
 Open access Journal Article DOI:10.1287/MNSC.49.3.312.12739

Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation
— Source link

Bart Baesens, Rudy Setiono, Christophe Mues, Jan Vanthienen

Published on: 01 Mar 2003 - Management Science (INFORMS)

Topics: Decision table and Artificial neural network

Related papers:

 Benchmarking state-of-the-art classification algorithms for credit scoring

 Comprehensible credit scoring models using rule extraction from support vector machines

 Neural network credit scoring models

 C4.5: Programs for Machine Learning

 The Nature of Statistical Learning Theory

Share this paper:

View more about this paper here: https://typeset.io/papers/using-neural-network-rule-extraction-and-decision-tables-for-
54j99atm2q

https://typeset.io/
https://www.doi.org/10.1287/MNSC.49.3.312.12739
https://typeset.io/papers/using-neural-network-rule-extraction-and-decision-tables-for-54j99atm2q
https://typeset.io/authors/bart-baesens-3utsnv9zho
https://typeset.io/authors/rudy-setiono-4tghihsniw
https://typeset.io/authors/christophe-mues-21b8n4h4dd
https://typeset.io/authors/jan-vanthienen-448imq9dg7
https://typeset.io/journals/management-science-12lh7ndr
https://typeset.io/topics/decision-table-d4dec2jt
https://typeset.io/topics/artificial-neural-network-3kmw15mc
https://typeset.io/papers/benchmarking-state-of-the-art-classification-algorithms-for-d2oqzezptd
https://typeset.io/papers/comprehensible-credit-scoring-models-using-rule-extraction-zrjtyb95e7
https://typeset.io/papers/neural-network-credit-scoring-models-2tixkmfl1b
https://typeset.io/papers/c4-5-programs-for-machine-learning-19erg1bken
https://typeset.io/papers/the-nature-of-statistical-learning-theory-5b77dwyotg
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/using-neural-network-rule-extraction-and-decision-tables-for-54j99atm2q
https://twitter.com/intent/tweet?text=Using%20Neural%20Network%20Rule%20Extraction%20and%20Decision%20Tables%20for%20Credit-Risk%20Evaluation&url=https://typeset.io/papers/using-neural-network-rule-extraction-and-decision-tables-for-54j99atm2q
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/using-neural-network-rule-extraction-and-decision-tables-for-54j99atm2q
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/using-neural-network-rule-extraction-and-decision-tables-for-54j99atm2q
https://typeset.io/papers/using-neural-network-rule-extraction-and-decision-tables-for-54j99atm2q

Using Neural Network Rule Extraction and
Decision Tables for Credit-Risk Evaluation

Bart Baesens • Rudy Setiono • Christophe Mues • Jan Vanthienen
Department of Applied Economic Sciences, K. U. Leuven, Naamsestraat 69, B-3000 Leuven, Belgium

Department of Information Systems, National University of Singapore, Kent Ridge,

Singapore 119260, Republic of Singapore

Department of Applied Economic Sciences, K. U. Leuven, Naamsestraat 69, B-3000 Leuven, Belgium

Department of Applied Economic Sciences, K. U. Leuven, Naamsestraat 69, B-3000 Leuven, Belgium

bart.baesens@econ.kuleuven.ac.be • rudys@comp.nus.edu.sg

christophe.mues@econ.kuleuven.ac.be • jan.vanthienen@econ.kuleuven.ac.be

Credit-risk evaluation is a very challenging and important management science problem

in the domain of financial analysis. Many classification methods have been suggested

in the literature to tackle this problem. Neural networks, especially, have received a lot of

attention because of their universal approximation property. However, a major drawback

associated with the use of neural networks for decision making is their lack of explana-

tion capability. While they can achieve a high predictive accuracy rate, the reasoning behind

how they reach their decisions is not readily available. In this paper, we present the results

from analysing three real-life credit-risk data sets using neural network rule extraction tech-

niques. Clarifying the neural network decisions by explanatory rules that capture the learned

knowledge embedded in the networks can help the credit-risk manager in explaining why

a particular applicant is classified as either bad or good. Furthermore, we also discuss how

these rules can be visualized as a decision table in a compact and intuitive graphical for-

mat that facilitates easy consultation. It is concluded that neural network rule extraction and

decision tables are powerful management tools that allow us to build advanced and user-

friendly decision-support systems for credit-risk evaluation.

(Credit-Risk Evaluation; Neural Networks; Decision Tables; Classification)

1. Introduction
One of the key decisions financial institutions have

to make is to decide whether or not to grant a

loan to a customer. This decision basically boils

down to a binary classification problem which aims

at distinguishing good payers from bad payers. Until

recently, this distinction was made using a judgmen-

tal approach by merely inspecting the application

form details of the applicant. The credit expert then

decided upon the creditworthiness of the applicant,

using all possible relevant information concerning his

sociodemographic status, economic conditions, and

intentions. The advent of data storage technology has

facilitated financial institutions’ ability to store all

information regarding the characteristics and repay-

ment behaviour of credit applicants electronically.

This has motivated the need to automate the credit-

granting decision by using statistical or machine-

learning algorithms.

Numerous methods have been proposed in the

literature to develop credit-risk evaluation models.

These models include traditional statistical methods

(e.g., logistic regression, Steenackers and Goovaerts

1989), nonparametric statistical models (e.g., k-nearest

neighbour, Henley and Hand 1997, and classification

trees, Davis et al. 1992) and neural network mod-

els (Desai et al. 1996). Most of these studies focus

primarily on developing classification models with

Management Science © 2003 INFORMS

Vol. 49, No. 3, March 2003 pp. 312–329
0025-1909/03/4903/0312$5.00

1526-5501 electronic ISSN

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

high predictive accuracy without paying any atten-

tion to explaining how the classifications are being

made. Clearly, this plays a pivotal role in credit-risk

evaluation, as the evaluator may be required to give

a justification for why a certain credit application is

approved or rejected. Capon (1982, p. 90) was one of

the first authors to argue that credit-risk evaluation

systems should focus more on providing explanations

for why customers default instead of merely trying to

develop scorecards which accurately distinguish good

customers from bad customers:

What is needed, clearly, is a redirection of credit scor-

ing research efforts toward development of explana-

tory models of credit performance and the isolation of

variables bearing an explanatory relationship to credit

performance.

Furthermore, there is often also a legal obligation to

justify why credit has been denied. The Equal Credit

Opportunities Act (1976) and Regulation B in the

United States prohibit the use of characteristics such

as gender, marital status, race, whether an applicant

receives welfare payment, colour, religion, national

origin, and age, in making the credit decision (Crook

1999). Hence, the issue of making credit-risk evalua-

tion systems intelligent and explanatory is becoming

more and more a key success factor for their success-

ful deployment and implementation.

In this paper, we report on the use of neural

network rule extraction techniques to build intel-

ligent and explanatory credit-risk evaluation sys-

tems. While neural networks have been used before

for this purpose (e.g., West 2000), there is still

no consensus on their superiority with respect to

more traditional statistical algorithms such as logistic

regression. Although their universal approximation

property seems attractive at first sight, their intrinsi-

cally black-box nature has prevented them from being

successfully applied in a management science setting.

This refers to the fact that they do not allow for-

malization of the relationship between the outputs

and the inputs in a user-friendly, comprehensible way.

Neural networks are therefore commonly described

as opaque structures because they generate complex

mathematical models which relate the outputs to the

inputs using a set of weights, biases, and nonlinear

activation functions which are hard for humans to

interpret.

