
Using Noise Substitution for

Backwards-Compatible Audio Codec

Improvement

Colin Raffel
AES 129th Convention

San Francisco, CA

February 16, 2011

Outline

◮ Introduction and Motivation

◮ Coding Error

◮ Analysis

◮ Synthesis

◮ Example: “row-mp3”

Introduction and Motivation

◮ Problem: Many widely used audio codecs are out of date
compared to the state-of-the-art because they were not made
to be improved upon in a backwards-compatible way

Introduction and Motivation

◮ Problem: Many widely used audio codecs are out of date
compared to the state-of-the-art because they were not made
to be improved upon in a backwards-compatible way

◮ Observation: Adding the coding process’s residual, or coding
error, back into the audio file will result in a “lossless” audio
quality

Introduction and Motivation

◮ Problem: Many widely used audio codecs are out of date
compared to the state-of-the-art because they were not made
to be improved upon in a backwards-compatible way

◮ Observation: Adding the coding process’s residual, or coding
error, back into the audio file will result in a “lossless” audio
quality

◮ Technique: Find a way to represent the coding error with a
small amount of data and include the information in the
coded audio file

Introduction and Motivation

◮ Problem: Many widely used audio codecs are out of date
compared to the state-of-the-art because they were not made
to be improved upon in a backwards-compatible way

◮ Observation: Adding the coding process’s residual, or coding
error, back into the audio file will result in a “lossless” audio
quality

◮ Technique: Find a way to represent the coding error with a
small amount of data and include the information in the
coded audio file

◮ Proposal: Store frame-by-frame, per-critical-band residual
levels in the audio codec’s metadata and re-synthesize the
coding error as colored noise when decoding

Coding Error

◮ Achieving lower data rates requires some information loss
◮ We can define coding error as (original audio)− (coded audio)
◮ Tends to be noisy ⊲

◮ Modeling as colored noise is cheap

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Normalized sample autocorrelation comparison

Correlation lag

A
u

to
c
o

rr
e

la
ti
o

n

Original file

Coding error

Residual Analysis: Spectral Flux

◮ Idea: Model only the non-stationary component of the error

◮ Simple method: Spectral flux, defined as

SF(n) =

√

√

√

√

N−1
∑

k=0

(|X [n, k]| − |X [n − 1, k]|)2

◮ Stationary signal components get subtracted out

◮ Roughly speaking,

SF(n) ∝ RMS(x [n])

◮ Full proof is in the paper

◮ Proportionality only holds for Gaussian noise and
non-overlapping rectangular windows

Residual Analysis: Spectral Flux

◮ Coding error does not satisfy proportionality criterion

◮ The proportionality still roughly holds in practice

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
M

S
/S

p
e

c
tr

a
l
F

lu
x

Time (seconds)

Comparison of RMS and Spectral Flux

Coding error RMS

Spectral flux

Residual Analysis: Spectral Flux

◮ To determine coloring, evaluate the flux on a per-band basis
◮ Band levels tended to change too rapidly from frame-to-frame
◮ However, RMS proportionality holds in practice and makes

this technique useful ⊲

10
2

10
3

10
4

−10

0

10

20

30

40

50

Frequency (log)

M
a

g
n

it
u

d
e

 (
d

b
)

Spectra of coding error and flux−based synthesized noise

Error

Noise coded

Residual Analysis: Smoothed Cepstrum

◮ Obtain spectral envelope by windowing the real cepstrum and
taking the DFT

C [n] = ℜ

(

1

N

N−1
∑

k=0

log(|X (k)|)e j2πnk/N

)

E [k] = ℜ

(

N−1
∑

n=0

w [n]C [n]e−j2πnk/N

)

◮ Works well for relatively peak-free spectra

◮ Per-band level can be found by averaging over bins in band

Residual Analysis: Smoothed Cepstrum

◮ Generally results in band levels which are “smooth” from band
to band and frame to frame ⊲

