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Abstract

Worldwide, avian communities inhabiting agro-ecosystems are threatened as a conse-

quence of agricultural intensification. Unravelling their ecological role is essential to focus

conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose

avian pest-reduction services, thus supporting avian conservation. In this study, we used

next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird

species foraging in macadamia orchards in eastern Australia. Across all species and based

on arthropod DNA sequence similarities�98% with records in the Barcode of Life Data-

base, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera

and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests.

Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug), considered a

major pest, was present in 23% of all faecal samples collected. Results also showed that

resource partitioning in this system is low, as most bird species shared large proportion of

their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition

differed between some species, most likely because of differences in foraging behaviour.

Overall, this study reached a level of taxonomic resolution never achieved before in the

studied species, thus contributing to a significant improvement in the avian ecological

knowledge. Our results showed that bird communities prey upon economically important

pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction

services using next-generation sequencing, which could contribute to the conservation of

avian communities and their natural habitats in agricultural systems.
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Introduction

Birds are one of the most studied groups of animals on the planet because of their importance

as bioindicators, providers of ecosystem services and high visibility [1, 2]. Native bird species

that inhabit agricultural landscapes across the world strongly depend on native vegetation [3].

However, these landscapes are generally formed through clearing and fragmentation of native

vegetation, threatening resident avian communities through reduced availability of habitat and

increased genetic isolation [4]. Furthermore, bird insectivory in these agro-ecosystems is

potentially disrupted by management practices including insecticide applications. Thus, while

some avian species may thrive in agricultural landscapes, many other species are threatened by

the global expansion of agricultural production.

Many studies across several crop systems have highlighted the positive contribution of birds

to agriculture by reducing insect pest numbers [2, 5]. Although several bird species are general-

ist predators, their pest-reduction services can in some instances indirectly increase crop yields

(e.g. [6–8]). A call was recently made to estimate the economic value of these free services [9],

reinforcing the need to explore and exploit them. Diet analysis offers a first approach to assess-

ing avian pest-reduction services in agriculture by understanding how the feeding behaviour of

bird communities can impact the arthropod assemblages [10].

Traditionally, dietary studies have been conducted using techniques such as the observation

of arthropod fragments in faecal samples (e.g. [11, 12]). Other traditional techniques, related to

stomach content analysis, are invasive, and in some instances require killing of the animal. Fur-

thermore, the digestion process decomposes arthropods making taxonomic identification

using these techniques difficult. Where identification is possible, it rarely goes beyond the fam-

ily level [13]. In contrast to the traditional methods, the development of non-invasive molecu-

lar techniques has allowed the detection of DNA remains in faecal samples, allowing precise

detection and higher taxonomic resolution of both hard- and soft-bodied insects within bird

faecal samples [14].

The development of next-generation sequencing (NGS) has allowed the simultaneous

sequencing of millions of amplified DNA templates [10], representing a powerful yet affordable

molecular technique for dietary analyses. A number of studies have investigated the diet of bats

using NGS sequencing (e.g. [15, 16]). These studies effectively used NGS in combination with

arthropod-specific primers [17] targeting a 157bp fragment of the mitochondrial cytochrome

oxidase I (COI) region for studying the diet of insectivorous bats. Thus, this technique could be

applicable to other generalists, including birds [18]. A recent review has stressed that the slow

adoption (and adaptation) of these molecular methods by ornithologists [19], is leading to a

lack of published studies using NGS methods in avian research. Only a few studies have used

these methods to explore the diet of birds (e.g. [20]), but to our knowledge, they have never

been used to study avian pest-reduction services in agriculture.

In Australia, the value that insectivorous birds may have in agriculture has not been exten-

sively researched [21]. Most of the dietary studies in birds were conducted using traditional

techniques (e.g. [22, 23]). Eastern Australia, one of the regions most affected by agricultural

deforestation [24], is the world’s most productive area of macadamia, a high-value nut tree.