Recent developments in algorithms that extract

rules from trained neural networks enable us to gen-

erate classification rules that explain the decision pro-

cess of the networks. The purpose of our research is to

investigate whether these neural network rule extrac-

tion techniques can generate meaningful and accu-

rate rule sets for the credit-risk evaluation problem.

We conduct experiments on three real-life credit-risk

evaluation data sets. In this context, three popular

neural network rule extraction techniques, Neurorule

(Setiono and Liu 1996), Trepan (Craven and Shav-

lik 1996), and Nefclass (Nauck 2000), are evaluated

and contrasted. The performance of these methods

is compared with the C4.5(rule) decision-tree (rules)

induction algorithm as well as the widely used logis-

tic regression classifier. In a subsequent step of the

decision-support system development process, the

extracted rules are represented as a decision table

(DT) (Vanthienen and Wets 1994, Wets et al. 1997).

This is motivated by the fact that research in knowl-

edge representation suggests that graphical represen-

tation formalisms (such as DTs) can be more readily

interpreted and consulted by humans than symbolic

rules (Santos-Gomez and Darnel 1992). Representing

the knowledge learned by the neural networks as a

decision table allows the visualization of the rules in

a format that is easily comprehensible and verifiable

by the credit-risk manager. Hence, in this paper, we

also investigate the usefulness of DTs as an intuitive

graphical visualization aid for credit-risk evaluation

purposes.

This paper is organized as follows. In §2, we briefly

explain the basic concepts of neural networks and

discuss the Neurorule, Trepan, and Nefclass algo-

rithms. Section 3 presents the empirical setup and the

rule extraction results. The subsequent use of decision

tables is discussed in §4. Conclusions are drawn in §5.

2. Neural Networks and
Rule Extraction

2.1. Neural Networks

Neural networks are mathematical representations

inspired by the functioning of the human brain. Many

Management Science/Vol. 49, No. 3, March 2003 313

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

types of neural networks have been suggested in

the literature for both supervized and unsupervized

learning (Bishop 1995). Because our focus is on clas-

sification, we will discuss the Multilayer Perceptron

(MLP) neural network in more detail.

An MLP is typically composed of an input layer,

one or more hidden layers, and an output layer, each

consisting of several neurons. Each neuron processes

its inputs and generates one output value which is

transmitted to the neurons in the subsequent layer.

One of the key characteristics of MLPs is that all

neurons and layers are arranged in a feedforward

manner and no feedback connections are allowed.

Figure 1 provides an example of an MLP with one

hidden layer and two output neurons for a binary

classification problem. The output of hidden neuron

i is computed by processing the weighted inputs and

its bias term b
�1�
i as follows:

hi = f
�1�

(

b
�1�
i +

n
∑

j=1

W�i
 j�xj

)

� (1)

W is a weight matrix, whereby W�i
 j� denotes the

weight connecting input j to hidden unit i. In an

analogous way, the output of the output neurons is

computed:

zi = f
�2�

(

b
�2�
i +

nh
∑

j=1

V�i
 j�hj

)

 (2)

Figure 1 Architecture of a Multilayer Perceptron

x1

...

xn

b
(1)
1

b
(2)
1

b
(1)
nh

h1

hnh

b
(2)
2

W(1, 1)

W(nh, n)

V(1, 1)

V(2, nh)

Class 1

Class 2

with nh the number of hidden neurons and V a

weight matrix, whereby V�i
 j� denotes the weight

connecting hidden unit j to output unit i. The bias

inputs play a role analogous to that of the intercept

term in a classical linear regression model. The class

is then assigned according to the output neuron with

the highest activation value (winner take all learning).

The transfer functions f �1� and f �2� allow the network

to model nonlinear relationships in the data. Exam-

ples of transfer functions that are commonly used are

the sigmoid

f �x�=
1

1+exp�−x�

the hyperbolic tangent

f �x�=
exp�x�−exp�−x�

exp�x�+exp�−x�

and the linear transfer function f �x�= x.

The weights W and V are the crucial parameters of

a neural network and need to be estimated during a

training process which is usually based on gradient-

descent learning to minimize some kind of error func-

tion over a set of training observations (Bishop 1995).

Note that multiple hidden layers might be used, but

theoretical works have shown that one hidden layer

is sufficient to approximate any continuous function

to any desired degree of accuracy (universal approxi-

mation property) (Bishop 1995).

As universal approximators, neural networks can

achieve significantly better predictive accuracy com-

pared to models that are linear in the input vari-

ables. However, their complex mathematical internal

workings prevent them from being used as effective

management tools in real-life situations (e.g., credit-

risk evaluation) where besides having accurate mod-

els, explanation of the predictions being made is

essential. In the literature, the problem of explain-

ing the neural network predictions has been tackled

by techniques that extract symbolic rules from the

trained networks. These neural network rule extrac-

tion techniques attempt to open up the neural net-

work black box and generate symbolic rules with

(approximately) the same predictive power as the

neural network itself. An advantage of using neural

network rule extraction methods is that the neu-

ral network considers the contribution of the inputs

314 Management Science/Vol. 49, No. 3, March 2003

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

towards classification as a group, while decision-tree

algorithms like C4.5 measure the individual contribu-

tion of the inputs one at a time as the tree is grown.

Andrews et al. (1995) propose a classification

scheme for neural network rule extraction techniques

based on various criteria. In this paper, we will focus

mainly on two dimensions when discussing the algo-

rithms: the translucency of the rule extraction algo-

rithm and the expressive power of the extracted rules.

The translucency criterion considers the technique’s

perception of the neural network. A decompositional

approach starts extracting rules at the level of the

individual hidden and output units by analysing the

activation values, weights, and biases. Decomposi-

tional approaches then typically treat the hidden units

as threshold units. On the other hand, a pedagogical

algorithm considers the trained neural network as a

“black box.” Instead of looking at the internal struc-

ture of the network, these algorithms directly extract

rules which relate the inputs and outputs of the net-

work. These techniques typically use the trained net-

work to classify examples and to generate additional

“artificial” examples which are then used by a sym-

bolic learning algorithm to infer the rules.

The expressive power of the extracted rules

depends on the language used to express the rules.

Propositional if-then rules are implications of the

form If X = a and Y = b, then class= 1. An example

of a fuzzy classification rule is: If X is low and Y is

medium, then class = 1, whereby low and medium

are fuzzy sets with corresponding membership func-

tions. M-of-N rules are usually expressed as follows:

If {at least/exactly/at most} M of the N conditions

(C1
C2
 � � �
CN) are satisfied, then class= 1.

In the following subsections we will discuss the

Neurorule, Trepan, and Nefclass extraction algo-

rithms. The motivation for choosing these algorithms

is that they have different characteristics with respect

to the classification scheme suggested by Andrews

et al. (1995) and that they thus tackle the extraction

problem in a totally different way. To our knowledge,

the performance of these algorithms has never been

compared for rule or tree extraction using real-life

data.

2.2. Neurorule

Neurorule is a decompositional algorithm that

extracts propositional rules from trained three-layered

feedforward neural networks (Setiono and Liu 1996).

It consists of the following steps:

Step 1. Train a neural network to meet the prespec-

ified accuracy requirement.

Step 2. Remove the redundant connections in the

network by pruning while maintaining its accuracy.

Step 3. Discretize the hidden unit activation values

of the pruned network by clustering.

Step 4. Extract rules that describe the network out-

puts in terms of the discretized hidden unit activation

values.

Step 5. Generate rules that describe the discretized

hidden unit activation values in terms of the network

inputs.

