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ABSTRACT 

Background: When to switch treatment is an important clinical question, for example, when the 

current therapy fails or shows suboptimal results. Switching strategies often depend on the 

evolution of an individual’s time-varying covariate(s). These so-called dynamic strategies can be 

directly compared in randomized trials. For example, consider a trial in which HIV-infected 

individuals receiving antiretroviral therapy are randomized to switching therapy within 90 days 

of HIV-1 RNA crossing above a threshold of  either 400 copies/mL (tight-control strategy) or 

1000 copies/mL (loose-control strategy).  

Methods: Here we describe an approach to emulate this trial by applying inverse-probability 

weighting of a dynamic marginal structural model to observational data from the Antiretroviral 

Therapy Cohort Collaboration (ART-CC), the Centers for AIDS Research (CFAR) Network of 

Integrated Clinical Systems (CNICS), and the HIV-CAUSAL Collaboration. 

Results: Of 43,803 individuals who initiated an eligible antiretroviral therapy regimen in 2002 or 

later, 2,001 met the baseline inclusion criteria for the mortality analysis and 1,641 for the AIDS 

or death analysis. There were 21 deaths and 33 AIDS or death events in the tight control group, 

and 28 deaths and 41 AIDS or death events in the loose control group. Compared with tight 

control, the hazard ratios (95% CI) for loose control were 1.10 (0.73, 1.66) for death and 1.04 

(0.86, 1.27) for AIDS or death adjusting for baseline and time-varying variables.  

Conclusions: While our effective sample sizes were small and our estimates imprecise, the 

described methodological approach can serve as an example for future analyses. 
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KEY MESSAGES 

 A hypothetical randomized trial comparing dynamic treatment strategies can be emulated by 

applying inverse-probability weighting of a dynamic marginal structural model to 

observational data. 

 This approach is facilitated by specifying the protocol of the target trial one would like to 

emulate in terms of the eligibility criteria, the treatment strategies, the follow-up period, 

outcomes, causal contrasts of interest, and analysis plan. 

 As an example, we apply our approach to compare dynamic switching strategies based on 

HIV-1 RNA thresholds. In our data, most individuals were doing well on their first-line 

antiretroviral regimen and no differences between switching at HIV-1 RNA thresholds of 400 

and 1,000 copies/mL in preventing death and AIDS-defining illness were detected. 
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INTRODUCTION 

 Many clinical decisions involve switching or discontinuing treatment. The most effective 

switching strategies are dynamic, that is, they involve switching different individuals at different 

times depending on the evolution of their time-varying covariates. However, very few 

randomized trials compare two or more dynamic strategies for switching medical treatments. 

Despite this lack of clinical evidence, many clinical guidelines provide recommendations in the 

form of dynamic switching strategies.  

For example, the guidelines for the management of HIV-infected patients issued by the 

United States Department of Health and Human Services (DHHS)1 and the International AIDS 

Society-USA Panel2 recommend switching a patient's antiretroviral regimen immediately after a 

confirmed virologic failure (i.e., 2 consecutive HIV-1 RNA measurements ≥ 200 copies/mL), the 

European AIDS Clinical Society3 and British HIV Association4 guidelines recommend switching 

immediately if HIV-1 RNA > 500-1,000 copies/mL or > 400 copies/mL, respectively (but 

suggest repeating a viral load measurement  if HIV-1 RNA is detectable but below the threshold 

for switching), and the World Health Organization5 guidelines recommend waiting to switch 

until confirmation of HIV-1 RNA > 1,000 copies/mL. This threshold is chosen as it is the lowest 

level that can be used when measuring viral load from dried blood spots. Tight-control strategies 

are recommended so as to avoid the use of failing antiretrovirals in the presence of ongoing viral 

replication which may lead to selection of drug resistant mutations requiring more expensive 

drugs and limiting future treatment options.6-9  

Here we review a framework for the comparison of dynamic switching strategies using 

observational data.10-14 We begin by describing the protocol of the hypothetical randomized trial 

we would like to conduct (the target trial). We then review an approach to emulate this target 
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trial using observational data. To overcome the limitations of standard methods for adjustment 

for time-varying confounders,15, 16 we use inverse-probability weighting of a dynamic marginal 

structural model.17  
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THE PROTOCOL OF THE TARGET TRIAL 

 The target trial is a hypothetical randomized trial that is specified in order to guide our 

analysis of observational data. Key components of its design are eligibility criteria, treatment 

strategies being compared, follow-up period, outcomes, causal contrasts of interest, and analysis 

plan. These were agreed through discussions between colleagues with clinical and statistical 

backgrounds, which focused on the hypothetical randomized trial whose results would be most 

useful to resolve uncertainties in clinical practice. We describe each of these components below. 

