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Abstract 1 

HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, 2 

but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) 3 

provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic 4 

(created as part of the PANGEA_HIV project) with a known transmission tree.  5 

We sub-sampled a simulated dataset of 4662 sequences into different combinations of genes 6 

(gag-pol-env, gag-pol, gag, pol, env and partial pol) and sampling depths (100%, 60%, 20% 7 

and 5%), generating 100 replicates for each case. We built maximum-likelihood trees for each 8 

combination using RAxML (GTR+Γ), and compared their topologies to the corresponding true 9 

tree’s using CompareTree.  10 

The accuracy of the trees was significantly proportional to the length of the sequences used, 11 

with the gag-pol-env datasets showing the best performance and gag and partial pol sequences 12 

showing the worst. The lowest sampling depths (20% and 5%) greatly reduced the accuracy of 13 

tree reconstruction and showed high variability among replicates, especially when using the 14 

shortest gene datasets. 15 

In conclusion, using longer sequences derived from nearly whole genomes will improve the 16 

reliability of phylogenetic reconstruction. With low sample coverage, results can be highly 17 

variable, particularly when based on short sequences.   18 
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Background 19 

Most studies on HIV molecular epidemiology now use the portion of the viral pol gene that 20 

contains the protease (PR) and reverse transcriptase (RT) coding regions. This is because these 21 

partial pol sequences (around 1.3Kb long) are routinely sequenced for genotypic resistance 22 

testing1-3. Although initially the env gene was considered to present the strongest phylogenetic 23 

signal, it was argued that some env fragments were too short and/or variable for a robust 24 

analysis4. After pol was demonstrated to accurately reconstruct HIV transmission5, its analysis 25 

for phylogenetic studies became the standard owing to the very large datasets available for 26 

analysis (e.g., the UK6 and Swiss7 sequence databases). In the last few years, the increasing 27 

availability of HIV whole genome sequences has made possible the analysis of other genetic 28 

regions, which has raised discussion about whether full-length genome trees should be used or 29 

which viral genes provide the best trees.  30 

A few studies have previously approached this question by analysing HIV transmission 31 

networks in which the timing and direction of transmission were known8-11. They have 32 

suggested that the combination of more than one gene provides the best estimation of the true 33 

tree. However, all were limited to very few patients and, in some cases, short nucleotide 34 

sequences. The lack of a known, large phylogeny prevents providing a definitive comparison 35 

that would answer this question, but simulated data provide an approximation that allows 36 

having both the true tree and a recombination-free dataset. 37 

Such data were generated in the context of the PANGEA_HIV Methods Comparison Exercise12 38 

(http://www.pangea-hiv.org), for which an HIV epidemic in an African village was simulated 39 

using an agent-based model in which all sexual contacts were recorded, and those that gave 40 

rise to transmissions created a transmission tree which was recorded. Here, we used these HIV 41 

datasets to evaluate the effect of utilising viral sequence datasets of different length and from 42 
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several viral genes and with different sampling depths to reconstruct the known simulated 43 

phylogenies. 44 

Results 45 

From the simulated HIV sequence data generated for the PANGEA_HIV project, we produced 46 

different combinations of sampling density (100%, 60%, 20% and 5%) and viral gene use (gag-47 

pol-env, gag-pol, gag, pol, env and partial pol). Sixty per cent represents approximately the 48 

sampling coverage in the UK HIV Drug Resistance Database13, whereas 5% represent the range 49 

in HIV sequence coverage that is believed to be relevant for cohorts in many African countries. 50 

For example, in the region of KwaZulu-Natal, South Africa, the sampling density is estimated 51 

to be between 4% and 8%, according to the specific cohort, (Prof. Tulio de Oliveira, pers. 52 

comm.). This sub-sampling was randomly replicated 100 times and ML trees were constructed, 53 

whose topology was then compared to that of the corresponding true tree. The results of the 54 

