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Abstract

HIV molecular epidemiology studies analyse vpal gene sequences due to their availability,
but whole genome sequencing allows to use othesggéfie aimed to determine what gene(s)
provide(s) the best approximation to the real phgtoy by analysing a simulated epidemic

(created as part of the PANGEA_HIV project) witkreown transmission tree.

We sub-sampled a simulated dataset of 4662 seguémoedifferent combinations of genes
(gag-pol-env, gag-pol, gag, pol, env and partialpol) and sampling depths (100%, 60%, 20%
and 5%), generating 100 replicates for each casebdit maximume-likelihood trees for each

combination using RAXML (GTRHF), and compared their topologies to the correspanttiie

tree’s using CompareTree.

The accuracy of the trees was significantly prapasdl to the length of the sequences used,
with thegag-pol-env datasets showing the best performancegagdind partiapol sequences

showing the worst. The lowest sampling depths (20%5%) greatly reduced the accuracy of
tree reconstruction and showed high variability aghoeplicates, especially when using the

shortest gene datasets.

In conclusion, using longer sequences derived fne@arly whole genomes will improve the
reliability of phylogenetic reconstruction. Withwosample coverage, results can be highly

variable, particularly when based on short sequence



19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Background

Most studies on HIV molecular epidemiology now tise portion of the virapol gene that
contains the protease (PR) and reverse transai®S coding regions. This is because these
partial pol sequences (around 1.3Kb long) are routinely sempeeifor genotypic resistance
testing™3. Although initially theenv gene was considered to present the strongestgrnydic
signal, it was argued that sormeev fragments were too short and/or variable for ausbb
analysié. After pol was demonstrated to accurately reconstruct HINStrESSIOR, its analysis

for phylogenetic studies became the standard owdnifpe very large datasets available for
analysis (e.g., the UkKand Swis§ sequence databases). In the last few years, ¢theaising
availability of HIV whole genome sequences has npaaksible the analysis of other genetic
regions, which has raised discussion about whétiidength genome trees should be used or

which viral genes provide the best trees.

A few studies have previously approached this dquesby analysing HIV transmission
networks in which the timing and direction of tremssion were knowh':. They have
suggested that the combination of more than one gesvides the best estimation of the true
tree. However, all were limited to very few pater@nd, in some cases, short nucleotide
sequences. The lack of a known, large phylogenygmts providing a definitive comparison
that would answer this question, but simulated gatavide an approximation that allows

having both the true tree and a recombination-dicgaset.

Such data were generated in the context of the PFBNGIIV Methods Comparison Exercide
(http://www.pangea-hiv.org), for which an HIV eprdi in an African village was simulated
using an agent-based model in which all sexualamstwere recorded, and those that gave
rise to transmissions created a transmission treelvwvas recorded. Here, we used these HIV

datasets to evaluate the effect of utilising veedjuence datasets of different length and from
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several viral genes and with different samplingtdsgo reconstruct the known simulated

phylogenies.
Results

From the simulated HIV sequence data generateitiédPANGEA _HIV project, we produced
different combinations of sampling density (100%%% 20% and 5%) and viral gene ugag-
pol-env, gag-pol, gag, pol, env and partialpol). Sixty per cent represents approximately the
sampling coverage in the UK HIV Drug ResistanceaDasé&®, whereas 5% represent the range
in HIV sequence coverage that is believed to bevegit for cohorts in many African countries.
For example, in the region of KwaZulu-Natal, SoAfhica, the sampling density is estimated
to be between 4% and 8%, according to the spewifiort, (Prof. Tulio de Oliveira, pers.
comm.). This sub-sampling was randomly replicat@@times and ML trees were constructed,
whose topology was then compared to that of theesponding true tree. The results of the
CompareTree metrid-{gure 1A) show that the proportion of correct tree splitréased with
the length of the sequences used. The genome tatsisewed the best performance
considering all the sampling coverage levels togrefhable 1), with an average metric value
of 0.965 (95% confidence interval (Cl) = 0.964-@GYR6t was closely followed bgag-pol
(0.951 [0.950-0.952])pol (0.934 [0.933-0.935]) anenv (0.932 [0.930-0.933]) in that order.
The smallegag (0.879 [0.877-0.880]) and partjadl (0.867 [0.866-0.869]) sequences showed

the worst performances.

Thus, the proportion of correct tree splits incezas direct proportion to the length of the
sequences used. A linear regression analysis shawsthtistically significant positive
correlation between the metric and a logarithmansformation of the sequence length,
yielding a correlation value 0fR0.83 (p<10'; see als&igure 1B for the complete formula).