Step 6. Merge the two sets of rules generated in

Steps 4 and 5 to obtain a set of rules that relates the

inputs and outputs of the network.

Neurorule assumes the data are discretized and

represented as binary inputs using the thermometer

encoding for ordinal variables and dummy encoding

for nominal variables (Setiono and Liu 1996). Table 1

illustrates the thermometer encoding for the ordinal

income variable.

The continuous income attribute is first discretized

to the values 1, 2, 3, and 4. This can be done by

either a discretization algorithm (e.g., the algorithm of

Fayyad and Irani 1993) or according to the recommen-

dation from the domain expert. The four values are

then represented by three thermometer inputs I1, I2,

and I3. If I3 is 1, this corresponds to categorical income

input ≥2, or original income input >1,000 Euro. This

encoding scheme facilitates the generation and inter-

pretation of the propositional if-then rules.

Table 1 The Thermometer Encoding Procedure for Ordinal Variables

Thermometer

inputs
Categorical

Original input input I1 I2 I3

Income ≤ 1,000 euro 1 0 0 0

Income > 1,000 euro and ≤ 2,000 euro 2 0 0 1

Income > 2,000 euro and ≤ 3,000 euro 3 0 1 1

Income > 3,000 euro 4 1 1 1

Management Science/Vol. 49, No. 3, March 2003 315

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Table 2 The Dummy Encoding Procedure for

Nominal Variables

I1 I2

Purpose= car 0 0

Purpose= real estate 0 1

Purpose= other 1 0

Neurorule assumes the nominal variables are rep-

resented by dummies. For example, when a nomi-

nal variable has three values, it is encoded with two

dummy variables according to the setup shown in

Table 2.

Neurorule typically starts from a one-hidden-

layer neural network with hyperbolic tangent hidden

neurons and linear output neurons. For a classifica-

tion problem with C classes, C output neurons are

used and the class is assigned to the output neu-

ron with the highest activation value (winner-take-all

learning). The network is then trained to minimize

a regularized cross-entropy error function using the

BFGS method, which is a modified quasi-Newton

algorithm (Setiono 1995).

Determining the optimal number of hidden neu-

rons is not a trivial task. Neurorule starts from an

oversized network and then gradually removes the

irrelevant connections. When all connections to a hid-

den neuron have been pruned, this neuron can be

removed from the network. The selection of network

connections for pruning is achieved by inspecting the

magnitude of their weights (Setiono 1997). A con-

nection with sufficiently small weight can be pruned

from the network without affecting the network’s

classification accuracy.

Once a trained and pruned network has been

obtained, the activation values of all hidden neurons

are clustered to simplify the rule extraction process.

In the case of hyperbolic tangent hidden neurons, the

activation values lie in the interval �−1
1�. A sim-

ple greedy clustering algorithm then starts by sort-

ing all these hidden activation values in increasing

order (Setiono et al. 1998). Adjacent values are then

merged into a unique discretized value as long as the

class labels of the corresponding observations do not

conflict. The merging process hereby first considers

the pair of hidden activation values with the short-

est distance in between. Another discretization algo-

rithm that can be used is the Chi2 algorithm, which is

an improved and automated version of the ChiMerge

algorithm and makes use of the �2 test statistic to

merge the hidden activation values (Liu and Setiono

1995).

In Step 4 of Neurorule, a new data set is composed

consisting of the discretized hidden unit activation

values and the class labels of the corresponding obser-

vations. Duplicate observations are removed and

rules are inferred relating the class labels to the clus-

tered hidden unit activation values. This can be done

using an automated rule-induction algorithm such

as X2R (Liu and Tan 1995) or manually when the

pruned network has only a few unique discretized

hidden unit activation values. Note that Steps 3 and

4 can be done simultaneously by C4.5(rules) because

C4.5(rules) can work with both discretized and con-

tinuous data (Quinlan 1993).

In the last two steps of Neurorule, the rules of

Step 4 are translated in terms of the original inputs.

First, the rules are generated describing the dis-

cretized hidden unit activation values in terms of the

original inputs. To this end, one might again use an

automated rule-induction algorithm (e.g., X2R, C4.5).

This rule set is then merged with that of Step 4 by

replacing the conditions of the latter with those of the

former.

2.3. Trepan

Trepan was introduced in Craven and Shavlik (1996).

It is a pedagogical algorithm which extracts decision

trees from trained neural networks with arbitrary

architecture by using a symbolic learning algorithm

(see §2.1). Like in most decision-tree algorithms

(Quinlan 1993), Trepan grows a tree by recursive par-

titioning. At each step, a queue of leaves is further

expanded into subtrees until a stopping criterion is

met. A crucial difference with decision-tree-induction

algorithms is that the latter have only a limited set

of training observations available. Hence, these algo-

rithms typically suffer from having fewer and fewer

training observations available for deciding upon the

splits or leaf node class labels at lower levels of the

316 Management Science/Vol. 49, No. 3, March 2003

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

tree. On the other hand, the primary goal of neu-

ral network rule extraction is to mimic the behaviour

of the trained neural network. Hence, instead of using

the original training observations, Trepan first relabels

them according to the classifications made by the net-

work. The relabelled training data set is then used to

initiate the tree-growing process. Furthermore, Trepan

can also enrich the training data with additional train-

ing instances which are then also labelled (classified)

by the neural network itself. The network is thus

used as an oracle to answer class membership queries

about artificially generated data points. This way, it

can be assured that each node split or leaf node class

decision is based upon at least Smin data points where

Smin is a user-defined parameter. In other words, if a

node has only m training data points available and

m < Smin, then Smin −m data points are additionally

generated and labelled by the network.

Generating these additional data points is by no

means a trivial task. First of all, care should be taken

that the generated data instances satisfy all constraints

(conditions) that lie from the root of the tree to the

node under consideration. Given these constraints,

one approach might be to sample the data instances

uniformly. However, a better alternative would be to

take into account the distribution of the data. This is

the approach followed by Trepan. More specifically, at

each node of the tree, Trepan estimates the marginal

distribution of each input. For a discrete valued input,

Trepan simply uses the empirical frequencies of the

various values, whereas for a continuous input a ker-

nel density estimation method is used.

Trepan allows splits with at least M-of-N type of

tests. Note that the test at least 2 of {C1,C2,C3} is logi-

cally equivalent to (C1 and C2) or (C1 and C3) or (C2 and

C3). These M-of-N splits are constructed by using a

heuristic search procedure. First, the best binary split

is selected according to the information-gain criterion

(Quinlan 1993). The best binary test then serves as a

seed for the M-of-N search process, which uses the

following operators:

• M-of-N +1: Add a new condition to the set; e.g.,

2 of {C1
C2} becomes 2 of {C1
C2
C3}.

• M + 1-of-N + 1: Add a new condition to the set

and augment the threshold; e.g., 2 of {C1
C2
C3}

becomes 3 of {C1
C2
C3
C4}.

The heuristic search procedure uses a beam-search

method with a beam width of two, meaning that at

each point the best two splits are retained for further

examination. Again, the information-gain criterion is

used to evaluate the splits. Finally, once an M-of-N

test has been constructed, Trepan tries to simplify it

and investigates if conditions can be dropped and/or

M can be reduced without significantly degrading the

information gain.

Trepan uses one local and one global criterion

to decide when to stop growing the tree. For the

local stopping criterion, Trepan constructs a confi-

dence interval around pc, which is the proportion of

instances belonging to the most common class at the

node under consideration. The node becomes a leaf

when prob�pc < 1− �� < �, whereby � is the signifi-

cance level and � specifies how tight the confidence

interval around pc must be. Both values are set to 0.01

by default. The global criterion specifies a maximum

on the number of internal nodes of the tree and can

be specified in advance by the user. Trees with a small

number of internal nodes are more comprehensible

than large trees.

