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Introduction and Motivation

◮ Problem: Many widely used audio codecs are out of date
compared to the state-of-the-art because they were not made
to be improved upon in a backwards-compatible way

◮ Observation: Adding the coding process’s residual, or coding
error, back into the audio file will result in a “lossless” audio
quality

◮ Technique: Find a way to represent the coding error with a
small amount of data and include the information in the
coded audio file

◮ Proposal: Store frame-by-frame, per-critical-band residual
levels in the audio codec’s metadata and re-synthesize the
coding error as colored noise when decoding



Coding Error

◮ Achieving lower data rates requires some information loss
◮ We can define coding error as (original audio)− (coded audio)
◮ Tends to be noisy ⊲

◮ Modeling as colored noise is cheap
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Residual Analysis: Spectral Flux

◮ Idea: Model only the non-stationary component of the error

◮ Simple method: Spectral flux, defined as

SF(n) =

√

√

√

√

N−1
∑

k=0

(|X [n, k]| − |X [n − 1, k]|)2

◮ Stationary signal components get subtracted out

◮ Roughly speaking,

SF(n) ∝ RMS(x [n])

◮ Full proof is in the paper

◮ Proportionality only holds for Gaussian noise and
non-overlapping rectangular windows



Residual Analysis: Spectral Flux

◮ Coding error does not satisfy proportionality criterion

◮ The proportionality still roughly holds in practice
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Residual Analysis: Spectral Flux

◮ To determine coloring, evaluate the flux on a per-band basis
◮ Band levels tended to change too rapidly from frame-to-frame
◮ However, RMS proportionality holds in practice and makes

this technique useful ⊲
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Residual Analysis: Smoothed Cepstrum

◮ Obtain spectral envelope by windowing the real cepstrum and
taking the DFT

C [n] = ℜ

(

1

N

N−1
∑

k=0

log(|X (k)|)e j2πnk/N

)

E [k] = ℜ

(

N−1
∑

n=0

w [n]C [n]e−j2πnk/N

)

◮ Works well for relatively peak-free spectra

◮ Per-band level can be found by averaging over bins in band



Residual Analysis: Smoothed Cepstrum

◮ Generally results in band levels which are “smooth” from band
to band and frame to frame ⊲
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Residual Analysis: Comparison

◮ Flux is analytically “clean”, but varies rapidly because it is
intentionally uncorrelated

◮ Smoothed cepstrum provides a reasonable estimate which is
smoother in time and band
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Residual Synthesis

◮ Generate coding error representation by applying critical band
envelopes to a random spectra ⊲

◮ Envelope differences from frame-to-frame cause coloring
discontinuities

◮ We can generate any amount of colored noise by generating a
larger spectrum

◮ So, create additional noise per-frame and crossfade

◮ Transients in the residual result in frames of noise in the error
representation

◮ Traditional methods for detecting and representing transients
are not effective

◮ The coded audio and coding error’s envelopes are similar
◮ We can modulate residual representation with the coded

audio’s envelope



Residual Synthesis

◮ We can parametrize the amount of envelope modulation by ⊲

y [n] = ((1 − α) + αL[n])) x [n]
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Implementation: “row-mp3”

◮ The MP3 codec is highly pervasive but somewhat out-of-date

◮ To allow backwards-compatibility, we can store information in
the ID3 (metadata) tag

◮ “row-mp3”-aware decoders can use the information, while
others will simply ignore it

◮ Including per-frame critical band levels results in a relatively
small data overhead

◮ For example, with a 23.2 ms frame size and 8-bit quantized
band level values we have

(.0232) ∗ (8) ∗ (25) = 8.6 kbit/s/channel

◮ Data overhead can be reduced by using different quantization
schemes or compression such as Huffman coding



Implementation: “row-mp3”

◮ Created a simple MUSHRA-like web-based test to determine
codec’s effectiveness

◮ row-mp3 files used spectral flux method with no envelope
modulation

◮ 60 subjects tended to rate the row-mp3 version about 150%
better for low MP3 bit rates

◮ Further, more controlled testing with all error analysis and
synthesis methods is needed
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Conclusions

◮ Audio coding error can be effectively modeled as colored noise

◮ Flux provided a “theoretically-sound” coloring estimate

◮ Cepstral smoothing works better in practice

◮ Synthesis by scaling random spectra

◮ Cross-fading and interpolation prevented coloring
discontinuities

◮ “Level-modulated” error estimate helped prevent smeared
transients

◮ row-mp3 codec and accompanying listening tests suggest
feasibility



Future work

◮ Investigating the optimal number and spacing of bands

◮ Testing the effectiveness of other analysis techniques

◮ Evaluating different methods for dealing with transients

◮ Applying similar techniques to spectral modeling and other
processes with residual

◮ Implementing inclusion schemes in other audio codecs

◮ Generating residual levels solely from the coded audio (as a
sound enhancement)
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Sound examples and code

http://ccrma.stanford.edu/ecraffel/software/noise/

http://ccrma.stanford.edu/ecraffel/software/rowmp3/


