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Using network analysis to explore co-occurrence
patterns in soil microbial communities
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Exploring large environmental datasets generated by high-throughput DNA sequencing techno-
logies requires new analytical approaches to move beyond the basic inventory descriptions of the
composition and diversity of natural microbial communities. In order to investigate potential
interactions between microbial taxa, network analysis of significant taxon co-occurrence patterns
may help to decipher the structure of complex microbial communities across spatial or temporal
gradients. Here, we calculated associations between microbial taxa and applied network analysis
approaches to a 16S rRNA gene barcoded pyrosequencing dataset containing 4160 000 bacterial
and archaeal sequences from 151 soil samples from a broad range of ecosystem types. We
described the topology of the resulting network and defined operational taxonomic unit categories
based on abundance and occupancy (that is, habitat generalists and habitat specialists).
Co-occurrence patterns were readily revealed, including general non-random association, common
life history strategies at broad taxonomic levels and unexpected relationships between community
members. Overall, we demonstrated the potential of exploring inter-taxa correlations to gain a more
integrated understanding of microbial community structure and the ecological rules guiding
community assembly.
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Introduction

Studies of complex microbial communities have
advanced considerably in recent years , in part, due
to methodological advances such as high-through-
put DNA sequencing technologies that yield de-
tailed information on the composition of microbial
communities (Sogin et al., 2006). The sequence data
are typically derived from sequencing a portion of
the small-subunit rRNA gene (Pace, 1997) and a
wide variety of techniques can be applied to the
analysis of the sequence data in order to describe the
composition of microbial communities, their diver-
sity and how communities may change across space,
time, or experimental treatments. However, most of
the analytical techniques focus on single properties
of the communities being studied. For example,
studies describing and comparing the structure of
microbial communities often focus on the total

numbers of taxa or unique lineages found in
individual samples (that is, alpha-diversity), the
relative abundances of individual taxa or lineages
and the extent of phylogenetic or taxonomic overlap
between communities or community categories (that
is, beta-diversity). Alpha-diversity measures (for
example, richness and coverage estimators, rarefac-
tion curves) yield estimates of microbial diversity
and its limits in different environments (Hughes
et al., 2001; Curtis et al., 2002; Sogin et al., 2006).
Likewise, multivariate statistical techniques such as
clustering and ordination have allowed microbial
ecologists to describe beta-diversity patterns, reveal-
ing how biotic and abiotic variables control micro-
bial community composition. For example, analyses
of beta-diversity patterns have revealed how micro-
bial communities are structured across a wide range
of natural habitats (Lozupone and Knight, 2007;
Auguet et al., 2010; Barberán and Casamayor, 2010,
2011), the spatial and temporal variability of micro-
bial communities on and in the human body (Fierer
et al., 2008; Costello et al., 2009), and the factors
structuring soil bacterial communities (Lauber et al.,
2009). In contrast, there has been far less attention
focused on using sequence data to explore the direct
or indirect interactions between microbial taxaReceived 7 April 2011; revised 5 July 2011; accepted 28 July 2011
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coexisting in environmental samples. Documenting
these interactions between taxa (that is, co-occur-
rence patterns) across complex and diverse commu-
nities may help to ascertain the functional roles or
environmental niches occupied by uncultured
microorganisms (Ruan et al., 2006; Fuhrman and
Steele, 2008; Chaffron et al., 2010). With the ever-
increasing accumulation of sequence data from
microbial communities, we now have the challenge
to begin exploring these interactions, and to extend
community analyses beyond the exploration of
alpha- and beta-diversity patterns that represent
the bulk of most sequence-based microbial commu-
nity analyses.

