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With the advent of the mobile network, the fusion of cloud computing and fog computing is becoming feasible to promise lower
latency and short-fat connection. However, there are a lot of redundant cloud-aware services with identical functionalities but
a di�erent quality of service (QoS) in the fog cloud environment. In fact, since QoS information is stored in distributed fog
servers rather than remote cloud, it is hard for individuals to make recommendation and selection with sparse QoS information.
Collaborative 	ltering is an important method for the sparsity problems and has been widely adopted on the prediction of
missing QoS values. Focusing on the fact that existing researchers o
en ignore the QoS �uctuation in a wide range in the fog
cloud environment, a novel neighbor-based QoS prediction method is proposed for service recommendation, in which a concept
and calculation method is put forward to describe the stable status of services and users with quanti	able QoS values, and a
NearestGraph algorithm is further designed to recognize stable or unstable candidate along with their popularity by a nearest
neighbor graph structure which can help to make missing QoS values prediction in a certain order to improve 	nal prediction
accuracy. Experimental results con	rm that the proposedmethod is e�ective in predicting unknownQoS values in terms of service
recommendation accuracy and e�ciency.

1. Introduction

As the development of mobile Internet and agility of dis-
tributed system services [1, 2], cloud computing is migrating
to the fusion of cloud and fog computing since fog computing
is able to better satisfy demands on lower latency and short-fat
connection. At present, the composed distributed system [3]
is becoming the main solution accepted by the majority [4].
However, a wide range of cloud-aware services is produced
to cater for the fog cloud environment. In this situation,
mobile users o
en feel confused to select proper cloud-aware
services due to the appearance of redundant cloud-aware
serviceswith identical functionalities but a di�erent quality of
service (QoS) [5, 6]. Recommender systems are designed to
address the suitable matching problemwithmobile users and
cloud-aware services under information overload.

�e key to cloud-aware service selection and recommen-
dation is QoS [7]. QoS is de	ned as a set of properties of
speci	c cloud-aware services such as response-time, through-
put, reputation, and the like, which is treated as an important

criterion to distinguish among di�erent functionally equiva-
lent services [8]. In the fog cloud environment, QoS informa-
tion is normally collected and stored in various fog servers,
instead of being transferred to the remote cloud directly, due
to the big volume of data and heavy transmission cost. In this
situation, QoS information is always distributed but not cen-
tralized [9], whichmeansQoS information is o
en sparse and
unavailable for mobile users.�erefore, motivated bymaking
an e�ective recommendation, it is a feasible way to complete
missing QoS values by making predictions.

In fact, all roles in the fog cloud environment have the
motivation to predict QoS before their assignments. A typical
example of the fog cloud environment [10–12] is shown in
Figure 1, which includes three roles, service user, service
broker, and service designer.�e same problem is happening
to each role on how to manage cloud-aware services with
high-quality performance. For example, service users expect
more quali	ed services which respond more quickly while
meeting basic functions. In general, it is necessary for the
three roles in the fog cloud environment to predict QoS
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Figure 1: �e architecture of fog cloud environment: each role wants to manage a cloud-aware service with “good” performance, especially
QoS. However, QoS information is sparse and o
en varies among di�erent roles. QoS prediction can achieve the goal of 	nding “good”
performance through the analysis of historical QoS information.

values due to the following reasons: (1) service user can only
get a limited number of QoS values caused by time-and-
money-consuming QoS invocation, which makes it di�cult
for cloud-aware service recommender tomake a decision, (2)
service broker always has a strong desire to manage cloud-
aware services with good performances, and (3) service
designer needs to deploy cloud-aware services that satisfy
QoS constraints to avoid punishment. �erefore, QoS pre-
diction is a critical issue for cloud-aware service deployment,
selection, and recommendation.

At present, the studies on QoS prediction have made
certain progress in recent years. Many scholars prefer to “	ll”
the unknownQoS values through historical QoS information
and formulate it as amatrix completion problem [13]. Chen et
al. [14] take user-service geographical location into account to
improve prediction accuracy.Wang et al. [15] introduce more
QoS values a�ecting aspects such as time and location. Wu et
al. [16] answer this problem by considering the relationship
between similarity and candidate’s consistency. Some other
researchers devote them to 	nding solutions on how to
improve the poor credibility of a fog cloud environment. Tang
et al. [17] apply the trust concept for cloud-aware service QoS
prediction. Su et al. [18] make a prediction for missing QoS
values based on the trust relationship.