This was also true when analysing the sampling remeelevels individually (R0.78 and
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p<0.01 for all levels; see alSupplementary Figure 1). However, when considering specific
genes, the analysis of tleav gene (length=2508bp) was more accurate than thablo
(length=3000bp) when reconstructing the true tnede 100% (point estimation=0.947 versus
0.936), 60% (mean or the replicates=0.946 [95%C¥H-0.945] versus 0.935 [0.934-0.935];
Student’s t-test p<1¥) and 20% (mean of the replicates=0.935 [95%CI=09336] versus
0.933[0.931-0.934]; p=0.01) sampling levels, bgtiowed more variability and worse results
than thepol analyses in the replicates with 5% sampling leredan=0.915 (95%CI|=0.912-
0.918) inenv versus mean=0.936 (95%CI=0.933-0.938pah (p<10%). In generalgnv was
the gene that showed the largest difference inntlean estimations across the different

sampling coverage levels.

In the subsampled datasets, the 60% sampling @ ectaset performed very similarly to the
fully sampled dataset, even showing means sigmifigahigher than the 100% sampling
coverage estimates when analysing tag-pol-env (0.971 [95%CI=0.970-0.971] versus
0.967; p<1d°), gag (0.880 [0.879-0.881] versus 0.879; p=6.503) and partiapol datasets

(0.870 [0.869-0.871] versus 0.868; p=%.60%).

In the 20% sampling level there was considerabkrlap in performance among the larger
fragments, but that of the smaller regions wastsumially poorer. With 5% sampling coverage
levels, the results showed the largest confidentarvals, revealing a substantial variability
among the replicates, although some of these epBcoutperformed estimations from the

levels with higher sampling coverage.

Although quantitatively small, these differences ancuracy of tree reconstruction are
important for identifying transmission clusters. Wsted the impact of these differences using
a standard methodology to detect transmission m&sxfoom the trees generated in this study

by comparing the proportion of clusters found ia ttue tree (“true clusters”) that were also
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found when analysing the ML trees. We did this gshregag-pol-env sequence and the partial
pol sequences (as is the norm in the vast majorisyuafies) in the 100% sampled dataset, and
we discovered that the use gdg-pol-env detected a significantly higher proportion of true
clusters (778 out of 788 true clustersgag-pol-env (98.73%) versus 774 out of 827 true
clusters in partigbol (93.59%), chi-square test p =1.95 X"L0Thus, even in the fully sampled
dataset, the reconstruction of trees from pargguences implies a significant and important

difference in the outcome.

Discussion

We have used simulated HIV sequence data to shamth®use of genes of different lengths
can affect the correct reconstruction of the trual ywhylogeny. The proportion of correct trees
increased in almost direct proportion to the lengftithe sequences used. Thus, the Jadp

pol-env nearly full-genome sequences were best at recmtisty the true tree.

The 60% sampling coverage provides the most simelsults to the analyses of the complete
datasets, which emphasises the superior relialfistudies based on high densely sampled
epidemics. In contrast, lower sampling depths (20% 5%, which resemble the sampling
settings found in Africa and developing areas) tlyeaeduced the accuracy of tree
reconstruction —visible in the high variability teten the replicates— especially when using

the short clinicapol dataset.

We presumably obtained values higher than expdotedreal-world analysis, particularly
because there is a complete fit between the evolaty model used to simulate the sequence
data and the model used for analysing it. In adidjtihe good performance of tbes analyses

is partly due to the fact that its characteristisertion/deletion variation was not simulated.
Nevertheless the fact thatv trees can outperform tipel trees, suggests that, in principle, the

higher evolutionary rate ienv can improve reconstruction.
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Here we used a metric that is proportional to thkenketric —the most widely used method to
estimate the distance/similarity between two phglagic trees. While this might be a

simplistic metric, it is an intuitive and powerfulethod to compare trees, although its limitation
is that it does not provide a means to state thatieee is significantly more similar to the true

tree than a second tree is.

Our results demonstrate that the length of the esgcpiincreases the reliability of phylogeny
reconstruction in simulated data. In the simulagjatifferent evolutionary rates applied to the
gag-pol andenv genes, as seen in real datasets. These were2ok 1.8 for gag-pol (or pol)
and 2.605 x 18 for env, i.e. the evolutionary rate fenv was 1.4 x that afag-pol. Thus, the
amount of variation that we find ienv (length=2508nt) would be equivalent to an
approximately 3401nt-longag-pol sequence. This could explain that, in some refgszanv
outperformspol (length=3000nt). However, there was no insertiel®fion variation in the
simulated sequences and in analysing real datdsetapparent superiority @hv over more

conserved genes is constrained by errors in alighthlypervariable regions are included.