Network analysis tools and network thinking
(Proulx et al., 2005) have been widely used by
biologists, mathematicians, social scientists, and
computer scientists to explore interactions between
entities, whether those entities are individuals in a
school (Moody, 2001), species in a food web (Krause
et al., 2003), nodes on a computer network (Pastor-
Satorras and Vespignani, 2001), or proteins in
metabolic pathways (Guimera and Amaral, 2005).
Network analysis is used to explore the mathema-
tical, statistical and structural properties of a set of
items (nodes) and the connections between them
(edges; Newman, 2003). With a few notable excep-
tions (for example, Ruan et al., 2006; Chaffron et al.,
2010; Freilich et al., 2010), network analysis has not
been widely applied to exploring co-occurrence
patterns between microbial taxa in complex com-
munities. To detect robust associations between
microorganisms within and between habitats using
network analysis, it is essential to have fairly
detailed information on the microbial taxa found
across relatively large numbers of samples, as with-
out sufficiently large sample sets it will be difficult
to determine whether or not co-occurrence patterns
are statistically significant. Ideally sample sets
should cover spatial or temporal gradients in
environmental conditions in order for there to be a
sufficient variability in taxon abundances to resolve
co-occurrence patterns. As shown in recent studies
that have used barcoded pyrosequencing to survey
microbial communities in large numbers of samples
(for example Fierer et al., 2008; Costello et al., 2009;
Galand et al., 2009; Lauber et al., 2009), it is now
possible to generate microbial datasets that can take
full advantage of network analysis approaches and
we can apply them to even highly diverse commu-
nities, like those found in soils, to explore
co-occurrence patterns.

Network analysis of taxon co-occurrence patterns
offers new insight into the structure of complex
microbial communities, insight that complements
and expands on the information provided by the
more standard suite of analytical approaches. First,
inter-taxa associations may help reveal the niche
spaces shared by community members (even mem-
bers of different domains of life, such as Bacteria
and Archaea) or, perhaps, more direct symbioses

between community members. Such information is
particularly valuable in environments, such as soil,
where the basic ecology and life history strategies of
many microbial taxa remain unknown (Janssen,
2006). Exploring co-occurrence patterns between
soil microorganisms can help identify potential
biotic interactions, habitat affinities, or shared
physiologies that could guide more focused studies
or experimental settings. More generally, network
analysis represents an approach for exploring and
identifying patterns in large, complex datasets,
patterns that may be more difficult to detect using
the standard alpha/beta diversity metrics widely
used in microbial ecology (Proulx et al., 2005).

Here we used network analyses to explore
associations between prokaryotic taxa in soil, one
of the most complex and taxon-rich microbial
habitats on Earth. We analyzed over 160 000 bacter-
ial and archaeal 16S rRNA gene sequences from 151
soil samples from a wide variety of ecosystem types
in order to demonstrate the utility of network
analyses and address the following questions:
(i) Do soil microorganisms tend to co-occur more than
expected by chance? (ii) Can the lack of agreement
between observed and random intra-phyla co-occur-
rence be used as a proxy of niche differentiation? and
(iii) Which taxa are generalists (broadly distributed
across soil habitats) or specialists (restricted to certain
habitats but locally abundant) and how these ecolo-
gical categories shape network structure?

Materials and methods

Soil description and molecular methods
The dataset consisted of 151 soil samples distributed
across North and South America, and Antarctica. The
collected soils came from a broad range of ecosys-
tems, climates and soil types (Supplementary Table 1).
Soil collection protocol and methods for edaphic
and environmental properties have been described
previously (Fierer and Jackson, 2006; Bates et al.,
2010).

Preparation of extracted DNA for pyrosequencing
followed the protocol described in detail in Fierer
et al., 2008 and Bates et al., 2010. In brief, a region of
the 16S rRNA gene (B250 nucleotides) was amplified
with the primers F515 (50-GTGCCAGCMGCCGCGG
TAA-30) and R806 (50-GGACTACVSGGGTATCT
AAT-30) that should amplify nearly all bacteria and
archaea with few biases against particular groups (Bates
et al., 2010). The resulting barcoded PCR product was
normalized in equimolar amounts and sequenced on a
Roche GS-FLX 454 automated pyrosequencer (Roche
Applied Science, Branford, CT, USA) at the Environ-
mental Genomics Core Facility (Engencore) at the
University of South Carolina.

Sequence processing
Raw sequence data generated from pyrosequencing
were processed in QIIME (Caporaso et al., 2010).
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Briefly, sequences were quality trimmed and
clustered into operational taxonomic units (OTUs)
using a 90% identity threshold with uclust (Edgar,
2010). A 90% identity threshold, which corresponds
approximately to the taxonomic level of Family for
bacteria (Konstantinidis and Tiedje, 2007), was used
to generate consistent OTUs with high abundances
for subsequent analyses based on correlations and to
circumvent potential taxonomic misclassifications
due to sequencing anomalies. If we were to use the
more standard ‘species-level’ OTU cutoff (97%
sequence identity), the resulting OTU table would
be far larger making data visualizations and analysis
more difficult. At the 90% identity level, the final
OTU table consisted of 160 469 sequences (average
of 1063 sequences per sample) distributed into 4088
OTUs, of those 2798 were represented by more than
1 sequence. Taxonomic assignment was carried out
with the RDP Classifier (Wang et al., 2007), and
manually curated by BLAST searches against the
GenBank non-redundant nucleotide database (nt).