However, to the best of our knowledge, there is still a
lack of research e�orts explicitly targeting on the �uctuation
of QoS values related to mobile users’ status and services’
status. In a highly dynamic Internet environment, QoS values
of cloud-aware services o
en �uctuate in a large range due
to the variety of users’ mobile networking environments

and physical distance between mobile users and fog servers.
�ere is a current situation that some services perform more
“unstable” according to a study on the real world QoS[19].We
select two services in random which is invoked by 339 users
and draw their QoS values distribution as shown in Figure 2.
We all feel service � in blue is more unstable compared with
service � in orange intuitively in Figure 2. �erefore, we can
conclude that a cloud-aware service with a wide QoS range
performance is not of general applicability and should not be
recommended to other users since it is di�cult to make an
accurate prediction when candidate services with “unstable”
performance are employed.

In this paper, the problemofQoS prediction is formulated
to leverage historical QoS information. Inspired by the fact
of QoS �uctuation, we propose a novel neighbor-based QoS
prediction algorithm under the assumption that QoS values
have a close relation with services and users in the fog cloud
environment. In our approach, a concept and quantization
method is put forward to represent the stable status of services
and users in the fog cloud environment. And a graph struc-
ture is adopted to recognize stable or unstable candidate and
to expose their popularity at the same time. Based on this, a
NearestGraph method is used to generate an optimal predic-
tion order to get the higher prediction accuracy.

�e remainder of this paper is organized as follows.
Section 2 introduces related works of QoS prediction and
existing methods. Section 3 presents our proposed QoS
predictionmethod for cloud-aware service recommendation.
Section 4 provides our experimental results and the details
of our experimental implementation. Section 5 sets out our
conclusion and looks forward to future works.
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Figure 2: Dataset visualization.

2. Related Works

At present, there are a lot of e�orts and results devoted to
tackling the issue of QoS prediction. Initially, scholars adopt
static methods to make a QoS prediction. Static methods use
the arithmetic average value for prediction, including average
QoS value from global, user, and service, respectively. �ese
methods are simple and easy to implement, disregarding the
situation-aware factors of users and services. Moreover, these
static methods cannot re�ect the dynamic properties of QoS
values, which are leading to greater prediction error between
predicted and actual values according to our experimental
results in Section 4.

Motivated by the success of traditional recommender
systems, existing works on QoS prediction in the fog cloud
environment is usually based on collaborative 	ltering. Col-
laborative 	ltering (CF) methods are widely used to rate
prediction in recommender systems. It exploits the similarity
between users’ experiences to predict user preference on
unknown items. �e intuitive idea is to identify “similar”
users with the active user and to predict the active user’s
preference based on these similar users’ feedback. CF can
be further divided into two main categories: model-based
method and neighbor-based method.

Model-basedmethodmakes a prediction from the known
QoS values by learning a predictive model [20]. Observed
values are used to learn two matrices which are the basis
to calculate similarities among users. However, model-based
method su�ers from the ignorance of the low-rank structure
of real world user-service matrices [21]. �e main idea of
the model-based method is based on matrix completion,
in which the key is to exploit the low-rank structure of
the user-service matrix. Lee et al. [22] present an algorithm
for nonnegative matrix factorization indicating that there
is only a small number of factors in�uencing the service
performance. Some scholars think QoS has strong relation
with time and put forward an online prediction. Zhu et al.
[23] propose a method for running cloud-aware service to
predict its QoS value.

�e neighbor-based method uses QoS values of similar
users or services to make QoS predictions directly. Shao et al.
[24]	rst introduce a collaborative 	ltering approach for sim-
ilarity mining and inference based on historical QoS infor-
mation in the user-service matrix.�ey perform positive and
negative user similarity calculations separately and integrate
them using a weighted mean equation. Zhu et al. [25]give a
QoS prediction approach based on multidimension, which
takes timing constraints, QoS, throughput, fairness, and load
balancing into account. Zheng et al. [5] propose a novel QoS
ranking prediction model with the consideration of di�erent
cloud users having di�erent preferences for di�erent QoS
attributes values.

In this paper, we mainly focus on the neighbor-based
collaborative 	ltering since it is simple to implement and the
prediction results are o
en easy to explain. �e prediction
accuracy of the neighbor-based method is highly in�uenced
by the available similar candidates. Similar candidates play
an e�ective role in QoS prediction phase mainly since they
come from similar computation and assign more or less
importance to the target in the prediction. However, the
sparsity of QoS information always degrades the accuracy
of QoS prediction. In our proposed approach, we address
this challenge by introducing graph structure to expose
candidate’s own popularity.

3. NearestGraph QoS Prediction

In this section, the problem of QoS prediction is described
and formulated in Section 3.1. A
er that, both user-user
similarity and service-service similarity are computed in
Section 3.2 to select neighbors. Our NearestGraph algorithm
is presented in Algorithms 1 and 2 to predict missing QoS
values at last.