 

Eligibility criteria 

The trial includes individuals who initiated antiretroviral therapy in 2002 or later, 

achieved suppression of viral replication (defined as at least one measurement of HIV-1 RNA ≤ 

200 copies/mL) within 360 days of initiating treatment, and then experienced confirmed 

virologic failure (defined as the second of two measurements of HIV-1 RNA > 200 copies/mL 7-

180 days apart). At confirmed virologic failure (baseline), individuals are required to be 18 years 

of age or older and have a CD4 cell count measurement in the previous 90 days. Eligible 

antiretroviral regimens before first virologic failure are listed in Table 1.  

 

Treatment strategies 

Eligible individuals are randomized to either tight- or loose-control strategies at 

confirmed virologic failure. The tight-control strategy is "switch within 90 days of HIV-1 RNA 

crossing above 400 copies/mL." The loose-control strategy is "switch within 90 days of HIV-1 

RNA crossing above 1000 copies/mL." In both arms, individuals should switch from regimens at 

baseline to new regimens (as indicated in Table 2) and switches are expected to occur 
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uniformly11 during the 90-day grace period. After the switch, individuals may switch to another 

regimen or discontinue treatment if clinically indicated or recommended by their treating 

physicians. However, regardless of the treatment received after switching, all individuals should 

be seen and have their CD4 cell count/HIV-1 RNA measured on average every 12-16 weeks and 

at least once every 52 weeks. In this target trial, as in all randomized trials, we expect that some 

individuals will not adhere to their assigned treatment strategy. 

 

Outcomes 

The clinical outcomes of interest are all-cause mortality and a combined endpoint of 

AIDS-defining illness18 or death.  

 

Follow-up period 

 Individuals are followed from baseline (randomization) until the outcome, loss to follow-

up (52 weeks after the most recent laboratory measurement), or the administrative end of follow-

up (3 years after baseline), whichever occurred first. 

 

Causal contrasts of interest 

 To compare the two switching strategies, we calculate the intention-to-treat effect and the 

per-protocol effect (i.e., the effect that would have been observed if all participants had switched 

as indicated in this protocol, regardless of the treatment they received subsequently). 

  

Analysis plan 
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Intention to treat analysis: We estimate 3-year Kaplan-Meier survival curves by 

randomization arm. Despite its limitations as an effect measure,19 we also estimate the mortality 

hazard ratio via the pooled logistic model logit Pr(𝐷𝑡+1 = 1|𝐷𝑡 = 0, 𝑋) = 𝛽0𝑡 + 𝛽1𝑋, where Dt 

is an indicator (1: yes, 0: no) for death in week t, 𝛽0𝑡 is a time-specific intercept (the baseline 

hazard, estimated via linear and quadratic terms for t), X is an indicator for randomization arm 

(1: loose-control, 0: tight-control), and 𝛽1 is the log odds ratio of mortality for loose- versus 

tight-control. Because mortality is rare in each time interval, the parameter 𝛽1 approximates the 

log of the intention-to-treat mortality hazard ratio that would have been estimated from a 

proportional hazards Cox model.20 In case of a chance imbalance of pre-treatment prognostic 

factors V between arms, the model would include them as covariates. 

 

Per-protocol analysis: Individuals are censored when they deviate from the switching strategies 

in this protocol. In particular, individuals are censored at the time they change treatment 

prematurely (i.e., between baseline and when HIV-1 RNA first crosses above 400 copies/mL for 

tight control and above 1000 for loose control), change to an ineligible regimen during the 90-

day grace period, and at the end of the grace period if the individual has not yet switched to an 

eligible regimen. Because this censoring may be informative, adjustment for both baseline (pre-

randomization) and time-varying (post-randomization) covariates may be necessary.11 

