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DiCarlo, James J. and John H. R. Maunsell. Using neuronal latency
to determine sensory–motor processing pathways in reaction time
tasks. J Neurophysiol 93: 2974–2986, 2005. First published Novem-
ber 17, 2004; doi:10.1152/jn.00508.2004. We describe a new tech-
nique that uses the timing of neuronal and behavioral responses to
explore the contributions of individual neurons to specific behaviors.
The approach uses both the mean neuronal latency and the trial-by-
trial covariance between neuronal latency and behavioral response.
Reliable measurements of these values were obtained from single-unit
recordings made from anterior inferotemporal (AIT) cortex and the
frontal eye fields (FEF) in monkeys while they performed a choice
reaction time task. These neurophysiological data show that the
responses of AIT neurons and some FEF neurons have little covari-
ance with behavioral response, consistent with a largely “sensory”
response. The responses of another group of FEF neurons with longer
mean latency covary tightly with behavioral response, consistent with
a largely “motor” response. A very small fraction of FEF neurons had
responses consistent with an intermediate position in the sensory-
motor pathway. These results suggest that this technique is a valuable
tool for exploring the functional organization of neuronal circuits that
underlie specific behaviors.

I N T R O D U C T I O N

It is common in the study of higher brain regions to describe
neuronal representations as being primarily “sensory” or “mo-
tor” based on whether modulation of activity is more closely
linked to the delivery of a stimulus or the initiation of a
response. However, most neurons may occupy positions that
are intermediate between these extremes, and be poorly de-
scribed by either label. Methods that assign neurons positions
along a continuous sensory–motor transformation are likely to
prove valuable for understanding the role of neurons and
structures in particular behaviors.

In tasks where the subject must respond promptly, the timing
of the onset of a neuron’s response can provide an approach to
evaluating its involvement in, and position along, a sensory–
motor processing pathway supporting a particular behavior.
The technique described here (termed the “RT–NL technique”)
is aimed at revealing sensory–motor processing pathways
through a quantitative examination of mean neuronal latency
(NL), mean reaction time (RT), and trial-by-trial covariance of
NL and RT. We are not the first to examine neuronal timing in
behavioral tasks (Commenges and Seal 1985, 1986; Lamarre
and Chapman 1986; Lamarre et al. 1983; Seal et al. 1983;
Thompson and Schall 2000), but we seek to further develop
and apply these ideas.

An underlying assumption in this report is that, in RT tasks,
neuronal activity generated by sensory transducers is transmit-
ted through a potentially branching path of neuronal connec-
tions that ultimately leads to the motor neurons whose activity
produces a behavioral response to the stimulus. We refer to the
sensory transducers, motor neurons, and the neuronal elements
that link their activity in a feed-forward way as the neuronal
“processing chain” that mediates the behavior. We do not
assume that all RT tasks are carried out by a fixed set of
neuronal connections. However, we do assume that, when the
RT task and context are held constant, the processing pathway
underlying that particular RT task is also constant in that
particular brain structures and neurons within those structures
are responsible for the sensory–motor transformation from
stimulus to behavioral response. Neurons whose activity is
modulated after sensory stimulation and before the behavioral
response and that contribute, however indirectly, to the initial
activation of the motor neurons underlying the behavioral
response are considered part of the processing chain.

Many neurophysiological studies have examined the mean
NL of neurons in different brain areas (e.g., Robinson and
Rugg 1988; Schmolesky et al. 1998), and it is obvious that such
measures can be used to assign neurons along a sensory–motor
continuum. However, the examination of another measure for
each neuron, the covariance of NL and RT, has received little
attention, even though it can provide additional information
beyond that conveyed by the mean NL. For example, the mean
NL will be expected to be large (i.e., long latency) for all
neurons that are activated many synapses away from the
sensory transducers—a potentially large number of neurons.
However, the covariance of the NL and RT will be large only
for neurons that are closely related to the transformation of the
sensory signal to the motor response or the motor response
itself—neurons that neurophysiologists are especially inter-
ested in. By examining both the mean NL and the covariance
of NL and RT for individual neurons in different areas, the
RT–NL technique seeks to provide new information about the
circuits that underlie specific behaviors.

The goal of the current study was to use the RT–NL
technique in neurophysiological experiments, both to test its
feasibility and reliability and to potentially reveal new infor-
mation about the role of specific brain areas in particular
behaviors. The work described here suggests that the RT–NL
technique may provide a valuable tool for assigning specific
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functional relationships to different neurons and brain struc-
tures in different behaviors.

M E T H O D S

In RT tasks, neurons located at anatomically early stages of pro-
cessing (“sensory” neurons) respond with mean latencies that are
short relative to behavioral responses, whereas neurons late in pro-
cessing (“motor” neurons) become active only shortly before the RT.
Hypothetical examples of the trial-by-trial relationship between NL
and RT are shown in Fig. 1. The raster plot in Fig. 1A shows responses
that might be recorded from a sensory neuron to repeated presentation

of a given stimulus, whereas the plot in Fig. 1B shows activity that
might be recorded from a motor neuron.

Each point in the scatter plot in Fig. 1C plots the latency for the
change in activity for one of these neurons in one trial (NL) against
the RT on that trial. Lines show the best least-squares linear fit to each
set of data. These lines show that these neurons differ not only in the
mean time of their responses (reflected by the vertical offsets of the
lines), but also in the trial-by-trial covariance of those response times
with RT (reflected by the slopes of the lines). Thus Fig. 1 suggests that
neurons near the ends of neuronal processing chains can be distin-
guished based on either their mean NL or the trial-by-trial covariation
of their NL and RT, and raises the possibility that these measures
could be used to assign neurons to intermediate positions on process-
ing chains.

We define two terms related to the mean NL and covariance
between NL and RT. The mean NL for each neuron in Fig. 1C
corresponds to the mean of the y-axis values of its points. We describe
a neuron’s normalized mean NL with a value termed �, which is found
by dividing its mean NL by the mean RT. Thus � is a unitless value
that progresses from near zero for neurons that, on average, become
active immediately after stimulus onset, to near one for neurons that
become active immediately before the response. This progression
from zero to one suggests that normalized mean NL (�) may be useful
for determining a neuron’s position along the processing chain.
Indeed, measures of mean NL have been used in many studies in an
effort to order neurons or brain areas along processing pathways (e.g.,
Bullier and Henry 1979; Gawne et al. 1996; Maunsell and Gibson
1992; Nowak and Bullier 1997; Robinson and Rugg 1988; Schroeder
et al. 1998; Zeki 2001).

