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Abstract 

We use a graph-theoretical landscape modeling approach to investigate how to identify 

central patches in the landscape as well as how these central patches influence (1) 

organism movement within the local neighborhood, and (2) the dispersal of organisms 

beyond the local neighborhood. Organism movements were theoretically estimated based 

on the spatial configuration of the habitat patches in the studied landscape. We find that 

centrality depends on the way the graph-theoretical model of habitat patches is 

constructed, although even the simplest network representation, not taking strength and 

directionality of potential organisms flows into account, still provides a coarse-grained 

assessment of the most important patches according to their contribution to landscape 

connectivity. Moreover, we identify (at least) two general classes of centrality. One 

accounts for the local flow of organisms in the neighborhood of a patch and the other for 

the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, 

we study how habitat patches with high scores on different network centrality measures 

are distributed in a fragmented agricultural landscape in Madagascar. Results show that 

patches with high degree-, and betweenness centrality are widely spread, while patches 

with high subgraph- and closeness centrality are clumped together in dense clusters. This 

finding may enable multi-species analyses of single-species network models. 

 

Key words: landscape connectivity, complex networks; graph theory; conservation; 

network centrality; habitat patch; landscape ecology; factor analysis; landscape 

management, subgraph centrality; betweenness centrality; network representations
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INTRODUCTION 

Habitat loss, as a consequence of increased human land use and expropriations of 

natural habitats, is increasingly being considered as one of the major threats to 

biodiversity and functional ecosystems (Meffe et al. 2002, Fahrig 2003). Habitat loss 

basically gives rise to two different, although closely related, spatial consequences. First, 

the amount of natural habitat obviously decreases as more land is converted for expample 

agricultural production. Secondly, the conversion of natural habitat decreases the 

connectivity of the landscape, i.e.,, it increases the level of habitat fragmentation. The 

focus of this paper is on this latter consequence of habitat loss. Connectivity is, on a 

general level, the degree to which the spatial pattern of scattered habitat patches in the 

landscape facilitates or impedes the movement of organisms (Taylor et al. 1993). The 

persistence of spatially-structured species populations ― metapopulations ― is strongly 

related to the connectivity of the landscape (Hanski and Ovaskainen 2003). If the 

connectivity of the landscape is too low, subpopulations get isolated, and for instance the 

possibility of recoveries following local extinctions decreases since successful 

recolonization is dependent on the dispersal of species throughout the landscape (Hanski 

and Ovaskainen 2003, Hanski 1994, Bascompte and Solé 1996). On the other hand, even 

if habitat fragmentation has decreased the number of large coherent patches of habitat in 

the landscape, a sufficiently high level of connectivity may still provide for sufficiently 

large areas of reachable habitat, as seen by species capable of moving from patch to patch 

(Lundberg and Moberg 2003). Thus, management and planning should take these, and 

other, aspects of landscape connectivity into account in order to provide ecologically 

functional and resilient landscapes in for instance, designing natural reserves and in green 



 4 

area planning of urban and/or semi-urban areas (Bengtsson et al. 2003, Lee and 

Thompson 2005, Bodin and Norberg 2007). Within this problem domain of management, 

one of the challenges is to differentiate the impact individual habitat patches have on the 

overall connectivity of the fragmented landscape. Often, not all natural habitats can be 

preserved since a multitude of different societal interests in land usages has to be 

balanced in a typical management situation (Bengtsson et al. 2003). The problem that not 

all habitat patches can be preserved begs the question; Which ones shall managers choose 

to conserve? Furthermore, the flip-side of that question is; Which patches can be 

exploited while still minimizing the negative ecological consequences?  

At present there is an abundance of metrics that quantify landscape pattern 

(Gustafson 1998), but how well these metrics explain ecological processes is still largely 

unknown (Hargis et al. 1998, Tischendorf 2001). Ecological interpretability is however of 

crucial importance for any spatial configuration metric in order to make it useful in 

management (Li and Wu 2004). One promising approach fulfilling this criterion is the 

graph-theoretical perspective on landscape connectivity (Keitt et al. 1997, Urban and 

Keitt 2001, Pascual-Hortal and Saura 2006, Bodin and Norberg 2007, Campbell Grant et 

al. 2007, Minor and Urban 2007, Calabrese and Fagan 2004). This approach merges 

population processes, such as dispersal, with spatial patterns of habitat patches - on the 

level of landscapes - in order to attain process-based measures of connectivity (Urban and 

Keitt 2001). The basic idea is to depict landscapes of fragmented habitat patches as 

networks where the patches are the nodes and the links are the possible dispersal 

pathways for dispersing species.  
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For this study, our focus is to elaborate on different methods, using the graph-

theoretical modeling approach to landscape connectivity, to assess and differentiate the 

importance of individual habitat patches in relation to their impact on different aspects of 

the landscape’s connectivity (Pascual-Hortal and Saura 2006). Within the broad 

interdisciplinary field of network analysis, the concept of centrality is used to assess the 

individual capability of nodes to influence others (Wasserman and Faust 1994, Estrada 

2007a). In short, the concept of centrality is manifested through a family of network-

centric metrics designed to assess, broadly defined, individual nodes’ level of influence 

based on their structural position relative to others in the network. Our detailed objective 

with this study is to examine the applicability of a range of such centrality measures in 

studying individual habitat patches contribution to the landscape connectivity. The goal is 

to develop methods helpful in real world situations where management needs to make 

informed decisions on which habitat patches to conserve, and which ones to exploit. The 

current work also connects to the evolving field of network-oriented studies of different 

complex systems ranging from social and technological to biological and ecological 

(Strogatz, 1998; Albert and Barabási, 2002; Newman, 2003; Boccaletti et al. 2006).  

Here we first briefly present a heavily fragmented agricultural landscape in southern 

Madagascar (Bodin et al. 2006) which is thereafter used throughout the paper for the 

different analyses. We proceed with presenting some different approaches in constructing 

network representations of highly fragmented landscapes, followed by a presentation of a 

selected set of centrality measures. Then, by applying these different network 

representations on the Madagascar landscape, we examine (1) how the selected set of 

centrality measures behave in relation to these different kinds of network representations, 
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and (2) how the centrality measures differ among each other. We show that these 

measures, on a general level, can be reduced to two different aspects of centrality, both of 

potentially great importance in assessing individual patches’ contributions to landscapes 

connectivity. These aspects are suggested to encompass (1) a patch’s contribution to the 

magnitude of species interpatch movements on a local geographical level, and (2) the 

criticality of an individual patch when it comes to providing large-scale connectivity, 

i.e.,, the importance of the individual patch in preventing the network of habitat patches 

to divide into smaller and isolated compartments, or islands, of patches. Finally we 

present an analysis of the geographical distribution of the patches with high scores on 

different measures of centrality, and suggest a multi-species analysis using species-

specific network representations of fragmented landscapes. 