Covering an approximate area of 19,000 ha, macadamia is a young industry that is expanding

due to an increasing market demand [25]. Within this area, Bundaberg is the fastest growing

macadamia region in the country [25]. Macadamia production areas in this region are com-

posed of matrixes of orchards and other crops interspersed with forest patches, most of which

are interconnected by riparian vegetation corridors. Previous studies have documented the tre-

mendous importance of riparian habitats to avian biodiversity in Australia [26, 27]. Bird com-

munities in these habitats potentially deliver pest-reduction services in macadamia, but their
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role is as yet undefined. Hemipteran pests such as Amblypelta lutescens lutescens (Coreidae;

banana spotting-bug) and Nezara viridula (Pentatomidae; green vegetable bug) are considered

major macadamia pests [28]. The most effective control method has been the application of

broad-spectrum insecticides [29]. Alternative strategies exploiting natural ecosystem services

could be used to maintain low pest levels while reducing the use of insecticides [30]. Thus,

assessing avian pest-reduction services could promote orchard and landscape management

practices that help reduce pest levels and support the conservation of bird communities in mac-

adamia production areas.

In this study, we used NGS to explore pest-reduction services of birds foraging in macada-

mia orchards adjacent to riparian habitats in Bundaberg, Australia. Our aims were to: 1) eluci-

date whether the NGS techniques and protocols, using the Illumina Miseq platform, can be

used to study the diet of birds, 2) describe whether bird species in macadamia orchards are

feeding on insect pests, and 3) understand resource utilization in the avian community through

within- and between-species dietary comparisons.

Materials and Methods

Study area and site

We carried out this study in the Bundaberg region in eastern Australia. Sample collection was

conducted in a macadamia orchard (Lat. 25.0957° S, Lon. 152.3345° E), located approximately

25 km south of Bundaberg. This orchard was adjacent to a strip of riparian fringing forest, a sit-

uation common to most orchards in the region. Riparian habitats in this region are generally

composed of a number of tree species, including Eucalyptus tereticornis (forest red gum), a

number ofMelaleuca (tea tree) species, often includingM. viminalis (weeping bottlebrush) and

M. bracteata (black tea tree), Casuarina cunninghamiana (creek oak), andWaterhousea flori-

bunda (weeping myrtle). The region has a characteristic sub-tropical climate, with hot sum-

mers and mild winters, and annual average maximum temperatures of 26.7°C (37 years; 1959–

2015) [31].

Bird trapping and faecal sample collection

Birds were captured at the study site during 4 weeks in November of 2014. The study was

timed to coincide with period when the population of major macadamia pests is highest, corre-

sponding to the early nut development stage in the crop. Six mist-nets (approximately 3 × 9 m)

were set each day and attended continuously from sunrise till mid-day and from late afternoon

till sunset. To maximize the capture probability, mist-nets were evenly distributed throughout

the orchard, parallel to the macadamia rows, and their positions were changed every week.

Each trapped individual was carefully removed from the mist-net, identified, and then placed

individually in a sterile cloth bag for 30 minutes. After this time, the bird was released, and fae-

cal material in the cloth bag collected using a new, sterilized plastic spoon for each faecal sam-

ple. Cloth bags were used only once before soaking in hypochlorite solution for 24 hours,

washing thoroughly and sterilising for the next use. Each sample was transferred to a 5 ml plas-

tic tube filled with 95% ethanol and immediately placed in a refrigerated container in order to

preserve DNA integrity [32]. At the end of each day, all collected samples were stored at -20°C.

Samples were stored under these conditions for one month until DNA was extracted. To mini-

mize the risk of contamination during field data collection, all materials used were washed

each day in a solution of 5% hypochlorite.
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Animal ethics statement

Animal ethics approvals were obtained from the Animal Ethics Committee of Central Queens-

land University (project no. A14/05-310) and the Department of Environment and Heritage

Protection of the Government of Queensland (permit no. WISP14680814).

Insect pest surveys

Parallel to the bird trapping, we used two sampling methods to monitor the presence and col-

lect individuals from two of the major macadamia insect pests. Pheromone traps were used to

capture A. lutescens lutescens and sweep-net samplings were performed over the macadamia

tree canopies to capture N. viridula.

Faecal sample preparation, DNA extraction and quantification

Prior to weighing the faecal samples, seeds, fruits and feathers were removed. This cleaning

process was performed on one sample at a time to avoid DNA degradation due to an increase

in temperature [33]. Wet weight of each sample was obtained after it was centrifuged for 30

seconds at 5,000xg and the supernatant ethanol removed. To ensure the homogenization of

samples and maximize DNA recovery, 1 tungsten carbide bead (3 mm) was placed into each

1.5 ml Eppendorf tube containing a sample and these were frozen by submersion in liquid

nitrogen for 10 minutes. Frozen tubes were immediately placed in a high-energy, high-

throughput cell disrupter (Mini-beadbeater-96, Biospec) at 2,100 oscillations/min for 1

minute.