3.1. Problem Description. In this paper, the problem of QoS
prediction is described as follows: considering a fog cloud
environment with � users and � cloud-aware services, the
QoS of � cloud-aware services rated by� users is represented

as an � × � matrix �. �e entry ��,� ∈ R
� is a 	-dimensional
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Input: usrG: user nearest neighbor graph; �: user-service matrix
Output: 
��� �(�): prediction order for user-based CF
1: 
��� �(�)=[ ];
2: for each � ∈ [0, usrG.vertices] do //add property usrWeight, usrIndegree to a graph usrG=(usrID,usrEdge)
3: usrG←usrWeight given by Eq.(6);
4: usrG←usrIndegrees given by usrG.inDegrees;
5: end for
6: repeat
7: select usrID from usrG.vertices where usrG.vertices.Weight.max in {select ∗ from usrG.vertices where

usrG.vertices.Indegree.min};
8: 
��� �(�).append(usrID);
9: usrG←usrIndegrees given by usrG.inDegrees;
10: until usrG.vertices.count is 0

Algorithm 1: NearestGraph algorithm for 
��� �.
Input: usrG: service nearest neighbor graph; �: user-service matrix
Output: ��V� �(�): prediction order for service-based CF
1: ��V� �(�)=[];
2: for each � ∈ [0, serG.vertices] do //add property serWeight, serIndegree to a graph serG=(serID,serEdge)

3: serG←serWeight given by Eq.(7);
4: serG←serIndegrees given by serG.inDegrees;
5: end for
6: repeat
7: select serID from serG.vertices where serG.vertices.Weight.max in {select ∗ from serG.vertices where
serG.vertices.Indegree.min};

8: ��� �(�).append(serID);
9: serG←serIndegrees given by serG.inDegrees;
10: until serG.vertices.count is 0

Algorithm 2: NearestGraph algorithm for ��� �.
vector representing the QoS values of 	�ℎ criteria. Let � ={
1, 
2, . . . , 
�, . . . , 
�}, � ∈ {1, 2, . . . , �} be the set of� users,
let � = {�1, �2, . . . , ��, . . . , ��}, � ∈ {1, 2, . . . , �} be the set of n
cloud-aware services, Ω is set of all tuples {�, �}, and Λ is set
of all unknown tuples (�, �), ��,� = ⌀.�en the missing infor-
mation {��,� | (�, �) ∈ Λ} is 	lled based on the existing infor-
mation {��,� | (�, �) ∈ Ω−Λ}.�e order of 	lling in the matrix� is expressed as ���,� ∈ Λ, � ∈ (1, |Λ|) and there is an optimal
order � to satisfy the higher accuracy.

Figure 3 shows amatrix� formed by� users and � cloud-
aware services. �e shaded part of the matrix indicates the
user has invoked the cloud-aware service and has rated the
corresponding QoS value. �e blank part indicates the user
has not invoked the cloud-aware service and the QoS values
need to be predicted. �e objective of the missing QoS value
prediction is to make the user-service matrix denser within
certain iteration phases [26].

Due to analysis of real world QoS datasets, QoS values
can vary widely and are highly skewed with large variances
that degrade the accuracy of prediction. Without loss of
generality, we apply the following function to QoS data in
order to map QoS values onto the interval (0, 1).

��,� = ��,� − ������	
 − ���� (1)

where ���� and ��	
 are the minimum and maximum QoS
values, respectively.

3.2. Neighbors Selection. We can 	nd the neighborhood
similarities of users and services by employing Pearson Cor-
relation Coe�cient (PCC). PCC is widely used in neighbor-
based recommendation systems for similarity computation
and proved to have high accuracy. In this paper, we adopt
an enhanced-PCCmethod proposed by Zheng for the neigh-
borhood similarity computation on both sets of users and
services. �e similarity between two users � and � is de	ned
by the following equation:

sim (�, �)
= 2 × �����	 ∩ �����������	���� + ����������
× ∑�∈(�∩�) (�	,� − �	) (��,� − ��)√∑�∈(�∩�) (�	,� − �	)2√∑�∈(�∩�) (��,� − ��)2

(2)

where sim(�, �) falls into the interval [−1, 1], |�	 ∩ ��| is the
number of cloud-aware services that are invoked by the two
users, and |�	| and |��| are the number of cloud-aware services
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Figure 3: Prediction problem formulation.

invoked by user � and user �, respectively. �	,� is a vector of
QoS values of cloud-aware service � observed by user � and�	 represents the average QoS values of di�erent cloud-aware
services observed by user �.