METHODS 

Study area – southern Madagascar 

The study area used throughout the analyses in this paper is located in the Androy 

region in the very south of Madagascar, and it is described in details elsewhere (Bodin et 

al. 2006; Bodin and Norberg 2007). It consists of hundreds of small forest patches (<1 to 

95 ha) that are scattered in an agricultural landscape (Fig. 1). This study area was chosen 

since it provides an illustrative example of a landscape that has been fragmented as a 

result of agriculture. In spite of its limited size, the forest patches provide habitat for our 

target species; the Ring-tailed Lemur (Lemur catta). L. catta is an important seed 

disperser in the area since it forages on fruits of many different plant species in the area 

(see Bodin et al. 2006 and references therein). Hence their movement between different 

forest patches, and in the matrix, can potentially disperse seeds throughout the landscape 
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and accordingly it may contribute significantly to this important ecosystem service 

(Millennium Ecosystem Assessment 2003). A spatial analysis of the fragmented forest 

patches, as experienced by L. catta, is therefore of interest in order to gain insights in 

how well the landscape’s spatial configuration supports seed dispersal. In this study, we 

build on a previous graph-theoretical analysis of how L. catta may experience the studied 

landscape; thus details on assessments of movement capability and habitat suitability are 

not included here but can be found in Bodin et. al. (2006). 

Insert Fig. 1 about here. 

Graph representations of fragmented landscape 

The basic modeling approach in this paper is to present a landscape of scattered 

habitat patches as a network consisting of nodes and links (Keith et al. 1997). Each 

habitat patch is here represented as a node, and a link between any two nodes represents 

connectivity between the two corresponding patches. If two patches are connected, the 

target species is able to move between these patches thus implying there is a potential 

flow of organisms between the two. There are a number of different methods available to 

estimate the level of connectivity between any two patches (Keitt et al. 1997, Bunn et al. 

2000, Verbeylen 2003, Bodin et al. 2006). These methods represent different ways of 

quantifying the effective distance, as experienced by the target species, between the 

patches in question. In its simplest form, the effective distance will be the same as the 

geographical distance. In heterogeneous landscapes, the effective distance between any 

two patches should be assessed based on the permeability of the specific land types 

separating these. In any case, longer effective distance means less connectivity (and flow 

of organisms) between the patches. In this study, we estimated the flow of organisms 

between any two patches by applying the underlying assumptions behind the Incident 
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Function Model (Hanski 1994). Thus, the flow was assumed to decrease exponentially 

with increasing inter-patch distance and to increase proportionally to the square root of 

the habitat patch area (see further details in Bodin et al. 2006). 

After assessing the connectivity between all pairs of patches in the landscape, the 

resulting network will represent all possible movement paths throughout the landscape, 

i.e.,, it will represent the landscape’s structure of connectivity as experienced by the 

target species.  

In general, a network of fragmented patches is represented as a NxN  matrix, called 

an adjacency matrix A  where each patch (of a total of N  patches) is represented by one 

row and one column (Harary 1969). Then, each element ijA  represents the level of 

connectivity between patch i  and patch j . The most general representation of a 

landscape network is a so-called weighted directed graph, where each element in A is 

weighted and ijA  is not necessarily the same as jiA  (Harary 1969). This representation is 

often simplified by dichotomizing all elements based on a threshold weight, and the 

adjacency matrix can also be made undirected ( ijA  equals jiA ). These different 

representations are described below. 

i) Weighted-directed network. In this representation the weight of the network links are 

proportional to an estimated flow of organisms potentially moving from one patch i to 

another patch j  as explained earlier. Obviously, the number of organisms flowing from 

i  to j  are not necessarily the same as those flowing in the reverse direction. Thus, the 

network is directed and its adjacency matrix is asymmetric. The adjacency matrix, A  for 
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this network is a squared non-symmetric matrix whose elements ijA  are defined as 

follows: 





=
                                                equals  if     0

 weight having  to fromlink  a is  thereif   

ji

lj il
A

ijij

ij     (1) 

ii) Un-weighted directed networks. This is a simplified representation of the weighted-

directed  network in which no link weight is quantified but we still consider the direction 

of the links joining the nodes. There is a link from patch i  to j  if there is a potential flow 

of organisms in this direction which exceeds a predefined threshold value (Bodin et al. 

2006). This network is represented by a binary directed graph where the weight ijl  is 1 if 

there is a link from node i  to node j , or 0 otherwise. The elements of the asymmetric 

adjacency matrix are thus defined as follows 





=
                           otherwise   0  

  to fromlink  a is  thereif   1 j i
Aij       (2) 

iii) Un-weighted undirected networks. The simplest representation of a landscape 

network is the un-weighted undirected graph. In this case we consider two nodes as 

connected if there is a connection between the corresponding patches irrespectively of its 

direction. The link weights  are 1 or 0 if the corresponding nodes are connected by a link 

or not, respectively. Thus, the adjacency matrix is a binary symmetric matrix whose 

elements are defined as follows: 

 




=
                                                      otherwise   0

  to fromor    to fromlink  a is  thereif   1  i j ji
Aij     (3) 

In Table 1 we illustrate the three types of landscape network representations and 

their respective adjacency matrices.  