CompareTree metric (Figure 1A) show that the proportion of correct tree splits increased with 55 

the length of the sequences used. The genome datasets showed the best performance 56 

considering all the sampling coverage levels together (Table 1), with an average metric value 57 

of 0.965 (95% confidence interval (CI) = 0.964-0.966). It was closely followed by gag-pol 58 

(0.951 [0.950-0.952]), pol (0.934 [0.933-0.935]) and env (0.932 [0.930-0.933]) in that order. 59 

The smaller gag (0.879 [0.877-0.880]) and partial pol (0.867 [0.866-0.869]) sequences showed 60 

the worst performances.  61 

Thus, the proportion of correct tree splits increased in direct proportion to the length of the 62 

sequences used. A linear regression analysis showed a statistically significant positive 63 

correlation between the metric and a logarithmic transformation of the sequence length, 64 

yielding a correlation value of R2=0.83 (p<10-16; see also Figure 1B for the complete formula). 65 

This was also true when analysing the sampling coverage levels individually (R2>0.78 and 66 
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p<0.01 for all levels; see also Supplementary Figure 1). However, when considering specific 67 

genes, the analysis of the env gene (length=2508bp) was more accurate than that of pol 68 

(length=3000bp) when reconstructing the true tree in the 100% (point estimation=0.947 versus 69 

0.936), 60% (mean or the replicates=0.946 [95%CI=0.945-0.945] versus 0.935 [0.934-0.935]; 70 

Student’s t-test p<10-16) and 20% (mean of the replicates=0.935 [95%CI=0.934-0.936] versus 71 

0.933 [0.931-0.934]; p=0.01) sampling levels, but it showed more variability and worse results 72 

than the pol analyses in the replicates with 5% sampling level: mean=0.915 (95%CI=0.912-73 

0.918) in env versus mean=0.936 (95%CI=0.933-0.938) in pol (p<10-16). In general, env was 74 

the gene that showed the largest difference in the mean estimations across the different 75 

sampling coverage levels. 76 

In the subsampled datasets, the 60% sampling coverage dataset performed very similarly to the 77 

fully sampled dataset, even showing means significantly higher than the 100% sampling 78 

coverage estimates when analysing the gag-pol-env (0.971 [95%CI=0.970-0.971] versus 79 

0.967; p<10-16), gag (0.880 [0.879-0.881] versus 0.879; p=6.5 × 10-3) and partial pol datasets 80 

(0.870 [0.869-0.871] versus 0.868; p=1.6 × 10-4).  81 

In the 20% sampling level there was considerable overlap in performance among the larger 82 

fragments, but that of the smaller regions was substantially poorer. With 5% sampling coverage 83 

levels, the results showed the largest confidence intervals, revealing a substantial variability 84 

among the replicates, although some of these replicates outperformed estimations from the 85 

levels with higher sampling coverage. 86 

Although quantitatively small, these differences in accuracy of tree reconstruction are 87 

important for identifying transmission clusters. We tested the impact of these differences using 88 

a standard methodology to detect transmission networks from the trees generated in this study 89 

by comparing the proportion of clusters found in the true tree (“true clusters”) that were also 90 
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found when analysing the ML trees. We did this using the gag-pol-env sequence and the partial 91 

pol sequences (as is the norm in the vast majority of studies) in the 100% sampled dataset, and 92 

we discovered that the use of gag-pol-env detected a significantly higher proportion of true 93 

clusters (778 out of 788 true clusters in gag-pol-env (98.73%) versus 774 out of 827 true 94 

clusters in partial pol (93.59%), chi-square test p =1.95 × 10-7). Thus, even in the fully sampled 95 

dataset, the reconstruction of trees from partial sequences implies a significant and important 96 

difference in the outcome. 97 

Discussion 98 

We have used simulated HIV sequence data to show how the use of genes of different lengths 99 

can affect the correct reconstruction of the true viral phylogeny. The proportion of correct trees 100 

increased in almost direct proportion to the length of the sequences used. Thus, the 7kb gag-101 

pol-env nearly full-genome sequences were best at reconstructing the true tree.  102 

