
Using Object Replication for Building
a Dependable Version Control System

Rüdiger Kapitza1, Peter Baumann1, and Hans P. Reiser2

1 Dept. of Comp. Sciences 4, University of Erlangen-Nürnberg, Germany
rrkapitz@cs.fau.de

2 LaSIGE, University of Lisboa, Portugal
hans@di.fc.ul.pt

Abstract. Object-oriented technologies are frequently used to design and
implement distributed applications. Object replication is a well-established
approach to increase the dependability for such applications. Generic replication
infrastructures often fail to meet non-standard application-specific requirements
such as support for client-side computing. Our FTflex replication infrastructure
combines the fragmented object model with semantic annotations in order to
customize and optimize replication mechanisms, and thus provides a more
flexible replication infrastructure.

This paper presents DiGit, a replicated version control system based on the
architecture of Git. DiGit is implemented with the help of the FTflex infrastructure
for object replication. The contributions of this paper are twofold. First, the
paper evaluates the fitness of our replication framework for a specific, complex
application. We identify two advantages of the replication infrastructure: the
ability to provide client-side code as a conceptually integral part of a remote
service, and support for an optimized protocol for remote interaction. As a second
contribution, the paper presents a powerful replicated version control system and
shows the lessons learned from using object replication in such a system.

Keywords: Object Replication, Version Control System.

1 Introduction

Object-oriented technologies are frequently used to design and implement distributed
applications. Such applications are faced with failures of various kinds. For example,
nodes may crash or may even suffer from malicious intrusions, and communication
between nodes may temporarily break down. Object replication is a well-established
approach for coping with such kinds of failures. Many distributed object infrastructures
provide support for object replication, either as an integral part or as an external add-on.

Generic object replication infrastructures frequently have some limitations. Being
generic implies that the infrastructure implementation has to be suitable for many
different kinds of applications. It is a hard challenge for a middleware to provide a
range of configuration variants that include an ideal solution for every application,
and make an automated selection of the best variant. Fragmented objects [14,11,19]
are a technology that provides means for flexible adjustment to individual needs by
the generation of custom code. This code substitutes the static stub and skeleton

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 86–99, 2008.
c© IFIP International Federation for Information Processing 2008



Using Object Replication for Building a Dependable Version Control System 87

that is commonly used in distributed object middleware. The FTflex replication
infrastructure [20] combines the fragmented object model with semantic annotations in
order to customize and optimize replication mechanisms. In this paper, we use a specific
complex application—a distributed version control system—to assess the replication
mechanisms provided by that replication infrastructure.

Version control systems, such as Concurrent Versions System (CVS) [3] and
Subversion (SVN) [17], are commonly used for software development. Most systems
use a central server for storing all data and history information. This server may fail
due to hardware or software problems. If developers use a third-party service (as it is
the case for many open-source projects that use, for example, the SourceForge service),
there is also the risk of intentional shut-down of that service. Replicating a repository
on multiple hosts, potentially located in independent administrative domains, helps to
maintain system functionality in spite of such failures. Usually, the repositories of large
projects are mirrored using tools like rsync or FTP. This approach reduces the risk of
data loss in case of failures and provides scalability for read-only access. However,
manual intervention is necessary to determine the last valid state of the repository and
to set up the a new primary repository to recover from a failure of the main site. During
this time a coordinated exchange of development progress is hard to achieve.

In this paper, we present the design of DiGit, a replicated version control system
based on the architecture of Git [4], which is the system that the Linux kernel project
currently uses for version management. DiGit provides fault-tolerant replication mecha-
nisms for a global repository in combination with decentralized client-side repositories.
DiGit uses the FTflex object replication infrastructure and thus its implementation is
based on the concept of fragmented objects. The replication infrastructure uses semantic
information on operations to tailor the provided mechanisms. In essence, this paper
makes two important contributions. First, it evaluates the fitness of the adaptable FTflex
replication framework for a specific, real-world application. Second, it presents an
architecture for a powerful replicated version control system that is able to transparently
tolerate a limited number of faults without service unavailability and shows the lessons
learned from using object replication in such a system.

