
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part A

Faculty of Engineering and Information
Sciences

1-1-2015

Using neural networks to forecast available system resources: an approach Using neural networks to forecast available system resources: an approach

and empirical investigation and empirical investigation

Yun-Fei Jia
Civil Aviation University of China

Zhi Quan Zhou
University of Wollongong, zhiquan@uow.edu.au

Ke-Xian Xue
Institute of NBC Defence of the PLA

Lei Zhao
Beijing Institute of Control Engineering

Kai-Yuan Cai
Beijing University of Aeronautics and Astronautics, kycai@buaa.edu.cn

Follow this and additional works at: https://ro.uow.edu.au/eispapers

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Jia, Yun-Fei; Zhou, Zhi Quan; Xue, Ke-Xian; Zhao, Lei; and Cai, Kai-Yuan, "Using neural networks to forecast
available system resources: an approach and empirical investigation" (2015). Faculty of Engineering and
Information Sciences - Papers: Part A. 5211.
https://ro.uow.edu.au/eispapers/5211

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F5211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F5211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F5211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/5211?utm_source=ro.uow.edu.au%2Feispapers%2F5211&utm_medium=PDF&utm_campaign=PDFCoverPages

Using neural networks to forecast available system resources: an approach and Using neural networks to forecast available system resources: an approach and
empirical investigation empirical investigation

Abstract Abstract
Software aging refers to the phenomenon that software systems show progressive performance
degradation or a sudden crash after longtime execution. It has been reported that this phenomenon is
closely related to the exhaustion of system resources. This paper quantitatively studies available system
resources under the real-world situation where workload changes dynamically over time. We propose a
neural network approach to first investigate the relationship between available system resources and
system workload and then to forecast future available system resources. Experimental results on data
sets collected from real-world computer systems demonstrate that the proposed approach is effective.

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Jia, Y., Zhou, Z. Quan., Xue, K., Zhao, L. & Cai, K. (2015). Using neural networks to forecast available
system resources: an approach and empirical investigation. International Journal of Software Engineering
and Knowledge Engineering, 25 (4), 781-802.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/5211

https://ro.uow.edu.au/eispapers/5211

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 1

Abstract

 Software aging refers to the phenomenon that software systems show progressive performance

degradation or a sudden crash after longtime execution. It has been reported that this phenomenon

closely relates to the exhaustion of system resources. This paper quantitatively studies available

system resources under the real-world situation where workload changes dynamically over time. We

propose a neural network approach to first investigate the relationship between available system

resources and system workload and then to forecast future available system resources. Experimental

results on data sets collected from real-world computer systems demonstrate that the proposed

approach is effective.

Keywords: forecasting; neural networks; software aging; software reliability; system availability;

system resources; system workload.

I. INTRODUCTION

Reliability and availability are key qualities of computer systems. More often than not, system

failures are attributed to software than hardware [12,32]. When an application server runs

continuously for a long period of time, many error conditions in its process space or kernel space

This work was supported in part by the National Key Technology R&D Program (Grant No. 2011BAH24B12) and a linkage grant of the

Australian Research Council (Project ID: LP100200208).
Yun-Fei Jia is with the Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China.
Zhi Quan Zhou is with the School of Computer Science and Software Engineering, University of Wollongong, Wollongong, NSW 2522,

Australia. All correspondence should be addressed to Zhi Quan Zhou, e-mail: zhiquan@uow.edu.au, phone: (61-2) 4221-5399.
Ke-Xian Xue is with the Institute of NBC Defence of the PLA, China.
Lei Zhao is with the Beijing Institute of Control Engineering, Beijing 100080, China.
Kai-Yuan Cai is with the Department of Automatic Control, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China.

Using Neural Networks to Forecast Available System
Resources: An Approach and Empirical Investigation

Yun-Fei Jia, Zhi Quan Zhou, Ke-Xian Xue, Lei Zhao, and Kai-Yuan Cai

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 2

can be accumulated. Examples of these error conditions are memory leak, numerical error

accumulation, out-of-order processes or threads, unreleased file tables, and data corruption. These

error conditions will eventually become critical, such as exhaustion of computing resources of the

system, paroxysmal crash, increased response time and degraded performance. This phenomenon

is called software aging, which will result in many disastrous consequences. A real-world example

is the loss of life owing to software aging in the safety-critical weapon-control system of Patriot in

1991 [25]. Possible root causes of software aging include residual defects in the software [13,17].

Although researchers have proposed many assumptions about the causes and evolvement of

software aging [6,15,17,18], its influencing factors are still not well identified or quantified. This

fundamental question can only be answered by experimental research. However, only a very

limited number of such experimental studies on software aging have been reported in major

software and reliability journals [13,14,29]. This contrasts unfavorably with the growing

awareness and widely accepted importance of experiment-based studies [7,29].

The exhaustion of system resources is considered to be a primary cause of software aging [13].

Grottke et al. proposed to forecast the usage of computing resources with an autoregressive model

[13], which assumes an even workload over time. Under even workload, aging is the only factor

affecting available resources, thus AR model is sufficient to forecast this aging trend.