To estimate the per-protocol average mortality hazard ratio, we fit a weighted model logit Pr(𝐷𝑡+1 = 1|𝐷𝑡 = 0, 𝐶𝑡 = 0, 𝑋, 𝑉) = 𝜃0𝑡 + 𝜃1𝑥 + 𝜃2′ 𝑉, where Ct is an indicator (1: yes; 0: no) 

for censoring due to deviating from the assigned switching strategy in week t and V is a vector of 

the baseline (time-fixed) covariates (sex, age (<35, 35-49, ≥50 years), race (white, black, other or 

unknown), geographic origin (North America, Western Europe, sub-Saharan Africa, other, or 
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unknown), mode of acquisition (heterosexual, homosexual/bisexual, injection drug use, other or 

unknown), CD4 cell count (<200, 200-499, ≥500 cells/mm3), HIV RNA (≤400, 401-1,000, 

>1,000 copies/mL), calendar year (2002-2004, 2005-2007, ≥2008), regimen class at initiation 

(nonnucleoside (NNRTI)-based or non-NNRTI based), and regimen class at baseline (NNRTI-

based or non-NNRTI based).  

To adjust for time-varying selection bias that is induced by the censoring required for the 

per-protocol analysis, we use inverse probability weighting to eliminate the dependence between 

measured prognostic factors and censoring. Informally, an uncensored individual’s weight at 

time t is inversely proportional to his/her probability of remaining uncensored through time t 

conditional on having survived to time t (Dt), his/her covariate history (𝐿𝑡̅), and his/her switching 

history (𝐴̅𝑡−1). At = 2 indicates that the individual has switched to an eligible regimen by week t, 

At = 1 indicates that the individual has changed to an ineligible regimen by week t, and At = 0 

indicates that the individual has not changed treatment by week t. We weight each individual by 

the time-varying inverse-probability weight 𝑊𝑡 = ∏ 1[𝑓(𝐴𝑘|𝐴̅𝑘−1,𝐷𝑘=0,𝐿̅𝑘)]𝑡𝑘=0  where 

𝑓(𝐴𝑘|𝐴̅𝑘−1, 𝐷𝑘 = 0, 𝐿̅𝑘) is the conditional probability mass function 𝑓𝐴𝑘|𝐴̅𝑘−1,𝐷𝑘=0,𝐿̅𝑘(𝑎𝑘|𝑎̅𝑘−1, 𝑑𝑘 = 0, 𝑙𝑘̅) with (𝑎𝑘|𝑎̅𝑘−1, 𝑑𝑘 = 0, 𝑙𝑘̅) evaluated at the random 

argument (𝐴𝑘|𝐴̅𝑘−1, 𝐷𝑘 = 0, 𝐿̅𝑘) and 𝐴−1 = 0. 

As previously described,21 these probabilities are estimated using pooled multinomial 

logistic models including a time-specific intercept (estimated via linear and quadratic terms for 

t), the baseline covariates previously listed, and the time-varying covariates (CD4 cell count 

(restricted cubic spline with 5 knots at 10, 200, 350, 500, and 1,000 cells/mm3), HIV-1 RNA 

(≤400, 401-1,000, >1,000 copies/mL), AIDS-defining illness (when the outcome was death 
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alone), and time since last laboratory measurement (<4, 4-7, 8-11, ≥12 weeks)). For an 

explanation of why the probability of treatment changes can be used to estimate the probability 

of remaining uncensored, please see Cain et al. 2010.11 

Under the assumptions that (1) we measured and successfully adjusted for all 

confounders (i.e., prognostic factors that also predict censoring); (2) there is positivity (i.e., no 

deterministic treatment assigned given the confounders); and (3) the weight models are not 

misspecified, the above logistic model estimates the parameter of a dynamic marginal logistic 

structural model:17, 22-24 Pr(𝐷𝑡+1𝑥 = 1|𝐷𝑡𝑥 = 0, 𝑉) = 𝜃0𝑡∗ + 𝜃1∗𝑥 + 𝜃2∗′𝑉 where 𝐷𝑡𝑥 is the 

counterfactual indicator that an individual would have developed the outcome during week t 

under strategy X=x.  

To estimate per-protocol survival curves, we fit a similar model that included a product 

("interaction") term between X and f(t) where f(t) is a flexible function of time (estimated via 

linear and quadratic terms for t). The models’ predicted values are then used to estimate the 3-

year survival from baseline as previously described.11, 19 (Nonparametric estimation of survival 

curves would result in very unstable estimates.)The estimated 3-year survival can be interpreted 

as the survival that would have been estimated had all individuals switched according to the 

study protocol (regardless of the treatment they subsequently received).  

