of the following inequalities fails 
(reduced x-square statistics and 20% confidence levels): 

To simplify the counting operations needed by the algorithm 
a change of variables is executed that maps the arrays of 
events zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi and yj into the integers in the [0,2n - 11 interval 
(n = log, NO). The arrays are sorted into ascending numerical 
order and a value x; is mapped into its position in the sorted 
array. The same procedure is applied to yi. 

In our implementation the sorting is executed by the “heap- 
sort” algorithm (see for example [22]) because its compu- 
tational complexity is guaranteed to be of order NO log NO 
not only in the average but also in the worst case. Besides, 
no additional storage is required (the sorting is done “in 
place”). The “quicksort” algorithm used in [6] has a worst- 
case complexity of N,2 operations, that may be excessive for 
some computations, although in the average it requires order 
NO log NO operations (note that the average case may not be 
that encountered in practical cases). 

Because of the tree structure, at most order NologNo 
recursive calls are executed and therefore the total running 
time is guaranteed to be of order NO log NO operations. The 
slow growth with respect to NO make this algorithm an 
efficient one even for very large number of events. On a 
current Unix workstation the actual computing time is about 
one second for NO equal to 8192. 
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