DNA was extracted from faecal samples using QIAamp DNA Stool Mini Kit (Qiagen,

#51504) following the manufacturer’s instructions, with the modifications proposed by Zeale

et al. [17]. Additionally, insect DNA was extracted from two major macadamia insect pests, A.

lutescens lutescens and N. viridula, using DNeasy Blood and Tissue Kit (Qiagen, #69581), using

legs from individuals of each species trapped during the insect pest surveys. Negative controls

were included in both DNA extractions to ensure no cross-contamination occurred. After-

wards, DNA was quantified using a full-spectrum spectrophotometer (NanoDrop 2000,

Thermo Scientific) and then stored at -20°C until PCR analyses.

DNA amplification of inspect pest and faecal samples

Arthropod-specific primers ZBJ-ArtF1c (Forward: AGATATTGGAACWTTATATTTTATT

TTTGG) and ZBJ-ArtR2c (Reverse: WACTAATCAATTWCCAAATCCTCC) [17] were used

to amplify a 211 bp section (54 nt primers and 157 insert) of the COI mitochondrial DNA bar-

coding region. Prior to the experimental use of these primers, we first evaluated the efficiency

of the primers in A. lutescens lutescens and N. viridula. Insect pest PCRs were run in 25 μl reac-

tions. Each PCR reaction contained 2 ng/μl of DNA template, 12.5 μ KAPA Hotstart polymer-

ase Readymix (Kapa Biosystems), 1.25 μl of 5% DMSO, 0.75 μl forward primer, and 0.75 μl

reverse primer. PCR cycling was performed by initial denaturation at 95° C for 3 minutes, fol-

lowed by 35 cycles of 98° C for 20 s, 50° C for 30 s, and 72° C for 30 s, followed by a final exten-

sion of 72° C for 7min. PCR efficiency was visualised using gel electrophoresis.

PCR reactions of faecal samples contained 1 to 7 μl of DNA template (0.42 ng/μl–4.2 ng/μl)

from the final extraction elutions depending on the DNA concentration of each sample. PCR

reactions and cycling conditions were the same as described above. PCRs were run twice to test

amplification reproducibility.
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The sequencing was performed using Illumina MiSeq platform following the guide for

metagenomics sequencing library [34]. Sequencing was carried out at the Australian Genome

Research Facility (AGRF) in Brisbane (Australia).

Bioinformatic analysis

Bioinformatic analysis was performed in Qiime (v.1.8) [35]. Only sequences with Phred quality

score higher than 20 were retained during demultiplexing in Qiime. The 8,172,674 quality fil-

tered and trimmed sequences with minimum of 189 and maximum of 211 nucleotides in

length are fully annotated and publically available for download at MG-RAST database under

project ID 4665244.3. Operational Taxonomic Units (OTUs) were picked using Uclust algo-

rithm [36] at 98% identity. Further filtering of abundance table was used to remove OTUs with

less than minimum count fraction of 0.01% and removing samples with less than 10,000

sequences per sample. This strict filtering and quality protocols were performed to avoid possi-

ble sequencing data contamination and retain most reliable data.

We assigned OTU taxonomy against an arthropod taxa using the online DNA barcoding

workbench Biodiversity of Life Database (BOLD) version 3 [37], which is based on a percent-

age of similarity between a particular OTU sequence and those sequences stored in the online

database. Previous studies have suggested that taxa assignments below 97.4%, using the same

arthropod amplicon, are potentially erroneous [38], thus we used a conservative threshold of

�98% similarity as recommended elsewhere (e.g. [13, 39, 40]). The state of Queensland in east-

ern Australia, where the study was conducted, has 40,679 published sequences of arthropod

species (not including crustaceans) in BOLD, representing 28.75% of the records of this coun-

try. Such geographically limited records make confident assignment to species level challeng-

ing. However, it is questionable to assign an OTU to a higher taxa when the species level is

below the similarity threshold [41]. Hence, we follow a conservative taxa assignation system,

by ensuring that each taxonomic match in BOLD was previously recorded in Australia, using a

number of resources (e.g. [42, 43]. If no records were found on any assigned taxa, we switched

to the following match and re-checked again. We classified as ‘unknown’ an OTU which final

taxonomic assignment fell below our set threshold, or any for which a match was not found in

the database.