The same analytic approach is then applied to the combined endpoint of AIDS-defining 

illness or death. Inverse probability weighting may be used to adjust for potential selection bias 

due to loss to follow-up25 in both the intention-to-treat and per-protocol analyses. 

  

EMULATING THE TARGET TRIAL USING OBSERVATIONAL DATA 
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In the absence of a randomized clinical trial for switching, we emulated one using 

observational data22 from the Antiretroviral Therapy Cohort Collaboration (ART-CC), the 

Centers for AIDS Research (CFAR) Network of Integrated Clinical Systems (CNICS), and the 

HIV-CAUSAL Collaboration. These collaborations have been described elsewhere.26-29 The 

cohorts that make up these collaborations are listed in Appendix 1. All overlaps between and 

within collaborations were removed. Each cohort collected data prospectively, including CD4 

cell count, HIV-1 RNA (limit of detection ≤ 200 copies/mL), dates of treatment initiation and 

treatment changes, AIDS-defining illness, and death. 

 We designed our analysis of the observational data to match the eligibility criteria, the 

treatment strategies, and the outcomes of the target trial as much as possible. 

 

Eligibility criteria 

 We applied the same eligibility criteria as in the target trial. Our analysis was restricted to 

HIV-infected persons who initiated antiretroviral therapy after January 1, 2002 (2004 for CoRIS, 

2005 for FHDH and Frankfurt when information on their treatment interruptions became 

available).  

 

Treatment strategies  

 We compared the same tight- and loose-control switching strategies as in the target trial. 

To reduce the influence of data errors, new drug prescriptions of duration 14 days or less were 

disregarded when determining the existence of switching. Instead, the time was assigned to the 

nearest regimen of duration longer than 14 days before the short regimen. In sensitivity analyses, 

point estimates did not vary (data not shown) for durations of 31 and 62 days, when we assigned 
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the disregarded time to the nearest longer regimen after the short regimen, and when we used an 

alternative definition of switching (see Table 2). 

 

Outcomes 

 We considered the same two outcomes as in the target trial: all-cause mortality and a 

combined endpoint of AIDS-defining illness18 or death. The date of death was identified using a 

combination of national and local mortality registries and clinical records as described 

elsewhere, 28 and AIDS-defining illnesses were ascertained by the treating physicians.  

 

Follow-up period 

Follow-up started at baseline and ended at the occurrence of the outcome, loss to follow-

up (52 weeks after the most recent laboratory measurement), or the cohort-specific 

administrative end of follow-up (up to November 2012), whichever occurred first.  

 

Causal contrast of interest 

 For the reasons explained below, only the per-protocol effect comparing the two 

switching strategies can be estimated. 

 

Analysis 

 We used the same pooled logistic model described for the target trial, except that we 

fitted the model to an expanded data set constructed as follows. Because all individuals had data 

consistent with both strategies at confirmed virologic failure (baseline), we created an expanded 

dataset that included two replicates (clones) of each individual, and assigned each replicate to 
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one of the strategies. We censored replicates if and when their data were no longer consistent 

with their assigned strategy.17 In particular, replicates were censored if and when the individual 

changed treatment too soon (i.e., between baseline and when HIV-1 RNA first crossed above 

400 (1000) copies/mL), if and when the individual changed to an ineligible regimen during the 

90-day grace period, and at the end of the grace period if the individual had not yet switched to 

an eligible regimen. 

 A consequence of using grace periods with cloning and censoring is that an intention-to-

treat effect cannot be estimated because each individual is assigned to all strategies at baseline. 

Therefore, a contrast based on baseline assignment (i.e., an intention-to-treat analysis) will 

compare groups with essentially identical outcomes. Analyses with a grace period at baseline are 

geared towards estimating a per-protocol effect of a target trial. 

The inverse-probability weights were the same as for the target trial except that we added 

a numerator11 to emulate uniform switching during the grace period. This numerator equals 

1𝑚+1−𝑗 when j = m and when 0 ≤ j < m if the individual initiates and 1 − 1𝑚+1−𝑗  when 0 ≤ j < m if 

the individual does not initiate where m  is the length of the grace period in weeks and j is the 

position in the grace period such that j = 0 is the beginning of the grace period and j = m is the 

end of the grace period. The weights were truncated at the 99th percentile;30 however, truncation 

had little effect on the estimates (data not shown). 