Insert Table 1 about here 
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“Classical” network centrality measures 

Here we present some centrality measures used in studying various different kind of 

networked systems (Costa et al. 2007, Jordán et al. 2007, Wasserman and Faust 1994). 

i) Degree centrality ( )iDC , is simply the number of links of a node i, i.e.,, the 

number of patches that have a functional connection from or to the patch i. In a directed 

network we will distinguish two types of degree centralities: in-degree and out-degree 

centralities. The in-degree centrality ( )iDCin  is the number of links which terminate in 

patch i  in the landscape. The out-degree centrality ( )iDCout  is the number of links that 

originate from the patch i  (Harary 1969). If a landscape has link weights then the in- and 

out-degree centralities are calculated by summing up the link weights for all the links 

terminating or originating, respectively, at the corresponding patch. 

ii) Betweenness centrality BC(k) is defined as the fraction of shortest paths going 

through a given node k . If ( )ji,ρ  is the number of shortest paths from node i to node j, 

and ( )jki ,,ρ  is the number of these shortest paths that pass through node k in the 

network, then the betweenness centrality of node k is given by (Wasserman and Faust 

1994; Freeman 1978): 

( ) ( )
( ) kji

ji

jki
kBC

i j

≠≠
ρ
ρ

=∑∑ ,
,

,,
      (4) 

In weighted networks the shortest paths could be defined as the sum of the link weights. 

iii) Closeness centrality ( )iCC  is the sum of the distances from node i to all other 

nodes in the network, where the distance ( )jid ,  is defined as the number of links in the 

shortest path from node i to node j. The closeness centrality of node i is given by the 

following expression (Wasserman and Faust 1994; Freeman 1978): 
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( ) ( )∑
−

=

j

jid

N
iCC

,

1
         (5) 

In weighted networks the distance could be defined as the sum of the link weights. The 

closeness centrality cannot be calculated for all patches in a disconnected landscape 

because the distance between un-connected patches is infinite or just undefined. 

iv) Eigenvector centrality EC(i) was introduced by Bonacich (1972, 1987) and is 

defined using the principal eigenvector of the adjacency matrix A. EC(i) of node i is 

defined as the ith component of the eigenvector 1e  that corresponds to the largest 

eigenvalue of A (principal eigenvalue): 

( ) ( )ieiEC 1=            (6) 

The eigenvector centrality has some limitations when applied to the different types 

of network representations previously presented (Borgatti and Everett 2006). First, it 

cannot, in its original form, be unambiguously defined for directed networks. 

Furthermore, it assigns zeros to all patches which are not situated in the largest 

component (i.e., a subset of nodes where there exist a path between each and every pair 

of nodes) of the network even if they are highly central in their respective components 

(Borgatti and Everett 2006).  

Subgraph centrality 

One of the authors (EE) has recently introduced a metric characterizing certain 

aspects of importance of a node in a network which is named the “subgraph centrality” 

( )iSC  (Estrada and Rodríguez-Velázquez 2005). This metric characterizes the 

participation of a node in all structural motifs (e.g., triangles, squares, etc.) in the 

network. The participation of a node in a motif is quantified by means of the so-called 
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closed-walks (CWs). A walk of length r  is a sequence of nodes 121 ,,,, +rr vvvv   such that 

for each ri ,2,1 =  there is a path from iv  to 1+iv . A closed walk (CW) is a walk in 

which 11 vvr =+  (Harary 1969). A particular case of CW is the cycle, in which all nodes in 

121 ,,,, +rr vvvv   are different, but in general a closed walk can involve the same node 

more than once. In a network representation of a fragmented landscape, these CWs 

represent different movement pathways within the landscape that terminates at the 

originating patch. 

If we consider a particular node i , the total number of CWs of length r  originating 

(and terminating) at i  is designated by ( )irµ . The general idea behind the subgraph 

centrality measure is to relate a node’s centrality to the number of CWs of different 

lengths starting at a given node. However, the sum of CWs of all lengths starting and 

ending at a given node is infinite, i.e.,, ( ) ∞=∑
∞

=0r

r iµ , which would makes this measure 

useless. This difficulty is resolved by introducing a weighting scheme that makes that the 

sum of weighted CWs converge to a definite value (Estrada and Rodríguez-Velázquez 

2005). 

( ) ( ) ( )∑ ∑
∞

=

∞

=

==
0 0 !!r r

ii

r

r

rr

i
iSC

Aµ
        (7) 

Thus, a CW of length two is weighted by a factor of ½, and a CW of length three is 

weighted by a factor of 1/6 and so on. In general, a CW of length r is weighted by a 

factor of !/1 r , which makes the sum of weighted CWs converge, and also fulfill the 

intuition that the longer closed walks are of less importance in defining a nodes level of 

centrality (see further explanations in Estrada and Rodríguez-Velázquez 2005). 
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For practical reasons we need to truncate the infinite sum given by expression (7). 

In doing so we will stop the calculation for the value of r  such that  

410
!

−≤
r

rµ          (8) 

Furthermore, in a binary and undirected representation of a network, (7) converges 

to the following expression: 

( ) ( )[ ] jei
r

iSC
N

j

j

r

r λγ
µ 2

10 !
∑∑
=

∞

=

==        (9) 

where ( )ijγ  is the ith component of the jth eigenvector of the adjacency matrix A and jλ  

is the corresponding jth eigenvalue (Estrada and Rodríguez-Velázquez, 2005).  

Finally, as seen from an ecological perspective, if a patch in a landscape has a large 

subgraph centrality, a species would be able to move from that particular patch to a large 

number of other patches - and then return - by using predominantly closed walks of small 

lengths.  

Centrality measure correlations 

Of interest is to examine to what extent the different centrality measures capture 

certain distinct aspects of the patches’ structural positions, and to what extent the 

different measures overlap (correlate) in this regard. Furthermore, it is of interest to study 

to what extent the different centrality measures depend on the different networks 

representations described earlier. In order to enable such analysis, we calculated the in- 

and out-degree, the betweenness, the in- and out-closeness and the subgraph centrality for 

all nodes, in all types of network representations, and correlated the resulting values for 

all centrality measures for all nodes. Hence, we (1) tested the degree of correlation 
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between the values for the different centralities for each network representation, and we 

(2) correlated the centralities among the three different types of network representations. 

In addition to the centrality measures mentioned above we also calculated the 

eigenvector centrality for the simple graph representation of the network, which has a 

symmetric adjacency matrix allowing such calculations.  

Furthermore, to examine to what extent the different centrality measures overlapped 

we use the principal component (PC) method (Gorsuch 1983) to reduce the six-

dimensional centrality space as much as possible while still accounting for most of the 

variance of the centrality measures. In order to obtain a clear pattern of loadings we will 

use a typical strategy known as Varimax, which rotates the factors in an orthogonal way 

(Gorsuch 1983). 