Statistical analyses

We calculated accumulation curves using the number of OTUs in each faecal sample per bird

species, by randomizing the samples 9999 times. We further examined dietary richness using

the differences in the number of OTUs between species. Additionally, we checked for differ-

ences in the frequency of orders present per bird species, based on the average frequency of

each arthropod order per faecal sample.

Throughout this study, Permutational analysis of variance (PERMANOVA) was used. PER-

MANOVA is a statistical test that uses resemblance-based methods for univariate or multivari-

ate analyses [44]. This routine can deal with unbalanced designs and is recommended for small

sample sizes [45]. Particularly, PERMANOVA was used to test for between-species differences

in the number of OTUs and the frequency of arthropod orders. Two methods were used to

analyse dietary composition, the first one using the number of sequences per OTU and a sec-

ond one with the presence/absence OTU data. These two methods allowed us to explore any

potential biases introduced by sequence abundance per OTU. For each dataset, a similarity

matrix based on either Bray-Curtis distances (multiple factors) or Euclidean distances (single

factor) was calculated [44]. All PERMANOVA tests were ran using unrestricted permutation

of data and 9999 permutations [46]. In those analyses which yielded significant differences,
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PERMDISP was used to test the homogeneity of dispersion among groups, by calculating the

distance to group centroids [47]. Pairwise tests were used for comparisons between groups.

Principal coordinates analysis (PCO) [48] based on Bray-Curtis distances, were used to visual-

ize the spatial distribution of the dietary composition of birds in two axes.

Accumulation curves, PERMANOVA, PERMDISP, and PCO, were calculated with

PRIMER software (v.6.0) with the PERMANOVA+ add-on (v.1.0.6) (PRIMER-E, Plymouth

Marine Laboratory, UK).

Results

Overview of the data

We captured 82 individuals from 13 bird species: Lewin's Honeyeater (Meliphaga lewinii)

(n = 29 individuals), Eastern Yellow Robin (Eopsaltria australis) (13), Little Shrike-Thrush

(Colluricincla megarhyncha) (12), White-throated Treecreeper (Cormobates leucophaea) (7),

Fairy Gerygone (Gerygone palpebrosa) (6), Varied Triller (Lalage leucomela) (4), Red-browed

Finch (Neochmia temporalis) (3), White-throated Honeyeater (Melithreptus albogularis) (2),

White-browed Scrubwren (Sericornis frontalis) (2), Brown Honeyeater (Lichmera indistincta)

(1), Fan-tailed Cuckoo (Cacomantis flabelliformis) (1), Grey Shrike-thrush (Colluricincla har-

monica) (1), and Silvereye (Zosterops lateralis) (1). Only species represented with n�4 were

included in the analysis.

From all OTUs, 9 were highly frequent in the dataset (i.e. present in�95% of all faecal sam-

ples) and represented 31.74% of all the sequences. These 9 OTUs belonged to three lepidop-

teran families; Oecophoridae (19.91% of sequences), Saturniidae (11.04%), and Bombycidae

(0.80%). One hundred and forty six OTUs occurred infrequently (<10% of all faecal samples;

5.51% of all sequences). After all OTUs were blasted against BOLD database based on�98%

similarity, 257 OTUs (i.e. 53.65% of all OTUs and 61.28% of all sequences) were assigned to an

arthropod taxon, while no taxonomic match was found for 222 OTUs (46.35% of all OTUs and

38.72% of all sequences) (Fig 1). The most common orders were Lepidoptera (54.63% of all

sequences), Diptera (3.37%) and Araneae (1.09%) (Fig 1).