The 60% sampling coverage provides the most similar results to the analyses of the complete 103 

datasets, which emphasises the superior reliability of studies based on high densely sampled 104 

epidemics. In contrast, lower sampling depths (20% and 5%, which resemble the sampling 105 

settings found in Africa and developing areas) greatly reduced the accuracy of tree 106 

reconstruction –visible in the high variability between the replicates– especially when using 107 

the short clinical pol dataset. 108 

We presumably obtained values higher than expected in a real-world analysis, particularly 109 

because there is a complete fit between the evolutionary model used to simulate the sequence 110 

data and the model used for analysing it. In addition, the good performance of the env analyses 111 

is partly due to the fact that its characteristic insertion/deletion variation was not simulated. 112 

Nevertheless the fact that env trees can outperform the pol trees, suggests that, in principle, the 113 

higher evolutionary rate in env can improve reconstruction.  114 
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Here we used a metric that is proportional to the RF metric –the most widely used method to 115 

estimate the distance/similarity between two phylogenetic trees. While this might be a 116 

simplistic metric, it is an intuitive and powerful method to compare trees, although its limitation 117 

is that it does not provide a means to state that one tree is significantly more similar to the true 118 

tree than a second tree is.  119 

Our results demonstrate that the length of the sequence increases the reliability of phylogeny 120 

reconstruction in simulated data. In the simulations, different evolutionary rates applied to the 121 

gag-pol and env genes, as seen in real datasets. These were of 1.92 × 10-3 for gag-pol (or pol) 122 

and 2.605 × 10-3 for env, i.e. the evolutionary rate for env was 1.4 × that of gag-pol. Thus, the 123 

amount of variation that we find in env (length=2508nt) would be equivalent to an 124 

approximately 3401nt-long gag-pol sequence. This could explain that, in some replicates, env 125 

outperforms pol (length=3000nt). However, there was no insertion/deletion variation in the 126 

simulated sequences and in analysing real datasets this apparent superiority of env over more 127 

conserved genes is constrained by errors in alignment if hypervariable regions are included.  128 

Although we did not perform a bootstrapping analysis of the reconstructed trees, previous 129 

analyses have further demonstrated that support for groupings in the tree is increased when 130 

longer sequences are used, and clustering found in full-length datasets can be missed when 131 

using sub-genomic regions14-16. Given the difficulty in generating and/or handling full genome 132 

datasets, our results demonstrate that gag-pol provides a dependable approximation; however 133 

it should be kept in mind that, at this point and considering we analysed a simulated dataset, 134 

the good performance of gag-pol could be more attributable to these genes’ combined length 135 

than to their particular characteristics. 136 

In conclusion, thanks to the more affordable generation of full HIV genomes, as is the goal of 137 

the PANGEA_HIV consortium17, the use of longer genetic regions (such as concatenated gag, 138 
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pol and env or gag-pol) will allow for a more reliable reconstruction of transmission events. 139 

The traditional short pol sequences generated for resistance testing that are used in most 140 

molecular epidemiology studies are substantially less reliable, especially with low sampling 141 

depths. An effort to generate highly sampled datasets is also needed to increase our ability to 142 

reconstruct real HIV epidemics. 143 

Methods 144 

HIV epidemic simulation 145 

The PANGEA_HIV phylodynamic Methods Comparison Exercise12 (http://www.pangea-146 

hiv.org/Projects#phylodynamic) created a simulation resembling an African Village, which 147 

was based on high- and low-risk households and a small sex worker group. These simulations 148 

made use of the Discrete Spatial Phylo Simulator adapted to HIV-specific components (DSPS-149 