Unfortunately, however, the workload of real-world systems is often uneven. When workload

increases, the available resources of a computer system will decrease quickly. A question that

naturally arises is: Can we forecast the available system resources based on workload information

of the system? Vaidyanathan and Trivedi incorporated the effect of workload in their software

aging model [30]. They grouped workload into eight clusters, and calculate the exhaustion rate of

computing resources with respect to each workload cluster. They found that the exhaustion rate

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 3

was faster with higher system activity. Nevertheless, their findings were only for modeling

purpose rather than for forecasting the exhaustion of resources with varying workload. Moreover,

in many of the workload states, the dynamics of the resources demonstrates very high variance,

resulting in very broad confidence intervals of the exhaustion rate. The highly irregular and

oscillatory behavior of the data makes most trend models insufficient. Further, the models of

Vaidyanathan and Trivedi [30] are offline models and hence cannot forecast available resources

online, where workload patterns differ at different times. These issues are addressed in the present

paper.

In the present paper, we study available system resources for real-world computing systems

where workload dynamically changes over time. The proposed method can be used in various

areas – for instance, for designing countermeasures (such as software rejuvenation) against

software aging, or for providing a basis for deciding how many connections to a Web server

should be cut off to avoid the exhaustion of computing resources in accordance with admission

control [31]. The proposed method is based on neural networks. In this paper, computing resources

refer to the resources of the operating system, such as Real Memory Free, CPU usage rate, Used

Swap Space, I/O usage, and so on. We focus on the Real Memory Free and Used Swap Space since

they are considered to be leading indicators of aging [30].

The rest of this paper is organized as follows: Section II provides background information and

reviews related studies. Section III describes the data sets used in our experiments and introduces

some basic concepts of our approach. Section IV investigates the relationship between system

workload and available system resources. Section V presents our approach and experimental

results for forecasting available system resources. Section VI concludes the paper and points out

future research topics.

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 4

II. BACKGROUND

The phenomenon of software aging was first reported by Marshall [25]. The aging problem was

in the Patriot missile system, and it was solved by resetting the weapon-control system every eight

hours. A few years later, Huang et al. [17] proposed a model of software aging together with a

counteraction, namely software rejuvenation. The studies on software aging and control can

roughly be classified into four parts: mechanism, metrics, modeling and control. Research on

software aging mechanisms focuses on causes and effects, influencing factors and evolution of

software aging. It provides a basis for extracting a metric of software aging and provides

observations for modeling research. The objective of research on software aging metrics is to

detect and estimate the severity of software aging. It provides both quantitative metrics for the

research in mechanism and measurable objective for the research in control. Software aging

modeling can formulate the aging process based on observations from experiments, and can

determine the effectiveness of software control. It can also provide a model for the research in

control. Software aging control is the ultimate objective of software aging research. It aims to

detect and estimate the severity of software aging, and select optimal rejuvenation policy to heal

the aged software.

Matias et al. used design of experiment (DOE) and accelerated degradation test (ADT)

techniques to characterize the aging phenomenon [24]. They found that the “page size” and “page

type” factors were responsible for over 99% of memory size variation in httpd processes. Zhao et

al. injected memory leaks to a test bed to expedite aging. They used the experimental results to

estimate some parameters of the Weibull distribution, the lifetime distribution of the running

software [36]. Jia et al. analyzed the evolution of software aging in Apache httpd and reported that

the aging process is chaotic and can only be forecasted in limited ahead time [18]. Shereshevsky et

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 5

al. [28] monitored the Hölder exponent (a measure of the local rate of fractality) of the system

parameters and found that system crashes were often preceded by the second abrupt increase in

this measure.

Because software aging involves many complicated and interrelated factors, it is not easy to

propose a metric that reflects all the factors to measure the degree of software aging. Software

aging is characterized, for instance, by consistent throughput loss in [8], by increased response

time in [13], and by exhaustion of computing resources in [14]. Grottke et al. proposed an

estimated time to exhaustion metric to predict the approximate time of depletion of system

resources [13]. A comprehensive evaluation function was proposed in [19] to measure the aging

speed of the Apache server.

Modeling, on the other hand, is a mainstream of software aging research. Modeling begins by

making assumptions about the mechanism of aging (including its causes and effects), and

constructs mathematical models to describe the aging process. It helps with the validation of the

effectiveness of software rejuvenation and the optimal schedules for software rejuvenation.

Vaidyanathan and Trivedi [30] monitored operating system activities, and described workload

based on four important parameters, namely cpuContextSwitch, sysCall, pageIn, and pageOut,

using a clustering method. The effect of workload on resource depletion was quantified by means

of slopes, but the issue of real time values of each resource parameter under varying workload was

not addressed. Huang et al. [17] proposed a three-state stochastic model, including a robust state, a

failure-prone state and a failure state. This model was extended and studied in detail by other

researchers to answer similar questions [9,10]. Chen et al. [8] introduced a threshold to judge the

current pattern of software aging and to describe its nonlinearity. The above models are all Markov

models. Jia et al. [20] introduced a nonlinear model to describe the evolution of software aging.

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 6

El-Shishiny et al. [11] exploited neural networks to mine the patterns of the usage of computing

resources. But their work neglected the influence of system workload. Hong et al. [15] proposed an

idea of closed-loop design of software rejuvenation to reset the computer system based on

feedback information. Their objective was to determine the optimal rejuvenation time with the

feedback information. On the other hand, Jia and Cai introduced control theory to software

rejuvenation, including how to apply system identification, controller design and evaluation to

software rejuvenation [21]. Zhao et al. described the workload of an HTTP server using a queuing

model. Further, using a distributed rejuvenation algorithm, they found the optimal rejuvenation

time [35].