2.4. Nefclass

The category of neural network fuzzy-rule extraction

techniques is often referred to as neurofuzzy systems.

Basically, these systems encompass methods that use

learning algorithms from neural networks to tune the

parameters of a fuzzy system. In this section, we will

further elaborate on Nefclass, which is a well-known

neurofuzzy system (Nauck 2000).

Nefclass has the architecture of a three-layer fuzzy

perceptron, whereby the first layer consists of input

neurons, the second layer of hidden neurons, and

the third layer of output neurons. The difference

with a classical multilayer perceptron (cf. §2.1) is

that the weights now represent fuzzy sets and that

the activation functions are now fuzzy set operators.

The hidden-layer neurons represent the fuzzy rules

and the output-layer neurons the different classes of

the classification problem with 1 output neuron per

class. Figure 2 depicts an example of a Nefclass net-

work. The fuzzy rule corresponding to rule unit R1 is

expressed as follows:

If x1 is �
�1�
1 and x2 is �

�2�
1 then Class= C1, (3)

Management Science/Vol. 49, No. 3, March 2003 317

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Figure 2 Example of Nefclass Network

R1 R2 R3 R4

C1 C2

x1 x2

1 1 1 1

µ
(2)
1

µ
(2)
2

µ
(1)
1

µ
(1)
2

µ
(1)
3

µ
(2)
3

whereby �
�1�
1 and �

�2�
1 represent the fuzzy sets defined

for x1 and x2. Nefclass enforces all connections rep-

resenting the same linguistic label (e.g., x1 is small)

to have the same fuzzy set associated with them. For

example, in Figure 2, the fuzzy set �
�1�
1 is shared by

the rule units R1 and R2, and thus has the same defi-

nition in both fuzzy rules.

Nefclass allows the user to model a priori domain

knowledge before starting to learn the various param-

eters, or the classifier can also be created from scratch.

In both cases, the user must start by specifying the

fuzzy sets and membership function types for all

inputs, which can be trapezoidal, triangular, Gaus-

sian, or List.

Nefclass starts by determining the appropriate

number of rule units in the hidden layer. Suppose we

have a data set D of N data points "�xi
yi�#
N
i=1,with

input data xi ∈ �
n and target vectors yi ∈ "0
1#

m for

an m-class classification problem. For each input xi, qi
fuzzy sets �

�i�
1
 � � �
�

�i�
qi are defined. The rule-learning

algorithm then proceeds as follows.

Step 1. Select the next pattern �xj
yj� from D.

Step 2. For each input unit xi
 i= 1
 � � �
n
 find the

membership function �
�i�
li
such that

�
�i�
li
�xi�= max

l∈"1
���
qi#
"�

�i�
l �xi�#� (4)

Step 3. If there is no rule node R with

W�x1
R�= �
�1�
l1

 � � �
W�xn
R�= �

�n�
ln

 (5)

with W�xi
R� the fuzzy weight between input xi and

rule node R, then create such a node and connect it

to output class node p if yj�p�= 1�

Step 4. Go to Step 1 until all patterns in D have

been processed.

Obviously, the above procedure will result in a

large number of hidden neurons and fuzzy rules. This

can be remedied by specifying a maximum number

of hidden neurons and keeping only the first k rule

units created (simple rule learning). Alternatively, one

could also keep the best k rules (best rule learning) or

the best �k/m� rules for each class (best per class rule

learning).

Once the number of hidden units has been deter-

mined, the fuzzy sets between the input and hidden

layer are tuned to improve the classification accu-

racy of the network. Hereto, Nefclass employs a fuzzy

variant of the well-known backpropagation algorithm

to tune the characteristic parameters of the member-

ship functions (Nauck 2000). Nefclass also offers the

possibility of pruning the rule base by removing rules

and variables based on a simple greedy algorithm.

The goal of this pruning is to improve the compre-

hensibility of the created classifier (see Nauck 2000 for

more details).

3. Neural Network Rule
Extraction Experiments

3.1. Data Sets and Experimental Setup

The experiments will be conducted on three real-

life credit-risk evaluation data sets: German credit,

Bene 1, and Bene 2. The Bene 1 and Bene 2 data sets

were obtained from two major Benelux financial insti-

tutions. The German credit data set is publicly avail-

able at the UCI repository.1 The German credit and

Bene 1 data set will be used in due course to illus-

trate the various results. Their inputs are given in

the Appendix. Because all data sets are rather large,

each data set is randomly split into two-thirds train-

ing set and one-third test set. All inputs are dis-

cretized using the discretization algorithm of Fayyad

and Irani (1993) with the default options on the train-

ing set. This algorithm uses an information entropy

1 	http://www.ics.uci.edu/∼mlearn/mlrepository.html�.

318 Management Science/Vol. 49, No. 3, March 2003

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Table 3 Data Set Characteristics

Inputs before Inputs after Data set Training set Test set

discretization discretization size size size Goods/bads

German credit 20 15 1,000 666 334 70/30

Bene 1 33 24 3,123 2�082 1�041 66.7/33.3

Bene 2 33 29 7,190 4�793 2�397 70/30

minimization heuristic to discretize the range of a

continuous attribute into multiple intervals. Table 3

displays the characteristics of all data sets.

We will also include C4.5 and C4.5rules, as well

as logistic regression, as a benchmark to compare

the results of the rule extraction algorithms. All

algorithms will be evaluated by their classification

accuracy as measured by the percentage correctly

classified (PCC) observations and by their complexity.

Because our main purpose is to develop intelligent

credit-risk evaluation systems that are both compre-

hensible and user friendly, it is obvious that sim-

ple, concise rule sets and trees are to be preferred.

Hence, we will also take into account the complex-

ity of the generated rules or trees as a performance

measure. The complexity will be quantified by look-

ing at the number of generated rules or the number

of leaf nodes and total number of nodes for the C4.5

and Trepan trees. Note that the total number of nodes

of a tree is the sum of the number of internal nodes

and the number of leaf nodes.

Because the primary goal of neural network rule

extraction is to mimic the decision process of the

trained neural network, we will also measure how

well the extracted rule set or tree models the

behaviour of the network. For this purpose, we will

also measure the fidelity of the extraction techniques,

which is defined as the percentage of observations

that the extraction algorithm classifies in the same

way as the neural network.

For the Neurorule analyses, we use two output

units with linear activation functions, and the class is

assigned to the output neuron with the highest acti-

vation value (winner-takes-all). A hyperbolic tangent

activation function is used in the hidden layer.

Following Craven and Shavlik (1996), we set the

Smin parameter for the Trepan analyses to 1,000, mean-

ing that at least 1,000 observations are considered

before deciding upon each split or leaf node class

label. The maximum tree size is set to 15, which is the

size of a complete binary tree of depth four.

Because Trepan is a pedagogical tree-extraction

algorithm, we can apply it to any trained neural

network with arbitrary architecture. Hence, we will

apply Trepan to the same networks that were trained

and pruned by Neurorule. This will allow us to

make a fair comparison between a pedagogical and

a decompositional neural network rule extraction

method.

For Nefclass, we will experiment with triangular,

trapezoidal, and bell-shaped membership functions

and use 2, 4, or 6 fuzzy sets per variable. We will

also use both best rule learning and best per class rule

learning with a maximum of 100 fuzzy rules.

