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Abstract

The development of 3D face recognition algorithms that

are robust to variations in expression has been a challenge

for researchers over the past decade. One approach to this

problem is to utilize the most stable parts on the face sur-

face. The nasal region’s relatively constant structure over

various expressions makes it attractive for robust recog-

nition. In this paper, a new recognition algorithm is in-

troduced that is based on features from the three dimen-

sional shape of nose. After denoising, face cropping and

alignment, the nose region is cropped and 16 landmarks

robustly detected on its surface. Pairs of landmarks are

connected, which results in 75 curves on the nasal surface;

these curves form the feature set. The most stable curves

over different expressions and occlusions due to glasses are

selected using forward sequential feature selection (FSFS).

Finally, the selected curves are used for recognition. The

Bosphorus dataset is used for feature selection and FRGC

v2.0 for recognition. The results show highest recogni-

tion ranks than any previously obtained using the nose re-

gion: 1) 82.58% rank-one recognition rate using only two

training samples with varying expression, for 505 differ-

ent subjects and 4879 samples; 2) 90.01% and 80.01%

when Spring2003 is used for training and Fall2003 and

Spring2004 for testing in the FRGC v2.0 dataset, for neu-

tral and varying expressions, respectively.

1. Introduction

The nasal region is relatively a stable part on the face

and compared to the other parts such as the forehead, eyes,

cheeks, and mouth, its structure is comparatively consistent

over different expressions [1, 4, 3]. It is also one of the

parts of the face that is least prone to occlusions caused by

hair and scarves [5]. Indeed, it is very difficult to deliber-

ately occlude the nose region without attracting suspicion

[7]. In addition, the unique convex structure of the nasal

region makes its detection and segmentation more straight-

forward than other parts of the face, particularly in 3D.

The nasal region therefore has a number of advantageous

properties for use as a biometric. However, it has been sug-

gested that the texture and color information of the 2D nose

region does not provide enough discrimination for human

authentication [16]. This problem as been ameliorated by

the developments in high resolution 3D facial imaging over

the last decade, which have led a number of researchers to

start studying the potential of the nose region for human au-

thentication and identification. One of the main motivations

for this is to overcome the problems posed by variations

in expression which can significantly influence the perfor-

mance of face recognition algorithms.

A good example of the use of the nasal region to rec-

ognize people over different expressions is the approach of

Chang et al. [1]. Here, face detection is performed using

color segmentation and then thresholding of the curvature

is used to segment different regions around the nose re-

gion. The iterative closest point (ICP) and principal compo-

nent analysis (PCA) algorithms are applied for recognition.

Using the FRGC v2.0 dataset to evaluate the algorithm’s

performance, a significant drop in recognition performance

was found for varying expressions (from 91% to 61.5% and

from 77.7% to 61.3% for ICP and PCA, respectively). In

an alternative approach, the 2D and 3D information of the

nose region are used for pattern rejection, to reduce the size

of face gallery [6]. A more recent use of the nose region for

3D face recognition is that of Drira et al. [4]. Geodesic con-

tours, centralized on the nose tip, are localized on the nose

region using the Dijkstra algorithm and the distances be-

tween the sets of contours for each nose are used for recog-

nition. Performance was evaluated on a smaller subset of

FRGC containing 125 different subjects and the rank-one

recognition was 77%. It should also be noted that this algo-

rithm is not capable of processing faces with open mouths.

Another nose region-based face recognition algorithm is

introduced in [3]. The nose is first segmented using cur-

vature information and the pose is corrected before apply-

ing the ICP algorithm for recognition. Using the Bosphorus

dataset (105 subjects, with average 30 samples per subject),

the rank-one recognition was reported as 79.41% for sam-

ples with pose variation and 94.10% for frontal view faces.

Moorhouse et al. applied holistic and landmark-based ap-

proaches for 3D nose recognition [7]. A small subset of 23

subjects from the Photoface dataset [15], which is based on



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

BTAS BTAS

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

the photometric stereo, was used for evaluation. A variety

of features were used for recognition but despite the small

sample, the highest rank-one recognition achieved was only

47%.