Clumpiness coefficient 

A network characteristic that has received fairly little attention is how close to each 

other the most central nodes in a network are. We believe that such characteristics could, 

however, be of particular interest in studying some aspects of a landscape’s spatial 

configuration. If for instence, a set of patches, each with high degree centralities, are also 

directly connected to each other, one might expect a high degree of organism movements 

confined within such a set. 

One measure that tries to capture this network characteristic is the assortativeness 

introduced by Newman (2002). This measure quantifies whether the most connected 

nodes in a network are connected to each other or to the least connected ones. Newman 

proposed measuring the Pearson correlation coefficient of the degree-degree correlation 

to quantify the assortativeness (Newman 2002). However, this measure only takes into 
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account the pairs of connected nodes and does not say anything about the pairs of nodes 

separated at topological distance larger than one. In order to include these pair of nodes in 

the analysis we here define a clumpiness coefficient ( )CΛ  for the centrality measure C .  

The clumpiness coefficient is defined as the averaged value of the product of the 

standardized centrality for all pairs of nodes jiCC ˆˆ  in the network divided by the square 

of the corresponding topological distance ijd  separating them, 

( ) ( )∑
<

=Λ
N

ji ij

ji

d

CC
C

2

ˆˆ
         (10) 

The standardization of the centralities is carried out by 
s

CC
C

i

i

−
=ˆ , where C  is 

the average and s  is the standard deviation of the centrality. This standardization 

guarantees that we can compare centrality measures which have very different values as 

they have an average value of zero and standard deviation of one. As can be seen from 

this expression, when the most central nodes are directly connected, 1=ijd , the 

clumpiness reaches its maximum. However, when the most central nodes are far away 

from each other, 1>>ijd , the clumpiness is reaching its minimum. Here we are using the 

topological distance between the pairs of nodes but in other cases the topological distance 

ijd  could be replaced by the effective distance (i.e., the link weights) separating the 

patches in order to obtain a clumpiness estimate of a centrality measure taking the 

effective distances into account. 

Expression (10) can be obtained from a direct vector-matrix-vector multiplication 

procedure (Estrada, et al. 1997; Estrada and Rodríguez 1997). Let c  be a column vector 
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of the standardized centrality measures and R  the matrix of reverse squared distances 

between pairs of nodes in the graph. Then the clumpiness coefficient is obtained by, 

( ) ( )TC cRc
2

1
=Λ          (11) 

where T stands for the transpose of the vector. Some generalizations and statistical-

mechanics interpretation of the clumpiness coefficient have been recently published by 

Estrada et al. (2008). 

Simulation of patch losses 

Ultimately, our interest in the different centrality measures lies in their ability to 

assess the contribution of a patch to various aspects of the connectivity of a fragmented 

landscape.  In this study we estimated this ability by simulating the removal of patches, 

ten-by-ten, starting with the most central nodes according to different centrality 

measures. This strategy has been applied previously to different kinds of complex 

networks (Estrada 2006; Estrada 2007b). We selected two different network descriptors 

to assess the centrality measures’ abilities to identify patches that characterize the 

landscape network as a whole. First, we analyzed how the network cliquishness is 

affected by the removal of the patches. By cliquishness we mean to what extent links tend 

to be distributed to certain well-connected sets (cliques) of nodes, or if just distributed 

randomly. High cliquishness would imply high local neighborhood connectivity. In a 

heavily fragmented landscape, high local connectivity implies access to a fair amount of 

nearby habitat patches thus providing home ranges of sufficient sizes (cf. Bodin et al. 

2006).  As a cliquishness measure we selected the Watts-Strogatz clustering coefficient, 

which is defined as (Watts and Strogatz 1998) 
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i

i
Ci

 nodeon  centered  triplesofnumber 

 node  toconnected  trianglesofnumber 
=       (12) 

 The second parameter to be considered is the size of the largest component. If the 

size of the largest component (in terms of the number of patches it contains) is big in 

comparison to the total number of patches in the landscape, the level of connectivity can 

be interpreted as high.   

RESULTS 

Weighted directional Madagascar network 

 In Fig. 2A we show, for every patch, the intercorrelations between every pair of the 

centrality measures studied of the weighted directional version of the Madagascar 

landscape network. The most evident characteristic that can be observed in this plot is the 

generally low level of correlation between many of the pairs of centrality measures. This 

clearly shows that different centrality measures are ranking the nodes according to 

different criteria. The most correlated centralities are the subgraph centrality and the 

degree centralities, which all show some linear interdependence among each other. On 

the other extreme we find the closeness centralities, which are not well correlated with 

neither of the other measures. The differences in the criteria of centrality measures are 

reflected in the ordering of the patches according to their centrality scores. In Table 2 we 

give the Spearman correlation coefficients for the different rankings introduced by these 

centrality measures. These statistics represent the relationship between different rankings 

on the same set of patches. That is, these coefficients measure the correspondence 

between two rankings, and assess the significance of this correspondence. If two rankings 

are the same the Spearman coefficient is equal to 1 and if one ranking is the reverse of the 

other the coefficient has the value –1. In general, this coefficient lies between –1 and 1, 
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and increasing absolute values imply increasing agreement between the rankings. As can 

be seen in Table 2 most of the values of the Spearman correlation coefficient indicate that 

there is a poor correlation between the different rankings. The best agreements are 

obtained between the subgraph centrality and the degree centralities. These different 

rankings beg the question of how to obtain a relevant global ranking of the overall level 

of centrality of nodes in a landscape network.  

Using the principal component (PC) method we have been able to reduce the six-

dimensional centrality space to three dimensions where three principal components ( 1PC , 

2PC  and 3PC ) account for 80% of the variance of the centrality measures. There are 

three centrality measures that load in 1PC  (the two degree centralities and the subgraph 

centrality). 2PC  accounts for the betweenness and in-closeness centralities and 3PC  only 

accounts for the out-closeness centrality. We have then carried out a Varimax rotation 

(Gorsuch 1983) to orthogonalize the principal components and obtain their structural 

interpretation. In Fig. 2B we plot the first two components ( 1PC  and 2PC ) after this 

rotation. The two degree centralities and the subgraph centrality have positive 

contributions to 1PC . Since the degree centralities measure the number of functional 

connections (i.e., links) with the surrounding patches, and subgraph centrality measures 

the level of participation of a patch in structural motifs like triangles, squares, etc, PC1 

can be interpreted as a measure of the total dispersal of organisms through the 

corresponding patch.  