2000 4000 6000 8000 10000 12000 14000 16000 18000
−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)
Smoothed cepstrum of coding error spectrum

Coding error spectrum

Smoothed Cepstrum

Residual Analysis: Comparison

◮ Flux is analytically “clean”, but varies rapidly because it is
intentionally uncorrelated

◮ Smoothed cepstrum provides a reasonable estimate which is
smoother in time and band

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Critical band level estimates

Band Number

M
a
g
n
it
u
d
e
 (

lin
e
a
r)

Spectral Flux

Smoothed Cepstrum

Spectral Mean

Residual Synthesis

◮ Generate coding error representation by applying critical band
envelopes to a random spectra ⊲

◮ Envelope differences from frame-to-frame cause coloring
discontinuities

◮ We can generate any amount of colored noise by generating a
larger spectrum

◮ So, create additional noise per-frame and crossfade

◮ Transients in the residual result in frames of noise in the error
representation

◮ Traditional methods for detecting and representing transients
are not effective

◮ The coded audio and coding error’s envelopes are similar
◮ We can modulate residual representation with the coded

audio’s envelope

Residual Synthesis

◮ We can parametrize the amount of envelope modulation by ⊲

y [n] = ((1 − α) + αL[n])) x [n]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25
Comparison of error level to matched and unmatched synthesized noise

Time (seconds)

A
m

p
lit

u
d

e
 e

s
ti
m

a
te

 (
lin

e
a

r)

Original MP3

Coding error

Modulated error estimate

Unmodulated error estimate

Implementation: “row-mp3”

◮ The MP3 codec is highly pervasive but somewhat out-of-date

◮ To allow backwards-compatibility, we can store information in
the ID3 (metadata) tag

◮ “row-mp3”-aware decoders can use the information, while
others will simply ignore it

◮ Including per-frame critical band levels results in a relatively
small data overhead

◮ For example, with a 23.2 ms frame size and 8-bit quantized
band level values we have

(.0232) ∗ (8) ∗ (25) = 8.6 kbit/s/channel

◮ Data overhead can be reduced by using different quantization
schemes or compression such as Huffman coding

Implementation: “row-mp3”

◮ Created a simple MUSHRA-like web-based test to determine
codec’s effectiveness

◮ row-mp3 files used spectral flux method with no envelope
modulation

◮ 60 subjects tended to rate the row-mp3 version about 150%
better for low MP3 bit rates

◮ Further, more controlled testing with all error analysis and
synthesis methods is needed

*+,)%-. *+,),-/ *+,)01 ,23)4"5)678+'99 :#;#<#=># :78?@+,)%-. :78?@+,)01

/

/2%

/2-

/2,

/21

/23

/20

/2A

/2.

/2B

%

Conclusions

◮ Audio coding error can be effectively modeled as colored noise

◮ Flux provided a “theoretically-sound” coloring estimate

◮ Cepstral smoothing works better in practice

◮ Synthesis by scaling random spectra

◮ Cross-fading and interpolation prevented coloring
discontinuities

◮ “Level-modulated” error estimate helped prevent smeared
transients

◮ row-mp3 codec and accompanying listening tests suggest
feasibility

Future work

◮ Investigating the optimal number and spacing of bands

◮ Testing the effectiveness of other analysis techniques

◮ Evaluating different methods for dealing with transients

◮ Applying similar techniques to spectral modeling and other
processes with residual

◮ Implementing inclusion schemes in other audio codecs

◮ Generating residual levels solely from the coded audio (as a
sound enhancement)

Acknowledgements

◮ Jieun Oh and Isaac Wang for creating the “row-mp3” codec

◮ Prof. Marina Bosi for her instruction in the field of audio
coding

◮ Prof. Julius Smith for helpful advice and discussion on various
topics

Sound examples and code

http://ccrma.stanford.edu/ecraffel/software/noise/

http://ccrma.stanford.edu/ecraffel/software/rowmp3/