Similar to the user similarity computation, we also
employ enhanced-PCC to compute the similarity between
cloud-aware service � and  as follows:

sim (�,  ) = 2 × ������
 ∩ ������������
���� + ������������
× ∑�∈(��∩��) (��,
 − �
) (��,� − ��)
√∑�∈(��∩��) (��,
 − �
)2√∑�∈(��∩��) (��,� − ��)2

(3)

where sim(�,  ) falls into the interval [−1, 1], |�
 ∩��| is the
number of users who invoked both cloud-aware services �
and  previously, and |�
| and |��| are the number of users
who invoked cloud-aware services� and , respectively. ��,
 is
a vector of QoS values of user 
when he invokes cloud-aware
service � and �
 represents average QoS values of di�erent
users when they invoke cloud-aware service �.

A
er the similarity computations, we can get the user
similarity matrix and the service similarity matrix. At the
same time, we can also identify their neighbors by similarity
values in the ascending order. Traditional top-K algorithms
select the top 	 most similar neighbors for making missing
value prediction. In practice, some neighbors with negative
similarity values could greatly decrease the prediction accu-
racy. In this paper, we exclude dissimilar neighbors with
negative enhanced-PCC values. We employ the following
equation to 	nd a set of proper similar users for user � as Ψ�:Ψ� = {
� | sim (�, 	) > 0, rank� (	) ⩽ ', 	 ̸= �} (4)

where rank�(	) is the ranking position of user 	 in the
similarity neighbors of user � and ' indicates the lowest
ranking position manually.

In the same way, we can get the set of proper similar
cloud-aware services for cloud-aware service � as Φ�:

Φ� = {�� | sim (�, 	) > 0, rank� (	) ⩽ ', 	 ̸= �} (5)

where rank�(	) is the ranking position of cloud-aware service	 in the similarity neighbors of cloud-aware service � and '
indicates the lowest ranking position manually.

3.3. Predicting Missing QoS Values with NearestGraph. A
er
user neighbors selection, we 	nd an interesting fact that
some users or services are relatively “popular” to others. For
example, user 7 is on the top-1 similarity ranking position
of user 8. It also happens to user 9 when user 7 ranks top-
1 in user 9’s similar neighbors. User : and User ; may be
confronted with the same situation. �is is not an occasional
case but happens for most similar neighbors. In order to
expose this kind of popularity of users or services, we con-
struct a directed graph by nearest neighbor graph as shown
in Figure 4.

In Figure 4, a user is represented by usrG=(usrID,
usrEdge), in which usrID labels a user and usrEdge
shows the relationship between the user and his most similar
neighbor-a directed edge will line from a user to his most
similar neighbor. �erefore, the indegree of a vertex in our
nearest neighbor graph indicates the degree to which other
vertices are in favor of this vertex. A vertex with larger
indegree means it is very “popular” and will have a higher
in�uence on other vertices. It can be understood as the
relationship between celebrities and fans in social networking
sites. A celebrity who has more fans means greater appeal,
which reveals the greater in�uence at the same time. Similar
method can be used to represent cloud-aware service by
servG=(servID, servEdge), in which servID labels a
service and servEdge shows the relationship of a service and
his most similar neighbor.

Furthermore, to re�ect the stability of di�erent users
and cloud-aware services as shown in Figure 2, a concept of
candidate stability is also proposed. We employ the following
equation to describe the stability of user’s status.

stability (�) = ∑
∈� (�	,
 − �	)�����	���� × �	 (6)

Similarly, we can describe the stability of cloud-aware
service’s status as follows.

stability ( ) = ∑�∈�� (��,� − ��)������������ × �� (7)

where a smaller value of stability will indicate a more stable
status.

In order to introduce the stability of users or
services, we further extend above nearest neighbor graph
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Figure 4: Nearest neighbor graph: we found that, in the sets of most similar neighbors for di�erent users, some users tended to appear
frequently.

to usrG=(usrID, usrWeight, usrEdge) and servG=
(servID, servWeight, servEdge), respectively, inwhich
usrWeigh is the stability of user’s status and servWeigh is
the stability of service’s status.

In this paper, we believe both popularity and stability will
play an important role in QoS prediction and should be used
to obtain better prediction accuracy. �erefore, we propose
an algorithm called NearestGraph to achieve this goal, which
can generate an optimal prediction order by nearest neighbor
graph based on di�erent popularity and stability. �e main
strategies of NearestGraph are the following three key points.

(1) Select the usrID with the minimum indegree.

(2) Select the usrID with the maximum weight if more
than one vertex has the same indegree.

(3) Select the usrID with the minimum dictionary order
if more than one vertex has the same indegree as well
as weight.