This paper is structured as follows. First, we survey related work. In Section 3,
we briefly describe the generic FTflex infrastructure. Section 4 presents the design of
our DiGit distributed version control system. Then we outline evaluation results. In
Section 6, we discuss the lessons learned from our implementation. Section 7 concludes.

2 Related Work

Object replication is supported in many distributed middleware systems. A prominent
example for such support is the Fault-Tolerant CORBA (FT-CORBA) standard [16].
This standard is implemented in existing systems in various ways, for example
using an interception approach in the Eternal system [15], an integration approach in
Orbix+Isis [12], or a service approach in OGS [6]. The FT-CORBA standard is an
example of a complex standard for fault-tolerant middleware infrastructures targeted at
heterogeneous systems. Even after maturing for more than a decade, many deficiencies
can still be identified [7]. An important observation is that replication cannot easily



88 R. Kapitza, P. Baumann, and H.P. Reiser

be added to object-oriented applications in a transparent way. In this paper, we
discuss some slightly different limitations of existing object-replication frameworks:
The main challenges that arise from replicating a version control system are the local
manipulation of files at the client side and efficient protocols for the transfer of large
data (e.g., client operations on the repository).

The issue of customizing (and thus optimizing) remote communication for simple,
non-replicated distributed objects has previously been investigated in various projects.
Usual solutions provide a framework [18] or, as in Kurmann and Stricker [1],
completely redesign the communication stack and the ORB. Such extensions to object
middleware systems are incompatible with extensions for fault-tolerant replication. For
example, efficient communication needs to be integrated into state transfer, and all client
operations that modify the object state must be applied consistently to all replicas.

Fragmented objects have previously been used to construct flexible distributed
systems. Replication with fragmented objects has previously been used in Globe [2].
Unlike the version control system that we propose in this paper, Globe does not consider
client-side computing or custom communication protocols.

While traditional version control systems such as CVS and SVN use a central
repository server, a decentralized approach has gained popularity in systems such as
Arch [8], Darcs [5], Monotone [10], and Git [4]. These systems focus on a decentralized
development model, in which each developer can have their own local repository. This
approach makes off-line work under local revision control possible. Local changes
can later be re-integrated into a central main branch, usually maintained by a head
developer. The head developer may also allow authorized users to write directly to
the central repository, thus allowing to mimic a centralized development model as
well. If the central repository becomes unavailable, only local repository operations are
possible, and interaction between developers is not possible. In DiGit, we also support
developer-side local repositories, but the key advantage of our system is that it aims at
increasing the availability of the central repository by fault-tolerant replication.

The Pastwatch [22] version control system is similar to our approach in the sense
that it replicates a repository on multiple hosts, while providing a functionality similar
to CVS. However, Pastwatch uses optimistic replication on a peer-to-peer-infrastructure
and does not make strong guarantees about data consistency. Conflicting modifications
by multiple developers are handled by creating branches that require manual conflict
resolution. DiGit, on the other hand, uses a general-purpose replication infrastructure
(FTflex) and provides strong consistency guarantees on the replicated repository.

3 Replication Infrastructure Based on Fragmented Objects

The FTflex object replication infrastructure [20] uses the fragmented-object model
[14,11,19] provided by the Aspectix middleware to integrate replication mechanisms
into distributed applications. From an abstract point of view, a fragmented object is
defined by its identity, interface, functionality, and state. The implementation of these
items is not bound to a specific location, but instead can be distributed arbitrarily
over multiple fragments, located on multiple hosts. The FTflex infrastructure supplies
a code generation tool that creates object-specific fragment code for client access and



Using Object Replication for Building a Dependable Version Control System 89

for replica consistency management. The replication of an application remains fully
transparent to clients. Semantic annotations at the interface level allow the developer to
customize the provision of fault tolerance.

3.1 Replication with Fragmented Objects in FTflex

For realizing a replicated service, FTflex uses the fragmented object infrastructure
of Aspectix to load service-specific fragment code at the client side and at replica
locations, without requiring internal middleware modifications (see [9] for details).
Fig. 1 shows a fragmented object that implements a fault-tolerant service; this object is
internally composed of replica fragments and access fragments.