Although we did not perform a bootstrapping analysi the reconstructed trees, previous
analyses have further demonstrated that suppogrfmrpings in the tree is increased when
longer sequences are used, and clustering foundlilength datasets can be missed when
using sub-genomic regiotis®. Given the difficulty in generating and/or handlifull genome

datasets, our results demonstrate gjagtpol provides a dependable approximation; however
it should be kept in mind that, at this point amthgidering we analysed a simulated dataset,
the good performance gag-pol could be more attributable to these genes’ contbieegth

than to their particular characteristics.

In conclusion, thanks to the more affordable getmmraof full HIV genomes, as is the goal of

the PANGEA_HIV consortiufi, the use of longer genetic regions (such as cenagtdjag,
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pol andenv or gag-pol) will allow for a more reliable reconstruction wansmission events.
The traditional shorpol sequences generated for resistance testing thatissd in most
molecular epidemiology studies are substantiakg leeliable, especially with low sampling
depths. An effort to generate highly sampled désasealso needed to increase our ability to

reconstruct real HIV epidemics.
Methods

HIV epidemic simulation

The PANGEA_HIV phylodynamic Methods Comparison Eis#? (http://www.pangea-
hiv.org/Projects#phylodynamic) created a simulatiesembling an African Village, which
was based on high- and low-risk households andadl sex worker group. These simulations
made use of the Discrete Spatial Phylo Simulataptat] to HIV-specific components (DSPS-
HIV), which is an individual-based stochastic siatal. Using a specifiable contact network,
the DSPS-HIV models HIV transmissions and recoiltisexual contacts. Selecting those
which gave rise to transmissions produced the ingssson tree. To generate the HIV
sequences associated to these transmissions exiesitphylogenies that reflect between- and
within-host viral evolution were simulated down th&ansmission tree using

VirusTreeSimulator (https://github.com/PangeaHI\f(\iTreeSimulator).

In order to reconstruct ancestral subtype C seqsetw be used as starting point of the
simulation, a dataset of Southern Afridaii genomesubtype C sequences was downloaded
from Los Alamos database (http://www.hiv.lanl.gowt)included 100 sequences selected to
represent a balanced number of sequences per aalpear (1989-2011), and were sampled
in South Africa (n=46), Botswana (n=41), Zambia&§hand Malawi (n=5). The GenBank
accession numbers corresponding for these 100 seggiare provided in ti&ipplementary

Table 1. This dataset was separated igag, pol andenv and ancestral sequences for each



163  gene were reconstructed using BEAST vE&applying GTR+&#+I as nucleotide substitution

164 model and Bayesian skyride as demographic model.

165 These ancestral sequences were used as startmggsimulate sequences along these viral
166  phylogenies usingBUSS'®, with substitution rates parameterized from therexrhentioned
167 analyses of Southern African sequences. To increaaksm, different substitution rates
168  applied to different genes (with a rate twice aghhfor env as forgag andpol) and different
169  codon positions (1st and 2nd vs 3rd). Finally, gheulations were parameterized to emulate
170  prevalence and incidence estimates from the peakeofAfrican HIV epidemic in the late
171 1980s-early 1996822 before treatment roll-out, so the date of thet rbbthe sequences

172 coincides with the subtype C common ancestor irl 8%#0<3,

173  More specific information about the sequence sitmrais provided in the following

174 PANGEA HIV document: https://www.dropbox.com/sh4du4vnmpvy71/AACS8-

175 yTPJA740cYzvTCTb-H2a/201502/Village unblinded/DSP&h15Release-

176  Details.pdf?dI=0.

177  Analysisdataset

178 We sampled all HIV simulated sequences correspgntbnall infected individuals (one
179  sequence per individual) in a 5-year period —betwgears 40 and 45 after the simulated
180 epidemic started. From these simulated HIV sequeneecreated different combinations of
181  sequence sampling depths and genomic regions. ullheataset contained 4662 sequences,
182 and we adopted sub-sampling levels of 60% 20% &ad&mpling density which therefore
183 included, respectively, 2798, 933 and 233 sequeiteEse sequences were chosen at random
184  from the dataset with 100% sampling coverage. kR®160%, 20% and 5% sampling coverage

185 levels we generated 100 independent sub-samptesttthe reproducibility of the analyses.
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We split each of these sequence datasets into:géhome” (which represented the
concatenation ofjag, pol and env (6987bp)), 2)gag-pol (4479bp), 3)gag (1479bp), 4)
completepol (3000bp), 5)env (2508bp), and 6) partigdol (1302bp, the region commonly

generated for PR+RT resistance testing).