On the other hand, the second principal component is dominated by the 

betweenness centrality and in-degree closeness centrality. Patches with high scores of the 

betweenness centrality have previously been shown to help bring together otherwise 
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largely separated groups of patches (Bodin & Norberg 2007). If these “bridging” patches, 

also known as cutnodes, are removed, the connected landscape would risk being 

separated into significantly smaller compartments (which our experiments of node 

removals presented further on also confirm). Consequently, the principal 

component 2PC , can be understood as a measure of the corresponding contribution of a 

patch in upholding the large-scale connectivity of the landscape. In Table 2 we have 

included the Spearman rank correlation coefficients for the three principal components. It 

can be seen that the ranking introduced by 1PC  agrees very well with the rankings 

introduced by the degree and subgraph centrality. The highest coefficient is obtained for 

the subgraph centrality. The ordering introduced by 2PC  correlates very well with the 

ranking introduced by the in-closeness centrality and the betweenness centrality and the 

ordering introduced by 3PC  agrees with the one introduced by the out-closeness 

centrality.   

Insert Table 2 and Fig. 2 about here. 

Unweighted (binary) directional Madagascar network 

We calculate the centrality measures for all nodes and obtain the inter-centrality 

correlations, which are illustrated in Fig. 3. Betweenness and closeness centralities are 

exactly the same as for the weighted version of the network as we did not consider the 

link-weights in these calculations. As can be seen there is, again, a generally low level of 

correlation between many of the pairs of centrality measures. However, the correlation 

between the degree centralities is significantly higher for the binary-directed than for the 

weighted directed network.  
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When analyzing the Spearman rank correlations between the centrality measures we 

can observe (see Table 3) that there is a high level of correlation between the rankings 

introduced by degree centralities and subgraph centrality. The other two rankings which 

are in some way correlated are the ones introduced by in-closeness and betweenness 

centralities. 

Insert Fig. 3 about here. 

The factor analysis revealed three principal components accounting for 88% of the 

variance of the original centrality measures. As in the previous case the first principal 

component, 1PC  is described by the degree and subgraph centralities. The second factor 

2PC  is represented only by the betweenness centrality. Thus, the interpretation of these 

factors is the same as before. In Table 3 we can see that there are high rank correlations 

between the 1PC  and the two degree centralities as well as subgraph centrality. As 

before, the second principal component is rank correlated to the betweenness but in this 

case also with the out-closeness centrality instead of the in-closeness centrality. 

Insert Table 3 about here. 

In Table 4 we show how the centrality scores calculated for the weighted version 

correlate with the scores calculated for the binary version of the network representation. 

By analyzing the diagonal entries of the table, it is possible to compare the same 

centrality measure of the two network representations of the landscape. As can be seen 

the subgraph and the degree centralities are fairly correlated (correlation coefficient=0,73 

and 0,66), but some information is obviously lost when the link weights are omitted from 

the analysis (cf. Scotti et al. 2007). For example, only 50% of the patches in the 1PC  top 

ten coincide for both types of networks (data not shown). Betweenness and closeness 
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centrality were calculated without taking link weights into account, thus their correlation 

coefficients are 1. 

Insert Table 4 about here. 

Binary undirected network 

In Fig. 4 we illustrate the correlation between every pair of centrality measures in 

this simple graph representation of the Madagascar landscape. As before there is a low 

level of correlation between many of the pairs of centrality measures. However, the 

subgraph and degree centralities display some correlations, as do the subgraph and 

eigenvector centralities. In the latter case the correlation is significantly reduced by the 

fact that eigenvector centrality assigns zero centrality for all patches which are not within 

the largest connected component of the network.  

Insert Figure 4 about here. 

In Table 5 we give the Spearman correlation coefficient for the different rankings of 

patches according to the centrality measures analyzed. There is a large coincidence in the 

rankings introduced by degree, subgraph and eigenvector centrality. Surprisingly, the 

eigenvector centrality introduces a ranking of patches which is highly correlated to the 

one introduced by the closeness centrality. The ranking introduced by the betweenness 

centrality is very unique as it does not correlate with any of the other rankings. A factor 

analysis identifies a principal component in which degree, eigenvector and subgraph 

centralities are highly loaded. The second principal component accounts for the 

betweenness and the third for the closeness. Hence, it is apparent that there are large 

similarities in the reduced centrality spaces obtained for the three different network 

representations. The ranking obtained by using 1PC , 2PC  and 3PC  are also given in 

Table 5. The first two principal components continue having similar rankings as the 
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centrality measures scored in such factors. The third principal component, however, has 

high Spearman correlation coefficients with most of the centrality measures. 

Insert Table 5 about here. 

Table 6 and 7 present the correlations between centralities of patches for the three 

different network representations of the landscape. The degree of correlation between 

degree and subgraph centrality is for example slightly reduced when correlating the 

simple network with the weighted directed one than when correlating the weighted-

directed one with the binary directed network. Overall, as before, the level of correlation 

remains fairly low. 

Insert Table 6 and 7 about here. 

How are central patches distributed across the landscape? 

In Fig. 5 we illustrate how the patches with the highest scores of the degree, 

betweenness, closeness and subgraph centralities for the simple network representation of 

the Madagascar landscape are distributed. The sizes of the nodes are proportional to the 

value of the centralities. As can be seen in Figure 5 the most central nodes according to 

the degree and the betweenness measures are spread across the network. However, the 

most central nodes according to the subgraph centrality form very compact clusters, 

which are localized in small regions of the landscape.  

If we calculate the clumpiness coefficients for the degree, betweenness, closeness 

and subgraph centralities of the Madagascar network we confirm quantitatively our 

observation that subgraph centrality is more clumped than degree centrality in this 

network, ( ) 09.634=Λ SC  and ( ) 30.438=Λ DC . Also, in this landscape the betweenness 

centrality has a small clumpiness, ( ) 09.225=Λ BC , which confirms that most of the 

bridges/cutpoints in the network are spread across the landscape and are not concentrated 
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in small regions. By definition the closeness centrality should be the most clumped 

centrality as it is conceptualized to give higher weight to the nodes which are close to 

other nodes. In fact, ( ) 92.732=Λ CC .  