This paper falls into the area of software aging modeling. Our aim is to investigate the

relationship between workload and available computing resources, and to quantitatively predict

future available computing resources.

III. PRELIMINARIES

A. The Data Sets

To study the usage of resources in computer systems requires the collection of real-world data.

For this purpose, we used the data sets reported in [30]. The data collection process is briefly

described below. A monitoring tool was used to collect operating system resource usage data (such

as physical/virtual memory usage and file/process table usage) and system activity data (such as

paging activity and CPU utilization) from nine heterogeneous UNIX workstations. These

workstations were connected by an Ethernet LAN at the Duke Department of Electrical and

Computer Engineering. These workstations provided various services, and the inputs from clients

were unknown. From these workstations, more than one hundred parameters were monitored at

regular intervals (10 minutes) for more than three months. These parameters “include those that

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 7

describe the state of the operating system resources, state of the processes running, information on

the /tmp file system, availability and usage of network related resources, and information on

terminal and disk I/O activity”. In this study, we used the data sets collected from the workstations

named Rossby and Jefferson. The data set of Jefferson was not illustrated or studied in [30].

We analyzed the system resources data (represented by Real Memory Free and Used Swap Space

as explained previously) and system workload data. To measure the latter, it is natural to think of

the HTTP connection rate, that is, the number of HTTP requests coming from clients per unit time.

It is, however, not a good measure of workload. This is because, first, an HTTP request may be

CPU intensive or I/O intensive. For example, a static HTML page request is more often I/O

intensive since it involves little computation [22]. On the other hand, a dynamic request such as a

database query will involve much CPU usage. These types of requests will result in different

bottleneck of the system. Secondly, even for the same type of HTTP request, say I/O intensive

requests, those requesting large files will cost more resources than those requesting small files.

Finally, requests from clients may not necessarily be HTTP requests.

Following [30], we characterize the system workload by variables pertaining to CPU activity and

file system I/O. To be more specific, the following variables have been used to characterize the

workload in our study:

cpuContextSwitch: The number of process context switches performed during the measurement

interval.

sysCall: The number of system calls made during the interval.

pageIn: The number of page-in operations (pages fetched in from file system or swap device)

during the interval.

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 8

Thus, a point in a three-dimensional space, (cpuContextSwitch, sysCall, pageIn), represents the

measured workload for a given interval of time. In our study, the raw data were normalized first.

Note that we did not include the factor pageOut in the above definition as did in [30]. This is

because this variable is almost constant in the data sets. Figure 1 depicts the three dimensions of the

workload data collected from the workstation Rossby.

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

cp
uC

on
te

xt
Sw

itc
h

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 9

(b)

(c)

Fig. 1. Workload data observed on Rossby

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

pa
ge

In

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

sy
sC

al
l

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 10

B. A Neural Network Approach

A neural network approach is adopted in our study. This subsection provides a brief

introduction to neural networks.

A neural network is a mathematical model that can learn and mimic human behavior. It is

composed of many simple elements called neurons. Neurons are connected (with weights on the

connections) so that they can process information collaboratively and can store the information.

Although many types of neural network models have been proposed, the most popular one is

called multi-layer perceptron (MLP) feed forward model, which is composed of non-linear,

non-parametric approximators. Neural-network based approaches have many advantages. First,

they can capture nonlinear phenomena. Secondly, they can solve problems for which an

algorithmic solution does not exist or is too complex to find. Finally, they can show improved

performance with time when more and more patterns are learnt. Neural networks have been

successfully applied to many areas such as pattern recognition [26], system identification [4,5],

forecasting [1] and intelligent control [2].

When applying neural networks, it is important to choose an appropriate network architecture,

namely the number of layers and the number of hidden neurons per layer. This question can only

be answered by experience. Hornik et al. [16] established that as few as one hidden layer with

sufficient neurons can approximate any continuous function with any precision. In our study, we

decided to use a three-layer neural network with two hidden layers. There are several reasons for

adopting two hidden layers. First, using a single hidden layer could make the neurons tend to

interact with each other globally, which is not desirable. Using two hidden layers has an advantage

that the first hidden layer can learn the local features that characterize specific regions of the input

space, and global features are extracted in the second hidden layer [23].

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 11

The selection of a training algorithm for the neural network is another important issue. Back

propagation error (BP) is most useful for feed forward networks [34]. An MLP feed forward

model together with BP training is normally called a BP neural network. In a BP neural network,

only neurons in adjacent layers are connected. A BP neural network can learn complicated

nonlinear input-output relationships from a set of sample data, that is, a set of input-output values.

It is also important to correctly choose a set of initial weights for the network. It is a common

practice to initialize weights to small random values within a certain interval. The BP neural

network is used in our study.

The accuracy of the test results will be measured using all of the following approaches: (1)

visual analysis, (2) Root Mean Square Error (RMSE), and (3) Pearson’s correlation coefficient (r).

The first approach, visual analysis, is straightforward and intuitive, and hence commonly used for

researchers to verify the forecasting effect [3, 27]. The second approach, RMSE, is a well-known

metric of predictive accuracy. It quantitatively measures the differences between values predicted

by the neural network and the values actually observed. The third approach, Pearson’s r, is widely

used by researchers as a measure of the degree of correlation, or linear dependence, between two

variables. When r ≥ 0.5, the two variables have a strong positive correlation. Furthermore, the

statistical significance of the correlation is given by the p-value. A p-value below 0.05 is normally

considered to be statistically significant. The Pearson’s correlation coefficient is used in the

present study to investigate the linear relationship between the observed and predicted values.