Additional information can be gained from a statistical measure of
the trial-by-trial association of RT and NL. We measure the associa-
tion of RT and NL as the covariance of those variables, cov(RT, NL).
Because we are not interested in the absolute covariance per se, but
the fraction of the RT variance that is associated with the NL, we
define a normalized measure of association, �, which is the covariance
of NL and RT divided by the RT variance [� � cov (RT, NL)/�RT

2 ].
Thus � is a unitless value that progresses from near zero for neurons
that have little correlation with RT (Fig. 1A) to near one for neurons
that have activity closely correlated with the timing of the behavioral
response (Fig. 1B). Graphical intuition about this measure can be
gained by realizing that this definition of normalized covariance (�) is
also the definition of the slope of the best-fitting line resulting from
the linear regression of unbiased trial-by-trial estimates of NL on RT
(i.e., the linear regression for hypothetical data plotted like those in
Fig. 1C). However, it is important to emphasize that our analyses do
not estimate the normalized covariance (�) by performing this linear
regression (see following text), nor do they rely on a linear relation-
ship between RT and NL. Moreover, although regression is often used
to predict one variable given the value of another, this makes little
physical sense in this situation because the value of RT on a particular
trial cannot cause the value of an earlier NL (see DISCUSSION). We
simply use this definition of � because it captures the association
between NL and RT, and thus can inform about neuronal processing
chains.

Although � and � are both expected to progress from zero to one
along a neuronal processing chain, they need not take the same value
for a given neuron. For example, if most of the variance in RT is
generated in later (“motor”) stages, then � will remain small until
those stages, and only neurons with large � values would have �
values much greater than zero. Only if RT variance accumulates
uniformly along the processing pathway will � and � increase in
tandem. Thus by examining both of these values for individual
neurons and the distribution of these values across all activated
neurons we can gain insights into the position of neurons and struc-
tures along the processing pathway and the way that NL and RT
variance accumulate along it (see DISCUSSION).

FIG. 1. Hypothetical observations from sensory and motor neurons during
a reaction time task. A and B: hypothetical spike data from “sensory” and
“motor” neurons during performance of a sensory–motor reaction time (RT)
task. Abscissa shows time relative to stimulus onset. Trials have been sorted
based on hypothetical RTs (with RT increasing uniformly from trial to trial for
clarity). Each tick mark represents the occurrence of a spike. Sensory neuronal
latency (NL) response reliably covaries with the time of stimulus onset
(follows the stimulus onset by a fixed time interval), whereas the latency of the
motor neuronal response covaries with RT (proceeds the RT by a fixed time
interval). C: each point represents one trial for either the sensory or motor
neuron. Abscissa shows the RT observed on that trial; the left ordinate shows
the NL observed on that trial; the right ordinate shows the same NL normalized
by the mean RT over all trials (�RT). A line has been fit through each set of
points. Mean of the neuronal latencies of each group of data (�NL) divided by
the mean RT is the normalized mean NL (�). Slope of the line (�) is a
normalized measure of the covariance of the NL and the RT across trials.
Hypothetical distribution of RTs is shown at the top of the panel.
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Measuring mean NL (�) and covariance of NL and RT (�)

The obvious approach to determining mean NL and the covariance
between NL and RT would be to measure NL and RT for many
individual trials, but measuring the latency of spiking neurons on
individual trials is problematic. Spike times provide only a sparsely
sampled estimate of the assumed underlying rate function. As a result,
even if the underlying rate function of a neuron changes rapidly (at the
NL we seek to determine), the spikes from a single trial cannot
generally determine NL with precision. Thus although methods exist
for assigning latencies to spike trains from single trials (e.g., Com-
menges et al. 1986a), our attempts with this approach showed that the
variance of the trial latencies overwhelmed measurements of � and �.
For this reason we focused on alternative approaches that estimate �
and � from the combined data from all trials. Although these ap-
proaches do not provide neuronal latencies from individual trials, they
provide estimates of mean NL and covariance between NL and RT
that are more reliable and less biased that those based on neuronal
latencies from individual trials.

We used two methods to measure � and � from the spike trains of
neurons. The basic idea behind these methods is illustrated in Fig. 2,
which shows simulated data from one neuron from several trials. The
rasters lines have been sorted by RT, which is marked by a heavy
sigmoidal line, aligned to stimulus onset (heavy vertical line) and
truncated at fixed offsets before stimulus onset and after the RT for
each trial. To determine � and �, we assumed that at the start of every
trial the underlying rate function is constant, and, at some time in the
trial, changes to another constant (i.e., the true latency is a step change
to either a higher or a lower underlying rate). The algorithms we used
to determine this step change in rate are reasonably robust to depar-
tures from these assumptions.

Finding the best estimates of � and � can be visualized as searching
for the horizontal offset (�) and deformation (�) of the rate-change

border on the raster plot of Fig. 2 that best divide the neuronal activity
into two regions of constant firing rate (i.e., pre-NL firing rate to the
left of the border, post-NL firing rate to the right). Deformations of the
rate-change border are restricted to correspond to fixed proportions of
RT: A rate-change border corresponding to a � of zero is a vertical
line, and rate-change borders corresponding to nonzero values of � are
produced by adding a horizontal offset on each raster line that is a
given fraction of the RT for that trial. This is equivalent to borders that
are straight lines in plots like the one in Fig. 1C.

The first of the two methods was a least-squares estimate (LSE).
This approach assigned a squared error function to the data under each
assumption of � and � (i.e., each assumption about the offset and
deformation of the rate-change border). An average spike rate was
determined as the mean firing rate on each side of the line, and the
error was computed as the sum of the squared differences over all
1-ms bins for all trials between the rate for each bin and the average
rate for its side of the border. The final estimates of � and � were
taken as the horizontal offset (�̂) and deformation (�̂) that produced
the minimum error.

The second method was a maximum likelihood estimate (MLE).
This was an extension of the maximum likelihood method described
by Seal and Commenges (Commenges et al. 1986a; Seal et al. 1983),
which finds the time in a single trial where it is maximally likely that
the interspike intervals observed before and after that time were drawn
from different distributions. We collapsed all the trials into a single
spike sequence before applying their method. For Poisson spike
processes, collapsing across all trials does not change the underlying
statistics of the spike process (normalized for spike rate) because
superimposed Poisson processes give a Poisson process (Cinlar 1975).
By shifting each trial in time by an amount proportional to the RT for
that trial before collapsing, we could test different � values (i.e.,
different proportional shifts). The gray band in the raster plot of Fig.
2 illustrates this shifting for a particular � value (although no binning
occurred in the actual analysis). For each � value tested, spikes were
compiled into a single interspike interval distribution, after which the
method of Commenges and Seal (Commenges et al. 1986a) was used
to estimate �. The final estimates of � and � were taken as those that
yielded the overall maximum likelihood.

With either method, we based measurements on spikes collected
from 100 ms before the stimulus onset to 100 ms after RT on each
trial. For the MLE method, it was necessary to compensate for fewer
trials contributing to the extremes of the collapsed histogram follow-
ing time shifts to avoid artificially large interspike intervals in these
regions. For both methods, we used a brute-force search over a range
of � values from about �0.4 (100 ms before stimulus onset) to about
1.4 (100 ms after the mean RT) and � values from �0.5 to 1.5 in steps
of 0.02 and 0.04, respectively. We then applied successively smaller
searches of reduced ranges of � and � values until the best pair of values
was obtained with a resolution of 0.005 (�) and 0.01 (�).