The emulation of the design and analysis of the alternative trial in which we would not 

require confirmation of virologic failure was identical, except that baseline was the time of first 

virologic failure. The inclusion of inverse-probability weights to adjust for censoring at 52 weeks 

without a laboratory measurement in addition to the previously described weights had little effect 

on our estimates (results not shown). 
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All 95% CIs were estimated via a nonparametric bootstrap with 500 samples. All 

analyses were conducted with SAS 9.4 (SAS Institute, Cary, North Carolina, USA). 
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RESULTS 

 Of 43,803 potentially eligible individuals, 2,001 met the baseline inclusion criteria for the 

mortality analysis and 1,641 for the AIDS or death analysis. The most common reason for being 

excluded was never experiencing virologic failure after achieving virologic suppression. A 

flowchart of patients for the mortality analysis is provided in Figure 1. 

 Table 3 shows the baseline characteristics of the study population for the mortality 

analysis. Of the 4,002 replicates in the expanded dataset for the mortality analysis, 74% of the 

tight control group and 68% of the loose control group were censored during follow-up. In the 

tight control group, 11% were censored for changing treatment prematurely, 14% were censored 

for changing to an ineligible regimen during the grace period, and 75% were censored for not 

having switched to an eligible regimen by the end of the grace period. In the loose control group, 

23% were censored for changing treatment prematurely, 14% were censored for changing to an 

ineligible regimen during the grace period, and 63% were censored for not having switched to an 

eligible regimen by the end of the grace period. Among the uncensored, the median (IQR) 

follow-up time was 89 (38, 168) weeks for the tight control group (1,673 person-years) and 82 

(40, 166) weeks for the loose control group (2,009 person-years). The numbers were similar in 

the AIDS or death analysis. 

 There were 21 deaths and 33 AIDS or death events in the tight control group, and 28 

deaths and 41 AIDS or death events in the loose control group (Table 4; see Appendix 2 for 

details). Among those who died, the median (IQR) time to death was 31 (11, 52) weeks for the 

tight control group and 42 (14, 113) weeks for the loose control group. Among those who 

developed AIDS or died, the median (IQR) time to AIDS or death was 11 (2, 29) weeks for the 

tight control group and 15 (7, 60) weeks for the loose control group. Compared with tight 
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control, the fully-adjusted hazard ratios (95% CI) for loose control were 1.10 (0.73, 1.66) for 

death and 1.04 (0.86, 1.27) for AIDS or death. Adjustment for either baseline or time-varying 

variables did not materially change the hazard ratio estimates (Table 5). The estimated inverse 

probability weights for the mortality analysis had mean 3.1 (interquartile range 1.2 - 3.2, 99th 

percentile 15.5). The estimated inverse probability weights for the AIDS or death analysis had 

mean 3.1 (interquartile range 1.1 - 3.4, 99th percentile 17.2). The main predictors of switching to 

an eligible regimen and changing to an ineligible regimen were time-varying HIV-1 RNA and 

time since last laboratory measurement (see Appendix Table 1). 

 Figure 2 plots the estimated 3-year survival and 3-year AIDS-free survival. The survival 

at 3 years was 95.7% (93.4%, 98.1%) for tight control and 95.2% (92.8%, 97.6%) for loose 

control. The 3-year survival difference was -0.5% (-2.3%, 1.2%). The AIDS-free survival 

proportion was 93.3% (90.5%, 96.1%) for tight control and 92.8% (89.7%, 95.9%) for loose 

control. The 3-year AIDS-free survival difference was -0.5% (-1.9%, 0.8%). 