IV. ON THE RELATIONSHIP BETWEEN SYSTEM WORKLOAD AND AVAILABLE SYSTEM RESOURCES

Intuitively, there is a relationship between system workload and available system resources. This

is because the higher the system activity, the higher is the system workload and, hence, the more

will computing resources be consumed, resulting in decreased available system resources. It must

http://en.wikipedia.org/wiki/Feed-forward

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 12

be pointed out, however, that available system resources do not only relate to normal usage of

resources consumed by running applications, but also relate to software aging caused by

accumulated error conditions of the system, such as memory leak. It has been observed that the

higher the system activity is, the likelier will the system age [30]. The research question of this

section is: how close is the relationship between system workload and available resources, and can

the latter be modeled quantitatively by the former? Answers to these questions may also provide

hints on whether and when we can control available resources by controlling system workload.

As explained earlier in the paper, in this research we use two indicators, namely realMemoryFree

and usedSwapSpace, to represent system resources as they are leading indicators of aging [30], and

three indicators, namely cpuContextSwitch, sysCall, and pageIn, are used to represent system

workload.

The workload and resource usage data observed from the real world are strongly nonlinear. For

instance, many spikes can be seen in Figure 1. The relationship between workload and resources is

also nonlinear and is difficult to formulate. We decided, therefore, to use the BP neural network to

study this relationship 1, with the settings given in Section III-B. The input to the network is

workload data, namely, three-dimensional vectors (cpuContextSwitch, sysCall, pageIn), and the

output is resources data, namely, two-dimensional vectors (realMemoryFree, usedSwapSpace).

As a common practice, the number of neurons was determined through trial and error [23], which

will be explained shortly, and we used the first two-thirds or so of the data set to train the neural

network and the remaining one-third or so to validate/test the learning effect of the network [23].

We first applied this approach to the Rossby data set. The whole Rossby data set can be divided

into a few segments, each of which records observations from system startup to system reset. We

used one of these segments in our study, which contains a total of 5,811 observations. Since the

1 A preliminary version of this approach was proposed in QSIC 2009 [33].

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 13

observations were at intervals of ten minutes, the total duration is 10×5,811=58,110 minutes. We

cut this segment of 5,811 observations into two parts: the first part contains 4,000 observations and

was used to train the neural network, and the second part contains 1,811 observations and was used

for testing.

The accuracy is first quantified using the Root Mean Square Error (RMSE), a widely used

measure of the difference between values predicted by a model and those actually observed,

calculated as follows:

n

ey
RMSE

n

i
ii∑

=

−
= 1

2)(
,

where n is the total number of observations, and yi and ei represent the ith observed and forecasted

values (output of the neural network), respectively.

In general, researchers determine the number of neurons in the hidden layers of multi-layer

neural networks by trial and error [23]. This approach is adopted in the present study. We increase

the number of neurons in the two hidden layers from (5, 5) to (30, 30) and calculate the RMSE

values of realMemoryFree and usedSwapSpace, as shown in Table 1. It can be observed that

RMSE decreases when the number of neurons increases, and that the decrease rate becomes small

when the number of neurons is sufficiently large. More specifically, when the numbers of neurons

in the two hidden layers increase from (10, 10) to (20, 20), the RMSE values of both

realMemoryFree and usedSwapSpace drop noticeably from 0.3194 to 0.3044 (by 4.70%) and from

0.3982 to 0.3877 (by 2.64%), respectively; however, when the numbers of neurons further

increase from (20, 20) to (30, 30), the RMSE values decrease only slightly (by 0.33% for

realMemoryFree and 0.80% for usedSwapSpace). We decided, therefore, to set the numbers of

neurons to (20, 20) in the experiments because too many neurons in hidden layers can greatly

increase the training time.We have also applied the same approach to the Jefferson data set, where

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 14

4,000 observations were used to train the neural network, and 2,049 observations were used for

testing.

Table 1. RMSE for different numbers of neurons in the two hidden layers

Numbers of neurons in two hidden layers RMSE of realMemoryFree RMSE of usedSwapSpace

(5,5) 0.3216 0.4078

(10,10) 0.3194 0.3982

(20,20) 0.3044 0.3877

(30,30) 0.3034 0.3846

Fig. 2. Test results for realMemoryFree (on the Rossby data set)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (ten min slots)

re
al

M
em

or
yF

re
e

output of neural network
observations

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 15

Fig. 3. Test results for usedSwapSpace (on the Rossby data set)

The test results on the 1,811 observations based on the Rossby data set for realMemoryFree and

usedSwapSpace are shown in Figure 2 and Figure 3, respectively. The test results based on the

Jefferson data set are shown in Figures 4 and 5. A visual analysis shows that, in all four figures,

the paroxysmal spikes of the observations can generally be tracked well by the neural network. It is

interesting to find that differences between the predicted values and the observations become large

in the last parts of Figures 2 and 3. In Figure 2, the last part (starting from around the 1,650th

observation point) of observed values of realMemoryFree kept very low for a relatively long time

– this can imply software aging. The predicted values for this period of time, however, did not go

down. This phenomenon is more evident in Figure 3, starting from around the 1,500th observation

point, where the predicted values of usedSwapSpace did not increase as much as the observed

values. This finding suggests that, in normal situations there is a close relationship between system

workload and available resources; when the system gets seriously aged, however, the workload

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

us
ed

Sw
ap

Sp
ac

e

output of neural network
observations

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 16

will no longer have a significant impact on the available resources. This is because the system has

already accumulated many error conductions, and reducing workload can no longer bring the

system back to a normal state. See, for example, Figure 1 (a), which shows that the system

workload was not at its peak level around the end of the observations, but Figure 2 shows that

realMemoryFree reached its lowest level in the end of the observations. This observation shows

that our approach can be used to diagnose software aging. As a result, the system was reset after

the 1,811th observation point.