This paper proposes a new recognition technique using

the nasal region. Using robustly defined landmarks around

the edge of the nose, a collection of curves connecting the

landmarks are defined on the nose surface and these form

the feature vectors. The approach is termed the Nasal Curve

Matching (NCM) algorithm. The algorithm starts by pre-

processing the input data. Images are denoised, the face is

cropped and then aligned using Mian et al.’s iterative PCA

algorithm [6]. Then, the nose region is cropped and a land-

marking algorithm used to detect 16 fiducial points around

the nose region. Taking the landmarks in pairs, the intersec-

tion of orthogonal planes passing through each pair with the

face region defines the facial curves. The resulting curves

are normalized and used as the feature vectors. Finally, fea-

ture selection is used to extract the features that are most

robust to variations in expression.

The NCM algorithm employs a simple, yet effective al-

gorithm for nose region landmarking and then derives a set

of curves that are used for 3D recognition using the nose

region. The proposed algorithm’s accuracy is verified using

the recognition ranks over the FRGC v2.0 dataset [8], which

is higher than the previous approaches using the nasal re-

gion. For example, FRGC’s experiment 3 resulted in 90.1%

and 80.01% rank-one recognition for neutral and varying

expressions, respectively. Results for the Bosphorus dataset

[9] are also presented.

The remainder of this paper is organized as follows.

First, in section 2, the preprocessing algorithm is explained.

Section 3 describes the landmarking algorithm and the con-

struction of the nasal curves, and the feature selection is

explained in section 4. The experimental results, includ-

ing the feature selection and classification performance are

presented in Section 5. Finally, conclusions are drawn in

section 6.

2. Preprocessing

Preprocessing is a vital step in the face recognition sys-

tems. Its performance can significantly affect the recogni-

tion performance and rest of the algorithm, for example by

degrading the feature extraction and the feature’s correspon-

dence between samples. As a consequence, the within-class

similarity and between-class dissimilarity might be lost.

Here, a 3 stage preprocessing approach is employed. First,

the data is denoised and the face region is cropped. Then,

the face is aligned and resampled using a PCA-based pose

correction algorithm and finally the nose region is cropped.

2.1. Denoising, tip detection and face cropping

3D face images are usually degraded by impulsive noise,

holes and missing data. Although the noise effects are more

salient on the depth Z information, the X and Y coordi-

nates can also be affected. In order to remove the noise

in X the standard deviation of each column is first calcu-

lated. Columns with high standard deviations will con-

tain noise while the columns with low standard deviations

are relatively noise free. Therefore, the two neighboring

columns with the lowest standard deviation are found and

the X map’s slope is computed. The slope is then used to

resample the map. The same procedure is performed to de-

noise the Y map. The only difference is that the standard

deviation is computed for the map’s rows. The Z map is

resampled using the new X and Y.

Removing the noise from the depth map is performed by

locating the missing points and then replacing them using

2D cubic interpolation. Then, morphological filling is ap-

plied to the depth map. Those points whose difference with

the filled image is larger than a threshold are assumed to be

holes and are again replaced by cubic interpolation. This

procedure helps to preserve the natural holes on the face, in

particular near the eye’s corners. Finally, median filtering

with a 2.3mm × 2.3mm mask is used to remove the impul-

sive noise on the face’s surface.

The next step is detection of the nose tip. To do this, the

principal curvature and shape index (SI) are computed and

the SI is scaled so that its maximum and minimum values

are exactly +1 and -1, receptively. The face’s convex re-

gions are found by thresholding the SI to produce a binary

image, using -1 < SI < −
5
8 [3, 1, 5, 7]. The largest con-

nected component is detected and its boundary is smoothed

by dilating with a disk structuring element. Finally, the

centroid is saved as the tip. The face region is eventually

cropped after intersecting a sphere with radius 80mm, cen-

tered on the nose tip, with the face.