The development process of a replicated service in FTflex consists of defining
the global object interface in CORBA IDL, implementing the functional parts of
the service, and creating the fragment code. The creation of fragment code is done
automatically by tools; these tools can make use of semantic annotations provided by
the developer, as we will describe in Section 3.2. The annotations enable creating a
customized layer between the client and the core framework and also between the
framework and the replica implementation.

Host A

Host D Host E

Host B Host C

Replica
Fragment

Client Client

Replica
Fragment

Replica
Fragment

Access
Fragment

Access
Fragment

Fragmented
Object

Fig. 1. A replicated service realized as a fragmented object

The generated fragment code handles most replication-relevant issues. It implements
marshalling and unmarshalling, similar to an ordinary stub. Furthermore, it handles
communication of clients with an available member of the replica group, ensuring at-
most-once call semantics even in case of fail-over handling. With an active replication
strategy, all client requests are distributed to the replicas using totally ordered group
communication. In addition, each replica fragment contains semantic information about
methods that has been extracted from the annotations. This information is used to
improve the performance of request executions.

The Aspectix middleware uses CORBA IORs to reference fragmented objects via
an APX profile. This profile contains a unique object ID, a specification of the initial
fragment type to load and contact information of other fragments. The initial fragment
type can be specified in a language-independent way; a code-loading service [13] is



90 R. Kapitza, P. Baumann, and H.P. Reiser

used for obtaining the corresponding code for the local platform. The contact data in
the APX profile contains information about the replica group.

3.2 Semantic Information and Code Generation

Similar to a traditional CORBA IDL compiler for stubs and skeletons, FTflex can
generate client-side and replica-side fragments using IDL interface information. In
addition, our architecture allows the developer to express semantic knowledge in
order to improve and customize the replication mechanisms. Currently, FTflex supports
several annotations on a per-method basis: annotations can be provided to specify if
an object operation interacts with the replica and modifies its state, if it is a read-only
operation, if it is parallelizable with other methods, or if it is a method that can be
computed locally at the client side without interacting with the replica group.

The current prototype of the code-generation tool is based on IDLflex [21]. IDLflex
parses CORBA IDL, evaluates an XML-based mapping specification, and uses this
specification to create arbitrary output code. The tool supports semantic annotations
in IDL files, expressed as #pragma annotate statements. A custom mapping
specification defines how to evaluate these statements and defines the corresponding
code-generation process.

If a method is marked as read-only, the communication with the replica group
will be handled differently (using unicast instead of multicast). Information about
parallelizability is passed from the replica fragment to the local application-level
scheduler. Furthermore, annotations affecting the location of code have an influence on
whether methods are part of the external service interface (and thus part of the client-
side fragment interface), whether they are implemented in the client-side fragments
only (but may be absent in the replica fragments), or whether they are implemented
in replica fragments. Client-local method implementations (which are still part of the
abstract service interface) are useful for methods that, for example, validate client data
in a state-independent way or that provide static information to the client.

4 Replicated Decentralized Version Control

This section presents the design and implementation of DiGit, a reliable distributed
version control system. DiGit uses FTflex for replicating a central repository service,
and thus evaluates the FTflex infrastructure using a complex real-world application.

4.1 Background

A version control system records the development history and enables collaboration
of multiple developers by supporting distributed and concurrent work on a source-code
tree. To take part in the development, a developer checks out the sources, modifies them,
and finally commits her changes. If the repository is provided via a central service (e.g.,
CVS), the unavailability of this service prevents coordinated development progress.

Our DiGit implementation aims at offering high availability of a virtual central
repository. By virtual we mean that the repository is, in fact, replicated over multiple



Using Object Replication for Building a Dependable Version Control System 91

physical hosts, but for clients it appears as a single central repository. Our prototype
re-implements the Git system that was originally invented by Linus Torvalds. Git
has a lean storage model that can be implemented in a straightforward way; it is
proven to work well in large-scale projects such as the Linux kernel. Git already offers
decentralized revision control of software. However, this support primarily targets the
local availability of a repository and the possibility to later re-integrate local changes
to a remote main repository. A public main repository, such as used in the case of the
Linux project, still represents a single point of failure. Once down, no further check-
outs and check-ins are possible. Thus, a centralized, prompt exchange of development
progress is stopped. In addition, Git provides no out-of-the-box support for mirroring
or replication of the repository on order to achieve scalability and fault tolerance. In
the context of the Linux project this is solved by considerable big hardware efforts (see
http://www.kernel.org) and replication via FTP or rsync. For this reason, the main goals
of our reimplementation are to achieve fault tolerance and high availability without
requiring external mechanisms or manual intervention.