3.2. Neural Network Rule Extraction Results

When representing all discretized inputs using the

thermometer and dummy encoding, we ended up

with 45 binary inputs for the German credit data

set, 45 binary inputs for the Bene 1 data set, and

105 inputs for the Bene 2 data set. We then trained

and pruned the neural networks for rule extraction

using Neurorule and tree extraction using Trepan.

Figure 3 depicts the neural network that was trained

and pruned for the Bene 1 data set. Only 1 hidden

unit was needed with a hyperbolic tangent transfer

function. All inputs are binary; e.g., the first input

is 1 if term > 12 months, and 0 otherwise. Note

that according to the pruning algorithm, no bias was

needed to the hidden neuron for the Bene 1 data set.

Of the 45 binary inputs, 37 were pruned, leaving only

8 binary inputs in the neural network. This corre-

sponds to 7 of the original inputs depicted in Table 8

of the Appendix because the nominal purpose input

has two corresponding binary inputs in the pruned

network (purpose= cash provisioning and purpose=

secondhand car).

Management Science/Vol. 49, No. 3, March 2003 319

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Figure 3 Neural Network Trained and Pruned for Bene 1

Term > 12 Months

Purpose=cash provisioning

Purpose=second hand car

Savings Account > 12.40 Euro

Income > 719 Euro

Property=No

Years Client > 3 years

Economical Sector=Sector C

0.611

0.380

Applicant=good

Applicant=bad

-0.202

-0.287

-0.102

0.278

-0.081

-0.162

0.137

-0.289

0.457

-0.453

For the Bene 2 data set, the pruning procedure

removed 97 of the 105 binary inputs and the remain-

ing 8 corresponded to 7 of the original inputs. The

binarized German credit data set consists of 45 inputs

of which 13 are retained, corresponding to 6 of the

original inputs of Table 7 in the Appendix.

Table 4 Accuracy and Complexity of Decision Trees, Neural Networks, and Extraction Techniques

Data set Method PCCtrain PCCtest Complexity

German C4.5 80.63 71.56 38 leaves, 54 nodes

credit C4.5rules 81.38 74.25 17 propositional rules

Pruned NN 75.53 77.84 6 inputs

Neurorule 75.83 77.25 4 propositional rules

Trepan 75.37 73.95 11 leaves, 21 nodes

Nefclass 73.57 73.65 14 fuzzy rules

Bene 1 C4.5 77.76 70.03 77 leaves, 114 nodes

C4.5rules 76.70 70.12 17 propositional rules

Pruned NN 73.05 71.85 7 inputs

Neurorule 73.05 71.85 6 propositional rules

Trepan 73.05 71.85 11 leaves, 21 nodes

Nefclass 68.97 67.24 8 fuzzy rules

Bene 2 C4.5 82.80 73.09 438 leaves, 578 nodes

C4.5rules 77.76 73.51 27 propositional rules

Pruned NN 74.15 74.09 7 inputs

Neurorule 74.27 74.13 7 propositional rules

Trepan 74.15 74.01 9 leaves, 17 nodes

Nefclass 70.06 69.80 4 fuzzy rules

Table 4 presents the performance and complex-

ity of C4.5, C4.5rules, the pruned neural network

(NN), Neurorule, Trepan, and Nefclass on the dis-

cretized data sets. Table 5 presents the fidelity rates

of Neurorule and Trepan on the training set (Fidtrain)

and the test set (Fidtest).

320 Management Science/Vol. 49, No. 3, March 2003

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Table 5 Fidelity Rates of Extraction Techniques

Data set Method Fidtrain Fidtest

German Neurorule 99�70 98�80

credit Trepan 94�07 93�11

Bene 1 Neurorule 100 100

Trepan 100 100

Bene 2 Neurorule 99�71 99�79

Trepan 99�91 99�83

For the German credit data set, Neurorule yielded

a higher test set classification accuracy than C4.5rules

and extracted only 4 propositional rules, which is very

compact when compared to the 17 propositional rules

inferred by C4.5rules. The Trepan tree obtained a bet-

ter classification accuracy than C4.5 with fewer leaves

and nodes. Also, Nefclass obtained a satisfactory

classification accuracy, but it needed 14 fuzzy rules.

The test set fidelity of Neurorule is 98�80%, whereas

Trepan obtained 93�11% test set fidelity, which indi-

cates that Neurorule mimics the decision process of

the network better than Trepan.

For the Bene 1 data set, Neurorule performed sig-

nificantly better than C4.5rules according to McNe-

mar’s test at the 5% significance level. Besides the

gain in performance, Neurorule also uses only 6

propositional rules, whereas C4.5rules uses 17 propo-

sitional rules. The rule set inferred by Neurorule

obtained 100% test set fidelity with respect to the

pruned neural network from which it was derived.

Trepan gave better performance than C4.5. Again, the

tree was a lot more compact, consisting of only 11

leaves and 21 nodes. The Trepan tree also achieved

100% test set fidelity with respect to the pruned neu-

ral network. The high fidelity rates of Neurorule and

Trepan indicate that both were able to accurately

approximate the decision process of the trained and

pruned neural network. Nefclass yielded a maximum

test set accuracy of 67�24% with 8 fuzzy rules, which

is rather poor compared to the other extraction algo-

rithms.

For the Bene 2 data set, the performance differ-

ence between Neurorule and C4.5rules is not statisti-

cally significant at the 5% level using McNemar’s test.

However, the rule set extracted by Neurorule con-

sists of only 7 propositional rules, which is a lot more

compact than the 27 propositional rules induced by

C4.5rules. Note that the rules inferred by Neurorule

performed slightly better than the neural network

itself, resulting in a test set fidelity of 99�79%. The tree

inferred by Trepan has a very good performance and

was again compact when compared to the C4.5 tree.

Trepan achieved 99�83% test set fidelity. Again, Nef-

class was not able to infer a compact and powerful

fuzzy rule set.

We also contrasted the results of Table 4 with the

performance of a logistic regression classifier which

has been widely used in the credit industry. The logis-

tic regression classifier achieved a test set classifica-

tion accuracy of 70.66%, 70.51%, and 73.09% for the

German credit, Bene 1, and Bene 2 data sets, respec-

tively. For all these data sets, Neurorule obtained

a significantly better performance than the logistic

regression classifier at the 5% level. Although the

absolute difference might seem small, it has to be

noted that small absolute differences in classification

performance, even a fraction of a percent, may, in a

credit scoring context, translate into substantial future

savings as the following quote of Henley and Hand

(1997, p. 318) suggests: “Although the differences are

small, they may be large enough to have commercial

implications.”

Figures 4 and 5 represent the rules extracted by

Neurorule for the German credit and Bene 1 data

sets, whereas Figures 6 and 7 represent the extracted

Trepan trees for both data sets. Notice that both

Trepan trees extensively use theM-of-N type of splits.

Although these are powerful splits, their value in

terms of comprehensibility is rather limited. It is very

difficult to comprehend a Trepan tree and get a thor-

ough insight into how the inputs affect the classifi-

cation decision when there are many M-of-N splits

present. On the other hand, when looking at the

rules extracted by Neurorule, it becomes clear that

these propositional rules are easy to interpret and

understand.