HIV), which is an individual-based stochastic simulator. Using a specifiable contact network, 150 

the DSPS-HIV models HIV transmissions and records all sexual contacts. Selecting those 151 

which gave rise to transmissions produced the transmission tree. To generate the HIV 152 

sequences associated to these transmissions events, viral phylogenies that reflect between- and 153 

within-host viral evolution were simulated down the transmission tree using 154 

VirusTreeSimulator (https://github.com/PangeaHIV/VirusTreeSimulator).  155 

In order to reconstruct ancestral subtype C sequences to be used as starting point of the 156 

simulation, a dataset of Southern African full genome subtype C sequences was downloaded 157 

from Los Alamos database (http://www.hiv.lanl.gov/). It included 100 sequences selected to 158 

represent a balanced number of sequences per calendar year (1989-2011), and were sampled 159 

in South Africa (n=46), Botswana (n=41), Zambia (n=8) and Malawi (n=5). The GenBank 160 

accession numbers corresponding for these 100 sequences are provided in the Supplementary 161 

Table 1. This dataset was separated into gag, pol and env and ancestral sequences for each 162 
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gene were reconstructed using BEAST v1.8.118 applying GTR+4Γ+I as nucleotide substitution 163 

model and Bayesian skyride as demographic model.  164 

These ancestral sequences were used as starting point to simulate sequences along these viral 165 

phylogenies using πBUSS19, with substitution rates parameterized from the aforementioned 166 

analyses of Southern African sequences. To increase realism, different substitution rates 167 

applied to different genes (with a rate twice as high for env as for gag and pol) and different 168 

codon positions (1st and 2nd vs 3rd). Finally, the simulations were parameterized to emulate 169 

prevalence and incidence estimates from the peak of the African HIV epidemic in the late 170 

1980s-early 1990s20-22, before treatment roll-out, so the date of the root of the sequences 171 

coincides with the subtype C common ancestor in the 1940s23. 172 

More specific information about the sequence simulation is provided in the following 173 

PANGEA_HIV document: https://www.dropbox.com/sh/zlv40u4vnmpvy71/AAC8-174 

yTPJA74OcYzvTCTb-H2a/201502/Village_unblinded/DSPS-Feb15Release-175 

Details.pdf?dl=0.  176 

Analysis dataset 177 

We sampled all HIV simulated sequences corresponding to all infected individuals (one 178 

sequence per individual) in a 5-year period –between years 40 and 45 after the simulated 179 

epidemic started. From these simulated HIV sequences we created different combinations of 180 

sequence sampling depths and genomic regions. The full dataset contained 4662 sequences, 181 

and we adopted sub-sampling levels of 60% 20% and 5% sampling density which therefore 182 

included, respectively, 2798, 933 and 233 sequences. These sequences were chosen at random 183 

from the dataset with 100% sampling coverage. For the 60%, 20% and 5% sampling coverage 184 

levels we generated 100 independent sub-samples to test the reproducibility of the analyses. 185 
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We split each of these sequence datasets into: 1) “genome” (which represented the 186 

concatenation of gag, pol and env (6987bp)), 2) gag-pol (4479bp), 3) gag (1479bp), 4) 187 

complete pol (3000bp), 5) env (2508bp), and 6) partial pol (1302bp, the region commonly 188 

generated for PR+RT resistance testing).  189 

The fully-sampled simulated sequence dataset as well as the true transmission tree are available 190 

at http://hiv.bio.ed.ac.uk/datasets/Yebra2016_Tree_Comparison_dataset.zip. 191 

Phylogenetic tree comparison 192 

We obtained the top-scoring maximum likelihood (ML) tree for each of these datasets using 193 