Next, the basic concepts of Git and its storage format are explained. Then, the
architecture and the API of our replicated Git repository are described. Our prototype
implementation provides a command-line tool for repository management, but we will
not focus in this tool.

4.2 Basic Concepts of Git

The storage model of Git is composed of four basic object types that are stored as
ordinary files on disk. Each object has a header that identifies the type and the size of
the object. The files are named after the SHA1 hash calculated over the content. Any
modification to a file will result in a mismatch between the file content hash and the file
name, and these modifications can easily be detected.

The four basic object types are Blob, Tree, Commit, and Tag. A Blob represents a
file that is under version control. A Blob does not reference any other object. A Tree
object contains of a list of names that reference Blob and Tree objects, together with
meta data for each list entry, such as access time and permissions. A Tree object thus is
similar to a directory. Third, a Commit object uniquely identifies a certain version of a
branch. A Commit object consists of a changelog message, the names of the modified
Tree objects, and the name of the direct ancestor Commit objects if there are any. A Tag
object offers the additional support to uniquely identify and secure certain source code
versions by a name and an optional certificate.

Fig. 2 illustrates the basic storage model of Git. The example shows the use of the
three main object types, Blob, Tree, and Commit. Three files are represented by Blobs.
There is one Tree object that represents the project directory and one Commit object
that describes the initial version.

If a developer commits changes to the repository, all modified files have a different
hash value than before and thus result in new Blobs. This leads to changes in the
corresponding Tree objects, which results in different hash sums of the Trees and thus
in the generation of new Tree objects. The Commit object documents the dependencies
between the former version of the project and the new one. Fig. 3 shows three check-in



92 R. Kapitza, P. Baumann, and H.P. Reiser

Fig. 2. Example of the basic Git storage model

operations on a repository with two files: the first operation creates the initial version,
the second revision only modifies one file, and the third update changes all files.

This structure enables easy branching and merging of different development lines.
The only things that are necessary are to store the modified files and to insert a new
Commit object that references the joint branches.

Fig. 3. Commit operation in Git

The Git storage model can be implemented in a straightforward way, and it prevents
the undiscovered modification of files due to the rigorous usage of hashes. The
drawback of the storage model is the redundancy it introduces. Versions that differ
only slightly result in completely new Blob objects. This leads to an enormous waste
of storage. Common version control systems like CVS or SVN usually store only the
difference between two successive versions of files. To achieve a similar behaviour,
Git supports custom archives, named pack files. A pack file is a collection of objects,
individually compressed, with delta compression applied. These pack files are used to
reduce the repository size by archiving older revisions and to enable an efficient network
transfer for data-intensive repository operations, such as the initial checkout of a project.

4.3 Design of the DiGit Version Control System

Git uses a distributed development model that requires every developer to have their
own local repository. The same basic model is used in our replicated variant. The goal
of DiGit is to provide the same functionality as Git for the local repository operations,



Using Object Replication for Building a Dependable Version Control System 93

Host A DIGIT
Access Fragment

index
repo-
sitory

working
copy

Client

Host B DIGIT
Replica Fragment

index
repo-
sitory

working
copy

Client
other
fragments

Fig. 4. A DiGit service is composed of access fragments and repository fragments, and both
manage a working copy, an index, and the repository

and in addition support a replicated global repository that remains available in spite of
the failure of some replicas.

DiGit is implemented as a fragmented object, as illustrated by Fig. 4. The object
interface of the DiGit service offers an interface that includes methods to operate on
the local as well as on the global repository. A single fragment handles both kinds of
repositories. Operations on the local repository are executed locally, while operations
on the replicated repository require communication with the group of replicas.

A client-side fragment may either work as a smart stub to access a remote group
of replica fragments, or it may be part of the replica group itself. A local repository
and a local replica of the global repository share the same storage. This means that a
data object that is stored in both needs only a single entry in the storage under its hash.
Furthermore the hash is registered in a shared index file for fast access.