2.2. Alignment and nose cropping

The face region is aligned using the PCA based align-

ment algorithm of Mian et al. [6]. The Karhunen-Loève

transform is performed on the face’s point clouds. The

points’ mean is translated to the origin and their 3 × 3 co-

variance matrix calculated. The points are next mapped

onto the principal axes after multiplying them by the co-

variance matrix’s eigenvectors. They are then uniformly

resampled with resolution 0.5 mm. The missing points

caused by self-occlusion, which appear after applying the

rotation, are replaced by 2D cubic interpolation in each it-

eration. The procedure is repeated until the 3 × 3 eigen-

vector matrix’s Euclidean distance to the identity matrix is

smaller than a threshold. In each iteration, the nose tip is

re-detected. Therefore, after resampling, the SI is again cal-

culated and the biggest convex region is located. The face

2
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(a) (b)

(c) (d)

Figure 1: (a) The cropped face region. (b) The binary map

found by the cylinders intersection with the face surface. (c)

The convex hull result. (d) The cropped nose region.

is again cropped and PCA is applied on the newly cropped

image. This simple process helps to localise the tip more

accurately. After the alignment procedure is completed a

small constant angular rotation along the pitch direction is

added to the face pose as this helps the landmarking algo-

rithm to detect the nose root (radix).

The nose region is cropped by finding the intersections

of three cylinders, each centered on the nose tip, with the

face region. Two horizontal cylinders, with radii 40 mm and

70 mm, crop the lower and upper parts of the nose, respec-

tively. Then, a vertical cylinder, of radius 50 mm, bounds

the nose region on the left and right sides. Applying these

conditions over the X, Y and Z maps results in a binary im-

age [Fig. 1(b)], which is further trimmed by morphological

filling and convex hull calculation [Fig. 1(c)]. The final bi-

nary image is used to find the cropped nose point clouds,

see Fig. 1(d). This approach to nose region cropping results

in fewer redundant regions than the approach of [5] and is

much faster than that of [4] which uses level set based con-

tours.

3. Nasal region landmarking and curves find-

ing

Sixteen landmarks are detected on the nose region, as

shown in Fig. 2. A cascade algorithm is used to directly

find the nose tip (L9), root (L1), and the left (L5) and right

(L13) extremities. First, L9 is detected and then used to

detect L1, L5 and L13. To avoid selecting incorrect points

resulting from residual noise or the nostrils as landmarks an

Figure 2: Landmarks’ locations and names.

outlier removal procedure is employed and this procedure is

explained in Section 3.4. The remainder of the landmarks

are found by sub-dividing lines connecting the landmarks

already found. In the following subsections the landmark-

ing approach is explained in detail.

3.1. Nose tip L9 detection

Although the nose tip has already been approximately

localised, it is more accurately fixed in this step. The SI is

again thresholded to extract the largest convex regions from

the cropped nose region. Then, the nose region’s depth map,

Zn, is inverted and the largest connected region is located

[5]. The resulting binary image is multiplied by the convex

region to refine it and remove noisy regions. The result is di-

lated with a disk structuring element and multiplied by Zn.

After median filtering the result, the maximum point is con-

sidered as the nose tip. The reason for not directly selecting

the maximum point of Zn as the tip is its vulnerability to

residual spike noise.

3.2. L1 detection

A set of planes perpendicular to the xy plane and con-

taining L9 are then found, as shown in Fig. 3. The angle

between the i-th plane and the y-axis is denoted as αi with

a normal vector given by [cosαi, sinαi, 0]. Intersecting the

nose surface and the planes results in a set of curves. The

global minimum of each curve is found and the landmark

L1 is located at the maximum of the minima. This proce-

dure is depicted in Fig. 3, in which α is the maximum value

of [α1, α2, . . . , αM ].

3.3. Detection of L5, L13 and the remaining land
marks

A set of planes, which include L9, are perpendicular to

the xy plane and have the angular deviation βi with the x-

axis are intersected with the nose surface (Fig. 4). The

normal of each planes is given by [sinβi, cosβi, 0] and the

intersection of the planes and the nose surface results in a

3
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Figure 3: L1 detection procedure: the blue lines are the

planes intersection. The green curve is each intersection’s

minimum. The red dot is the minima peak, which gives the

location of L1 (α = 15◦).

set of curves (i = 1, . . . , N ). L5 and L13 are located at the

peak position of the curves’ gradient. To do this, each curve

is differentiated and the location of the peak values is stored.