While propositional rules are an intuitive and well-

known formalism to represent knowledge, they are

not necessarily the most suitable representation in

terms of structure and efficiency of use in every-

day business practice and decision making. Recent

Management Science/Vol. 49, No. 3, March 2003 321

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Figure 4 Rules Extracted by Neurorule for German Credit

If (Checking account �= 4) And (Checking account �= 3) And (Term = 1)
And (Credit history �= 4) And (Credit history �= 3)
And (Credit history �= 2) And (Purpose �= 8)
Then Applicant = bad

If (Checking account �= 4) And (Checking account �= 3)
And (Credit history �= 4) And (Credit history �= 3)
And (Credit history �= 2) And (Term = 2)
Then Applicant = bad

If (Checking account �= 4) And (Checking account �= 3)
And (Credit history �= 4) And (Purpose �= 5) And (Purpose �= 1)
And (Savings account �= 5) And (Savings account �= 4)
And (Other parties �= 3) And (Term = 2)
Then Applicant = bad

Default class: Applicant = good

research in knowledge representation suggests that

graphical representation formalisms can be more

readily interpreted and consulted by humans than

a set of symbolic propositional if-then rules (Santos-

Gomez and Darnel 1992). In the following section,

we discuss how the extracted sets of rules may be

transformed into decision tables which facilitate the

efficient classification of applicants by the credit-risk

manager.

Figure 5 Rules Extracted by Neurorule for Bene 1

If Term > 12 months And Purpose = cash provisioning And Savings

account ≤ 12.40 Euro And Years client ≤ 3 Then Applicant = bad

If Term > 12 months And Purpose = cash provisioning And Owns

property = No And Savings account ≤ 12.40 Euro Then Applicant = bad

If Purpose = cash provisioning And Income > 719 Euro And Owns

property = No And Savings account ≤ 12.40 Euro And Years client ≤ 3

Then Applicant = bad

If Purpose = second hand car And Income > 719 Euro And Owns

property = No And Savings account ≤ 12.40 Euro And Years client ≤ 3

Then Applicant = bad

If Savings account ≤ 12.40 Euro And Economical sector = Sector C

Then Applicant = bad

Default class: Applicant = good

4. Visualizing the Extracted Rule
Sets Using Decision Tables

Decision tables (DTs) provide an alternative way of

representing data mining knowledge extracted by,

e.g., neural network rule extraction in a user-friendly

way (Wets et al. 1997). DTs are a tabular represen-

tation used to describe and analyse decision situa-

tions (e.g., credit-risk evaluation),where the state of

322 Management Science/Vol. 49, No. 3, March 2003

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Figure 6 Tree Extracted by Trepan for German Credit

3 of {Credit history �= 4, Term = 2, Checking account �= 4}:
| 2 of {Credit history = 2, Savings account = 5, Purpose = 1}: Applicant = good

| Not 2 of {Credit history = 2, Savings account = 5, Purpose = 1}:
| | Checking account �= 3:

| | | Other parties �= 3:

| | | | 1 of {Credit history = 3, Savings account = 4}: Applicant = good

| | | | Not 1 of {Credit history = 3, Savings account = 4}:
| | | | | Purpose �= 5:

| | | | | | Credit history �= 2:

| | | | | | | Savings account �= 3:

| | | | | | | | Savings account �= 5:

| | | | | | | | | Purpose �= 1: Applicant = bad

| | | | | | | | | Purpose = 1: Applicant = good

| | | | | | | | Savings account = 5: Applicant = good

| | | | | | | Savings account = 3: Applicant = good

| | | | | | Credit history = 2: Applicant = bad

| | | | | Purpose = 5: Applicant = good

| | | Other parties = 3: Applicant = good

| | Checking account = 3: Applicant = good

Not 3 of {Credit history �= 4, Term = 2, Checking account �= 4}: Applicant = good

a number of conditions jointly determines the execu-

tion of a set of actions (Vanthienen and Wets 1994). In

our neural network rule extraction context, the con-

ditions correspond to the antecedents of the rules,

Figure 7 Tree Extracted by Trepan for Bene 1

2 of {purpose �= car, Savings account > 12.40 Euro, purpose �= cash}:
| Economical sector �= C: Applicant = good

| Economical sector = C:

| | Savings account ≤ 12.40 Euro: Applicant = bad

| | Savings account > 12.40 Euro: Applicant = good

Not 2 of {purpose �= car, Savings account > 12.40 Euro, purpose �= cash}:
| 3 of {Economical sector �= C, Term ≤ 12, Property = Yes, Years client > 3}:
| | Applicant = good

| Not 3 of {Economical sector �= C, Term ≤ 12, Property = Yes, Years client > 3}:
| | purpose �= cash:

| | | Income ≤ 719 Euro: Applicant = good

| | | Income > 719 Euro:

| | | | Property = Yes: Applicant = good

| | | | Property = No:

| | | | | Years client ≤ 3: Applicant = bad

| | | | | Years client > 3: Applicant = good

| | purpose = cash:

| | | Income ≤ 719 Euro:

| | | | Term ≤ 12 Months: Applicant = good

| | | | Term > 12 Months: Applicant = bad

| | | Income > 719 Euro: Applicant = bad

whereas the actions correspond to the outcome classes

(applicant = good or bad). A DT consists of four

quadrants, separated by double lines, both horizon-

tally and vertically (see Figure 8). The horizontal line

Management Science/Vol. 49, No. 3, March 2003 323

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Figure 8 DT Quadrants

condition subjects condition entries

action subjects action entries

divides the table into a condition part (above) and an

action part (below). The vertical line separates sub-

jects (left) from entries (right).

The condition subjects are the criteria that are rel-

evant to the decision-making process. They represent

the attributes of the rule antecedents about which

information is needed to classify a given applicant

as good or bad. The action subjects describe the pos-

sible outcomes of the decision-making process (i.e.,

the classes of the classification problem). Each condi-

tion entry describes a relevant subset of values (called

a state) for a given condition subject (attribute), or

contains a dash symbol (“-”) if its value is irrele-

vant within the context of that column. Subsequently,

every action entry holds a value assigned to the

corresponding action subject (class). True, false, and

unknown action values are typically abbreviated by

“×”, “-”, and “.,” respectively. Every column in the

entry part of the DT thus comprises a classifica-

tion rule, indicating what action(s) apply to a certain

combination of condition states. If each column only

contains simple states (no contracted or irrelevant

entries), the table is called an expanded DT, whereas

otherwise the table is called a contracted DT. Table

contraction can be achieved by combining columns

that lead to the same action configuration. The num-

ber of columns in the contracted table can then be

further minimized by changing the order of the con-

ditions. It is obvious that a DT with a minimal num-

ber of columns is to be preferred because it provides

Figure 9 Minimising the Number of Columns of a DT (Vanthienen and Wets 1994)

1. C1 Y N

2. C2 Y N Y N

3. C3 Y N Y N Y N Y N

1. A1 - × × × - × - ×

2. A2 × - - - × - × -

(a) Expanded DT

1. C1 Y N

2. C2 Y N -

3. C3 Y N - Y N

1. A1 - × × - ×

2. A2 × - - × -

(b) Contracted DT

1. C3 Y N

2. C1 Y N -

3. C2 Y N - -

1. A1 - × - ×

2. A2 × - × -

(c) Minimised DT

a more parsimonious and comprehensible represen-

tation of the extracted knowledge than an expanded

DT. This is illustrated in Figure 9.

Several kinds of DTs have been proposed. We will

require that the condition entry part of a DT satisfies

the following two criteria:

• Completeness: all possible combinations of con-

dition values are included.

• Exclusivity: no combination is covered by more

than one column.

As such, we deliberately restrict ourselves to single-

hit tables, wherein columns have to be mutually

exclusive, because of their advantages with respect to

verification and validation (Vanthienen et al. 1998).