In addition to the above visual analysis, the test results are also quantitatively analyzed using

RMSE and Pearson’s Correlation Coefficient (r), as summarized in Table 2. For Figures 2, 3, 4 and

5, the correlation coefficients are 0.773, 0.716, 0.904, and 0.818, respectively. Because a Pearson’s

r greater than or equal to 0.5 indicates a strong correlation, and also because all four p-values are

smaller than 0.001, we can conclude that there is a strong and statistically significant positive

correlation between the observed values and predicted values in all four figures, which means that

our approach is effective. This also means that there is a close relationship between workload and

available resources. Table 2 indicates that the results on the Jefferson data set are better than those

on the Rossby data set. This is because software aging in the Rossby workstation affected the

prediction accuracy, as explained in the preceding paragraph. This inaccuracy, however, can be

useful: it can help us to diagnose and identify software aging. For instance, Figure 6 (a) shows the

trend of the (absolute) prediction errors of Figure 3 (that is, the differences between the observed

and predicted values of usedSwapSpace on the Rossby data set), and Figure 6 (b) shows the

corresponding errors of Figure 5 on the Jefferson data set. It is evident that, in Figure 6 (a), the

prediction error increases with time owing to software aging in the Rossby workstation, whereas

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 17

Figure 6 (b) does not have this pattern as the Jefferson workstation did not get as aged.

Identification of this kind of error pattern may help with the diagnosis of software aging.

Table 2. Quantitative analysis of the test results shown in Figures 2 to 5

Figure RMSE Pearson’s correlation
coefficient (r)

p-value (two-tailed)

Fig. 2 0.1400 0.773 p<0.001
Fig. 3 0.1856 0.716 p<0.001
Fig. 4 0.0338 0.904 p<0.001
Fig. 5 0.1036 0.818 p<0.001

Fig. 4. Test results for realMemoryFree (on the Jefferson data set)

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (ten min slots)

re
al

M
em

or
yF

re
e

output of nerual network

observations

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 18

Fig. 5. Test results for usedSwapSpace (on the Jefferson data set)

(a) A growing trend of the absolute errors of prediction, based on Fig. 3 results

0 500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

us
ed

Sw
ap

Sp
ac

e

output of neural network
observations

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 19

(b) Absolute errors of prediction, based on Fig. 5 results

Fig. 6. A comparison of the trend of prediction errors: Fig. 3 results vs Fig 5 results

V. FORECASTING FUTURE AVAILABLE SYSTEM RESOURCES

The previous section studied the relationship between system workload and available resources.

A further question is: can we forecast future available system resources? The answer to this

question will be of practical importance. In this section, we will continue to use the neural network

approach to answer this question.

A. One-Step-Ahead Forecasting

To forecast available system resources using neural networks, we need to first decide which

input parameters should be provided to the network. Intuitively, these parameters should be

relevant to the usage of system resources. Therefore, to forecast the next-step value of

realMemoryFree, we decided to use the following five parameters: ΣcpuContextSwitch, ΣsysCall, ΣpageIn,

systemRunningTime, and CrealMemoryFree. The first three parameters are the accumulated values

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 20

(accumulated from the last system startup to the present time) of cpuContextSwitch, sysCall, and

pageIn, respectively. Note that accumulated rather than present values of the workload variables

are used, and this is because of concerns of the impact of software aging: available system

resources are not only related to the current system workload, but also related to accumulated error

conditions caused by historical activities since the last system startup. For the same reason, a forth

parameter systemRunningTime is included, which refers to the running time since the system was

last started. The fifth parameter CrealMemoryFree refers to the current value of realMemoryFree. This

parameter is included because we believe that the value of realMemoryFree at time slot ti+1 is

related to its previous value at time slot ti. Note that we did not include the accumulated value of

realMemoryFree as an input parameter because the current value of realMemoryFree has already

reflected the effect of historical memory leaks. As an example of illustration, suppose the current

time is 10:00 pm and the system was last restarted at 1:00 pm, to forecast the value of

realMemoryFree at the next observation point (that is, 10:10 pm), our approach will use the

following data: accumulated values of the three workload variables (accumulated from 1:00 pm to

10:00 pm), running time since the last startup (that is, nine hours and ten minutes), and the value of

realMemoryFree at time 10:00 pm. Similarly, to forecast the next-step value of usedSwapSpace,

we decided to use the following five parameters: ΣcpuContextSwitch, ΣsysCall, ΣpageIn,

systemRunningTime, and CusedSwapSpace.

We first applied this approach to the Rossby data set. As explained previously, the whole

Rossby data set can be divided into a few segments, each of which records observations from

system startup to system reset. We used one of these segments, which contains 5,844 observations,

to train the neural network, and another segments, which contains 1,594 observations, for testing.