As a sensitivity analysis, we also considered an alternative trial in which we did not 

require confirmation of virologic failure. In this case, baseline becomes the time of first virologic 

failure (defined as one measurement of HIV-1 RNA > 200 copies/mL) following virologic 

suppression. Estimated hazard ratios using this definition of baseline were similar (see Appendix 

3 for details). 
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DISCUSSION 

 We have described how to use observational data to emulate a hypothetical randomized 

trial comparing different treatment switching strategies. As an illustration, we applied the method 

to the question of when to switch from a first-line antiretroviral regimen to a new regimen 

following virologic failure.31 

Our results suggest that there is little difference between switching within 90 days of 

HIV-1 RNA crossing above a threshold of either 400 copies/mL or 1000 copies/mL in terms of 

preventing short-term death and AIDS-defining illness. However, even after pooling data from 

three large consortia of HIV cohorts, our effective sample size was small and the effect estimates 

imprecisely estimated. This was due, in large part, to the strict eligibility criteria of our target 

trial, which were defined by a panel of clinicians on the basis of the treatment guidelines. Of the 

43,803 potentially eligible individuals, 95% were excluded because they did not meet the 

baseline inclusion criteria. Most individuals excluded were doing well on their first-line 

antiretroviral regimen and did not experience virologic failure. Had we been able to observe 

individuals for longer periods of time, more of them would likely have experienced virologic 

failure and could have been included in our analyses.  

Most individuals in our analysis contributed to both arms of the target trial because one 

cannot generally observe the exact moment at which these HIV-1 RNA thresholds were crossed. 

As a result, 59% of individuals crossed both thresholds at baseline (those with baseline HIV-

RNA ≤ 400 copies/mL had the potential to cross both thresholds simultaneously later in their 

follow-up). In the main analysis, 20 of 29 individuals who died and 31 of 43 individuals who 

developed AIDS or died contributed events to both groups (see Appendix 2 for details). Similar 
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difficulties have been encountered when trying to emulate target trials that compare two dynamic 

strategies in cancer patients.31  

 The validity of our methodology relies on two key assumptions in addition to positivity. 

First, we assume there is no unmeasured confounding given the measured covariates, i.e., that all 

joint predictors of switching and the outcome were included in the estimation of the inverse 

probability weights. The assumption might not hold, even approximately, if for example prior 

adherence to treatment and antiretroviral drug resistance remained important predictors of 

treatment switching and the outcome even after adjustment for the measured covariates (some of 

which may be viewed as proxies for adherence and resistance). To further protect our estimates 

from unmeasured confounding, we defined the dynamic treatment strategies in terms of initial 

switching regardless of subsequent adherence to treatment. Defining the strategies this way 

makes it unnecessary to adjust for joint determinants of future switching, and is perhaps more 

clinically meaningful, as at the time of deciding whether or not to switch, future adherence is 

unknown.  

 Second, we assumed a correct specification of the model for switching as a function of 

the measured confounders. To reduce bias due to model misspecification that results in apparent 

outliers, we truncated the estimated weights at the 99th percentile of the distribution of the 

estimated weights.30  

 Our analyses only focused on the decision to switch regimens after treatment failure, but 

in practice switching may occur for other reasons, including regimen simplification, toxicity 

management, and avoidance of teratogenic effects during pregnancy. While the dates of 

pregnancies were not available for the majority of individuals in this analysis, we restricted the 

analysis to those who became virologically suppressed and therefore were more likely to adhere 
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and less likely to experience treatment-related toxicities (more common in the early stages of 

therapy).  

 We defined our treatment strategies for switching based on HIV-1 RNA viral load only. 

The majority of clinical guidelines1-4 also recommend investigating the reasons for failure, 

addressing any adherence issues, and performing resistance testing while the individual is on the 

failing regimen before switching. While data on adherence and the results of resistance testing 

were not available for the majority of individuals in this analysis, we hope to be able to 

incorporate these data in the future. These considerations may suggest that even with reasonable 

eligibility criteria and minimal unmeasured confounding, our target trial was of limited clinical 

relevance in the populations and periods during which the observational data for our study were 

collected.  

 In summary, we described an approach to compare dynamic strategies of treatment 

switching via censoring and inverse probability weighting. We expect that the methodological 

approach described here for the comparison of dynamic switching strategies using observational 

data will serve as an example for future analyses. Future applications may consider switching 

strategies for which more HIV-infected individuals are eligible and the use of alternative 

methods for comparing dynamic strategies of treatment switching, including the parametric g-

formula, that may result in more precise estimates at the expense of additional modeling 

assumptions.16, 32-34 
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APPENDIX 1 

The Antiretroviral Therapy Cohort Collaboration (ART-CC) includes 20 prospective 

cohort studies from 38 countries: FHDH (French Hospital Database on HIV), ICONA (Italian 