This results in a set of points on the sides of nasal alar from

which the point with the minimum vertical distance from

the nose tip (L9) are chosen as L5 and L13.

After the four key landmarks were detected, they are pro-

jected on the xy plane. The lines connecting the projection

of L1 to L5, L5 to L9, L9 to L13 and L13 to L1 are divided

into four equal segments and the x and y positions of the re-

sulting points are found. The corresponding points on the

nose surface give the remaining landmark locations.

3.4. Removal of outlying landmark candidates

As the candidate positions for the landmarks L5 and L13

are the positions of maximum gradient on the nose surface,

they are sensitive to noise and the position of the nostrils. In

order to remove incorrect candidate positions an outlier re-

moval algorithm is proposed. With reference to Fig. 4, the

gradient maxima of the intersection of the planes with the

nose surface are marked as green points. However, some

outliers are detected as candidates for L5, in this case due

to the impulsive depth change around the nose tip (located

within the black circle in Fig. 4). To remove the outliers

the distances from the candidate points to the nose tip are

clustered using K-means with K = 2. The smallest cluster

will contain the outliers and these points are then replaced

by peaks in the surface gradient that are closer to the cen-

troid of the larger cluster. The replacement candidates are

plotted in red in Fig. 4.

A similar gradient-based approach for detecting the side

nasal landmarks was proposed in [10], where the locations

of the peaks of the gradient on the intersection of a hori-

zontal plane passing through the tip and the nose surface

were selected as L5 and L13. However, by using a set of

Figure 4: L5 (and similarly L13) detection procedure:

The blue lines: intersection of the orthogonal planes; The

green points: candidate points for L5; The red points:

the outlier removal result. β = 15◦ is the maximum of

[β1, β2, . . . , βN ]

candidates instead of just a pair and the outlier removal, the

approach proposed above is more robust.

3.5. Creating the nasal curves

After translating the origin of the 3D data to the nose

tip, the landmarks are used to define a set of nasal curves

that form the feature space for each nose. Considering any

two pairs of landmarks, the intersection of a plane passing

through the landmarks and perpendicular to the xy plane

with the nose surface can be found. The normal vector of

the plane is given by
(Li−Lk)×âz

|(Li−Lk)×âz|
, where Li and Lk are the

two landmarks and âz is the unique vector of the xy plane.

The 75 nasal curves depicted in Fig. 5 are found by con-

necting the following landmark pairs:

1. L1 to L2-L8 and L10-L16.

2. L2 to L6-L8 and L10-L16.

3. L3 to L16, L10 -L15 and L6-L8.

4. L4 to L14-L16, L10-L13 and L6-L8.

5. L5 to L13, and L6-L7.

6. L9 to L1-L5 and L13-L16.

7. L14 to L5-L8, L10-L12.

8. L15 to L5-L8, L10-L12.

9. L16 to L5-L8, L10-L12.

Each curve is then resized to a fixed length and their

maximum depth is translated to zero. The points from the

complete set of 75 curves form the feature vector used for

recognition.

4
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(a) (b)

Figure 5: The landmarks’ connecting curves: (a) frontal

view and (b) side view.

4. Expression robust feature selection

The set of nasal curves shown in Fig. 5 provide a fairly

comprehensive coverage of the nasal surface. However,

simply concatenating the curves produces a high dimen-

sional feature vector that will typically suffer from the curse

of dimensionality and so not produce the best classification

performance. In addition, some of the curves are intrinsi-

cally more sensitive to the deformations caused by expres-

sion while others may be affected by the wearing of glasses,

one of the most common occlusions found in biometrics

sessions. Therefore, it is desirable to select a subset of

curves that produce the best recognition performance over a

range of expression variations and occlusions from glasses.