All assigned OTUs were taxonomically divided into 8 orders and 40 families (Fig 2). Lepi-

dopteran had the highest number of families (19) among all orders. Ten families were found in

the diet of all bird species: 7 lepidopteran families (i.e. Bombycidae, Erebidae, Geometridae,

Noctuidae, Oecophoridae, Pyralidae and Saturniidae), 2 dipteran families (i.e. Chloropidae and

Fanniidae) and 1 Araneae family (i.e. Theridiidae). Overall, 21 of the arthropod families were

not previously reported in the diets of the studied bird species, according to the leading Austra-

lian literature on avian diet [22, 23, 49–51] (Fig 2)

Seventy out of 90 genera we found (77.78%) belonged to the order Lepidoptera. Three lepi-

dopteran species were present in the diet of all bird species (Hyposada hydrocampata, Atholos-

ticta oxypeuces, and Phloeocetis sp. ANIC5) (Fig 3A).

Insect pests present in the bird’s diet

Among the arthropod taxa found in faecal samples, we found 5 pests of macadamia: N. viri-

dula, Nysius vinitor (Lygaeidae; rutherblen bug), Olene mendosa (Erebidae; brown tufted cater-

pillar), Candalides absimilis (Lycaenidae; pencilled blue butterfly), and Isotenes miserana

(Tortricidae; orange fruitborer) (Fig 3A and 3B). Furthermore, we found 10 arthropod taxa

considered pests of other crops: two hemipteran, one from the Aphididae family, Hysteroneura

setariae (rusty plum aphid) [52], and one from the Pentatomidae family, Piezodorus oceanicus

(redbanded shield bug) [53], and 8 lepidopteran: One from the Erebidae family, Orgyia austra-

lis (red tussock moth) [54], 2 from the Geometridae family, Cleora repetita (grey looper) and
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Ectropis spp. (loopers) [55, 56], 2 from the Noctuidae family, Agrotis munda (brown cutworm)

[57] and Chrysodeixis argentifera (tobacco looper) [58], 1 from the Pyralidae family, Crypto-

blabes adoceta (sorghum head caterpillar) [59], and 2 from the Tortricidae family, Adoxophyes

fasciculana (bell moth) [60] and Dudua aprobola (tortrix moth) [61] (Fig 3A and 3B).

Birds’ dietary richness

The OTUs accumulation curves were similar between bird species, showing maximum

increases in the cumulative number of OTUs during the first three faecal samples, when all

bird species were in a range of approximately 220 to 250 OTUs (i.e. equivalent to approxi-

mately 50% over the total number of OTUs) (Fig 4).

The number of OTUs ranged from a minimum of 118 in C. leucophaea to a maximum of

159 in G. palpebrosa (Fig 5) (although C. harmonica and S. frontalis, both not considered in the

analyses due to low faecal sample size, obtained 173 and 207 respectively). Results showed

non-significant differences in the number of OTUs between species (Pseudo-F = 1.135,

P = 0.348).

Comparison of the dietary compositions

The proportion of OTUs taxonomically assigned to Lepidoptera differed significantly between

bird species (Pseudo-F = 2.315, P = 0.035). However, PERMDISP results were also significant

(Pseudo-F = 7.345, P = 0.001), showing dispersion in the data. No significant differences were

found in the frequency of any other order (Fig 6). Five arthropod orders (i.e. Lepidoptera,

Fig 1. Arthropod orders found on faecal samples (based on� 98% similarity with BOLD sequences).
Numbers of Operational Taxonomic Units (OTUs) per order are shown.

doi:10.1371/journal.pone.0150159.g001

DNA Sequencing to Explore Pest-Reduction Services of Avian Communities

PLOS ONE | DOI:10.1371/journal.pone.0150159 March 1, 2016 7 / 19



Fig 2. Summary of arthropod consumption by each bird species and comparisons with records found
in the Australian literature on avian diet.Note:“

p
”means that the taxa was recorded in this study.

Highlighted in yellow are those records found in The Food of Australian Birds [22, 23], and in orange those
found in the Handbook of Australian, New Zealand and Antarctic Birds (HANZAB) [49–51]. Light blue
represents those found in both references.

doi:10.1371/journal.pone.0150159.g002
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Diptera, Araneae, Coleoptera and Hemiptera) were present in all bird species. BothM. lewinii

and C.megarhyncha were the only two species with diets containing all 8 recorded arthropod

orders, including Trichoptera which was only present in those two bird species. The G. palpeb-

rosa diet contained 5 orders, the lowest value among all species (Fig 6).