Insert Figure 5 about here 

Vulnerability to patch loss 

Here we simulate how the Madagascar landscape might be affected by the loss of 

patches. The objective of the simulation is to assess how the loss of the most central 

patches identified by the different centrality measures affects aspects of the network 

topology, with consequences on the ecological processes in the landscape. As previously 

described we selected the most complete description of the Madagascar network for the 

simulation, which is the weighted directed network. We removed the patches, ten-by-ten, 

according to their values of the two principal factors identified previously.  

The original network is formed by 29 components, which are by definition not 

connected to each other. In Fig. 6 we present the results of the simulation, where the x -

axis represents the relative number of patches removed and the y -axis represents the 

relative value of the indicator used. The relative indicators are calculated by dividing the 

value of the indicator for the disturbed network by that of the original network. By using 

continuous line we represent the effects produced by the removal of the most central 

patches according to the PC1, i.e.,, the one we propose as representing organism 

dispersal, while a discontinuous line represents the effects produced by the removal of 

patches according to factor PC2, i.e., the one we propose as representing the contribution 

of a patch in upholding the large-scale connectivity. If we consider the network 

cliquishness (local neighbourhood connectivity) we can see that this parameter is almost 
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unaffected when the most central patches ranked by factor PC2 are removed. However, 

the removal of the patches according to the factor PC1 produces a dramatic reduction of 

the cliquishness of the network and by removing about 40% of patches the cliquishness is 

reduced by 50%.  

The size of the largest component of the network is reduced from 173 patches to 

only 95 when the 10 most central patches according to factor PC2 are removed. The 

number of patches, however, remains high for the removals based on the PC1. The 

elimination of the top 20 patches according to PC1 only reduces the size of the largest 

component from 173 to 165 patches. However, after 10% of nodes are removed both 

factors predict approximately the same effect on the size of the principal component. This 

somewhat unexpected behavior is mostly a consequence of the severe fragmentation of 

the principal component following the first removals. Thus, continued patch removals are 

based on centrality scores which are no longer relevant, therefore it is not surprising that 

the difference between the two removal schemes is so small.  

Insert Fig. 7 about here. 

DISCUSSION 

Two families of network centrality 

By comparing the results of the analyses of the different centrality measures in the 

three different network representations of a fragmented landscape (weighted-directional, 

unweigthed-directional and unweighted-undirectional) we observed the following 

generalities described below.  

(1) There are (at least) two distinct types (families) of centralities among the set of 

selected centrality measures for the network studied here. We interpret the first type as 

potentially relevant in estimating organisms’ dispersal at the level of the local 
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neighborhood, and the other type as relevant in estimating the ability of individual 

patches to maintain connectivity beyond the scale of the local neighborhood. The first 

type includes (in/out) degree-, eigenvector- and subgraph centrality and the second type 

includes the betweenness centrality for all cases. The simulation of patch removal 

confirmed the aforementioned differences between the two types of centralities. 

(2) These two families of network centrality remain distinct for all three types of 

network representations. This assessment resulted from the factor analyses of all three 

network representations where the different centrality measures listed above always 

ended up in the same principal components, irrespectively of the type of network 

representation. The closeness centrality, on the other hand, did not show such 

consistency. 

(3) The different types of network representations have quite a significant effect on 

the assessment of the different centrality scores of individual patches, and that effect 

seems to be more profound for the family of centrality measures that we interpret as 

relevant in assessing localized organism dispersal. This assessment is based mainly on 

the fairly low correlation coefficients of the node centralities in the different network 

representations. The information contained in the first principal component, which we 

interpret as related to the dispersal of organisms through a given patch, is significantly 

affected by the consideration of weight and directionality of links in the landscape 

network. In comparison, the second principal component ( 2PC ) is more stable to the 

differences in network representation. This difference is, however, partly a consequence 

of not considering the link weights for the calculation of the betweenness centrality. 



 26 

(4) Although the different network representations have a profound effect on the 

ranking of the individual patches’ centrality scores, most of the higher scoring patches 

remain high in centrality irrespectively of the network representation. Thus, even the 

simple unweighted and undirected network representation is still useful for a coarse-

grained assessment of individual patches’ importance, but a more detailed assessment of 

link strength and direction are clearly preferable. 

(5) Since the two different families of network centralities remained the same for all 

different types of network representations, it may suffice to use only one centrality 

measure from each family for a coarse-grained analysis. Hence, analyses are significantly 

simplified while still retaining confidence that no important information is lost. 

According to the rank correlation analysis results (Tables 2, 3 and 5) we recommend 

using subgraph or degree centrality as a representative of the first principal factor and the 

betweenness centrality as a representative measure of the second factor. 

To summarize, the two families of centrality measures (i.e., the principal 

components 1PC  and 2PC ) assessed using six different and widely used centrality 

measures, account for two important but distinct aspects of the landscape connectivity. 

For instance, the removal of the most central nodes according to 1PC  will not separate 

the network into more isolated components but will reduce the local neighborhood 

connectivity (“cliquishness”) of the network, potentially posing limitations on the 

landscape’s ability to attract species with size-requirements on their home range 

stretching beyond the size of individual patches. On the other hand, 2PC  accounts for the 

bridges in the landscape whose removal will separate the landscape into isolated 

components. Then, the assessment of whether patches are more central (and thus more 
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important) than others depends on the aspect of landscape connectivity under 

consideration. Both aspects of landscape connectivity are important, thus (ideally) 

patches scoring high in both families of centralities should be conserved while the 

exploitation of other lower-ranking patches may cause less negative impact on landscape 

connectivity and its associated ecological processes. 