It is this type of DT that can be easily checked for

potential anomalies, such as inconsistencies (a partic-

ular case being assigned to more than one class) or

incompleteness (no class assigned). The DT formal-

ism thus allows for easy verification of the knowl-

edge extracted by, e.g., a neural network rule extrac-

tion algorithm. Additionally, for ease of legibility,

the columns are arranged in lexicographical order, in

which entries at lower rows alternate first. As a result,

a tree structure emerges in the condition entry part

of the DT, which lends itself very well to a top-down

evaluation procedure: Starting at the first row, and

then working one’s way down the table by choosing

from the relevant condition states, one safely arrives

at the prescribed action (class) for a given case. This

condition-oriented inspection approach often proves

more intuitive, faster, and less prone to human error

than evaluating a set of rules one by one. Once the

DT has been approved by the expert, it can, in a final

stage, be incorporated into a deployable expert sys-

tem (Vanthienen and Wets 1994).

324 Management Science/Vol. 49, No. 3, March 2003

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Figure 10 Decision Table for the Rules Extracted by Neurorule on German Credit

1. Checking account 1 or 2 3 or 4

2. Credit History 0 or 1 2 or 3 4 -

3. Term 1 2 1 2 - -

4. Purpose 1 or 5 8 other - - 1 or 5 8 or other - -

5. Savings account - - - - - - 1 or 2 or 3 4 or 5 - -

6. Other parties - - - - - - 1 or 2 3 - - -

1. Applicant=good - × - - × × - × × × ×

2. Applicant=bad × - × × - - × - - - -

1 2 3 4 5 6 7 8 9 10 11

Figure 11 Decision Table for the Rules Extracted by Neurorule on Bene 1

1. Savings Account ≤12.40 Euro > 12.40 Euro

2. Economical sector Sector C other -

3. Purpose - cash provisioning second-hand car other -

4. Term - ≤ 12 months > 12 months -

5. Years Client - ≤ 3 >3 ≤ 3 >3 ≤ 3 > 3

6. Property - Yes No - - Yes No Yes No - - -

7. Income - - ≤ 719 Euro > 719 Euro - - - - - ≤ 719 Euro > 719 Euro - - -

1. Applicant=good - × × - × - × - × × - × × ×

2. Applicant=bad × - - × - × - × - - × - - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14

We will use the Prologa2 software to construct the

DTs for the rules extracted in §3.2. Prologa is an

interactive design tool for computer-supported con-

struction and manipulation of DTs (Vanthienen and

Dries 1994).

Figures 10 and 11 depict the contracted DTs gen-

erated from the rules extracted by Neurorule for the

discretized German credit and Bene 1 data set. It is

important to note that transforming a set of propo-

sitional rules into a DT does not cause any loss of

predictive accuracy; i.e., the DTs depicted in Fig-

ures 10 and 11 achieve exactly the same classifica-

tion accuracy as the rules of Figures 4 and 5. For

the German credit data set, the fully expanded table

contained 6,600 columns, which is the product of the

number of distinct attribute values (= 4× 5× 2×

11× 5× 3). This could be reduced to 11 columns by

using table contraction and table minimization. For

the Bene 1 data set, the fully expanded table con-

tained 192 columns and the contracted and mini-

mized table 14 columns. Both contracted DTs provide

2 	http://www.econ.kuleuven.ac.be/tew/academic/infosys/

research/Prologa.htm�

a parsimonious representation of the extracted knowl-

edge, consisting of only a small number of columns,

which allows for easy consultation. Table 6 presents

the properties of the DTs built for the rules extracted

by Neurorule and the Trepan trees on all three dis-

cretized credit-risk data sets. Note that we converted

the Trepan trees to an equivalent set of rules to build

the DTs. Because Nefclass gave rather bad perfor-

mance on all data sets, we did not include DTs for the

extracted fuzzy rules.

Table 6 The Number of Columns in the Expanded and Reduced DTs

for the Three Data Sets for the Rules and Trees Extracted by

Neurorule and Trepan

Extraction Number of columns Number of columns

Data set method in expanded DT in reduced DT

German Neurorule 6�600 11

credit Trepan 6�600 9

Bene 1 Neurorule 192 14

Trepan 192 30

Bene 2 Neurorule 192 26

Trepan 192 49

Management Science/Vol. 49, No. 3, March 2003 325

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Figure 12 Example Consultation Session in Prologa

In all cases, the contracted tables were satisfacto-

rily concise and did not contain any anomalies, thus

demonstrating the completeness and the consistency

of the extracted rules. For the Bene 1 and Bene 2 data

sets, the DTs built for the rules extracted by Neurorule

were more compact than those for the Trepan trees.

We also constructed the DTs for the rules induced by

C4.5rules and found that these tables were huge and

impossible to handle because of the large number of

generated rules and unpruned inputs.

DTs allow for an easy and user-friendly consulta-

tion in everyday business practice. Figure 12 presents

an example of a consultation session in Prologa.

Suppose we try to work ourselves towards column 12

of the DT for Bene 1 depicted in Figure 11. We start by

providing the system with the following inputs: Sav-

ings account ≤12.40 Euro, economical sector = other,

and purpose= secondhand car. At this point, the term

input becomes irrelevant (indicated by “-”), and hence

the system prompts for the next relevant input, which

is the number of years the applicant has been a client

of the bank. We then indicate that the applicant has

been a client for more than 3 years. The other remain-

ing inputs (owns property and income) then become

irrelevant, which allows the system to draw a conclu-

sion: applicant= good. This is illustrated in Figure 13.

For this particular applicant, the system needed only

4 of the 7 inputs to make a classification decision.

This example clearly illustrates how the use of DTs

allows one to reach a decision promptly by neglect-

ing the irrelevant inputs during the decision process.

It is precizely this property that makes DTs interest-

Figure 13 Classifying an Applicant in Prologa

326 Management Science/Vol. 49, No. 3, March 2003

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

ing management tools for decision support in credit

scoring.

5. Conclusion
Recently, neural networks have attracted a lot of

interest in the context of developing credit-risk eval-

uation models because of their universal approxima-

tion property. However, most of this work focuses

primarily on developing networks with high predic-

tive accuracy without trying to explain how the clas-

sifications are being made. In application domains

such as credit-risk evaluation, having a set of con-

cise and comprehensible rules is essential for the

credit-risk manager. In this paper, we have evalu-

ated and contrasted three neural network rule extrac-

tion techniques—Neurorule, Trepan, and Nefclass,

for credit-risk evaluation. The experiments were con-

ducted on three real-life financial credit-risk evalua-

tion data sets. It was shown that, in general, both

Neurorule and Trepan yield a very good classification

accuracy when compared to the popular C4.5 algo-

rithm and the logistic regression classifier. Further-

more, it was concluded that Neurorule and Trepan

were able to extract very compact rule sets and trees

for all data sets. The propositional rules inferred by

Neurorule were especially concise and very com-

prehensible. We also described how DTs could be

used to represent the extracted rules. DTs represent

the rules in an intuitive graphical format that can

be easily verified by a human expert. Furthermore,

they allow for easy and user-friendly consultation

in everyday business practice. We demonstrated that

the DTs for the rules and trees extracted by Neu-

rorule and Trepan are compact and powerful. We

conclude by saying that neural network rule extrac-

tion and DTs are effective and powerful management

tools which allow us to build advanced and user-

friendly decision-support systems for credit-risk eval-

uation. Furthermore, it would be interesting to apply

the suggested approach to other interesting manage-

ment science problems: e.g., churn prediction, cus-

tomer retention, and bankruptcy prediction.