The diet composition, based on the number of sequences per OTU, differed significantly

between bird species (Pseudo-F = 1.765 P = 0.001). Pairwise tests showed significant differ-

ences between the diet composition of E. australis and those of G. palpebrosa (t = 1.379

P = 0.037),M. lewinii (t = 1.655, P = 0.001), C.megarhyncha (t = 1.539, P = 0.001), and C. leu-

cophaea (t = 1.350, P = 0.022), and also between the diet composition of C.megarhyncha and

those of G. palpebrosa (t = 1.417, P = 0.015), L. leucomela (t = 1.344, P = 0.025), and C. leuco-

phaea (t = 1.429, P = 0.010). When presence/absence data were used, PERMANOVA results

were similar to those obtained when using the number of sequences per OTU, showing signifi-

cant differences in dietary composition between bird species (Pseudo-F = 1.622 P = 0.003).

Only one pairwise test comparison (E. australis and G. palpebrosa, t = 1.273, P = 0.073)

Fig 3. Abundance of assigned lepidopteran (A) and other than lepidopteran (B) taxa (based on� 98%
similarity in BOLD) per bird species. White and dark red colours represent the minimum and
maximum number of sequences, respectively. The intensity of the colours across this range
represent an increment in the number of sequences. Note: macadamia pests appear in bold letters and
‘*’ indicates pests of other crops; ‘1’ indicates the percentage of similarity on BOLD, ‘2’ the percentage of
sequences over the total, and ‘

3
’ the percentage of samples containing the taxa over the total.

doi:10.1371/journal.pone.0150159.g003

Fig 4. OTUs accumulation curves of each bird species.

doi:10.1371/journal.pone.0150159.g004
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produced a non-significant result, in contrast with the other method. Significant differences

were found between the dietary composition of E. australis and those ofM. lewinii (t = 1.6112,

P = 0.001), C.megarhyncha (t = 1.498, P = 0.001), and C. leucophaea (t = 1.311, P = 0.038),

and also between that of C.megarhyncha and those of G. palpebrosa (t = 1.399, P = 0.018), L.

leucomela (t = 1.291, P = 0.049), and C. leucophaea (t = 1.372, P = 0.029). PERMDISP results

confirmed that differences in dietary composition between bird species obtained with PERMA-

NOVA were due to multivariate location, and not to multivariate dispersion (log-transformed

data: F = 1.632, P = 0.486; presence-absence data: F = 1.590, P = 0.469). Between-species differ-

ences showed in PERMANOVA analyses were visualized using PCO ordination plots, where

the first two axes explained a total variation of 27.6% on both log-transformed and presence-

absence datasets (Fig 7).

Discussion

This is the first study using NGS and bioinformatics analyses to explore the diet of birds and

associated ecosystem services by sequencing the arthropod DNA present in their faeces. Using

the MiSeq platform of Illumina, we successfully sequenced DNA in 62 faecal samples from 11

bird species foraging in macadamia agro-ecosystems. Our results revealed that avian commu-

nities deliver pest-reduction services in this system. This study showed differences in dietary

composition, but most of the bird species had wide insectivorous diets and shared a large pro-

portion of prey items, indicating a low resource partitioning in these systems.

Fig 5. Number of OTUs found in the faecal samples of each bird species.Grey dots represent the number of OTUs in a faecal sample, and larger circles
represent the average value (± SE) of individual bird species.

doi:10.1371/journal.pone.0150159.g005
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Fig 6. Frequency of arthropod orders in the diet of bird species, based on percentages of presence in faecal samples.

doi:10.1371/journal.pone.0150159.g006

Fig 7. Principal coordinates analysis (PCO) based on Bray Curtis similarity showing unconstrained ordination of log-transformed data (A) and presence-
absence data (B).

doi:10.1371/journal.pone.0150159.g007
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Insect pests found in bird’s diets

We report the presence of 5 macadamia-specific insect pests. Four of these are considered

‘minor’ (N. vinitor, O.mendosa, C. absimilis, and I.miserana), and 1 ‘major’ N. viridula. The

later species, commonly known as the green vegetable bug, is a threat to macadamia produc-

tion in Australia [62] and is also considered to be one of the most damaging pests throughout

the studied area. It is also considered a major macadamia pest in other countries (e.g. [63, 64]).