The test results based on the Rossby data set for realMemoryFree and usedSwapSpace are shown

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 21

in Figure 7 and Figure 8, respectively. Using visual analysis, we can find that, in both figures, the

1,594 forecasted values predict the trends of the observed values well. In other words, the neural

network approach is effective.

We have also applied the same approach to the Jefferson data set, where 5,811 observations

were used to train the neural network, and 3,016 observations were used for testing. The test

results are shown in Figures 9 and 10. Using visual analysis, we can find that the observed values

can generally be tracked well by the neural network in both figures. These results on Jefferson

confirm that our approach is effective for forecasting available system resources.

The results of Figures 7 to 10 are further analysed quantitatively as summarized in Table 3. All

four correlation coefficients are well above 0.9 with p-values below 0.001. This means that there is

a strong and statistically significant positive correlation between the observed and predicted values

in all four figures. In other words, our approach is effective.

Table 3. Quantitative analysis of the test results shown in Figures 7 to 10

Figure RMSE Pearson’s correlation
coefficient (r)

p-value (two-tailed)

Fig. 7 0.1118 0.935 p<0.001
Fig. 8 0.0838 0.940 p<0.001
Fig. 9 0.0275 0.992 p<0.001
Fig. 10 0.0439 0.975 p<0.001

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 22

Fig. 7. A comparison of one-step-ahead forecasted and observed results for realMemoryFree (on the Rossby data
set)

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

re
al

M
em

or
yF

re
e

one-step-ahead forecasted values
observations

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 23

Fig. 8. A comparison of one-step-ahead forecasted and observed results for usedSwapSpace (on the Rossby data set)

Fig. 9. A comparison of one-step-ahead forecasted and observed results for realMemoryFree (on the Jefferson data
set)

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

us
ed

Sw
ap

Sp
ac

e

one-step-ahead forecasted values
observations

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

re
al

M
em

or
yF

re
e

one-step-ahead forecasted values
observations

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 24

Fig. 10. A comparison of one-step-ahead forecasted and observed results for usedSwapSpace (on the Jefferson
data set)

B. Two-Step-Ahead Forecasting

The last subsection discussed how to achieve one-step-ahead forecasting. It is natural to ask

whether it is possible to go beyond one-step to achieve multi-step-ahead forecasting. In this

subsection we will discuss two-step-ahead forecasting. Treatment for n-step-ahead forecasting,

where n>2, is similar.

Suppose we are now at time slot ti. To do two-step-ahead forecasting, that is, to forecast the

values of realMemoryFree and usedSwapSpace at time slot ti+2, we should be able to estimate the

values of the five input parameters at time ti+1. Without loss of generality, let us consider

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

us
ed

Sw
ap

Sp
ac

e

one-step-ahead forecasted values
observations

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 25

realMemoryFree. Among the five parameters, systemRunningTime is known, and we can feed

back the forecasted value of CrealMemoryFree (for time slot ti+1) to the network as its estimated value.

To provide estimated values for the remaining three parameters, namely ΣcpuContextSwitch, ΣsysCall,

and ΣpageIn, we applied the neural network to forecast each of these values. Without loss of

generality, let us consider ΣcpuContextSwitch. To forecast the value of ΣcpuContextSwitch at time slot ti+1, we

provided the network with four input parameters, namely the values of ΣcpuContextSwitch, ΣsysCall, and

ΣpageIn observed at time slot ti, and systemRunningTime. We believe that all these four parameters

can have an impact on the value of ΣcpuContextSwitch at time slot ti+1. We applied the same data in our

experiment, that is, 5,844 observations for training and 1,594 observations for testing using the

Rossby data set; and 5,811 observations for training and 3,016 observations for testing using the

Jefferson data set. The test results are excellent: the values of ΣcpuContextSwitch, ΣsysCall, and ΣpageIn can

all be quite accurately forecasted in both the Rossby and the Jefferson servers. An example of the

test results is given in Figure 11. We note that it is much easier to forecast the accumulated values

of the workload variables than to forecast their individual values at each time slot. This is because

the curvature of accumulated values is much smoother than that of the individual values.

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 26

Fig. 11. A comparison of forecasted and observed results for ΣcpuContextSwitch (on the Rossby data set)

Having been able to provide the five input parameters (estimated values for time slot ti+1), we are

now able to conduct two-step-ahead forecasting. The same data used for one-step-ahead

forecasting have also been used in our experiments. The test results based on the Rossby data set

for realMemoryFree and usedSwapSpace are shown in Figure 12 and Figure 13, respectively. The

test results based on the Jefferson data set are shown in Figures 14 and 15. Quantitative analysis of

the test results for Figures 12 to 15 are summarized in Table 4.

Table 4. Quantitative analysis of the test results shown in Figures 12 to 15

Figure RMSE Pearson’s correlation
coefficient (r)

p-value (two-tailed)

Fig. 12 0.2755 0.894 p<0.001
Fig. 13 0.0918 0.933 p<0.001
Fig. 14 0.0384 0.988 p<0.001
Fig. 15 0.0549 0.962 p<0.001

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

ac
cu

m
ul

at
ed

 c
pu

Co
nt

ex
tS

w
itc

h

observations
one-step-ahead forecasted values

RMSE=0.0200
Correlation (r) = 1.000
p < 0.001

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 27

We can compare the accuracy of one-step-ahead and two-step-ahead forecasting by comparing

Figures 7, 8, 9, and 10 against Figures 12, 13, 14, and 15, respectively. A visual analysis can reveal

that the accuracy of two-step-ahead forecasting is not as good as that of one-step-ahead forecasting.