We used simulated data to confirm that these methods of estimating
� and � were not biased and to assess the reliability of those estimates
(see Fig. 4). For each simulation, 200 trials of simulated spike data
were created by a Poisson spike generator driven by a constant rate
function that stepped from 5 to 25 spikes/s at a particular point (NL)
in each trial (the median pre-NL and post-NL rates observed in the
neurophysiologic recordings were 6 and 27 spikes/s, and a median of
187 trials were obtained). Reaction times for each trial were drawn
from a normal distribution (mean 270 ms, SD 40 ms; comparable to
that seen in the behavioral task). The bias of the LSE and MLE
estimates of � and � were examined with simulated data sets in which
� was varied from 0.0 to 1.2 and � was varied from �0.2 to 1.2. The
maximum bias (mean of the absolute difference from the true value)
was 0.005 (�̂) and 0.017 (�̂) (medians 0.001 and 0.005) for the LSE
method and 0.018 (�̂) and 0.025 (�̂) (medians 0.005 and 0.004) for the
MLE method. In sum, both methods produced estimates of � and �
that had no appreciable bias over the range of physiologically plau-
sible values.

FIG. 2. Methods used to determine � and � for neuronal data. The method
applied to each data set can be visualized by plotting the spike times from each
trial relative to the time of stimulus onset (abscissa). Trials in the raster plot are
sorted by RT. Two methods used to determine � and � [least-squares estima-
tion (LSE) and maximum likelihood estimation (MLE)] can both be visualized
as seeking to position a rate change line so that the mean firing rates on each
side of the line (over all trials) is most different. Optimal rate change line
(heavy gray line) and several others (light gray lines) are drawn in the center
of the raster. Horizontal position of the midpoint of the line corresponds to �.
Optimal deformation of the line between vertical (� � 0) and the sigmoidal
shape of the RT line (� � 1) corresponds to �. That is, � is the constant of
proportionality used to shift each trial in time according to the RT on that trial
so that the spikes from all trials are brought into optimal alignment. The LSE
method finds the rate change line that yields the smallest error for the rates over
the surfaces on either side of the line. The MLE method uses interspike
intervals from combined trials. Trials are combined with different time offsets
corresponding to different rate change lines. Gray band on the raster plot
indicates one set of time offsets. See text for details.
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Bootstraps (Efron and Tibshirani 1998) were used to assign confi-
dence intervals to values of �̂ and �̂ determined for each recorded
neuron. To do this, the entire analysis was rerun 100 times using
exactly the same methods except that the trials included in each of the
100 runs were resampled with replacement from the original set of
trials. The SDs of the distributions of �̂ and �̂ obtained from these 100
runs were taken as the SEs of �̂ and �̂ for each neuron (Efron and
Tibshirani 1998).

Both of the methods assume that the RT value measured in each
behavioral trial in the experiments (i.e., the time that the saccade was
detected to start) is a good estimate of the true RT. Positive bias in our
measure of RT would bias �̂ toward zero, and variability in our
measure of RT will bias �̂ toward zero. Both of these effects are small
in practice. In particular, given the distribution of RTs observed
(mean � 270 ms, SD � 40 ms), both theory and simulations show that
a 5-ms bias in the measured RT would produce about 2% bias in �̂ and
5 ms of uncorrelated variability (i.e., SD of random error) in the
measured RT would produce about 2% bias in �̂. Our measurement of
the response saccade start time (i.e., RT) is at least this accurate and
precise (DiCarlo and Maunsell 2000, 2003).

There is reason to question whether these methods for estimating �
and � could confound correlation between NL and RT with correla-
tion between response magnitude and RT. For example, if the mag-
nitude of a response with a finite rise time varied with RT, a measure
of latency based on a particular rate of firing would similarly vary,
even if the onset of the response did not. Although the potential for
this confound exists, most of the neuronal responses we recorded did
not have enough variance in response magnitude to explain the range
of correlation between NL and RT that we observed.

Animals and surgery

Two male monkeys (Macaca mulatta) were used in this study
(weighing 4.5 and 4.7 kg). Before behavioral training, aseptic surgery
was performed to attach a head post to the skull and to implant a
scleral search coil in the right eye. After 2–3 mo of behavioral training
(below), a second surgery was performed to place a recording cham-
ber to reach the anterior portion of the left inferotemporal cortex (AIT;
Horsley–Clark chamber center � 15 mm A, 12 mm L). After several
weeks of recording from AIT, a second chamber was placed over the
right frontal eye field (FEF; Horsley–Clark chamber center � 22–23
mm A, 17–19 mm L).

Horizontal and vertical eye positions were monitored using the
scleral search coil (Robinson 1963). Saccades greater than about 0.2°
were reliably detected in real time using speed criteria (details de-
scribed elsewhere: DiCarlo and Maunsell 2000). All animal proce-
dures complied with the standards of the Baylor College of Medicine
Animal Research Committee and the American Physiological Society.

Behavioral task

The animals performed a visual-shape identification task in which
two visual shapes required different motor responses (saccades). For
each animal, each target shape was assigned a different response
location, and this mapping never changed. When a shape appeared,
the animal was required to signal its identity by making a saccade
directly to one of two fixed locations (Fig. 3A). These two response
locations were continuously indicated by identical white squares
(0.6 � 0.6°, 46 cd/m2). Saccades that ended within a window (�3° h
and �3° v) centered on each response location were scored as a
response to that location. Correct responses produced a juice reward
and a brief tone. Reaction time was defined as the period between
visual shape onset and the start of the response saccade.

Each trial began with the presentation of a small, white fixation
point (0.1 � 0.1°) near the display center. The animal was required to
bring and hold its gaze within 0.4° of the point. The fixation point was
extinguished 300 ms after acquisition, and one of the 2 shapes was

randomly chosen and immediately presented directly at the current
center of gaze (Fig. 3B). Because position variability on the retina can
introduce neuronal response variability (DiCarlo and Maunsell 2003;
Gur and Snodderly 1987), the stimulus position was always specified
relative to the animal’s center of gaze at the end of the fixation period.