Clumpiness of central patches 

As qualitatively revealed in Fig. 5, and quantified using our proposed clumpiness 

coefficient, patches with high scores on degree and betweenness centrality are scattered 

throughout the whole landscape, whereas patches with high scores on subgraph centrality 

are clumped together in distinct and dense clusters of patches. Hence, although there is a 

relatively high degree of correlation between subgraph and degree centrality, and despite 

the fact that they appear in the same principal component in the factor analysis, there are 

clearly some differences between the two. When it comes to the ranking of the most 

central patches according to the two measures, there is a high degree of similarity with 

Spearman rank correlation coefficients larger than 0.9, irrespective of the network 

representation (Table 2, 3 and 5). However, as revealed in Fig. 5, the difference appears 

to reside in the ranking of the patches with low to intermediate scores of centrality. All 

patches with low to intermediate scores of subgraph centrality are located closely around 

the highest scoring patches while for degree centrality this characteristic is far less 

pronounced. Here, some of the patches with relatively high degree centrality stand out on 

their own, while this never happens for patches with high subgraph centrality. 
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Dense clusters of relatively small patches 

In a landscape, in order for a patch to have a high degree centrality, it has to be 

located geographically close to many other patches. Thus, due to obvious spatial 

constraints, the mean areas of these patches have to be quite small in comparison with the 

effective distance the target species can move in the landscape (patches can, by 

definition, not overlap; thus in order to fit many patches onto a small area they have to be 

small). Furthermore, a particular node’s subgraph centrality score is boosted if its 

network neighbors have many neighbors themselves, particularly if these neighbors are 

also neighbors to the originating node (and therefore located within reach from the 

originating node). This boost is due to the increased number of short-length closed walks 

resulting from the well connected local network neighborhood. In order to understand 

more formally the relationship between high subgraph centrality and shorter dispersal 

distances we exemplify it using an artificial landscape network having n  patches in 

which every patch is connected to all others in the landscape. This kind of networks 

correspond to the so-called complete graphs, nK . We have previously proved 

mathematically that the largest subgraph centrality in a network having n  nodes is 

obtained for the complete graph nK  (Estrada and Rodríguez-Velázquez 2005). That is, 

among all networks having the same size the maximum subgraph centrality is reached 

when all nodes are connected to each other. Of course, this network will also display 

most interpatch movements since an organism situated in one patch can reach any other 

patch by moving one single step. Similarly, the level of closeness is highest if every node 

is connected to every other node. Now, let us consider the network xK n −  in which the 

link x  is removed from nK . Then the number of CWs of length k  in xK n −  is equal to 
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the number of CWs of length k  in nK  minus the number of CWs of length k  in nK  

containing x . Consequently, for all i , ( )iSC  in xK n −  is lower than ( )iSC  in nK . If we 

consider that the link x  in nK  is connecting the patches p  and q , then the distance 

between p  and q  in xK n −  is increased from 1 to 2. As a consequence, after the 

removal of a link in the complete graph the subgraph centrality of any node decreases. 

The procedure of link removal can be repeated and the previous assertion can be 

generalized. Thus, in general a high subgraph centrality indicates a network 

neighborhood that is internally very well connected. In combining this insight with the 

previous argument on the relationship between patch sizes and number of neighbors, it 

becomes clear that the distinct groups of patches with high subgraph centrality 

correspond to areas in the landscape where the habitat has been fragmented into several 

small, but well connected and closely located, patches.  

A reasonable interpretation of such high density clusters is that the patches within 

the clusters are experienced as being connected by species not being able to move as far 

in the inhospitable matrix as the target species used to assess the network of fragmented 

habitat patches in the first place. This is interesting since one drawback using network 

representations of fragmented landscapes is that the assessed networks are, by definition, 

specific for the studied target species. If, however, one can use network measures (such 

as the subgraph and/or the closeness centrality) to identify core areas that would still 

appear as connected for species not being able to move as far as the target species used to 

construct the network – a multi-species interpretation of a single species network is 

possible. 
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CONCLUSIONS 

In order to balance between different socio-economic demands on land use, and still 

provide the generation of essential ecosystem services in a fragmented landscape 

(Millennium Ecosystem Assessment, 2003; Bodin et al. 2006), there is a need for 

scientifically reliable methods capable of identifying individual habitat patches that, more 

than other patches, contribute to upholding important aspects of landscape connectivity. 

One promising modeling approach that we believe contribute to such development is the 

graph-theoretical approach used in this study. Here we have specifically studied how 

different measures of network centrality may help to estimate individual patches 

contribution to (1) organism movement within the local neighborhood, and (2) the 

movement of organisms beyond the local neighborhood. We have studied how these 

measures of centrality depend on the way the network of habitat patches is constructed 

and thus represented, and we conclude that while the type of network representation have 

a profound effect of the assessments of different levels of centrality of patches, even the 

simplest network representation, not taking strength and directionality of organisms flows 

into account, still provides a coarse-grained assessment of the most important patches 

according to the two aforementioned aspects of connectivity.  

Furthermore we found a significant difference between the reasonably well-

correlated subgraph and degree centrality measures. Patches with high and intermediate 

levels of subgraph centrality are clumped together in the landscape whereas patches with 

high to intermediate levels of degree centrality are more scattered. Thus the clumps of 

patches with high to intermediate levels of subgrah centrality may be experienced as 

connected by other species not being able to move as far in the inhospitable matrix as the 
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target species used to assess the network of fragmented habitat patches in the first place. 

This can be seen as a step towards multi-species analyses of networks of fragmented 

habitat patches. 

Although our results are based on analyses of the specific Madagascar landscape 

network, we believe these finding are more broadly applicable since this particular 

landscape in Madagascar is not significantly different, as seen from a strictly spatial 

perspective, from other heavily fragmented landscapes. Naturally, conducting similar 

analyses on a range of different landscapes would be preferable and would strengthen our 

arguments. Furthermore, there are other centrality measures not considered here that 

might be of relevance in studying landscape connectivity, and there are also reasons to 

further examine the underlying assumptions behind these and other centrality measures 

when it comes to the kind of flows they might be appropriate for (Borgatti 2005). Finally, 

more empirically oriented studies utilizing the graph-theoretical perspective of 

fragmented landscapes would also be needed.  
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Table 1. Three different representations of landscape networks using weighted, directed 

and simple graphs. The definition of the node and link weights and example of the 

corresponding adjacency matrices are also illustrated. 

 

Landscape Network Node/Link weights Adjacency matrix 
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Table 2. Spearman rank correlation coefficients for the different rankings introduced by 

the centrality measures studied as well as by the two principal components obtained by 

using the factor analysis for the weighted-directed representation of the Madagascar 

landscape network. Marked correlations are significant at p < 0.05. 