We can further compare the respective rows of Table 3 and Table 4: the RMSE values

one-step-ahead forecasting increased from Table 3’s 0.1118, 0.0838, 0.0275, and 0.0439 to Table

4’s 0.2755, 0.0918, 0.0384, and 0.0549, respectively. Furthermore, all correlation coefficients

decreased. In short, both visual and quantitative analyses show that the accuracy of two-step-ahead

forecasting has dropped. Nevertheless, in all of the two-step-ahead forecasting results, the trends

of the observed values can still be reasonably tracked, and there is still a strong positive correlation

between the forecasted and observed values with a strong statistical significance. It can be

expected that, for n-step-ahead forecasting, the accuracy will decrease when n increases.

Fig. 12. A comparison of two-step-ahead forecasted and observed results for realMemoryFree
(on the Rossby data set)

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

re
al

M
em

or
yF

re
e

two-step-ahead forecasted values
observations

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 28

Fig. 13. A comparison of two-step-ahead forecasted and observed results for usedSwapSpace

(on the Rossby data set)

Fig. 14. A comparison of two-step-ahead forecasted and observed results for realMemoryFree

(on the Jefferson data set)

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

time (ten min slots)

us
ed

Sw
ap

Sp
ac

e

two-step-ahead forecasted values
observations

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

re
al

M
em

or
yF

re
e

two-step-ahead forecasted values
observations

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 29

Fig. 15. A comparison of two-step-ahead forecasted and observed results for usedSwapSpace
(on the Jefferson data set)

VI. CONCLUSION AND FUTURE WORK

This is the first paper to present a method for quantitatively forecasting future available system

resources under the real-world situation where system workload changes dynamically. We have

also quantitatively investigated, for the first time, the relationship between changing system

workload and available resources. The experimental results demonstrate that the proposed neural

network approach is effective and, hence, contribute to software aging research.

Regarding the internal validity of this research, we have carefully verified all the programs, data,

and the experiment procedures. Regarding the external validity, the proposed

neural-network-based method has been applied to data sets from two servers, namely Rossby and

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (ten min slots)

us
ed

Sw
ap

Sp
ac

e

observations
two-step-ahead forecasted values

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 30

Jefferson, which provided different services with different configurations. The experimental

results on the data sets from both servers show that the proposed method is effective. Nevertheless,

the generalization of our approach is still threatened by the use of data sets from only two servers.

Control for this threat can be achieved only through additional studies using different servers in

different environments. Another future research topic is to apply the neural network approach to

investigate the influence of other factors on software aging.

ACKNOWLEDGEMENTS

We would like to thank Kishor S. Trivedi and Michael Grottke for providing the data sets for

this research.

REFERENCES
[1] A. Andrzejak, L. Silva, “Using machine learning for non-Intrusive modeling and prediction of software aging,”

in Proc. 11th IEEE Network Operations and Management Symposium, 2008, pp. 25-32.
[2] K. J. Astrom and B. Wittenmark, Computer Controlled System – Theory and Design, 3rd ed. Upper Saddle River:

Prentice Hall, 1996.
[3] T.G. Barbounis, J.B. Theocharis, M.C. Alexiadis, and P.S. Dokopoulos, “Long-term wind speed and power

forecasting using local recurrent neural network models,” IEEE Transactions on Energy Conversion, vol. 21, no.
1, pp. 273-284, 2006.

[4] V.M. Becerra, F.R. Garces, S.J. Nasuto, and W. Holderbaum, “An efficient parameterization of dynamic neural
networks for nonlinear system identification,” IEEE Transactions on Neural Networks, vol. 16, no. 4, pp.
983-988, 2005.

[5] S. Bhama and H. Singh, “Single layer neural networks for linear system identification using gradient descent
technique,” IEEE Transactions on Neural Networks, vol. 4, no. 5, pp. 884-888, 1993.

[6] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa, “Workload-based software rejuvenation in Cloud
systems,” IEEE Transactions on Computers, vol.62, no.6, pp.1072-1085, 2013.

[7] K.-Y. Cai, “Software reliability experimentation and control,” Journal of Computer Science and Technology, vol.
21, no. 5, pp. 697-707, 2006.

[8] X.-E. Chen, Q. Quan, Y.-F. Jia, and K.-Y. Cai, “A threshold autoregressive model for software aging,” in Proc.
2nd IEEE International Workshop on Service-Oriented System Engineering, 2006, pp. 34-40.

[9] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi, “Statistical non-parametric algorithms to estimate the
optimal software rejuvenation schedule,” in Proc. International Pacific Rim Symposium on Dependable
Computing, 2000, pp. 77-84.

[10] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi, “Estimating software rejuvenation schedules in high
assurance systems,” Computer Journal, vol. 44, no. 6, pp. 473-482, 2001.

[11] H. El-Shishiny, S. Deraz, and O. Bahy, “Mining software aging patterns by artificial neural networks,” Lecture
Notes in Computer Science vol 5064, 2008.

[12] J. Gray and D.P. Siewiorek, “High-availability computer systems,” IEEE Computer, vol. 24, no. 9, pp. 39–48,
1991.