�e reason why we use those three rules comes from two
facts: (1) those vertices with larger indegree, which means
they are more popular, will a�ect more users and should
be kept longer in our nearest neighbor graph to make full
use of their important in�uence; (2) those vertices with
larger weight, which means they are more stable, will have
more positive impact on QoS prediction and should be kept
longer in our nearest neighbor graph to make full use of
their important in�uence. Now we take an example, shown
in Figure 5, to illustrate the process of our NearestGraph
algorithm.

Phase (a) is the initial state of nearest neighbor graph
in which a property of vertex called weight is introduced
to represent the status of stability and the directed edge is
used to show the relationship between the user and his most
similar neighbor. For example, vertex V5 with weight 0.42
means it is more stable than vertex V2 with weight 0.40,
and vertex V1 pointing to vertex V2 expresses V2 is the most
similar neighbor of V1. �en we will decide which vertex will

be predicted according to the weight and indegree shown
in nearest neighbor graph. According to No. 1 strategy of
NearestGraph, V1 will be predicted 	rst since it has minimum
indegree. In the next phase (b), there are two vertices with
the same indegree a
er applying No. 1 strategy. Here No. 2
strategy can help us to make a decision in such a situation. V5
should be predicted in phase (b) for its high stability. �en
we loop through the three-key-point strategies to obtain a
complete prediction order until there is only one vertex le

in the graph structure. We can get a prediction order 
��� �:
V1 ⇒ V5 ⇒ V2 ⇒ V4 ⇒ V3 ⇒ V7 ⇒ V6 in this example.
�e details of our NearestGraph algorithm for 
��� �(�) are
as Algorithm 1.

Based on the prediction order generated by Algorithm 1,
user-based method employs the values of entries to predict
the missing entry ��,� in the user-service matrix as follows:

���,� = �� + ∑
�∈Ψ�

sim (
�, 
�)∑	∈Ψ� sim (
�, 
	) × (��,� − ��) ,
(�, �) ∈ {(Ω − Λ) ∩ 
��� �}

(8)

where �� and �� are the average existence QoS values of
di�erent cloud services rated by 
� and 
�, respectively.

We can also give the prediction order for ��V� �(�) in a
similar way as shown in Algorithm 2. And the values from
service prediction order are correspondingly employed for
prediction in service-based method as follows:

��,� = �� + ∑
�∈Φ�

sim (��, ��)∑	∈Φ� sim (��, �	) × (��,� − ��) ,
(�, �) ∈ {(Ω − Λ) ∩ ��V� �}

(9)

where �� and �� are the average existence QoS values of �� and�� rated by di�erent users, respectively.
In this paper, both user-based and service-based

approaches are adopted as follows:

�∗�,� = @ × ��,� + (1 − @) × ���,� (10)
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Figure 5: NearestGraph process.

�e mixed approach can help us to get much more missing
QoS values and therefore can improve the accuracy of predic-
tion. �e parameter @ controls how much fusion proportion
of these two methods and can be trained on a sample dataset
from the real world.

�e complete QoS prediction algorithm is summarized in
Algorithm 3.

4. Experiment

In this section, we evaluate the e�ectiveness of our proposed
method on a distributed and parallel platform, Spark system.
Section 4.1 introduces two typical metrics to assess the
prediction accuracy. �e comparison experiments on the
prediction accuracy are conducted with di�erent baseline
algorithms in neighbor-based CF 	elds in Section 4.2 and
three key parameters of NearestGraph on the prediction
accuracy are further demonstrated in Sections 4.3, 4.4, and
4.5. All the experiments are conducted by using 4 PCs with
i5-4460 CPU and 16G RAM as our hardware platform.

We evaluate theQoS prediction accuracy of our proposed
method based on a real world QoS dataset which is widely
used to evaluate the performance of QoS prediction. It
contains response-time (response-time measures the time
duration between user sending a request and receiving a

response) and throughput (throughput stands for the data
transmission rate of a user invoking a service) of 5828 services
invoked by 339 distributed computers located in 30 countries
from PlanetLab. According to statistics of this QoS dataset as
shown in Table 1, the range of response-time and throughput
are 0−20 s and 0−1000 kbps, respectively, and the means of
response-time and throughput are 0.910 s and 47.386 kbps,
respectively.

�ere are 100837 QoS records about response-time prop-
erty and 143422 QoS records about throughput property in
this QoS dataset. �e corresponding user-service matrices
on both these two QoS properties have some entries with
the value of -1, which means the current QoS value cannot
be obtained or the service is unreachable in the real world.
�erefore, the entries with the value of -1 are where we need
to predict in the matrix.