By considering each curve as a set of features that are either

included or excluded from the feature vector, the location of

the nasal curves that contribute to a robust recognition per-

formance can be investigated. To do this, the well-known

Forward Sequential Feature Selection (FSFS) algorithm in

employed. Using FSFS, the single curve that produces the

best recognition performance is found and then different

curves are iteratively added to form the set of the best n

features. The cost function used to evaluate the recognition

performance is

E = R1. (1)

where R1 is the rank-one recognition rate. The ranks are ob-

tained using the leave-one-out approach and nearest neigh-

bor city-block (CB) distance calculation.

5. Experimental results

The quantitative evaluation of the NCM algorithm is

provided in this section. The Bosphorus and FRGC v2.0

datasets are utilized for feature selection and matching, re-

spectively. Two matching scenarios are used and the sensi-

tivity to the number of training samples is analyzed.

Two 3D face datasets are used to evaluate the perfor-

mance of the NCM algorithm. The first is FRGC v2.0 [8]

which is one of the largest face datasets in terms of the num-

ber of subjects and has been extensively used for face recog-

nition. The dataset includes 557 unique subjects, with slight

pose and different expression variations. The data was cap-

tured using a Minolta Vivid 900/910 series sensor at three

different time periods, Spring 2003, Fall 2003 and Spring

2004.

The second dataset is the Bosphorus dataset [9]. It

consists of 4666 samples from 105 unique subjects, and

includes many captures with occlusions and rotations in

the pitch and yaw directions. The captures used a 3D

structured-light based digitizer and, compared to FRGC,

the faces in the Bosphorus dataset are less noisy and have

more intense expression variations. Each subject has a set

of frontal viewed samples having various expressions: neu-

tral, happy, surprise, fear, sadness, anger and disgust. These

samples are used below to select the most expression invari-

ant curves.

5.1. Feature selection results

Feature selection is performed using FSFS and evaluated

using the Bosphorus dataset. In all experiments, the facial

curves were resampled to a fixed size of 50 points and con-

catenated to create the feature vector. Using a fixed number

of points was found to produce a higher recognition per-

formance than varying the number of points per curve ac-

cording to the curves’ length and the performance was also

relatively insensitive to the number of points per curve.

Figure 6 plots the rank 1 recognition rate against the

number of nasal curves in the feature set and also illustrates

the curves selected for a number of points on the plot. For

example, the first curve selected is that connecting L1 to

L9 (L1L9) and then the combination of L1L9 and L4L13

produce the highest rank 1 performance.

Overall, the highest rank 1 recognition rate occurs when

28 curves are selected. The distribution of these curves,

shown in Fig. 6, is relatively even over the nasal surface but

is slightly denser on the nasal cartilage, which is less flexi-

ble due to its bony structure, and on the alar. After this, the

rank 1 recognition rate decreases as more features are added

which conforms with expectations. As these curves produce

the best recognition performance for a dataset with a wide

range of expressions, they should be relatively insensitive

to variations in expression. These 28 robust curves, ordered

by the FSFS result, are: L9L1, L4L13, L5L13, L1L4,

L15L5, L2L13, L1L14, L2L12, L3L6, L1L7, L9L5,

L1L2, L16L8, L9L13, L3L16, L1L16, L16L5, L1L10,

L16L6, L15L7, L16L12, L15L8, L14L12, L14L5, L1L5,

L9L2, L15L11 and L3L12.

For comparison, a genetic algorithm (GA) is also used to

select the best performing feature sets. First, a binary vector

W = [w1, w2, . . . , w75]
T is created in which, for each of

the 75 nasal curves,
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Figure 6: Rank 1 recognition rate against the number of

nasal curves selected by the FSFS algorithm. The sets of

curves for various numbers of feature sets are also shown,

with the largest image (second from right) showing the 28

curves that produced the highest recognition rate.

wi =

{

1 if the i-th curve is selected

0 if the i-th curve is not selected
(2)

and then a GA is used to maximize W using (1) as a mea-

sure of fitness.

Compared to FSFS, which is a deterministic algorithm,

GA stochastically maximizes the rank 1 recognition rate.