FIG. 3. Behavioral task performed by the monkeys. A: temporal sequence
of events on each behavioral trial. Each rectangle is a schematic illustration of
the visual display. Two response targets (left � R1; right � R2) were always
illuminated at the same locations (10° eccentricity). After a fixation period, one
of 2 possible stimuli (S1 or S2, B) was presented at the center of gaze. Animal
was required to identify the stimulus by making an eye movement (saccade) to
the appropriate (previously learned) response target (stimulus S1 requires
response R1; stimulus S2 requires response R2). Animal was free to make its
response saccade as rapidly as it liked, and the time between stimulus onset and
the start of the response saccade was defined as the RT on that trial. B:
schematics of the 2 stimuli used with one of the monkeys.
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After a target shape appeared, the animal was allowed to respond as
rapidly as it liked. Trials in which the animal failed to make a direct
saccade to one of the 2 response locations were excluded from the
analyses (�1% of trials). The visual shape was extinguished imme-
diately when the animal’s gaze left the fixation window.

Visual stimuli were presented on a video monitor (37.5 � 28.1 cm,
75 Hz, 1,600 � 1,200 pixels) positioned 62 cm from the monkey so
that the display subtended �17° (h) and �13° (v) of visual angle.
Both animals worked with a fixed set of 2 achromatic shapes (Fig.
3B). Each shape was constructed by connecting line segments (0.02°
width) to form the stimulus outline (about 0.6° width). This outline
shape was then convolved with a difference-of-Gaussians spatial filter
(0.01° SD positive, 0.02° SD negative) so that the average luminance
over each form was the same as the monitor background. The peak
luminance of each stimulus was set to the monitor maximal white (46
cd/m2).

Neuronal recording

Recordings were made from the left anterior inferotemporal cortex
(AIT) and the right frontal eye field (FEF) in both animals. For AIT,
a 23G guide tube was used to reach AIT from a dorsal approach. The
superior temporal sulcus (STS) and the ventral surface were identified
by comparing gray and white matter transitions and the depth of the
skull base with atlas sections. Penetrations were made over an ap-
proximately 10 � 10-mm area of the ventral STS and ventral surface
(Horsley–Clark AP: 10–20 mm, ML: 14–24 mm) of each animal. In
both animals, the penetrations were concentrated near the center of
this region, where form-selective neurons were more reliably found.
Using electrolytic lesions and fluorescent dye (DiI, Molecular Probes)
to coat the electrode (DiCarlo et al. 1996), we confirmed that the bulk
of the AIT recordings from the first animal were on the ventral
surface, centered about 10.5 mm posterior to the pole of the temporal
lobe, about 3 mm lateral of the anterior middle temporal sulcus
(AMTS). Based on the anterior–posterior coordinates, and the sulci,
this region is approximately the anterior third of IT (AIT), and is
contained in area TE (Felleman and Van Essen 1991; Logothetis and
Pauls 1995; Logothetis and Sheinberg 1996).

The FEF chamber was targeted for the genu of the arcuate sulcus.
A 23G guide tube was used to just penetrate the dura. The FEF was
mapped in each animal using low-amplitude microstimulation to
evoke saccades. Brief bursts of current were delivered through the
recording electrode (50 �A, biphasic 200-�s pulses, cathode leading,
200 Hz, 200-ms duration, beginning 25 ms after a saccade) using an
isolated stimulator (Bak Electronics). Consistent with previous reports
(e.g., Bruce and Goldberg 1985; Schall 1997), such microstimulation
could reliably produce saccades (50- to 100-ms latency from the first
current pulse) at many locations along the anterior bank of the arcuate
sulcus, and the saccade amplitude was largest for medial positions and
smallest for lateral positions. We concentrated our recordings near the
cortical region where low-amplitude microstimulation produced sac-
cades of about 10° (the saccade amplitude required for the behavioral
task). However, all neurons that were recorded along penetrations
where low-amplitude microstimulation could reliably evoke a saccade
were considered part of the FEF. Using electrolytic lesions, we
confirmed that the bulk of the penetrations from the first animal were
indeed through the anterior bank of the arcuate sulcus, near the genu.

In both AIT and FEF, single-unit recordings were made using
glass-coated Pt/Ir electrodes (0.5–1.5 M� at 1 kHz) and spikes from
individual neurons were amplified, filtered, and isolated using con-
ventional equipment. The animal performed the task as the electrode
was advanced into either AIT or FEF. Responses from every isolated
neuron were assessed with an audio monitor and on-line histograms,
and data were collected from even marginally responsive cells under
the assumption that longer periods of observation might reveal statis-
tically detectable effects. Because we sought to collect many trials of
data from neurons that were modulated by the task (our goal was

about 200 trials in each task condition), recordings were halted for
neurons that did not show clear task modulation after 20–50 trials.
Nevertheless, data from each recorded neuron were considered for
further analysis if isolation was maintained for at least 10 presenta-
tions of each target form. In total, the responses of 63 AIT neurons
(Monkey 1 � 25, Monkey 2 � 38) and 133 FEF neurons (Monkey
1 � 58, Monkey 2 � 75) were recorded. Most of the AIT neurons
were located on the ventral surface (87%); the rest were in the ventral
bank of the STS. Only neuronal responses collected during correctly
completed behavioral trials were included in the analyses (about 90%
of trials).

R E S U L T S

For the RT–NL technique to be useful, it must produce
precise estimates of � and � from data obtained in the limited
period during which neurons are typically held for recording.
To examine this, we plotted the reliability of the � and �
estimates from recorded neurons as a function of the number of
trials obtained and the task-modulated firing rate of each
neuron (Fig. 4). The results were similar to those predicted
from simulations of Poisson spiking neurons: �̂ was usually
more reliable than �̂, and the reliability of both estimates
depended strongly on the number of trials and the firing rate
(see Fig. 4). However, Fig. 4 shows that reasonably reliable �
and � estimates could be obtained with moderate firing rate
modulations (about 20 spikes/s) and about 150 behavioral trials
(about 10 min for trials of the type used here; about 20 min if
2 trial types are interleaved, as done here).

To examine � and � values across the population of recorded
neurons, we focused on neurons where we had obtained reli-
able estimates of those parameters in the stimulus–response
condition requiring a leftward response saccade (contralateral
to recorded FEF; see Fig. 3). Neurons were considered to have
reliable � and � estimates if their SEs were �0.1 and 0.2,
respectively. Sixty-eight of the 196 neurons recorded met both
these criteria (AIT: 25 of 63; FEF: 43 of 133). This low yield
is largely because many of the isolated neurons did not reveal
significant responsivity after 20–50 trials of observation and
recording of these was halted (see METHODS).

For neurons with reliable estimates, the values of � and �
produced by both the LSE and the MLE methods were highly
correlated (correlation coefficients were 0.98 for � and 0.97 for
�) and the median absolute difference between the methods
was small (0.01 for � and 0.06 for �). For brevity, in the
following sections we report the LSE-determined values.
Where appropriate, the MLE-determined values are given in
the figure captions for comparison.