4.1. Metrics. To evaluate the performance of our proposed
NearestGraph method, we compare its prediction accuracy
with some neighbor-based CF methods by computing mean
absolute error (MAE) and root-mean-square error (RMSE),
which is to calculate the errors between predicted values and
real values. �e metric MAE is de	ned as

A87 = ∑�,� �������,� − �∗�,������B (11)
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Input: �: user-service matrix; ': lowest ranking position; @: degree of fusion prediction results
Output: �∗
1: for all (�, �) ∈ Ω − Λ do
2: compute the similarity sim(
�, 
�) by Eq.(2)
3: compute the similarity sim(��, ��) by Eq.(3)
4: end for
5: for all (�, �) ∈ Ω − Λ do
6: similar user set Ψ� by Eq.(4)
7: similar service set Φ� by Eq.(5)
8: end for
9: Learn 
���� by applying Algorithm 1
10: Learn ��V�� by applying Algorithm 2
11: for all (�, �) ∈ Λ do

12: compute ���,� by Eq.(8)
13: compute ��,� by Eq.(9)
14: 	ll by Eq.(10)
15: end for

Algorithm 3: QoS prediction algorithm.

Table 1: Statistics of QoS dataset.

Statistics Response-Time(seconds) �roughput(kbps)

Value Range (0,20) (0,1000)

Mean 0.910 47.386

Median 0.3320 11.07

Standard Variance 1.9320 107.4093

User Num 339 339

Service Num 5828 5828

Records Num 1974675 1974675

and RMSE is de	ned as

�A�7 = √∑�,� (��,� − �∗�,�)2B (12)

where ��,� is the QoS value of cloud-aware service �� observed
by user 
�, �∗�,� is QoS value of cloud-aware service �� that
would be observed by user 
� as predicted by a method, andB is the number of predicted QoS values. According to the
de	nitions, the smaller value of metric indicates the higher
accuracy of prediction.

4.2. Performance Comparison. In this part, we conduct an
overall comparison experiment on ourNearestGraphmethod
and some baseline algorithms in neighbor-based CF 	elds on
both MAE and RMSE. �ey are listed as follows:

UMean: mean QoS values obtained by a user are used to
predict the missing QoS value which has not been obtained
by this user.

IMean: meanQoS values obtained by all users are used to
predict the missing QoS value which has not been obtained
by some users.

UPCC: it is a user-based collaborative 	ltering method,
which uses similar users calculated by Pearson Correlation
Coe�cient to make a prediction [24].

IPCC: it is an item-based collaborative 	ltering method,
which uses similar items calculated by Pearson Correlation
Coe�cient to make a prediction [27].

WSRec: it is a hybrid collaborative 	ltering method that
combines IPCC and UPCC and uses both similar users and
similar services for QoS prediction [5].

In order to simulate the users’ invocation of cloud-
aware services in the real world, we remove some entries
from user-service matrix in random and compare their
values with predicted ones. For example, 10% represents that
we randomly remove 90% entries and use the remaining
10% entries to predict the values of removed entries. �e
parameter settings of NearestGraph are �DE − ' = 10 and@ = 0.5 in the experiments.

Experiment results are shown in Table 2. We highlight
the best performance of all methods for each row in Table 2.
We can easily see from Table 2 that NearestGraph always
obtains the minimumMAE and RMSE of response-time and
throughput almost for all di�erent matrix densities, which
means it can improve the prediction accuracy. Moreover,
with the value of matrix density increasing from 10% to
30%, the MAE and RMSE of NearestGraph method become
smaller and smaller since a denser matrix will provide more
information for the missing QoS value prediction.

Comparing the MAE and RMSE of response-time and
throughput in Table 2, we can also 	nd that the MAE and
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Table 2: Performance comparisons.

Matrix
Metrics

Response-Time (seconds)

Density(%) UMean IMean UPCC IPCC WSRec NearestGraph

10
MAE 0.8785 0.7015 0.6761 0.6897 0.6679 0.6643

RMSE 1.8591 1.5813 1.4078 1.4296 1.4053 1.4027

20
MAE 0.8768 0.6867 0.5517 0.5917 0.5431 0.5104

RMSE 1.8548 1.5342 1.3151 1.3268 1.2986 1.2785

30
MAE 0.8747 0.6818 0.5159 0.5037 0.4927 0.4723

RMSE 1.8557 1.5311 1.2680 1.2252 1.1973 1.1246

Matrix
Metrics

�roughput(kbps)