RAxML v8.224 under the GTR+Γ substitution model. For the nearly full genome trees, we 194 

applied a partition analysis in RAxML to accommodate for different evolutionary models in 195 

gag-pol versus env.  196 

The Robinson-Foulds (RF)25 metric is the most widely used measure of phylogenetic tree 197 

similarity. Given two phylogenetic trees, this metric counts the number of splits or clades 198 

induced by one of the trees but not the other. Here, we use an approximation to the RF metric 199 

implemented in the CompareTree program 200 

(http://meta.microbesonline.org/fasttree/treecmp.html), which also calculates the fraction of 201 

splits in the query tree (i.e., the reconstructed trees) that are shared with the reference one (i.e., 202 

the true trees). Unlike the RF metric, this value represents a proportion (therefore it ranges from 203 

0 to 1), providing a metric that is more intuitive and easier to interpret and compare. We use 204 

the proportion of shared splits as an indicator of the fidelity in reconstructing the corresponding, 205 

sub-sampled true tree. 206 

Finally, in order to evaluate the implications of the topology differences, a phylogenetic cluster 207 

comparison analysis was performed in the fully sampled dataset using the Cluster Picker and 208 

Cluster Matcher programs26. 209 
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Statistical analyses 210 

We compared the results from different genes and/or sampling coverage levels by using a two-211 

sample Student’s t-test. When comparing to the fully sampled datasets (100% sampling 212 

coverage), for which only point estimations were obtained because replicates cannot be 213 

produced, a one-sample t-test was performed to test whether the corresponding mean 214 

distribution was significantly different than the point estimation of the 100% sampling 215 

coverage level. Finally, we applied a linear regression analysis to explore the relationship 216 

between the results and the sequence length. All this calculations were produced in R27 version 217 

3.1.2. 218 
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Figure Legends 18 

Figure 1:  19 

A) Proportion of the maximum likelihood trees splits shared with the true tree for each 20 

gene and sampling coverage level. Genes are sorted according to length. The top and bottom 21 

limits of the boxes represent, respectively, the first and third quartiles (the distance between 22 
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them represents the inter-quartile range, IQR). The lines (whiskers) include the highest and 23 

lowest values that lie within the 1.5 × IQR distance from the first and third quartiles, 24 

respectively. Data points outside this range are outliers. B) Proportion of the maximum 25 

likelihood trees splits shared with the true tree according to gene length. All sampling 26 

coverage levels were considered together. The regression line is shown in blue, for which the 27 

formula, the correlation coefficient (R2) and the p-value are presented. The shaded area shows 28 

the regression line’s confidence intervals. The grey, dotted vertical lines show the length of 29 

each gene considered.30 
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Table 1. Proportion of the maximum likelihood trees splits shared with the true tree according to gene and sampling coverage level. 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

The table shows the mean value and its 95% confidence intervals for the 100 replicates performed in each case. Note that for the full dataset 43 

(100% sampling coverage) only one estimation is shown because no replicates can be performed. The genes are ordered in descending order of 44 

sequence length. 45 

  46 

Gene Length (bp) 
Sampling coverage level (mean [95% confidence interval]) 

All 100% 60% 20% 5% 

gag-pol-env 6987 0.965 (0.964-0.966) 0.967 0.971 (0.970-0.971) 0.965 (0.964-0.966) 0.959 (0.957-0.961) 

gag-pol 4479 0.951 (0.950-0.952) 0.954 0.953 (0.953-0.954) 0.950 (0.948-0.951) 0.950 (0.948-0.953) 

pol 3000 0.934 (0.933-0.935) 0.936 0.935 (0.934-0.935) 0.933 (0.931-0.934) 0.936 (0.933-0.938) 

env 2508 0.932 (0.930-0.934) 0.947 0.946 (0.945-0.946) 0.935 (0.934-0.936) 0.915 (0.912-0.918) 

gag 1479 0.879 (0.877-0.880) 0.879 0.880 (0.879-0.881) 0.880 (0.878-0.881) 0.877 (0.873-0.880) 

Partial pol  1302 0.867 (0.866-0.869) 0.868 0.870 (0.869-0.871) 0.875 (0.873-0.877) 0.857 (0.853-0.861) 
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