Data analysis
Non-random co-occurrence patterns were tested
with the checkerboard score (C-score) under a null
model preserving site frequencies (Stone and
Roberts, 1990). A checkerboard unit is a 2� 2 matrix
where both OTUs occur once but on different sites.
For network inference, we calculated all possible
Spearman’s rank correlations between OTUs with
more than five sequences (1577 OTUs). This
previous filtering step removed poorly represented
OTUs and reduced network complexity, facilitating
the determination of the core soil community. We
considered a valid co-occurrence event to be a
robust correlation if the Spearman’s correlation
coefficient (r) was both 40.6 and statistically
significant (P-value o0.01; Junker and Schreiber,
2008). The nodes in the reconstructed network
represent the OTUs at 90% identity, whereas the
edges (that is, connections) correspond to a strong
and significant correlation between nodes (see
Supplementary File for the resulting network in
GRAPHML format). In order to describe the topology
of the resulting network, a set of measures (that is,
average node connectivity, average path length,
diameter, cumulative degree distribution, clustering
coefficient and modularity) were calculated (Newman,
2003). All statistical analyses were carried out in the
R environment (http://www.r-project.org) using
vegan (Oksanen et al., 2007) and igraph (Csárdi
and Nepusz, 2006) packages. Networks were
explored and visualized with the interactive
platform gephi (Bastian et al., 2009).

Results and discussion

General co-occurrence patterns
Soils are heterogeneous environments that harbor
enormously diverse prokaryotic communities

(Torsvik et al., 1990; Curtis et al., 2002). Previous
work has explored soil microbial diversity from
various perspectives, including the estimation of
species richness levels in individual samples (for
example, Fierer et al., 2007; Roesch et al., 2007;
Youssef and Elshahed, 2009), assessment of the
abiotic variables that control the diversity and
composition of communities (for example, McCaig
et al., 2001; Fierer and Jackson, 2006; Lauber et al.,
2009), and the assessment of how specific abiotic
factors influence specific taxa (for example, Jones
et al., 2009). The relationships between microbial
taxa also shape the structure of microbial commu-
nities (Prosser et al., 2007), and thus, it can be
expected that non-random co-occurrence patterns
and significant inter-taxa relationships should occur.

After quality filtering and OTU clustering at the
90% identity, we obtained 2798 OTUs represented
by more than one sequence distributed across the
151 soil samples included in this study (Supple-
mentary Table 1). In order to assess non-random co-
occurrence patterns, we first used an ecological
measure based on checkerboard units (C-score;
Stone and Roberts, 1990). Overall, we observed
non-random co-occurrence pattern using the whole
dataset (C-score¼ 46.56, P-value o0.01). Restricting
the analysis to only those OTUs showing significant
relationships (the ones appearing in Figure 1), the
measure increased to C-score¼ 185.03 and P-value
o0.01. A recent meta-analysis showed similar
patterns of co-occurrence for microorganisms and
macroorganisms suggesting that non-random com-
munity assembly may be a general characteristic
across all life domains (Horner-Devine et al., 2007).
This finding that there are significant non-random
co-occurrence patterns is not surprising, given that
we have known for some time that many bacterial
taxa exhibit predictable biogeographical patterns
(Prosser et al., 2007). Likewise, documenting
non-random co-occurrence patterns is far different
from actually identifying the causal mechanisms
structuring the communities. However, non-random
assembly patterns do indicate the dominance of
deterministic processes including competitive inter-
actions, non-overlapping niches or historical effects
in shaping community composition (Horner-Devine
et al., 2007). Overall, the approach allowed us to
conclude that soil microorganisms tended to co-
occur more than expected by chance.

Network description
Once we established that the soil microbial assem-
blage patterns were certainly non-random, we
further explored co-occurrence patterns using net-
work inference based on strong and significant
correlations (using non-parametric Spearman’s;
Junker and Schreiber, 2008). Correlation networks
of co-occurring microorganisms permit the visual
summary of lots of information (Chaffron et al.,
2010) and have been successfully applied to discern
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associations between marine microorganisms and
their environment (Ruan et al., 2006).