Density(%) UMean IMean UPCC IPCC WSRec NearestGraph

10
MAE 54.0084 29.2651 26.1230 29.2651 24.3285 24.3269

RMSE 110.2821 66.6334 63.9573 64.2285 64.1908 63.5435

20
MAE 53.6768 27.3393 24.2695 26.8318 22.7717 21.7493

RMSE 110.2977 64.3986 54.4783 60.0825 54.3701 52.8731

30
MAE 53.8792 26.6239 23.7455 26.4319 21.3194 19.6530

RMSE 110.1751 64.3986 54.4783 57.8593 51.7768 50.5765

RMSE of response-time are larger than those of throughput
which means NearestGraph performs better on throughput
property than on response-time property. Taking the matrix
density of 30% as an example, we can calculate the MAE
improvements of NearestGraph over WSRec, respectively.
For the response-time property, the MAE improvement is((1.1973 − 1.1246)/1.1973) × 100% = 4.14%, while for the
throughput property, the MAE improvement is ((21.3194 −19.653)/21.3194) × 100% = 7.82%. �at con	rms that our
proposed method focuses on facts of the QoS �uctuation and
can make a better performance in a wide range of QoS values
(just like the range of throughput is 0-1000 kbps and the range
of response-time is only 0-20 s).

4.3. Impact of Matrix Density. In order to explore the impact
of matrix density, we compare the prediction accuracy of all
the methods under di�erent matrix densities and present the
results in Figure 6. �e density of the matrix increases from
10% to 30% with a step of 10%.�e parameter settings in this
experiment are �DE − ' = 10 and @=0.5.

�e MAE and RMSE results of response-time are shown
in Figures 6(a) and 6(b) and the MAE and RMSE results
of throughput are shown in Figures 6(c) and 6(d). In
these 	gures, the green line NearestGraph stands for is
always below any other lines, which means our proposed
NearestGraph method gets the smallest values of MAE and
RMSE under di�erent matrix densities. Moreover, we can
observe that the performance of our NearestGraph method
improves with the increase of matrix density, which indicates
that collecting more QoS information will greatly enhance
prediction accuracy when the matrix is sparse.

4.4. Impact of @. �e parameter @ here controls how much
fusion proportion of user-based and service-basedmethod. A
larger value of @ means user-based approach will contribute
more to the hybrid prediction. In Figure 7, we study the
impact of parameter @ in the proposedNearestGraphmethod

on prediction accuracy by varying the values of @ from 0 to 1
with a step of 0.1 under the condition of �DE − '=10.

Figures 7(a) and 7(b) show theMAE and RMSE results of
response-time and throughput, respectively. �e prediction
accuracies increase when we increase the value of @ at 	rst.
But when @ surpasses a certain threshold, the prediction
accuracy decreases with the further increase of @. From
Figure 7, we can also 	nd that NearestGraph gets the best
performance when @ ∈ [0.4, 0.7].
4.5. Impact of LDE − '. �e parameter �DE − ' determines
the size of candidates sets including similar users and similar
services. In Figure 8, we study the impact of parameter�DE−' in the proposed NearestGraph method on prediction
accuracy by varying the values of �DE −' from 2 to 20 with a
step of 2 under the condition of @=0.5.

Figures 8(a) and 8(b) represent the MAE and RMSE
results of response-time and throughput, respectively. �e
experimental results show that ourNearestGraphwill achieve
best prediction accuracy (minimum MAE and RMSE) when�DE − ' is set around 10. �is is because too small �DE −' value will exclude useful information from some similar
candidates, while too large �DE−' value will introduce noise
from dissimilar candidates, which will impact the prediction
accuracy.

5. Conclusion and Future Work

In the fog cloud environment, to reduce the data transmission
cost frommobile users to the cloud, QoS information is o
en
	rst handled by distributed fog servers instead of being sent to
a remote cloud directly. However, such a cross-platform data
distribution will lead to the sparsity of QoS information for
service recommendation. Focusing on the fact that existing
researches on missing QoS value prediction o
en ignore the
QoS �uctuation in a wide range especially in the fog cloud
environment, we propose a novel QoS prediction method by
using NearestGraph algorithm for service recommendation.
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Figure 6: Impact of matrix density.

�e key point of our approach proposed on the neighbor-
based method is the construction of nearest neighbor graph
which is designed to expose stable and popular candidates,
and the choice of making prediction in a certain order, which
applies priorities to di�erent candidates instead of traversing
candidates in random to promote the 	nal accuracy.�rough
a set of experiments on a real world distributed service
quality dataset WS-DREAM for stimulating the fog cloud
environment, we validate the feasibility of our method in
terms of service recommendation accuracy and con	rm the
motivation that NearestGraph can get a good performance in
large �uctuation of QoS properties. In summary, the paper
makes the following key contributions:

(1) We emphasize the fact of real world QoS values
�uctuation in a wide range and take it into account
to solve the inaccuracy of predicting missing values.

(2) We reveal the inner features of candidates behind
neighbors and take their outer characteristic, stability,
and popularity, in the fog cloud environment by
constructing the nearest neighbor graph.