Examples of mean NL and RT–NL covariance

An example of how the RT–NL technique was applied to
recordings from a single neuron is shown in Fig. 5. These data
were obtained from an AIT neuron while the animal performed
the 2-choice visual-discrimination task. In this plot and others
like it, only correctly completed trials from one stimulus–
response condition are analyzed (leftward response saccade;
see Fig. 3). The trials in the raster plot are sorted by reaction
times, which are marked in heavy black. The mean RT across
these trials was 334 ms (SD 63 ms). The plot shows that the
neuron responded with a latency of about 125–150 ms, con-
sistent with previous reports of IT neuronal latencies (e.g.,
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Baylis et al. 1987; DiCarlo and Maunsell 2000; Vogels and
Orban 1994).

To quantify the mean NL and the RT–NL covariation, we
applied both the LSE and MSE techniques. The best fit for the
rate change determined by the LSE is indicated by the gray
curve in Fig. 5. This curve corresponds to a mean NL of 147
ms or a normalized mean NL (�) of 0.44 (SE 0.01). The gray
curve also corresponds to a normalized RT–NL covariation (�)
of 0.19 (SE 0.06), a value somewhat greater than zero.

To confirm these estimates of � and �, it is helpful to
examine these data in another way. We divided the trials in Fig.
5A into 3 equal groups based on RT (slow, medium, and fast
RT). These groups are indicated at the right side of the rasters.
We then compiled response histograms for each group. The
histograms in Fig. 5B were constructed with each trial aligned
on the stimulus onset (vertical bar), yielding conventional
poststimulus time histograms (PSTHs). The histograms in Fig.
5C were constructed with each trial aligned on a point halfway
from stimulus onset to RT on that trial (vertical bar). The
histograms in Fig. 5D were constructed with each trial aligned
on the RT (vertical bar). The alignment on stimulus onset (Fig.
5B) provides the best overlap of the 3 histograms, consistent
with a value of � that is near zero. Close inspection of this
panel shows that the histograms from the intermediate (dashed)
and slow (dotted) RT trials are offset slightly to the right of the
histogram from the fast RT trials (solid). This suggests that the
actual value of � is slightly greater than zero, in agreement
with the small positive � value returned by the LSE and MLE
methods.

Data collected from a FEF neuron are shown in Fig. 6, which
has the same format as Fig. 5. The mean NL for this neuron is
much longer than that for the AIT neuron, and the onset of the
neuron’s activity varies closely with RT. The LSE method

yielded a best-fit rate change at the gray line, which corre-
sponds to a � value of 0.93 (SE 0.01) and a � value of 1.02 (SE
0.06). These values correspond to a NL that leads the RT on
each trial by about 25 ms and are consistent with previously
published reports describing saccade-linked activity in FEF
(e.g., Bruce and Goldberg 1985; Hanes and Schall 1996). The
� value near one is expected for pure motor neurons, and the
� value is smaller (longer saccade lead time) than that seen in
primate abducens motor neurons (0.96; about 10-ms lead time;
Sylvestre and Cullen 1999). The histograms at the bottom of
Fig. 6 support the conclusion that the optimal alignment (i.e.,
the best-fit �) is close to one. The close overlap of the plots in
Fig. 6D shows that the value of � returned by the LSE and
MLE analyses arose from a change in the onset of the response,
not a change in the magnitude of the response (see also Figs.
5B, 8D, and 9C).

Distributions of � and � in different brain regions

Figure 7 shows the relationship between � and � values for
neurons in AIT (filled symbols) and FEF (open symbols). The
distributions of � and � values for AIT and FEF were not
significantly different in the 2 monkeys (four 2-sample Kol-
mogorov–Smirnov tests, P � 0.05), with one exception: the
distribution of � values in FEF (P � 0.02). This difference was
attributed to the presence of several more intermediate � values
(in the range 0.6–0.8) in Monkey 2 than in Monkey 1. For
brevity, the data from both animals have been combined in Fig.
7 (Monkey 1: 11 AIT neurons, 14 FEF neurons; Monkey 2: 14
AIT neurons, 29 FEF neurons).

Figure 7 shows that most AIT neurons had � values between
0.3 and 0.7 (median 0.50), corresponding to a NL of 85–195
ms (at the mean RT). This is consistent with previous reports

FIG. 4. Reliability of � and � estimates. A–D: effect of neuronal
responsivity (post-NL rate minus pre-NL rate; A and C) and number of
trials (B and D) on the SEs of the � and � estimates (determined by
bootstrap; see METHODS). Each point shows the result from an individual
recorded neuron. Only neurons with 100–300 trials are included in A and
C. Only neurons with responsivities of 15–30 spikes/s are included in B
and D. Solid lines show the reliability predicted from simulations of step
changes in firing rate and Poisson spiking statistics. Dashed lines
indicate the reliability levels used to include results in the final data set
(e.g., Fig. 7; see text). For all simulations, � and � were set to 0.5 and
pre-NL rate was 5 spikes/s. In A and C, the number of simulated trials
was 200. In B and D, simulated responsivity was 20 spikes/s. Results
shown were obtained with the LSE method (see METHODS); the MLE
method produced similar results (not shown).
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of AIT latency (e.g., Baylis et al. 1987; DiCarlo and Maunsell
2000; Vogels and Orban 1994). Most AIT neurons had �
values near zero, with a median � of 0.06. Only 4 of the 25 AIT
neurons (16%) had 95% confidence intervals for � that did not
include zero (all �0). This indicates that a large fraction of
task-modulated AIT neurons have neuronal latencies that co-
vary much more closely to the time of stimulus onset than they
do to the RT, even in the presence of substantial RT variability.

Figure 7 reveals that most FEF neurons fall into 2 clusters:
1) neurons with � and � values similar to those for AIT and 2)
neurons with � and � values that are both close to one. The
former group of neurons largely overlaps the population of AIT
neurons. Within this group are FEF neurons with stimulus-
related response latencies that are shorter than any of the AIT
neurons in the sample (as short as about 50 ms). Short latency
responses have previously been described in the FEF (e.g.,
Schall 1991; Schmolesky et al. 1998).

Among the FEF neurons with � and � values near one, some
had � values slightly less than one (e.g., Fig. 6). These are the
values expected for FEF “motor” neurons (e.g., Bruce and
Goldberg 1985). However, most of the FEF neurons with �
values near one had � values that were greater than one. This
indicates that these neurons became active after the start of the
response saccade, usually before the saccade had ended. A
typical FEF neuron with a � value greater than one is shown in
Fig. 8, which has the same format as Figs. 5 and 6. It became
active (gray line) about 30 ms after the start of each saccade
(heavy curve), regardless of the time of that saccade relative to
stimulus onset. According to the LSE method, the � value for
this neuron was 1.11 (SE 0.01), and the � value was 1.03 (SE
0.05). Neurons like this one are not causal in producing the
saccade because they are not modulated until after the saccade
begins, but may carry signals related to the execution of the
saccade, or possibly proprioceptive or visual signals generated
by the movement. Although not quantified as we have done
here, “postsaccadic” responses have been described previously
in the FEF (Bruce and Goldberg 1985; Schall 1997).