The local repository can be synchronized to the global repository in the same way
as a local Git repository is synchronized to a remote server. A developer does not
operate directly on the global repository. Instead a copy of the global repository,
called a clone, is created in the local repository, and all local modifications are first
committed to a local branch of that clone. A pull() operation transfers updates from
the global repository to the local clone, and these updates can then be merged to the
local development branch. Conversely, push() applies changes in the local branch to
the global repository.

Most of the DiGit operations operate on the local working copy, the index, or the
local repository. These operations are implemented in a client-side fragment in a way
that closely resembles the original Git implementation. The operations for cloning,
pushing, and pulling repository data are the key operations that access the global
repository. The main challenge that the DiGit implementation addresses is to make
these operations work reliably and efficiently on a group of repository replicas.

4.4 DiGit Operations on a Local Repository

The DiGit methods for local revision management are annotated via the local keyword
(see interface definition in Fig. 5). This tells the FTflex framework that the operations
are implemented in the client-side fragment instead of at a remote server fragment.

At this point, we assume that the client-local repository is already populated by data
from the global repository (how this is achieved is explained in the following section).
A developer can checkout() a certain source version from the local repository into



94 R. Kapitza, P. Baumann, and H.P. Reiser

#pragma annotate(local)
void checkout(in string ref) raises (NonExistingBranch, NonExistingObject);

#pragma annotate(local)
string add(in string filePath);

#pragma annotate(local)
string refresh(in string filePath);

#pragma annotate(local)
string commit(in string ref) raises (NonExistingObject);

#pragma annotate(local)
boolean merge(in string ref) raises (NonExistingBranch);

#pragma annotate(local)
void branch(in string name) raises (NonExistingBranch);

Fig. 5. Basic operations to manage the local repository

a local working directory, and can add() new files to the repository. The commit()
operation creates a new version in the local repository, and the merge() operations
updates the local working copy with data from the repository. If a certain source version
should be used for subsequent independent development, the developer can use the
branch() operation a new development branch.

Identical to Git, the data of files is internally stored in an index file. An add()
operation automatically adds the content of the file at addition time to the index. The
index content defines the updates that will be made to the local repository by the
commit() operation. The refresh() operation updates the index data with the file
data in the local working copy. With the explicit refresh() operation, a developer
has the option to collect distinct changes for the next commit while keep on developing.

4.5 DiGit Operations on a Distributed Repository

The part of the DiGit interface relevant for operations on the distributed global
repository is shown in Fig. 6. Several of the operations, such as the initial check-
out of a repository and the update of large source trees, are data intensive. Such
data intensive operations are a great challenge for replication infrastructures based
on distributed object middleware. Many infrastructures provide only a plain remote
invocation mechanism without dedicated support for efficient bulk data transfer.

The fragmented object model provides an alternative solution, as a service developer
has the freedom of choice to use arbitrary object-internal communication. DiGit uses
this approach to make a clear separation between control messages and file transfer,
wherever it is possible. Control messages and state-modifying messages are handled by
the implemented framework as standard method invocations, whereas data is transferred
via an adapted custom protocol taken from the original Git implementation.

First of all, a decentralized Git service has to be initialized and started. This is
achieved by creating an initial replica on some host, and this replica has an associated



Using Object Replication for Building a Dependable Version Control System 95

#pragma annotate(local)
boolean clone(in string path);

#pragma annotate(local)
boolean pull();

#pragma annotate(local)
BranchArray push();

BranchArray pushPack(in ByteArray pack, in BranchArray old, in BranchArray new);

#pragma annotate(readonly,private)
StringArray getRepositoryServers();

#pragma annotate(private)
void addRepositoryServer(in string address);

Fig. 6. Operations to manage and synchronize the local with the global repository

IOR for a fragmented object. All service replicas provide not only a complete copy
of the repository, but also run a TCP server for bulk data transfer. This server is
started during the creation of a replica. As soon as an initial service replica has been
successfully started, any client can use the repository service by binding to its IOR.