The fully-sampled simulated sequence dataset dsw/tie true transmission tree are available

at http://hiv.bio.ed.ac.uk/datasets/Yebra2016_T@emenparison_dataset.zip.
Phylogenetic tree comparison

We obtained the top-scoring maximum likelihood (Mtge for each of these datasets using
RAXML v8.2%* under the GTRF substitution model. For the nearly full genomeegiewe
applied a partition analysis in RAXML to accommadé&dr different evolutionary models in

gag-pol versusenv.

The Robinson-Foulds (R¥)metric is the most widely used measure of phyletjertree

similarity. Given two phylogenetic trees, this metcounts the number of splits or clades
induced by one of the trees but not the other. Heeeuse an approximation to the RF metric
implemented in the CompareTree program

(http://meta.microbesonline.org/fasttree/treecnmlhtwhich also calculates the fraction of

splits in the query tree (i.e., the reconstructeds) that are shared with the reference one (i.e.,
the true trees). Unlike the RF metric, this valejeresents a proportion (therefore it ranges from
0 to 1), providing a metric that is more intuitigsad easier to interpret and compare. We use
the proportion of shared splits as an indicataheffidelity in reconstructing the corresponding,

sub-sampled true tree.

Finally, in order to evaluate the implications lo¢ topology differences, a phylogenetic cluster
comparison analysis was performed in the fully dachpataset using the Cluster Picker and

Cluster Matcher progrartfs

10
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Statistical analyses

We compared the results from different genes ars#liopling coverage levels by using a two-
sample Student’s t-test. When comparing to they fahmpled datasets (100% sampling
coverage), for which only point estimations werdaoted because replicates cannot be
produced, a one-sample t-test was performed to wésther the corresponding mean
distribution was significantly different than theoipt estimation of the 100% sampling

coverage level. Finally, we applied a linear regi@s analysis to explore the relationship
between the results and the sequence length.isit#iculations were produced id’Rersion

3.1.2.
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Figure Legends

Figure1:

A) Proportion of the maximum likelihood trees splits shared with the true tree for each
gene and sampling cover age level. Genes are sorted according to length. The tofattdm

limits of the boxes represent, respectively, thst fand third quartiles (the distance between
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them represents the inter-quartile range, IQR). lites (whiskers) include the highest and
lowest values that lie within the 1.5 x IQR distanitom the first and third quatrtiles,
respectively. Data points outside this range ardiens. B) Proportion of the maximum
likelihood trees splits shared with the true tree according to gene length. All sampling
coverage levels were considered together. Thessigreline is shown in blue, for which the
formula, the correlation coefficient §Rand the p-value are presented. The shaded aves sh
the regression line’s confidence intervals. Theygootted vertical lines show the length of

each gene considered.
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31 Tablel. Proportion of the maximum likelihood trees spéitered with the true tree according to gene amgplsag coverage level.

32

Sampling coverage level (mean [95% confidenceinterval]) 33
Gene Length (bp)

All 100%  60% 20% 5% 34
gag-pol-env 6987 0.965 (0.964-0.966) 0.967  0.971 (0.970-0.97T)965 (0.964-0.966)  0.959 (0.957-0.961)
gag-pol 4479 0.951 (0.950-0.952) 0.954  0.953 (0.953-0.954).950 (0.948-0.951) 0.950 (0.948-0.3553)
pol 3000 0.934 (0.933-0.935) 0.936  0.935 (0.934-0.93%).933 (0.931-0.934) 0.936 (0.933-029;38)
env 2508 0.932(0.930-0.934) 0.947  0.946 (0.945-0.946).935 (0.934-0.936)  0.915 (0.912-0318)
gag 1479 0.879 (0.877-0.880) 0.879  0.880 (0.879-0.881).880 (0.878-0.881)  0.877 (0.873-04380)
Partialpol 1302 0.867 (0.866-0.869) 0.868  0.870 (0.869-0.871.875 (0.873-0.877) 0.857 (0.853-04861)

42

43  The table shows the mean value and its 95% cordalertervals for the 100 replicates performed ichezase. Note that for the full dataset
44  (100% sampling coverage) only one estimation isvshidecause no replicates can be performed. Thesgeaeordered in descending order of
45  sequence length.

46
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