Figure 7 also shows that a few FEF neurons have � values
that are reliably intermediate between zero and one (e.g., 2
indicated near the arrow, Fig. 9). These also have � values that
are intermediate between the centers of the 2 main clusters.
These intermediate values are consistent with neurons that lie
at intermediate levels of a processing chain. Because neurons
with intermediate � values may provide important clues about
the functional organization of the processing chain, we show

FIG. 5. Example of data and LSE fit for an anterior inferotemporal (AIT)
neuron with a � value near 0. A: raster plot of the data collected during all trials
in which visual stimulus S1 was presented and (correct) response R1 was given
by the monkey. Each tick mark indicates the occurrence of an action potential.
Abscissa is the time from stimulus onset (heavy black line). Trials are sorted
by RT (heavy black curve). Because of the nonuniform distribution of RTs, the
plot of RTs is a curve. Raster starts at 100 ms before stimulus onset, which was
the earliest time considered in the LSE and MLE analyses. Thin black curve at
the right of the plot marks 100 ms after RT on each trial, which is the latest
time considered in the LSE and MLE analyses. Gray curve indicates the fit of
the LSE algorithm to these data. MLE method found similar values for � and
� (0.42 � 0.01 and 0.11 � 0.05, respectively). B–D: each shows average
histograms created from 3, equal-sized groups of trials divided based on RT
(termed fast, medium, and slow RT trials and indicated with solid, dashed, and
dotted histograms; see A). In B all trials were aligned at the stimulus onset
before creating the 3 histograms. In D all trials were aligned at the RT. In C
all trials were aligned at a time point halfway between the stimulus onset time
and the RT. Each histogram was smoothed with a Gaussian filter (� � 10 ms)
and truncated 100 ms after the median RT of the trials on which it is based.

FIG. 6. Example of data and LSE fit for a frontal eye field (FEF) neuron
with a � value near 1. Same format as in Fig. 5. MLE method produced values
of � and � for this neuron that were 0.82 � 0.02 and 0.92 � 0.14, respectively.

Innovative Methodology

2980 J. J. DICARLO AND J.H.R. MAUNSELL

J Neurophysiol • VOL 93 • MAY 2005 • www.jn.org

 on M
arch 21, 2006 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


the activity of one of these neurons in Fig. 9 in the same format
as other figures. The LSE provided a � estimate of 0.58 (SE
0.17) for this neuron. Consistent with this, the rasters show that
the onset of the activity is slightly later on trials with long RT.
By dividing the data into 3 RT groups, the bottom panels of
Fig. 9 show that the histograms overlap best when the trials are
aligned on a time point on each trial about halfway between

stimulus onset and the RT (Fig. 9C). Alignment on either the
time of stimulus onset (Fig. 9B) or on the RT (Fig. 9D) causes
the histograms to misalign in the expected directions.

FIG. 7. Distribution of � and � values observed in AIT and
FEF. Normalized NL (�) is plotted on the abscissa; normalized
covariance of NL and RT (�) is plotted on the ordinate. Each
point shows the � and � estimates obtained from a single neuron
where those estimates were determined to be reliable (see text).
Error bars show 1 SE of the estimates for each neuron, deter-
mined by bootstrap (see METHODS). All data are from one
sensory–motor condition (stimulus S1, response R1; see Fig. 3).
By construction, the dashed vertical line at � � 1 is the time of
the start of the response saccade. End of the response saccade
occurred at a time corresponding to a � of about 1.2. Labels
indicate example neurons shown in Figs. 5, 6, 8, and 9.

FIG. 8. Example of data and LSE fit for FEF neuron with a � value �1.
Same format as in Fig. 5. MLE method produced values of � and � for this
neuron that were 1.11 � 0.01 and 1.03 � 0.05, respectively.

FIG. 9. Example of data and LSE fit for an FEF neuron with a � value
intermediate between 0 and 1. Same format as in Fig. 5.
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These intermediate � values are not an artifact of the LSE
method because the MLE method also returned reliable, inter-
mediate � values for both neurons (0.60, SE 0.18; 0.33, SE
0.07). Although hints of such neuronal responses patterns have
been reported (Thompson and Schall 2000), we believe that
this is the first quantitative demonstration of statistically reli-
able patterns of this sort. Both of these neurons were highly
selective in that they were 3–4 times more modulated during
the task requiring the leftward response saccade than in the task
requiring the rightward response saccade (driven rates 68
spikes/s for leftward vs. 15 spikes/s for rightward saccades, and
21 spikes/s for leftward vs. 4 spikes/s for rightward saccades).
However, there was no overall tendency in the population for
selective neurons to have particular values of � (data not
shown).

D I S C U S S I O N

We have examined how the timing of neuronal responses
can be used to infer relative positions of individual neurons on
processing pathways involved in the initiation of specific
behaviors. The neurophysiological results show that single-unit
recordings yield reliable estimates of mean NL and RT–NL
covariance (appropriately normalized and defined as � and �).
Collectively, this work suggests that the RT–NL technique is a
useful tool for assessing neuronal pathways underlying specific
behaviors.

� and � of individual AIT and FEF neurons

To our knowledge, no previous report has examined the
degree to which AIT response latencies covary on a trial-by-
trial basis with motor responses. Although the values of � we
obtained for AIT neurons show that they become active near
the middle of the stimulus–response interval, the small values
of � we obtained for AIT neurons suggest that there is little
motor component in the latency of AIT activity. Thus variance
in RT in this task cannot be attributed to variance that accu-
mulates in processing up to the level of AIT. If the activity of
AIT neurons we recorded contributed to the initiation of
saccades in this task, this result implies that most RT variance
is generated in stages beyond AIT.

Although there is some evidence of saccade-locked activity
in AIT when saccades are made in total darkness (Ringo et al.
1994), this activity is weak (about 0.5 spike/saccade) compared
with stimulus-driven activity. A recent report (Eifuku et al.
2004) found that a few, very long latency AIT neurons had
mean latencies that covaried with the mean RT of different
tasks (i.e., longer mean NL for stimuli that resulted in longer
mean RT). This suggests that � (not �) for some AIT neurons
varies from task to task. Because that study did not examine the
trial-by-trial covariation of NL and RT, it is not possible to
relate those results to the results on RT–NL covariance pre-
sented here.

The � and � values of FEF neurons place most into 2 distinct
groups. Previous studies of FEF have described distinct “vi-
sual” and “saccade-related” neurons in the FEF (Thompson
and Schall 2000) and it is likely that the 2 groups in this study
reflect that distinction. We were surprised to see so many FEF
neurons with � greater than one (Figs. 7 and 8), indicating that
they became active after the response saccade had begun.

However, many reports of saccade-related FEF activity define
neurons as having perisaccadic or postsaccadic activity (see
Schall and Thompson 1999) and show examples of activity that
begins after the start of a saccade. Thus we do not believe there
was anything unusual about the saccade-related activity we
saw in the FEF.