Manuscript submitted to International Journal of Software Engineering and Knowledge Engineering 31

[13] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of software aging in a Web server,” IEEE
Transactions on Reliability, vol. 55, no. 3, pp. 411-420, 2006.

[14] G. A. Hoffmann and K. S. Trivedi, “A best practice guide to resource forecasting for computing systems,” IEEE
Transactions on Reliability, vol. 56, no. 4, pp. 615-628, 2007.

[15] Y. Hong, D. Chen, L. Li, and K.S. Trivedi, “Closed loop design for software rejuvenation,” in Proc. Workshop on
Self-Healing, Adaptive and Self-Managed Systems, 2002.

[16] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,”
Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.

[17] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software rejuvenation: analysis, module and applications,” in
Proc. 25th IEEE International Symposium on Fault-Tolerant Computing, 1995, pp. 381-390.

[18] Y.-F. Jia, X.-E Chen and K.-Y. Cai, “Chaotic analysis of software aging in Web server,” in Proc. 2nd IEEE
International Workshop on Service-Oriented System Engineering, 2006, pp. 117-120.

[19] Y.-F. Jia, L. Zhao, and K.-Y. Cai, “On the relationship between software aging and related parameters in a Web
server,” in Proc. 8th International Conference on Quality Software, 2008, pp. 241 – 246.

[20] Y.-F. Jia, L. Zhao, and K.-Y. Cai, “A nonlinear approach to modeling of software aging in a Web server,” in Proc.
15th Asia-Pacific Software Engineering Conference, 2008, pp.77-84.

[21] Y.-F. Jia and K.-Y. Cai, “A feedback control approach for software rejuvenation in a Web server,” in Proc. 1st
Workshop on Software Aging and Rejuvenation, 2008.

[22] P. Killelea, Web Performance Tuning, 2nd ed. Sebastopol: O'Reilly Media, 2002.
[23] S. Kumar, Neural Networks, Beijing: Tsinghua University Press, 2006.
[24] R. Matias, P.A. Barbetta, K.S. Trivedi, P.J.F. Filho, “Accelerated Degradation Tests Applied to Software Aging

Experiments,” IEEE Transactions on Reliability, 2010, vol. 59, pp. 102-114.
[25] E. Marshall, “Fatal error: how patriot overlooked a scud,” Science, vol. 255, no. 5050, pp. 1347, 1992.
[26] S.L. Phung and A. Bouzerdoum, “A pyramidal neural network for visual pattern recognition,” IEEE Transactions

on Neural Networks, vol. 18, no. 2, pp. 329-343, 2007.
[27] L.M. Saini and M.K. Soni, “Artificial neural network-based peak load forecasting using conjugate gradient

methods, ” IEEE Transactions on Power Systems, vol. 17, no. 3, pp. 907-912, 2002.
[28] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, and Y. Liu, “Software aging and multifractality of memory

resources,” in Proc. International Conference on Dependable Systems and Networks, 2003, pp. 721-730.
[29] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.-K. Liborg, and A.C. Rekdal, “A

survey of controlled experiments in software engineering,” IEEE Transaction on Software Engineering, vol. 31,
no. 9, pp.733-753, 2005.

[30] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for software rejuvenation,” IEEE Transactions on
Dependable and Secure Computing, vol. 2, no. 2, pp. 124-137, 2005.

[31] Z. H. Xia, W. Hao, and I. L. Yen, “A distributed admission control model for QoS assurance in large-scale media
delivery systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 12, pp. 1143-1153, 2005.

[32] W. Xie, Y. Hong, and K.S. Trivedi, “Software rejuvenation policies for cluster systems under varying workload,”
in Proc. 10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004, IEEE Computer
Society Press.

[33] K.-X. Xue, L. Su, Y.-F. Jia, and K.-Y. Cai, “A neural network approach to forecasting computing-resource
exhaustion with workload,” in Proc. 9th International Conference on Quality Software, 2009, IEEE Computer
Society Press.

[34] G. P. Zhang and M. Qi, “Neural network forecasting for seasonal and trend time series,” European Journal of
Operational Research, vol. 160, no. 2, pp. 501-514, 2005.

[35] J. Zhao, K. S. Trivedi, M. Grottke, J. Alonso, and Y. Wang, “Ensuring the performance of Apache HTTP server
affected by aging,” IEEE Transactions on Dependable and Secure Computing, vol. 11, no.2, pp.130-141, 2013.

[36] J. Zhao, Y. Wang, G. Ning, K. S. Trivedi, R. Matias, and K.-Y. Cai, “A comprehensive approach to optimal
software rejuvenation,” Performance Evaluation, vol. 70, no.11, pp. 917-933, 2013.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4601512
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Filho,%20P.J.F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Filho,%20P.J.F..QT.&newsearch=partialPref

	Using neural networks to forecast available system resources: an approach and empirical investigation
	Recommended Citation

	Using neural networks to forecast available system resources: an approach and empirical investigation
	Abstract
	Disciplines
	Publication Details

	I. INTRODUCTION
	II. BACKGROUND
	III. Preliminaries
	A. The Data Sets
	B. A Neural Network Approach

	IV. on the relationship between system workload and available system resources
	V. forecasting future available system resources
	A. One-Step-Ahead Forecasting
	B. Two-Step-Ahead Forecasting

	VI. Conclusion and Future Work
	Acknowledgements
	References