 

 
outDC  SC  BC  inCC  outCC  1PC  2PC  3PC  

inDC  0.810 0.908 0.287 0.374 0.316 0.866 0.206 0.027 

outDC   0.953 0.193 0.403 0.359 0.917 0.113 0.033 

SC    0.205 0.395 0.350 0.938 0.141 0.022 

BC     0.620 0.548 0.065 0.740 0.437 

inCC      0.312 0.376 0.885 -0.104 

outCC       0.143 0.322 0.820 

1PC        0.083 -0.205 

2PC         0.022 
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Table 3. Spearman rank correlation coefficients for the different rankings introduced by 

the centrality measures studied as well as by the two principal components obtained by 

using the factor analysis for the binary-directed version of the Madagascar landscape 

network. Marked correlations are significant at p < 0.05. 

 

 
outDC  SC  BC  inCC  outCC  1PC  2PC  3PC  

inDC  0.935 0.937 0.509 0.517 0.521 0.943 0.134 0.278 

outDC   0.963 0.481 0.509 0.572 0.963 0.122 0.239 

SC    0.408 0.508 0.574 0.966 0.111 0.201 

BC     0.618 0.548 0.468 0.688 0.199 

inCC      0.307 0.502 0.336 0.662 

outCC       0.676 0.708 -0.382 

1PC        0.214 0.132 

2PC         -0.299 
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Table 4. Correlation coefficients for the linear regression between centrality measures 

obtained for two different representations of the same landscape network, i.e.,, weighted 

network and binary-directed network. Correlation coefficients larger than 0.5 are in bold. 

 
                                                           Weighted Network 

Binary Directed               
inDC  outDC  SC  BC  

inCC  outCC  

inDC  0.66 0.61 0.55 0.10 0.21 0.53 

outDC  0.55 0.66 0.54 0.01 0.20 0.57 

SC  0.53 0.62 0.73 -0.06 -0.02 0.52 

BC  0.13 -0.10 0.00 1.00 0.40 0.11 

inCC  0.13 0.18 0.05 0.40 1.00 -0.06 

outCC  0.21 0.32 0.26 0.11 -0.06 1.00 
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Table 5. Spearman rank correlation coefficients for the different rankings introduced by 

the centrality measures studied as well as by the two principal components obtained by 

using the factor analysis for the simple (unweighted-undirected) representation of the 

Madagascar landscape network. Marked correlations are significant at p < 0.05. 

 

 

 

 SC  BC  CC  EC  1PC  2PC  3PC  

DC  0.962 0.485 0.533 0.646 0.750 -0.163 0.532 

SC   0.377 0.553 0.708 0.735 -0.256 0.544 

BC    0.660 0.516 0.154 0.504 0.338 

CC     0.861 0.120 0.133 0.541 

EC      0.360 0.005 0.509 

1PC       0.017 -0.040 

2PC        -0.552 
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Table 6. Correlation coefficients for the linear regression between centrality measures 

obtained for two different representations of the same landscape network, i.e.,, weighted 

network and simple network. Correlation coefficients larger than 0.5 are in bold. 

 
 

                                                   Weighted Network 

Simple Network                                         
inDC  outDC  SC  BC  

inCC  outCC  

DC  0.63 0.61 0.53 0.08 0.20 0.56 

SC  0.55 0.60 0.68 -0.06 -0.02 0.55 

BC  0.12 -0.11 -0.01 0.98 0.35 0.11 

CC  0.22 0.32 0.20 0.32 0.57 0.70 

EC  0.39 0.47 0.56 0.02 -0.04 0.50 
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Table 7. Correlation coefficients for the linear regression between centrality measures 

obtained for two different representations of the same landscape network, i.e.,, binary-

directed network and simple network. Correlation coefficients larger than 0.5 are in bold. 

 

 
                                                   Binary Directed Network 

Simple Network                                         
inDC  outDC  SC  BC  

inCC  outCC  

DC  0.98 0.96 0.77 0.08 0.20 0.56 

SC  0.80 0.84 0.98 -0.06 -0.02 0.55 

BC  0.08 -0.02 -0.09 0.98 0.35 0.11 

CC  0.47 0.50 0.33 0.32 0.57 0.71 

EC  0.60 0.62 0.83 0.02 -0.04 0.50 
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Fig. captions 

Fig. 1. Southern Androy, southern Madagascar (Landsat image May 2000). The extent of 

the Landsat image is Lat 25˚ 8’ to Lat 25˚ 23’ S and Long 45˚ 47’ to 46˚ 12’ E. The black 

area in the southeast corner is the Indian Ocean, and the filled square in the northeast is 

the town Ambovombe. The forest patches are identifiable by the distinct dark spots, 

situated within a matrix consisting of cultivated land (light gray). Patches range in size 

from <1-95 ha and are fairly evenly distributed in the landscape. In the western and 

northern part of the studied area, the shaded/darker gray zones indicate larger areas 

classified as potential source areas. Forest habitats constitute approximately 3.5 % of the 

study area (shaded/darker gray zones are not included). Source: (Bodin et al. 2006). 

 

Fig. 2. (a) Scatterplots for the centrality-centrality correlations in the weighted-

asymmetric representation of the Madagascar landscape network. The diagonal entries 

correspond to the distribution of the corresponding centrality measure. (b) Plot of the 

different centrality measures studied in the space of the two principal components found 

by using the factor analysis. Observe the clustering of the degree and subgraph 

centralities in one cluster as well that of in-closeness and betweenness in another cluster. 

 

Fig. 3. Scatterplots for the centrality-centrality correlations in the binary-directed 

representation of the Madagascar landscape network. The diagonal entries correspond to 

the distribution of the corresponding centrality measure.  

 



 46 

Fig. 4. Scatterplots for the centrality-centrality correlations in the simple representation of 

the Madagascar landscape network. The diagonal entries correspond to the distribution of 

the corresponding centrality measure. 

 

Fig. 5. Modeled landscape network of southern Madagascar showing the distribution of 

high-centrality patches (unweighted and undirected). The size of each patch (i.e., node) is 

proportional to its score on (a) Degree centrality, (b) Subgraph centrality, (c) Closeness 

centrality, and (d) Betweenness centrality.  

 

Fig. 6. Resilience of the Madagascar landscape network to the removal of the most 

central patches. The ranking of patches is carried out by means of the two principal 

components (Factor 1 and Factor 2). The resilience is analyzed by considering two 

different network parameters: clustering coefficient and the size of the largest component. 



 47 

Fig. 1 
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Fig. 2 
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Fig. 4 
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Fig. 6 
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