Distribution of � and � across AIT and FEF

In addition to confirming and quantifying existing observa-
tions, the distribution of values in a plot of � versus � (Fig. 7)
provides new clues about the role of AIT and FEF neurons in
visuomotor tasks. Although the limited data presented here
cannot provide definitive answers about the pathways support-
ing this task, they provide constraints and point to several
nonexclusive explanations of how RT variance arises in this
task. The accumulation of variance along the processing chain
can be analytically determined under certain conditions. We
computed the expected � and � values under conditions where
1) statistically independent random delays are added at each
processing level, 2) the NL for each level is the sum of all the
preceding delays, and 3) the RT is the sum of all delays along
the entire processing chain.

Figure 10 shows 3 different plots of � and � relationships
that are consistent with the distribution of � and � values
obtained (Fig. 7). In each case, the filled points are � and �
values corresponding to neurons on the processing chain.
Figure 10A illustrates a case in which � rises linearly with
levels on the processing chain, with � � � throughout the
chain (filled circles). This pattern would be expected if inde-
pendent random delays with the same mean and variance were
introduced at each processing level. The neurophysiological
data from AIT and FEF (Fig. 7) almost all lie to the right of the
line marked by the processing chain in Fig. 10A. Values lying
to the right of the processing chain can occur if neurons are
driven, directly or indirectly, by neurons on the processing
chain, but do not themselves contribute to the behavioral
response. The open circles in Fig. 10A represent chains of
neurons that branch off the processing chain at different levels.
Successive levels on these branches can be expected to have
increasing values of � because of the delay added at each
processing stage. Because neurons on a branch do not contrib-
ute to the behavioral response, the NL variability that accumu-
lates along the branch will not covary with RT, and � values
for neurons on a branch will never rise above � at the level of
the processing chain where the branch occurred. It is possible
that only a tiny fraction of neurons in any area lie on the
processing chain for a given task, and the odds of sampling
these neurons are extremely small. The neurons we recorded
might have been driven by neurons on the processing chain,
but not contributed to the initiation of the response. In that
case, each of the points with � values near 0 in Fig. 7 sits below
and to the right of points corresponding to neurons on the
processing chain, which were never sampled and thus do not
appear in the plot.

Figure 10B illustrates an alternative case in which � values
rise rapidly from near zero to near one at an intermediate value
of �. This would imply that most of the subject’s RT variance
arises in a few central stages, such that the AIT and FEF
neurons with low � values precede a highly variable central
stage, and the FEF neurons with high � values follow it. In this
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case, it would be appropriate to consider most of these neurons
as either predominantly sensory or predominantly motor. If
most variance accumulated in only a few stages, it would also
explain why so few intermediate � values were encountered.

Finally, Fig. 10C illustrates a pattern in which � remains
small over most of the range of � values, and then rises in an
accelerating way as � approaches one. This pattern could come
about in 2 ways. First, it would occur if the random delays
added in later stages were consistently more variable than those
in earlier stages. Second, it would occur if random delays with
the same variance were added at each level, but converging

inputs at all levels acted to reduce response variance. If each
level in the processing chain consists of many neurons that
project in a convergent way to neurons in the next level,
neurons in the later level can “average out” the variability that
exists across the neurons in the earlier level, providing the
variability in different neurons is statistically independent
(Marsalek et al. 1997). The effect would be to compress all �
values toward zero, with � for neurons in earlier levels more
affected because the variance they contribute would be repeat-
edly reduced in successive stages, yielding little covariance
with RT. � would rise exponentially in later stages because the
variance those stages contribute to RT would be attenuated by
fewer stages intervening before the behavioral response. The
steepness of the rise would depend on what fraction of the
variance was eliminated by convergence. If there is an accel-
erating pattern of � values, few intermediate values of � might
have been encountered in this study because � goes from low
to high values over only a few levels of processing. The
presence of a few AIT neurons with � values reliably greater
than zero (Fig. 7) is consistent with this scenario.

The distribution in Fig. 7 might represent any of the possi-
bilities shown in Fig. 10, or a combination of these and other
effects. Distinguishing among possible explanations for the
distribution of � and � values observed will require recording
from many neurons in many different structures, but it is a step
forward to have an approach that may make it possible to
resolve them. In this regard, the observation of FEF neurons
with intermediate RT–NL covariance values (i.e., � values
significantly greater than zero and significantly less than one)
is particularly relevant. Although they were a small fraction of
the neurons we recorded, they demonstrate that it is possible to
find neurons with physiological signatures consistent with
intermediate positions on a processing chain.

Related work

Correlating neuronal activity and behavioral responses is a
well-established tool. Over the last few decades dozens of
studies have shown that average neuronal thresholds correlate
with perceptual thresholds (e.g., Connor and Johnson 1992;
Johnson 1974; Mountcastle et al. 1969; Parker and Newsome
1998; Shadlen et al. 1996; Tolhurst et al. 1983). More recently,
neurophysiological recordings from behaving animal subjects
have revealed correlations between the magnitude of the re-
sponses of sensory neurons and perceptual reports on a trial-
by-trial basis (e.g., Britten et al. 1996; Dodd et al. 2001; Thiele
et al. 1999; Zhang et al. 1997a,b). The goal of this study was
to extend this approach by developing methods of examining
correlations between the latency of neuronal responses (NL)
and RT on a trial-by-trial basis.

Many previous studies have used mean latency as a tool for
exploring the functional relationships between neurons or neu-
ronal structures. Some have compared NL and RT in the
responses combined across many trials or many neurons (Cook
and Maunsell 2002; Eifuku et al. 2004; Schmied et al. 1979;
Thompson and Schall 2000), but the covariance between the
latency of individual neurons and behavioral RT has received
little attention. Lamarre and colleagues (Lamarre and Chapman
1986; Lamarre et al. 1983; Spidalieri et al. 1983) examined the
trial-by-trial relationship between NL and RT in a manner
equivalent to that described here. However, they interpreted �

FIG. 10. Hypothetic distributions of � and �. In each plot the filled circles
represent values corresponding to neurons lying on the processing chain that
generate a behavioral response. Connecting lines between points indicate
anatomical pathways between groups of neurons, with activity propagating
from left to right (increasing values of �). See text for details.
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in a binary way, with values near zero assigned as sensory
activity and values near one assigned as motor. Lamarre and
Chapman (1986) reported that a small number of neurons with
movement-related activity in the dentate nucleus had properties
consistent with � values intermediate to zero and one. How-
ever, they said that their data could not be used to decide
whether this finding had true functional significance, and
excluded those neurons from their analysis. Other studies (e.g.,
Ageranioti-Belanger and Chapman 1992; Berthier and Moore
1990; Berthier et al. 1991; Chapman and Ageranioti-Belanger
1991; Ghez et al. 1983) examined trial-by-trial covariance
between NL and RT but limited their interpretation to assign-
ing the activity as more closely related to either sensory
stimulation or to motor response.