Appendix

Table 7 Attributes for the German Credit Data Set

Nr Name Type Explanation

1 Checking

account

nominal 1: <0 DM; 2: ≥0 and <200 DM;

3: ≥200 DM/salary assignments for

at least one year; 4: no checking

account

2 Term continuous

3 Credit history nominal 0: no credits taken/all credits paid

back duly; 1: all credits at this bank

paid back duly; 2: existing credits

paid back duly till now; 3: delay

in paying off in the past; 4: criti-

cal account/other credits (not at this

bank)

4 Purpose nominal 0: car (new); 1: car (old); 2: furni-

ture/equipment; 3: radio/television;

4: domestic appliances; 5: repairs;

6: education; 7 vacation; 8 retrain-

ing; 9: business; 10: other

5 Credit amount continuous

6 Savings

account

nominal 1: <100 DM; 2: ≥100 DM and

<500 DM; 3: ≥500 and <1000

DM; 4: ≥1000 DM; 5: unknown/no

account

7 Present

employment

nominal 1: unemployed; 2: <1 year; 3: ≥1

year and <4 years;

since 4: ≥4 and <7 years; 5: ≥7 years

8 Installment

rate

continuous

9 Personal

status and sex

nominal 1: male, divorced/separated;

2: female, divorced/separated/

married; 3: male, single; 4: male,

married/widowed; 5: female, single

10 Other parties nominal 1: none; 2: co-applicant; 3:

guarantor

11 Present resi-

dence since

continuous

12 Property nominal 1: real estate; 2: if not 1: build-

ing society savings agreement/life

insurance; 3: if not 1/2: car or other;

4: unknown/no property

13 Age continuous

14 Other install-

ment plans

nominal 1: bank; 2: stores; 3: none

15 Housing nominal 1: rent; 2: own; 3: for free

16 Number of

existing credits

at this bank

continuous

Management Science/Vol. 49, No. 3, March 2003 327

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

Table 7 Continued

Nr Name Type Explanation

17 Job nominal 1: unemployed/unskilled-

nonresident; 2: unskilled-resident; 3:

skilled employee/official;

4: management/self-employed/

highly qualified employee/officer

18 Number of

dependents

continuous

19 Telephone nominal 1: none; 2: yes, registered under the

customer name

20 Foreign worker nominal 1: yes; 2: no

Table 8 Attributes for the Bene 1 Data Set

Nr Name Type

1 Identification number continuous

2 Amount of loan continuous

3 Amount on purchase invoice continuous

4 Percentage of financial burden continuous

5 Term continuous

6 Personal loan nominal

7 Purpose nominal

8 Private or professional loan nominal

9 Monthly payment continuous

10 Savings account continuous

11 Other loan expenses continuous

12 Income continuous

13 Profession nominal

14 Number of years employed continuous

15 Number of years in Belgium continuous

16 Age continuous

17 Applicant type nominal

18 Nationality nominal

19 Marital status nominal

20 Number of years since last house move continuous

21 Code of regular saver nominal

22 Property nominal

23 Existing credit info nominal

24 Number of years client continuous

25 Number of years since last loan continuous

26 Number of checking accounts continuous

27 Number of term accounts continuous

28 Number of mortgages continuous

29 Number of dependents continuous

30 Pawn nominal

31 Economical sector nominal

32 Employment status nominal

33 Title/salutation nominal

References
Andrews, R., J. Diederich, A. B. Tickle. 1995. A survey and cri-

tique of techniques for extracting rules from trained neural

networks. Knowledge Based Systems 8(6) 373–389.

Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford

University Press, Oxford, U.K.

Capon, N. 1982. Credit scoring systems: A critical analysis. J. Mar-

keting 46 82–91.

Craven, M. W., J. W. Shavlik. 1996. Extracting tree-structured rep-

resentations of trained networks. D. Touretzky, M. Mozer,

M. Hasselmo, ed. Advances in Neural Information Processing Sys-

tems (NIPS), Vol. 8. MIT Press, Cambridge, MA, 24–30.

Crook, J. N. 1999. Who is discouraged from applying for credit?

Econom. Lett. 65 165–172.

Davis, R. H., D. B. Edelman, A. J. Gammerman. 1992. Machine

learning algorithms for credit-card applications. IMA J. Math.

Appl. Bus. Indust. 4 43–51.

Desai, V. S., J. N. Crook, G. A. Overstreet Jr. 1996. A comparison of

neural networks and linear scoring models in the credit union

environment. Eur. J. Oper. Res. 95(1) 24–37.

Fayyad, U. M., K. B. Irani. 1993. Multi-interval discretization of

continuous-valued attributes for classification learning. Proc.

Thirteenth Internat. Joint Conf. Artificial Intelligence (IJCAI).

Chambery, Morgan Kaufmann, France, 1022–1029.

Henley, W. E., D. J. Hand. 1997. Construction of a k-nearest neigh-

bour credit-scoring system. IMA J. Math. Appl. Bus. Indust. 8

305–321.

Liu, H., R. Setiono. 1995. Chi2: Feature selection and discretization

of numeric attributes. Proc. Seventh IEEE Internat. Conf. Tools

Artificial Intelligence (ICTAI). IEEE Computer Society Press,

Los Alamitos, CA, 388–391.

, S. T. Tan. 1995. X2R: A fast rule generator. Proc. IEEE Inter-

nat. Conf. Systems, Man Cybernetics. IEEE Press, Piscataway, NJ,

631–635.

Nauck, D. 2000. Data analysis with neuro-fuzzy methods. Habilita-

tion thesis, University of Magdeburg, Germany.

Quinlan, J. R. 1993. C4.5 Programs for Machine Learning. Morgan

Kaufmann, Chambery, France.

Santos-Gomez, L., M. J. Darnel. 1992. Empirical evaluation of deci-

sion tables for constructing and comprehending expert system

rules. Knowledge Acquisition 4 427–444.

Setiono, R. 1995. A neural network construction algorithm which

maximizes the likelihood function. Connection Sci. 7(2) 147–166.

. 1997. A penalty function approach for pruning feedforward

neural networks. Neural Comput. 9(1) 185–204.

, H. Liu. 1996. Symbolic representation of neural networks.

IEEE Comput. 29(3) 71–77.

, J. Y. L. Thong, C. Yap. 1998. Symbolic rule extraction from

neural networks: An application to identifying organizations

adopting IT. Inform. Management 34(2) 91–101.

Steenackers, A., M. J. Goovaerts. 1989. A credit scoring model for

personal loans. Insurance: Math. Econom. 8 31–34.

Vanthienen, J., E. Dries. 1994. Illustration of a decision table tool

for specifying and implementing knowledge based systems.

Internat. J. Artificial Intelligence Tools 3(2) 267–288.

328 Management Science/Vol. 49, No. 3, March 2003

BAESENS, SETIONO, MUES, AND VANTHIENEN

Neural Network Rule Extraction for Credit Scoring

, G. Wets. 1994. From decision tables to expert system shells.

Data Knowledge Engrg. 13(3) 265–282.

, C. Mues, A. Aerts. 1998. An illustration of verification and

validation in the modelling phase of KBS development. Data

Knowledge Engrg. 27 337–352.

West, D. 2000. Neural network credit scoring models. Comput. Oper.

Res. 27 1131–1152.

Wets, G., J. Vanthienen, S. Piramuthu. 1997. Extending a tabular

knowledge based framework with feature selection. Expert Sys-

tems Appl. 13 109–119.

Accepted by Christopher Tang; received February 6, 2002. This paper was with the authors 7 weeks for 1 revision.

Management Science/Vol. 49, No. 3, March 2003 329