In the present study, N. viridula was present in 23% of bird faecal samples. Specifically, it was

present in 32% and 25% of all faecal samples from two of the most commonly trapped birds,

M. lewinii and E. australis, respectively. In general, its presence was recorded in 6 out of 11 bird

species. Nezara viridula seasonally alternates between crop and non-crop plant species [65],

and previous studies in the area have recorded it in both macadamia orchards and adjacent

woodland (Crisol-Martínez, unpublished work), thus birds in woodland-macadamia interfaces

can potentially prey on them in both habitats. Our results show that most birds consumed this

species opportunistically, although its relatively higher presence in faecal samples from both

M. lewinii and E. australismakes these two species the most important ones from a pest-man-

agement point of view. Unfortunately, even though A. lutescens lutescens presence was

recorded during insect pest surveys, its DNA could not be amplified with the arthropod-spe-

cific primers used in this study, thus species-specific primers need to be developed in future

studies in order to understand whether this pest is consumed by avian communities.

Although at present it is not possible to quantify the number of individuals of any eaten

insect pest using NGS [66], our results have confirmed the delivery of pest-reduction services

in macadamia orchards by avian communities. A number of arthropod predators such as

arachnids were found in the diet of most bird species, yet it is unclear whether this intraguild

predation (i.e. predation of predators) could weaken any potential trophic cascades caused by

avian communities in macadamia orchards. A review by Mantyla et al. [5] showed numerous

examples in which avian communities composed by generalist predators indirectly helped

plants through trophic cascades in several ecosystem types, including agro-ecosystems. Fur-

thermore, a number of authors (e.g. [67, 68]) suggested that avian trophic cascades are stronger

in simple ecosystems such as agricultural environments. Further research is necessary to clarify

the scale of the pest-reduction contribution of avian communities in macadamia orchards.

Additionally, our results indicate the presence of 10 insect pests from other crops in the diet

of the studied birds. Some of these pests can damage economically important crops present in

the study area such as sugarcane (H. setariae) [69], summer pulses (P. oceanicus, O. australis,

C. argentifera, C. adoceta) [53, 58, 59], lychee and mango (D. aprobola) [61], avocado (Ectropis

spp., C. repetita) [55, 56], and strawberries (Agrotis spp.) [70]. These results highlight the

importance of conserving avian communities in agricultural landscapes in the study area. Fur-

ther research in macadamia agro-ecosystems is necessary to elucidate whether avian communi-

ties can significantly decrease the pest pressure in macadamia and other crops, to understand

whether these pest-reduction services indirectly promote increases in yield, and to calculate an

economic estimation of these ecosystem services.

Analysis and comparison of bird species’ diets

Species accumulation curves indicated that, most likely due to low sample sizes, we were not

able to fully describe the entire insectivorous diet of any of the bird species. We found no signif-

icant differences in the number of OTUs between bird species. The frequency of individual

arthropod orders found in faecal samples did not show differences between bird species, sug-

gesting that the majority of avian species foraging in riparian woodland-macadamia interfaces

shared food resources, by feeding primarily on lepidopteran, dipteran and arachnids. Several
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records of birds in riparian habitats show that the tree canopy is the most used habitat stratum

[71], supporting these general dietary similarities between sympatric species.

Permutational analyses allowed us an in-depth comparison of the dataset, showing signifi-

cant differences in dietary composition between specific bird species. Overall, there were not

differences in the results found when using the number DNA sequences per OTU or the pres-

ence/absence of OTUs, indicating that DNA abundance per OTU did not bias the results. Par-

ticularly, the dietary composition of E. australis differed from most species, as visually shown

by the cluster formed by its samples in the PCO plots. These differences are likely due to the

foraging behaviour of E. australis, considered mostly a ground-forager, as opposed to the other

species, which are mostly arboreal [49–51]. Additionally, C.megarhyncha showed a different

dietary composition compared to those of L. leucomela, E. australis, G. palpebrosa and C. leuco-

phaea. Previous studies in northern Australia found that C.megarhyncha showed higher forag-

ing habitat diversity than a number of other bird species [72, 73]. Another Australian study

found that C.megarhyncha showed higher foraging plasticity across vegetation types than

other bird species, including E. australis, and C. leucophaea, whose numbers were biased

towards particular habitats [74]. These studies suggest that C.megarhyncha has a high foraging

plasticity, which is in accordance with the differences in diet composition with other species

found in this study. Although L. leucomela was, together with C.megarhyncha, characteristic of

the same riparian zone class in northern Australia [26], the diet of the former species includes

insects, seeds and nectar [75], as opposed to the insectivorous habits of C.megarhyncha [72].