After binding to the repository service, the client has to populate the local repository
using the sources of the replicated global repository. Only after this step, a developer
can use the set of methods for local repository management described before. The
clone() method populates the local repository with a copy of the global repository.
The client-side access fragment selects one of the service replicas and requests a transfer
of the current repository state. The TCP server of the contacted replica provides this
state as a pack file. The client-side fragment uses the pack file to populate the local
clone of the repository.

As the client-side IOR that contains contact addresses may partially be out of date,
the replica group provides a getRepositoryServers() method that returns all
data server addresses. This method is annotated as private and read-only method, which
means that it is not visible on the outer interface of the DiGit services, and that it is
invoked at only a single replica, instead of being distributed to all replicas.

After the repository of the access fragment has been initialized, it can be updated by
calling pull(). The pull()method is also implemented as a custom local operation.
It requests the current state of the repository from one of the replicas using the TCP
server for bulk transfer. The bulk transfer implements an interactive process with the
replica. First, the replica returns meta data about all branches and their current head
versions (the last commits). The access fragment compares this information with the
entries of the global part of the repository and then determines the missing commit
objects. Finally, all modified objects are sent to the client as a pack file.

A developer commits local changes into the replicated global repository by calling
the push() method. This local method communicates with the bulk transfer server of
a replica to determine whether there is a conflict with the global repository. If the global
state has been modified since the last comparison, the return values signals a conflict,



96 R. Kapitza, P. Baumann, and H.P. Reiser

which has to be resolved before the changes can be committed to the global repository.
Otherwise, the method generates a pack file that describes the updates to be made
to the central repository. The pack file is then passed to the pushPack() method,
which consistently modifies the state in the replicas. This global state modification is
executed with the generic replication methods that the FTflex replication infrastructure
provides. This implies that the update is consistently distributed to all replicas using
totally ordered group communication.

Setting up a new replica requires a state transfer. The generic way for creating
additional replicas in FTflex is first to bind to the IOR of the replicated service (thus
instantiating a local access fragment), and then to upgrade the local fragment to a full
replica. In DiGit, a local access fragment generally has a clone of the central repository.
Thus, there is no need for a full state transfer from existing replicas to the new replicas.
However, the local clone of the global replicated repository could be outdated, as there
might have been commits to global repository since the last invocation of pull().
An extended state transfer implementation accounts for this fact and minimizes the
transfer costs. The new replica submits revision information about its local copy of the
global repository to all state providing nodes. Next, the replicas use this information
to generate a pack file that is transferred to the joining replica. After this operation, the
new replica adds the address of its data server via addRepositoryServer() to the
set of state-providing replica servers.

5 Evaluation

This section evaluates the basic operations of our prototype and compares a DiGit
repository with three replicas with the original non-replicated implementation of Git
version 1.5.3.7. All measurements have been made in a 100 MBit/s switched Ethernet
network on a homogeneous set of PCs with a AMD Athlon 2.0 GHz CPU and 1 GB
RAM, using Linux kernel 2.6.17 and SUN Java SDK 1.5.0 09. The tests used a small
project repository hosting 600 files with a history of 504 revisions and a size of 87 MB.
For Git we used ssh as underlying remote protocol. We focused on operations with
remote interaction. Tab. 1 summaries the results.

First we evaluated the time to initialize a client and clone the repository from a
remote site or a remote global repository in case of DiGit. For DiGit this operation
is independent from the number of replicas as clone represents a read-only operation
and only one replica is accessed. Albeit using a similar protocol and performing almost
identical operations Git is 6 times faster. The reason for this large performance gap lies
in fact that the native Git implementation is highly optimized and makes heavy use of
memory mapped files and uses faster compression routines to build the pack files, while
our DiGit prototype does not yet use such techniques.

Next we measured the time to set up a new replica from an up-to-date client node.
This operation is important if a replica crashed or was intentionally shut down and needs
to be replaced. It took 793 ms on average to integrate a initialized client node.