Although GA have the capability to examine various com-

binations of the features, its convergence is not guaranteed

in a limited number of iterations. Cumulative Match Char-

acteristic (CMC) recognition results for the best performing

sets of curves selected be GA and FSFS are plotted in Fig. 7.

The FSFS curves outperform those selected by GA in terms

of recognition, computational speed and convergence. In

addition, while the best performing FSFS set had only 28

curves, the GA set contained 33 curves.

5.2. Classification performance

The recognition performance of the NCM algorithm is

evaluated using FRGC v2.0 dataset. In the experiments, the

feature vectors are formed by concatenating the 28 expres-

sion robust curves found by FSFS on the Bosphorus dataset

in the previous section, see Fig. 6. As before, all curves

are resampled to 50 points and each curve is normalized by

translating its maximum to zero.

Two scenarios are used to evaluate the NCM algorithm.

The first one is the all-vs.-all scenario, in which all of the

folders in the FRGC v2.0 dataset are merged. From the

merged folders 505 subjects with at least two samples are
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Figure 7: Cumulative match characteristic (CMC) curve for

the best feature sets found by FSFS and GA feature selec-

tion results.

selected giving a total of 4879 samples. The number of

training samples per class is varied from 1 to 12 and the

rank 1 classification performance of a variety of classifica-

tion methods found. The classification methods used are

PCA, linear discriminant analysis (LDA), Kernel-Fisher’s

analysis (KFA), direct CB distance calculation, multi-class

support vector machine (Multi-SVM) and bootstrap aggre-

gating decision trees (TreeBagger). The PCA, LDA and

KFA algorithms were implemented using the PhD tool-

box (Pretty helpful Development functions for face recog-

nition), while the Matlab’s Statistics Toolbox is used for the

SVM and TreeBagger classification. For the subspace clas-

sification methods, the final matching is performed using

the nearest neighbor CB distance calculation.

Figure 8 shows the rank 1 recognition results for the

all-vs.-all scenario. Matching using the direct calculation

of the CB distance produces the worst recognition perfor-

mance for ≥ 6 training samples. LDA and PCA project

the feature space to a 277-dimensional subspace. These

methods require a sufficient number of training samples per

class to be trained appropriately [2] and for low numbers

of training samples PCA fails to find the direction with the

highest variance properly. This problem is more severe for

LDA and is reflected in the low recognition rate for ≤ 5
training samples. However, as the number of training sam-

ples increases, the classification performance of these sub-

space projection techniques improves, in particular for LDA

whose peak recognition rate reaches 97.78% for 12 training

samples. To implement the multi-SVM classifier [13] the

one-vs.-all scenario is used to generalize SVM to a multi-

class classifier. Again for low number of iterations the

recognition performance is low but dramatically increases

with the number of training samples, up to 99.32% for 12

training samples. The TreeBagger classifier has the same

trend, rising form a low rank 1 recognition rate for a sin-
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Figure 8: The rank-one recognition results using different

numbers of training samples and classification methods.

gle training sample to 99.13% for 12 training samples. An

ensemble of 119 trees are aggregated for the tree classifier.

The issue of low training samples per class can be addressed

by using kernels for Fisher’s analysis [11]. Two kernels are

used, the fractional power polynomial (FPP) kernel [12] and

the polynomial (Poly) kernel. Figure 8 shows that both ker-

nels result in a significant improvement in the recognition

performance, with rank 1 rates of 82.58% and 79.01% for

the Poly and FPP kernels, respectively, increasing to 99.5%

for both kernels using 12 training samples.

The second scenario is based on the FRGC Experiment

3 [8]. The 3D samples in the Spring2003 folder, consisting

of 943 samples from 275 subjects, are used for training and

the other two folders are used for validation (4007 samples).