The resulting soil microbial network (Figure 1 and
Supplementary Figure 1) consisted of 296 nodes
(OTUs) and 679 edges (average degree or node
connectivity 4.59; see Supplementary Figure 1 for
a cumulative degree distribution). Some topological
properties commonly used in network analysis were
calculated to describe the complex pattern of inter-
relationships between OTUs (Newman, 2003). The
average network distance between all pairs of nodes
(average path length) was 5.53 edges with a diameter
(longest distance) of 18 edges. The clustering
coefficient (that is, how nodes are embedded in
their neighborhood and, thus, the degree to which
they tend to cluster together) was 0.33 and the
modularity index was 0.77 (values 40.4 suggest that
the network has a modular structure; Newman,
2006). Overall, the soil microbial network was
comprised of highly connected OTUs (B5 edges
per node) structured among densely connected
groups of nodes (that is, modules) and forming a
clustered topology (as expected for real-world net-
works that are more significantly clustered than
random graphs). These structural properties offer
the potential for quick and easiest comparisons
among complex datasets from different ecosystem
types in order to explore how the general traits of a
certain habitat type may influence the assembly of
microbial communities.

The structural analysis also showed that OTUs
from the same phyla tended to co-occur more (33%)
than expected when considering observed phyla
frequencies and random association (11%; Figure 1,
left panel). Thus, the magnitude of the lack of

agreement between the observed intra-phyla percentage
of significant co-occurrences, on the one hand, and
the expected assembling under random association,
on the other hand, may be used as an index of niche
preferences or synergetic relationships. This index
may also capture differences among habitats (for
example, aquatic vs soil) that may shed light on the
ecological rules guiding microbial community com-
position. In all likelihood, most of these co-occur-
rence patterns are derived from taxa sharing similar
ecological niches, not direct symbioses, however,
these data alone do not allow us to separate these
two possibilities. Some of the co-occurrence
patterns reveal or confirm interesting ecological
patterns for taxa that have not been well studied.
For instance, members of the verrucomicrobial
phylum tended to co-occur more (1.8%) than
expected by chance (0.3%) suggesting that, despite
being abundant and ubiquitous in soils (Bergmann
et al., 2011), they share a specific (and as yet
undefined) niche (Figure 4). Another abundant and
cosmopolitan phylum that also showed higher
incidences of co-occurrence than expected by ran-
dom association was Acidobacteria (2.4% at random
while 9.4% observed; Figure 4). In this case, the
pattern is most likely driven by the previously
observed phenomenon that soil pH largely governs
the distributions of many soil acidobacterial taxa
(Jones et al., 2009). Other examples were the
Chloroflexi and Deinococcus groups, which were
neither abundant nor generalists/cosmopolitan
(Figure 4), but instead, appeared to be mostly
restricted to desert soils. Several OTUs shared the
same habitat preferences and thus appeared to be
very interconnected (1.9% at random while 6.2%

Proteobacteria

Acidobacteria

Chloroflexi

Firmicutes

Bacteroidetes

Actinobacteria

Verrucomicrobia

Gemmatimonadetes

Planctomycetes

Archaea

Others

Generalist

Specialist

Figure 1 Network of co-occurring 90% cutoff OTUs based on correlation analysis. A connection stands for a strong (Spearman’s r40.6)
and significant (P-value o0.01) correlation. The size of each node is proportional to the number of connections (that is, degree). Left
panel: OTUs colored by taxonomy. Right panel: OTUs colored by abundance and occupancy (generalists and specialists).
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observed for Chloroflexi; 0.01% at random while 1%
observed for Deinococcus). The degree of disagree-
ment between observed and random co-occurrence
may therefore provide further insights in the niche
differentiation for the different populations sharing
a common phylogeny at different levels of related-
ness. Overall, these findings suggest that environ-
mental filtering effects and niche differentiation are
evident at broad taxonomic levels, as noted else-
where (Philippot et al., 2010).