(3) Graph structure is employed to develop prediction
order and enhance prediction accuracy.

Currently we predict the values of di�erent QoS attributes
separately. Andwe are going to investigate on the correlations
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Figure 8: Impact of �DE − '.
and combinations on the QoS attributes in the future. Fur-
thermore, we will use time series analysis for prediction and
extend NearestGraph to describe accurate user and service
status in the fog cloud environment.
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[8] D. A. Menascé, “QoS issues in web services,” IEEE Internet
Computing, vol. 6, no. 6, pp. 72–75, 2002.

[9] X.Wu, “Context-aware cloud service selectionmodel formobile
cloud computing environments,”Wireless Communications and
Mobile Computing, vol. 2018, pp. 1–14, 2018.

[10] Y. Zhao, Z. Li, and X. Chu, QoS Prediction for the Cloud Service
Marketplace: A Grassmann Manifold Approach, IEEE, 2015.

[11] F. Liu, J. Tong, J. Mao et al., “NIST cloud computing reference
architecture,” National Institute of Standards and Technology
NIST SP 500-292, 2011.

[12] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of the 1st
ACMMobile Cloud ComputingWorkshop, MCC 2012, pp. 13–16,
August 2012.

[13] M. B. Senturk, “inMission Critical Communication Networks,”
in Mission Critical Communication Networks, vol. 76, 2014.

[14] X. Chen, Z. Zheng, Q. Yu, and M. R. Lyu, “Web service
recommendation via exploiting location andQoS information,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 7, pp. 1913–1924, 2014.

[15] X. Wang, J. Zhu, Z. Zheng, W. Song, Y. Shen, and M. R. Lyu,
“A spatial-temporal qoS prediction approach for time-aware
web service recommendation,” ACM Transactions on the Web
(TWEB), vol. 10, no. 1, article 7, pp. 1–25, 2016.

[16] X. Wu, B. Cheng, and J. Chen, “Collaborative Filtering Service
Recommendation Based on a Novel Similarity Computation
Method,” IEEE Transactions on Services Computing, vol. 10, no.
3, pp. 352–365, 2017.

[17] M. Tang, X. Dai, J. Liu, and J. Chen, “Towards a trust evaluation
middleware for cloud service selection,” Future Generation
Computer Systems, vol. 74, pp. 302–312, 2017.

[18] K. Su, B. Xiao, B. Liu, H. Zhang, and Z. Zhang, “TAP: A
personalized trust-aware QoS prediction approach for web
service recommendation,” Knowledge-Based Systems, vol. 115,
pp. 55–65, 2017.

[19] G. White, A. Palade, C. Cabrera, and S. Clarke, “Quantitative
Evaluation of QoS Prediction in IoT,” in Proceedings of the
47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops, DSN-W 2017, pp. 61–66, usa,
June 2017.

[20] Q.Yu, “CloudRec: a framework for personalized serviceRecom-
mendation in the Cloud,” Knowledge and Information Systems,
vol. 43, no. 2, pp. 417–443, 2015.

[21] C. Bauckhage, “k-Means Clustering Is Matrix Factorization,”
2015, https://arxiv.org/abs/1802.07891.

[22] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in Proceedings of the 13th International
Conference onNeural Information Processing Systems (NIPS’ 00),
pp. 535–541, MIT Press, Denver, Colo, USA, 2000.

[23] J. Zhu, P. He, Z. Zheng, and M. R. Lyu, “Online QoS Prediction
for Runtime Service Adaptation via Adaptive Matrix Factoriza-
tion,” IEEETransactions on Parallel andDistributed Systems, vol.
28, no. 10, pp. 2911–2924, 2017.

[24] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei,
“Personalized QoS prediction for web services via collaborative
	ltering,” in Proceedings of the IEEE International Conference on
Web Services (ICWS ’07), pp. 439–446, IEEE, Salt Lake City,
Utah, USA, July 2007.

[25] X. Zhu and P. Lu, “AMulti-Dimensional scheduling scheme for
QoS-Aware Real-Time Applications on heterogeneous clusters,”
in Proceedings of the 10th IEEE International Conference on High
Performance Computing and Communications, HPCC 2008, pp.
205–212, chn, September 2008.

[26] Y. Zhang and M. R. Lyu, QoS Prediction in Cloud and Service
Computing, SpringerBriefs in Computer Science, Singapore,
Singapore, 2017.

[27] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based col-
laborative 	ltering recommendation algorithms,” inProceedings
of the 10th International Conference onWorldWideWeb (WWW
’01), pp. 285–295, 2001.

https://arxiv.org/abs/1804.01796
https://arxiv.org/abs/1804.01796
https://arxiv.org/abs/1802.07891


International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