This leads to the last two experiments. We updated the global/remote repository via
push. The update consisted of 100 locally committed revisions. This time Git was twice
as fast as DiGit. The reasons are similar to the first measurement, but in addition the



Using Object Replication for Building a Dependable Version Control System 97

Table 1. Measurements DiGit vs. Git

Initialize client fragment / Clone Become a replica Push (100 revisions) Pull (up to date)

DiGit 90843 ms 793 ms 20866 ms 15 ms

Git 14613 ms 10271 ms 1665 ms

pushed revisions have to be distributed to all replicas via the group communication
framework when using DiGit. The last measurement pulled the latest revisions from
the remote/global repository. In the context of the measurement the local repository
include already the current version so we measured only the request. This time DiGit
performed much better than Git. The reason is that DiGit had an open connection from
the client to the server, whereas for Git the connection process took most of the time.

6 Lessons Learned

We discuss the following three questions in order to analyse our replication strategy for
the version control application:

– Is object replication suitable for providing a dependable version control system?
– What are the potential benefits from the fragmented object model?
– What are the potential benefits from semantic annotations?

In general, it is not easy to describe a version control system as a service object with
an adequate interface, because there is an inherent lack of distribution transparency.
Usually, the interface of a remote service is the basic contract for the interaction of a
client with a remote service.

In the context of a version control system, however, the service functionality is not
limited to the remote server, but also includes the protocol for applying modifications
to client-local file. A typical object-oriented implementation would only specify the
interface of the remote service, and let the client implement all the parts that are
necessary at the client side. The fragmented object model makes a huge difference here,
as client-side functionality can be implemented as a fragment of the version control
service. This fragment is conceptionally part of the service itself, and it can be loaded
automatically at the client, using a dynamic loading service if it is not available locally.

A second requirement is the need for efficient bulk data transfer for data-intensive
operations. If the repository is implemented as an object-oriented service, this
requirement is also hard to fulfil with standard replication infrastructures for objects.
However, the concept of fragmented objects can again provide a large benefit: A local
fragment at the client side can implement custom optimized communication protocols
between client-side fragments and repository fragments.

The dynamic loading of fragments at the client side is, of course, faced with security
considerations. These can be addressed by using digital signatures for code that is
loaded automatically.

Finally, annotations are an important aspect to improve throughput. The DiGit
implementation uses annotations mainly to specify that code shall be local to the client.



98 R. Kapitza, P. Baumann, and H.P. Reiser

This is not only used for code that handles the local repository and working copy,
but also for implementing custom mechanism for bulk transfer of data. For interaction
between fragments, our prototype uses private methods, which are not visible to clients,
but available for internal use in client-side fragments. The read-only annotation speeds
up the method that queries the up-to-date replica list.

7 Conclusions

This paper presented the design of DiGit, a replicated version control system based Git.
Our system provides a consistent, dependable central repository even in failure situation
by using efficient object replication technology. Our approach differs from most current
distributed version control systems, which typically use a single central repository, in
combination with decentralized local repositories that allow the tracking of changes
during times in which the central repository is not available. Our approach replicates the
central repository in order to make it more available. DiGit can be combined with local
repositories, which are still useful, for example, for clients with no network connectivity
at all and for local development.

A useful future extension of DiGit could allow developers to replicate their local
repositories as separate branches in the global repository. This way, snapshots of their
work could be accessed by other developers and their work would be preserved if
their local machine crashed. Furthermore, additional evaluation could focus on WAN
scenarios and performance in failure situations.

The replication of DiGit has been realized with support from our FTflex replication
infrastructure. This infrastructure uses fragmented objects and annotations-based code
generation in order to provide a high degree of customizability. The DiGit system
benefits from this architecture in a way that would not have been possible in a traditional
object replication infrastructure. First, the fragments allow loading repository-specific
code automatically at the client side for manipulating the client-local repository.
Conceptionally, this code is still part of the remote central repository. Second, the
annotations allow optimizing the performance of the replication strategies.