Habitat generalists and specialists
Each of the OTUs represented by more than one
sequence was drawn in the abundance vs occupancy
plot (Figure 2) to split the set of taxa into two general
categories: soil generalists, on the one hand (that is,
broadly distributed microbial taxa, which we oper-
ationally define here as present in 480 of the 151
soils) and soil specialists (operationally defined
here as those that were locally abundant, represent-
ing 42% of the sequences in individual libraries,
but only found in o10 soil samples), on the other
hand. Under this criterion, B2% of the OTUs fell
into the generalist category while B1% fell into the
specialist category. Despite using in the present
work a high-throughput DNA sequencing method
with higher sequencing depth than traditional
methodologies, we may have missed very low
abundance taxa that potentially could be habitat
generalists. However, dividing taxa from ecological
communities into these two categories, which we
admittedly defined somewhat arbitrarily, is useful
for defining ecological categories/strategies that
offer additional information from those defined by
phylogeny, taxonomy, or functional capacity
(Magurran and Henderson, 2003). Recently, parti-
tioning microbial taxa based on abundance and
occupancy has been proved useful in the analysis of
clinical samples (van der Gast et al., 2011). In
general ecology, positive relationships between
mean abundance and occupancy have been
observed at many spatial scales (Guo et al., 2000;
van der Gast et al., 2011). However, we did not
observe such trend in our dataset. Although most of
the soil samples analyzed in the present work had
their origins in temperate and fertile soils, the
environmental variability covered in this study (that
is, different habitats and a broad spatial scale)
probably altered this relationship. For example,
specialist bacterial OTUs inhabiting extreme envir-
onments such as deserts or Antarctica soils had a
higher abundance than expected regarding their
persistence in the overall sampling range.

Overall, we observed a consistent separation in
the co-occurring network analysis between general-
ists and specialists (see significant correlations in
Figure 1, right panel, against all the remaining
OTUs, and a detail in Figure 3 adding taxonomic
information). Specialists OTUs (locally abundant in
a few samples) were composed of a diverse range of
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phylogenetic groups not common in soils from most
biomes (that is, Chloroflexi, Deinococcus, Gemma-
timonadetes; Figure 3). Generalists OTUs (distrib-
uted broadly), in turn, were typical soil members
from the Acidobacteria, Proteobacteria (especially of
the Alpha subclass) and Verrucomicrobia groups
(see Figure 4, top and low panels, and Janssen, 2006

for a recent review). The different taxonomic
composition and range of distribution probably
influenced the network structure observed
(Figure 3), indicating that these two ecological
categories shaped differently the network structure.
The generalists network was less connected and
more compartmentalized (19 significant co-occur-
rences and five compartments) than the specialists
network (29 significant co-occurrences and two
compartments) probably because of the highest
habitat variability covered by the former and the
presence in restricted environments by the latter.
Thus, the two somehow arbitrary ecological cate-
gories that we established allowed us to capture
additional information on the community assem-
bling structure as previously shown for macroorgan-
isms (Pandit et al., 2009).

Finally, the significant correlations found between
the generalists OTUs and the whole dataset are
shown in Table 1. The listed correlations do not
include co-occurrent events among members of the
same taxonomic group. Generalists OTUs belonged
to abundant phyla such as Verrucomicrobia, Acid-
obacteria, Proteobacteria and Bacteroidetes. Inter-
estingly, generalists OTUs not classified as typical
and abundant soil members (such as Deltaproteo-
bacteria and Crenarchaeota) co-occurred with other
ubiquitous members. The case of the crenarchaeotal
OTU (closely related to Candidatus Nitrososphaera
gargensis and previously described as ubiquitous in
soil; Bates et al., 2010) is particularly remarkable
due to our poor understanding of the niches
occupied by this taxon, even though it has been
proposed that related Crenarchaeota may have an
important role in the nitrogen cycle as ammonia
oxidizers (Leininger et al., 2006). This particular
crenarchaeotal OTU co-occurred with sequences
closely related to methane oxidizers (Table 1). This
observation may be a first step to revise the expected
functional role of soil Crenarchaeota in the nitrifica-
tion process because of the high sequence similarity
of the enzymes that catalyze ammonia oxidation
(ammonia monooxygenase) and methane oxidation
(particulate methane monooxygenase; Holmes et al.,
1995). This is an example of the potential that the
approach proposed in the present work has to gain
knowledge on elusive but ecologically relevant
microorganisms.