Here, the only difference with the original Experiment 3 is

that color or texture are not used so the NCM recognition al-

gorithm only uses the 3D information. Two different exper-

iments are performed: one using the neutral faces Fall2003

and Spring2004 folders as the probes and the other using

the non-neutral samples in the probe folders. The receiver

operating characteristic (ROC) curves and equal error rates

(EER) for both neutral and non-neutral probes are given in

Fig. 9 and Table 1, respectively. For the neutral probe im-

ages, KFA-Poly again produces the highest verification rate,

with an EER of 0.05, compared to 0.08 for both PCA and

direct nearest neighbor classification with the CB distance.

LDA results in the poorest verification, again due to its sen-

sitivity to few number of training samples.

When the non-neutral samples are used, the EER rate in-

creases for all classification techniques. KFA-Poly still has

the lowest EER at 0.18. Just above is the CB distance near-

est neighbor classifier at 0.19 which performs better than

PCA and LDA in this case. One reason for this could be
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Figure 9: ROC curve for the neutral (dashed line - N) and

non-neutral (solid line - V) samples.

Algorithm Matching Expression

Neutral Varying

NCM PCA 0.08 0.23

KFA-Poly 0.05 0.18

LDA 0.14 0.48

CB 0.08 0.19

Chang et al. [1] ICP 0.12 0.23

Table 1: EER found using Fig. 9.

that the CB distance has better discriminatory power when

the feature space is sparse as it uses the L1-norm [14]. For

comparison, the results of the nasal region facial verifica-

tion result reported by Chang et al. [1] are provided. This

work used the ICP algorithm for matching and the same

dataset for verification. Its EER was reported as 0.12 and

0.23 for neutral and varying probes [1], which are 0.07 and

0.05 higher than the NCM EER using the KFA-Poly classi-

fication.

The final evaluation in Table 2 compares the rank 1

recognition rates achieved by the NCM algorithm with other

nose region recognition results reported in the literature for

neutral and varying expression probes. The comparison

techniques and the results reported in the table are described

in [1], [3], and [4]. When the size of the dataset is taken in

to account, the NCM algorithm outperforms the other 3D

nose recognition algorithms.

6. Summary and discussion

A new 3D face recognition algorithm using the shape of

the nose region is proposed. The motivation for using the

nose region is its relative invariance to variations in expres-

sions. At the heart of the methods is a robust landmarking

algorithm which is used to define 16 landmarks on the nose

surface around the edge of the nose. By taking the land-

marks in pairs, a set of 75 curves on the nose surface are

generated and these form the feature set for matching. FSFS
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Reference Dataset Expression

Neutral Varying

Chang et

al. [1]

FRGC v2.0 77.7% (PCA)

91% (ICP)

61.3% (PCA)

61.5% (ICP)

Drira et al.

[4]

FRGC subset,

125 subjects

N/A 77%

(Geodesic

contours)

Dibeklioğlu

et al. [3]

Bosphorus, 33

training sam-

ples/subject of

105 subjects

N/A 94.1% (ICP)

NCM FRGC v2.0 90.10%

(KFA-Poly)

87.13%

(KFA-FPP)

80.01%

(KFA-Poly)

70.74%

(KFA-FPP)

Table 2: A comparison of NCM to some other nasal region

recognition papers in the literature.

is applied to the feature set and 28 nasal curves that produce

a robust performance over varying expressions are selected.

These curves are used for verification and authentication

scenarios, using a selection of classification algorithms. Re-

sults are obtained from two well-known 3D face dataset,

FRGC v2.0 and Bosphorus dataset, show a high classifi-

cation performance with low EER. Comparison with other

reporting recognition results for the nasal region shows the

high potential of our approach.

The current work can be extended in many aspects. Fus-

ing the proposed feature space with the holistic facial fea-

tures such as depth, Gabor wavelets or local binary patterns

(LBP), has the potential for increasing the recognition per-

formance. In addition, the NCM algorithm could also be

used as a robust pattern rejector, to robustly reject many

faces after computing their nasal region recognition ranks,

hence reducing the complexity when very large datasets are

used. Finally, the improvement in performance resulting

from the fusion of NCM with baseline algorithm such as

the Eigenfaces, Fisherfaces or ICP is an interesting exten-

sion of the work.
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