Also, C. leucophaea dietary composition differed from those of C.megarhyncha and E. austra-

lis. These three species are insectivorous, but a number of studies have reported the presence of

a majority of ants in the diet of C. leucophaea (e.g. [76, 77]). Our results agreed, showing higher

frequency of occurrence of Formicidae in C. leucophaea than in the other two species. Further-

more, based on the average number of OTUs, the dietary richness was the lowest in C. leuco-

phaea. The PCO plots showed that samples fromM. lewinii were spatially spread, overlapping

with most avian species, suggesting a generalist behaviour. Specialists such as the C. leuco-

phaea, a ‘bark-feeder’ species [78], tend to have narrower niche breadth than generalists [79],

such asM. lewinii, considered a mixed-feeder species [80].

Opportunities and limitations

While NGS offers a powerful tool to analyse the diet of wildlife, it also presents a number of

limitations, such as the impossibility of determining whether any arthropod’s DNA detected is

a result of primary or secondary predation [81]. It is also currently impossible to identify the

life stage of the preys [82], which could elucidate the pest-reduction services provided by birds

upon predation on the most damaging pest developmental stages. The other potential source

of bias is the differences in digestion rates between soft- and hard-bodied arthropods. However,

it is well established that birds have only a few hours of digesta passage rate due to their unique

intestinal morphology adapted to accommodate high energy needs for flight [83]. With feed

remaining in the gut for only few hours [84], the freshly collected faecal samples will contain

their latest meals at different stage at digestion, yet most likely with enough DNA to make soft-

bodied arthropods detectable with PCR amplification. Each arthropod cell will contain the

marker gene and the size of the arthropod will influence the number of cells and consequently

the number of sequences detected. Thus we must have in mind that the present sequencing-

based technique, as any other marker sequencing method, cannot quantify the amount of any

specific taxa [66], yet it can only provide an estimation of the frequency of occurrence, allowing

comparisons of relative proportions of consumed taxa between treatments reliably. We cannot

therefore definitely distinguish the bird preferences for specific arthropod species over others
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based on higher sequence counts. To increase the quality of future dietary studies, it is recom-

mended to combine NGS and traditional methods, as other authors have suggested [85].

An additional limitation is the number of arthropod sequences characterised for the COI

region in BOLD or any other online database, which constrains the reconstruction of the diet

of the studied birds. Nevertheless, these databases are growing at an incredible speed [10] and

NGS-based techniques are revolutionising our understanding of life on the planet. With the

falling cost of sequencing and continual growth in the number of manuscripts published, NGS

is making a remarkable impact on all areas of life science, especially ecology.

Conclusions

The data from the study clearly demonstrate the applicability of NGS analyses to explore the

diet of birds and infer ecosystem functions. The diet composition comparisons based on NGS

data were consistent with known foraging behaviours of the captured avian species. Addition-

ally, the species-specific diet description at order and family levels using NGS is consistent with

previous records based on traditional methods [23, 24, 49–51], thus reinforcing our results.

Moreover, this study expands these records with a large number of arthropod families, genera

and species previously unreported in the literature, particularly lepidopterans and dipterans,

and especially in the case of those birds whose diet is understudied, such as G. palpebrosa, L.

leucomela, and C.megarhyncha.

The dietary analysis of the studied bird species is in accordance with the research previously

published about their foraging behaviour. Because of their rich vegetation structure, remnant

riparian habitats provide a wide range of foraging strata that maximise the bird guilds inhabit-

ing them [86]. Guild-rich avian communities consume a diverse array of arthropods, which

may translate into improved pest-reduction services in agricultural land, ultimately leading to

bird conservation in those areas when the diverse vegetation structure is maintained.

Overall, our study showed that NGS using the MiSeq Illumina platform and subsequent bio-

informatics analyses offer a solid, relatively fast and recently increasingly affordable way to

explore the diet of mixed-guild avian communities, delivering a wide scope and detailed resolu-

tion on the prey taxonomic level, which offers an opportunity to better understand their diet.

Our results highlight the benefits that conserving birds foraging in orchards can bring to the

macadamia industry and stress the need to protect the riparian habitats in this region to main-

tain avian richness.
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