Overall, trial-by-trial covariance between NL and RT has
received remarkably little attention. A contributing factor may
have been a report by Commenges and Seal (1986) that
suggested the approach had little merit. They provided a
mathematical analysis that led them to conclude that the slope
of the trial-by-trial relationship between NL and RT was a poor
approach to evaluating neurophysiological processing levels.
Although we agree with their analysis, we believe that their
conclusion was too sweeping because it was based on one
particular analysis. Specifically, they showed that a linear
regression of RT on NL will typically yield a slope close to
one, regardless of whether a neuron is early or late in a
processing chain. The regression they considered is equivalent
to fitting regression lines to the data points in Fig. 1C after
flipping the axes. In that configuration, the slope of the best
fitting line is equal to the covariance between NL and RT
normalized by the variance of NL. Because the variance of NL
is small for neurons with little covariance between NL and RT
(“sensory” neurons) and large for neurons with a lot of covari-
ance between NL and RT (“motor” neurons), this normaliza-
tion results in no appreciable difference in the slope of the
best-fitting line for neurons at different levels in the processing
chain. In our analysis, the covariance between NL and RT is
normalized by a constant (the variance of RT), so this problem
is avoided.

The RT–NL technique may be complementary or perhaps
synergistic with other measures of neuronal and behavioral
response. Several previous studies have examined the trial-by-
trial covariance between the magnitude of response and behav-
ioral choice (called “choice probability” or “detect probabil-
ity”; e.g., Britten et al. 1996; Dodd et al. 2001; Thiele et al.
1999). Response magnitude and response latency are different
measures of neuronal response, and they are not always cor-
related (e.g., Richmond and Optican 1987; Richmond et al.
1990). Similarly, behavioral choice and behavioral latency
(RT) are different measures of behavior that are not perfectly
correlated. Examination of the association of each behavioral
measure with each neuronal measure might provide useful
information about the contribution of neurons to behavior. For
example, it has been shown that measures of the trial-by-trial
association of behavioral choice and the magnitude of neuronal
activity can be used to place neurons along a sensory-motor
continuum (Zhang et al. 1997a,b). However, the examination
of the association of behavioral latency (RT) and neuronal
latency (i.e., the NL–RT technique described here) has some
potentially important advantages. First, although the covaria-
tion of NL and RT can be expected to monotonically increase

along most processing chains, the covariation of neuronal
response magnitude and behavioral choice (e.g., choice–prob-
ability) is less certain to exhibit such a monotonic increase
(although it can; Williams et al. 2003). In particular, if signals
in the processing pathway undergo substantial convergence or
divergence between processing levels, the choice–probability
may either rise or fall along the pathway. Tasks could be
contrived so that no individual motor neuron provided a reli-
able indication of the behavioral response. Although conver-
gence and other factors can affect the rate at which covariance
between NL and RT increases along the processing chain, it
can be expected to rise largely monotonically. Second, clean
application of choice-related measures requires the subject to
be working near sensory discrimination thresholds (so that
different choices are made on identical stimuli), whereas the
covariance between NL and RT can be measured in any RT
task, even if behavior is well above threshold (as in the task
reported here). Third, unlike choice-related measures, the
NL–RT technique can be applied even if the animal is not
required to make a choice, but simply respond to a stimulus.

In conclusion, the RT–NL technique described here has
several attractive features. First, it does not entail assignments
of responses into “sensory,” “motor,” or other categories.
Instead, it defines a quantitative continuum of processing,
which is a less constrained, possibly more accurate, approach
to the organization of the CNS. Second, although accurate
measurements of second-order statistics like covariance often
require a large amount of data, data collection for measurement
of NL–RT covariance is feasible because trials in highly
practiced choice reaction time tasks are short, and the analysis
technique presented here produces unbiased, reliable estimates
in a reasonable number of trials. Finally, it has the potential to
identify the sources of variability that underlie RT variability
for any RT task.

Although the approach has attractive features, it also has
limitations. The values of � and � for each neuron are defined
for a specific stimulus–response pairing. Because neurons will
likely contribute differently to different behaviors, they can be
expected to have different values of � and � during different
tasks. Indeed, the activity of a given neuron will not be
modulated during many tasks (for which � and � would be
undefined). This is a characteristic of brain organization rather
than a flaw in the method, but it does mean that, with standard
single-unit methods, useful comparisons between neurons will
typically require behavioral performance that is stable over
days or weeks. Fortunately, relatively stable behavior is not
difficult to achieve for choice reaction time tasks.

It should also be recognized that the NL–RT technique
cannot address some types of neuronal control of behavior. The
concept of a processing chain on which the current work is
based may be useful only for well-defined behaviors with clear
onsets, such as choice reaction time tasks (see Smith 1968), in
which a small, fixed set of sensory stimuli is associated in a
fixed way with a small set of behavioral responses. It is not
clear how representative such reaction time tasks are of every-
day behaviors. Furthermore, the NL–RT technique reveals only
some aspects of the circuits underlying behavior in choice
reaction time tasks. Because it measures only the onset of
neuronal and behavioral responses, it does not address circuits
that modulate a behavioral response as it unfolds.
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Although we believe that the current data demonstrate the
potential of the NL–RT technique, further refinement could
make it more powerful. For example, it would be valuable to
develop methods to measure trial-by-trial variance in NL that
does not covary with RT (i.e., NL variance that is not simply
explained by RT variance). This variance appears in Fig. 1C as
the scatter of the points around the best-fitting line. This
variance may change in predictable ways across levels and in
ways that will further constrain the position of neurons within
the processing chains.

The methods describe here assess covariance using an ap-
proach that assumes a single, instantaneous change in neuronal
activity. Measurements that use a response profile match to
each neuron’s response, rather than a step, would probably
yield results that are more precise. It might also be possible to
examine whether a neuron’s response profile covaries with RT.
Superior performance might obtain from more general methods
that capture the trial-by-trial covariance of all aspects of a
neuron’s response, incorporating the latency, magnitude, and
response profile. Although we did not encounter neurons with
activity that combines distinct sensory and motor components,
such neurons have been described (e.g., Sparks et al. 2000).
The NL–RT technique might be extended to allow for multiple
changes in activity during trials, as has been done for detecting
multiple changes in activity within individual trials (Com-
menges et al. 1986b). An approach that captures all these
aspects of neuronal responses is likely to be more powerful
than any in isolation.

The work presented represents a first step in developing a
new approach for evaluating the functional relationships of
individual neurons in the context of particular behavioral tasks.
We believe that the current data show that it can be used to
dissect functional relationships among brain structures that
contribute to specific behaviors and provides a tool that com-
plements other approaches (e.g., Britten et al. 1996; Zhang et
al. 1997a).
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