Final remarks
With this work we have demonstrated the utility of
including network analysis approaches in the
repertory of statistical approaches so far available
to microbial ecologists. By employing network
analyses to a large soil microbial dataset generated
by pyrosequencing, the process of exploring the
complex set of data was more feasible and interest-
ing unseen patterns emerged, including non-random
association, deterministic processes at different
taxonomic levels and unexpected relationships
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groups. Top panel: number of sequences in all soil samples.
Middle panel: number of significant co-occurrent OTUs (nodes
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between community members. Different ecological
rules guiding microbial community composition
may be reflected in diverse network structure among
habitats (for example, aquatic vs soil, or early
colonized vs late-successional ecosystems) that
deserves further research. The next logical step is
to go beyond merely describing the patterns revealed
by the network analysis and design more focused
experiments, or the study of specific environmental
gradients and community shifts over time, in order
to understand the mechanisms producing patterns

of community coexistence, that is, what finally
determines which and how many species live
together in a community.
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Table 1 Taxonomy of generalists OTUs (red nodes in Figure 3) and their significant (P-value o0.01) co-occurrent OTUs

Cosmopolitan Co-occurrent Spearman’s
r

Number of
co-occurring soils

Closest cultured
relative

% identity

Deltaproteobacteria Verrucomicrobia 0.61 53 Spartobacteria bacterium Gsoil 144 91
Gammaproteobacteria 0.61 80 Steroidobacter sp. ZUMI 37 100
Acidobacteria 0.65 93 Acidobacteriaceae bacterium

Gsoil 1619
90

Acidobacteria 0.74 102 Acidobacteria bacterium IGE-003 93
Firmicutes 0.61 69 Moorella thermoacetica 84

Crenarchaeota Alphaproteobacteria;
Rhodospirillales

0.62 64 Azospirillum amazonense
strain CBAmc

89

Alphaproteobacteria;
Rhizobiales

0.60 68 Balneimonas sp. sptzw09 100

Bacteroidetes;
Sphingobacteria

0.63 82 Flavosolibacter sp. HU1-JC5 96

Alphaproteobacteria;
Sphingomonadales

0.71 104 Sphingomonadaceae bacterium
Gsoil 690

100

Verrucomicrobia Acidobacteria 0.71 105 Acidobacteriaceae bacterium
Gsoil 1619

91

Firmicutes 0.64 97 Unknown sulfate-reducing
bacterium clone A8

86

Acidobacteria 0.68 130 Bacterium Ellin6075 97
Acidobacteria 0.64 70 Acidobacteria bacterium IGE-017 91

Acidobacteria Verrucomicrobia 0.68 130 Verrucomicrobia bacterium
WSF2-44

95

Actinobacteria 0.62 39 Rubrobacter xylanophilus DSM 9941 91
Gammaproteobacteria 0.66 83 Steroidobacter sp. ZUMI 37 100
Deltaproteobacteria 0.65 93 Desulfonatronum sp. ASO4–1 87
Crenarchaeota 0.63 78 Candidatus Nitrososphaera

gargensis
93

Bacteroidetes; Sphingobacteria 0.63 56 Sphingobacteriales bacterium TP524 95
Gammaproteobacteria 0.62 74 Gamma proteobacterium CH43 95

Alphaproteobacteria;
Rhizobiales

Betaproteobacteria;
Burkholderiales

0.61 79 Burkholderia glathei strain
YUST-DW12

100

Gammaproteobacteria 0.64 124 Proteobacterium Ellin181 100

Alphaproteobacteria;
Sphingomonadales

Crenarchaeota 0.71 104 Candidatus Nitrososphaera
gargensis

93

Bacteroidetes;
Sphingobacteria

0.74 89 Flavosolibacter sp. HU1-JC5 96

Gammaproteobacteria Deltaproteobacteria 0.61 33 Thermodesulforhabdus sp. nov.
M40/2 CIV-3.2

87

Alphaproteobacteria;
Rhizobiales

0.64 124 Rhodoplanes sp. 303 97

Bacteroidetes;
Sphingobacteria

Gemmatimonadetes 0.61 74 Gemmatimonas aurantiaca T-27 88

Abbreviation: OTUs, operational taxonomic units.
OTUs belonging to Firmicutes, Planctomycetes, Actinobacteria, and Burkholderiales and Rhodocyclales from the phylum Betaproteobacteria had
no significant co-occurrent matches.
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