References

1. Kurmann, C., Stricker, T.M.: Zero-copy for CORBA - efficient communication for distributed
object middleware. In: 12th IEEE Int. Symp. on High Performance Distributed Computing,
pp. 4–13. IEEE Computer Society, Los Alamitos (2003)

2. Bakker, A., Amade, E., Ballintijn, G., Kuz, I., Verkaik, P., van der Wijk, I., van Steen,
M., Tanenbaum, A.S.: The globe distribution network. In: Proc. of the USENIX Annual
Conference, pp. 141–152 (2000)

3. Bar, M., Fogel, K.: Open Source Development with CVS, 3rd edn. Paraglyph (2003)
4. Baudis, P.: Git - fast version control system, http://git.or.cz
5. Darcs, http://abridgegame.org/darcs
6. Felber, P.: The CORBA Object Group Service: A Service Approach to Object Groups in

CORBA. PhD thesis, EPLF, Switzerland, Number 1867 (1998)
7. Felber, P., Narasimhan, P.: Experiences, strategies, and challenges in building fault-tolerant

CORBA systems. IEEE Trans. Comput. 53(5), 497–511 (2004)

http://git.or.cz
http://abridgegame.org/darcs


Using Object Replication for Building a Dependable Version Control System 99

8. GNU arch, http://www.gnu.org/software/gnu-arch
9. Hauck, F.J., Kapitza, R., Reiser, H.P., Schmied, A.I.: A flexible and extensible object

middleware: CORBA and beyond. In: Proc. of the Fifth Int. Workshop on Software
Engineering and Middleware. ACM Digital Library (2005)

10. Hoare, G., Smith, N., Scherger, D.: Monotone - A distributed version control system,
document version 0.35 (2006)

11. Homburg, P., van Doorn, L., van Steen, M., Tanenbaum, A.S., de Jonge, W.: An object model
for flexible distributed systems. In: Proc. of the 1st Annual ASCI Conference, pp. 69–78
(1995)

12. IONA and Isis. An introduction to Orbix+Isis. IONA Technologies Ltd. And Isis Distributed
Systems, Inc. (1994)

13. Kapitza, R., Schmidt, H., Bartlang, U., Hauck, F.J.: A generic infrastructure for decentralised
dynamic loading of platform-specific code. In: Indulska, J., Raymond, K. (eds.) DAIS 2007.
LNCS, vol. 4531, Springer, Heidelberg (2007)

14. Makpangou, M., Gourhant, Y., Narzul, J.-P.L., Shapiro, M.: Fragmented objects for
distributed abstractions. In: Casavant, T.L., Singhal, M. (eds.) Readings in distributed
computing systems, pp. 170–186. IEEE Computer Society Press, Los Alamitos (1994)

15. Moser, L.E., Melliar-Smith, P.M., Narasimhan, P.: Consistent object replication in the eternal
system. Theor. Pract. Object Syst. 4(2), 81–92 (1998)

16. Object Management Group (OMG). Common object request broker architecture: Core
specification, version 3.0.2. OMG document formal/02-12-02 (2002)

17. Pilato, C.M., Collins-Sussman, B., Fitzpatrick, B.W.: Version Control with Subversion, 1st
edn. O’Reilly Media, Sebastopol (2004)

18. Pyarali, I., Harrison, T.H., Schmidt, D.C.: Design and performance of an object-oriented
framework for high-speed electronic medical imaging. Computing Systems 9(4), 331–375
(1996)

19. Reiser, H.P., Hauck, F.J., Kapitza, R., Schmied, A.I.: Integrating fragmented objects into a
CORBA environment. In: Proc. of the Net.ObjectDays, pp. 264–272 (2003)

20. Reiser, H.P., Kapitza, R., Domaschka, J., Hauck, F.J.: Fault-tolerant replication based on
fragmented objects. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, pp.
256–271. Springer, Heidelberg (2006)

21. Reiser, H.P., Steckermeier, M., Hauck, F.J.: IDLflex: a flexible and generic compiler for
CORBA IDL. In: Proc. of the Net.Object Days, pp. 151–160 (2001)

22. Yip, A., Chen, B., Morris, R.: Pastwatch: a distributed version control system. In: Proc. of
the USENIX/ACM 3rd NSDI (2006)

http://www.gnu.org/software/gnu-arch

	Using Object Replication for Building a Dependable Version Control System
	Introduction
	Related Work
	Replication Infrastructure Based on Fragmented Objects
	Replication with Fragmented Objects in FT-$flex$
	Semantic Information and Code Generation

	Replicated Decentralized Version Control
	Background
	Basic Concepts of Git
	Design of the DiGit Version Control System
	DiGit Operations on a Local Repository
	DiGit Operations on a Distributed Repository

	Evaluation
	Lessons Learned
	Conclusions