Cohort of Antiretroviral-Naïve Patients), SHCS (Swiss HIV Cohort Study), ATHENA (AIDS 

Therapy Evaluation project Netherlands), The Multicenter Study Group on EuroSIDA, 

Vanderbilt HIV Cohort (USA), Frankfurt HIV Cohort (Germany), Aquitaine Cohort (France), 

British Columbia Center for Excellence in HIV/AIDS (Canada), Royal Free Hospital Cohort 

(UK), Southern Alberta Clinic (Canada), Köln/Bonn cohort (Germany), PISCIS (Proyecto para 

la Informatización del Seguimiento Clínico-epidemiológico de la Infección por HIV y SIDA, 

Spain), 1917 Clinic Cohort (University of Alabama, Birmingham, USA), University of 

Washington HIV Cohort (Seattle, WA, USA), VACS (Veterans Aging Cohort Study, USA), 

HAVACS (HIV Atlanta Veterans Affairs Cohort Study, USA), CoRIS (Cohorte de la Red de 

Investigación en SIDA, Spain), VACH (Spain), and OEHIVKOS (Österreichische HIV-

Kohortenstudie, Austria). 

 The Centers for AIDS Research (CFAR) Network of Integrated Clinical Systems 

(CNICS) includes 8 clinical cohort studies from the United States. Two of these cohorts also 

appear in ART-CC: the 1917 Clinic Cohort and the University of Washington HIV Cohort. The 

others do not: Case Western Reserve University, University of California, San Francisco, the 

University of California, San Diego, Fenway Community Health Center of Harvard University, 

University of North Carolina, and Johns Hopkins University.  

 The HIV-CAUSAL Collaboration includes 13 prospective cohorts from 6 European 

countries and the United States. Seven of these cohorts also appear in ART-CC: FHDH, SHCS, 

ATHENA, Aquitaine, PISCIS, VACS, CoRIS. The other six cohorts do not: UK CHIC (United 
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Kingdom Collaborative HIV Cohort), AMACS (Athens Multicenter AIDS Cohort Study, 

Greece), UK Register of HIV Seroconverters (UK), ANRS PRIMO and ANRS SEROCO 

(Agence Nationale de Recherches sur le SIDA, France), and GEMES (Grupo Español 

Multicéntrico para el Estudio de Seroconvertores, Spain). 

 Appendix Figure 1 lists the cohorts from each collaboration and shows any overlaps. 

Appendix Table 2 provides the distribution by cohort of the 43,803 individuals at initiation and 

2,001 individuals at baseline in the mortality analysis.   
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APPENDIX 2 

The expanded dataset included two replicates (clones) of each individual because all 

individuals had data consistent with both strategies at confirmed virologic failure (baseline). 

Each replicate was assigned to one of the strategies, either tight or loose control. As a result of 

the expansion, it is possible for an individual to contribute an outcome to one or both strategies. 

In the mortality analysis, 29 individuals contributed 49 deaths. Of the 29 individuals, 1 

contributed a death to the tight control group only, 8 contributed deaths to the loose control 

group only, and 20 contributed deaths to both groups. In the AIDS or death analysis, 43 

individuals contributed 74 AIDS or death events. Of the 43 individuals, 2 contributed an event to 

the tight control group, 10 contributed events to the loose group only, and 31 contributed events 

to both groups. 

Appendix Table 3 displays key dates and HIV-1 RNAs for the 29 individuals who 

contributed deaths to the mortality analysis. In addition to the death date, the baseline date, the 

date at which the threshold for tight control was crossed (if any), and the date at which the 

threshold for loose control was crossed (if any) are given along with the HIV-RNA at these time 

points. If the individual switched to an eligible new regimen within the grace period, a switch 

date is also provided.  

Individual 1’s death contributed to the tight control group only. Individual 1crossed the 

tight control threshold at baseline and then switched within the grace period. He was censored 

from the loose control group at the time of his switch. The deaths of individuals 2-9 counted 

towards the loose control group only. Individuals 2-4 crossed the tight control threshold after 

baseline. They were censored from the tight control group 90 days later. They then died without 

crossing the loose control threshold or switching. Individuals 5-8 crossed the tight control 
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threshold at baseline. They were censored from the tight control group 90 days after baseline. 

They then died without crossing the loose control threshold or switching. Individual 9 crossed 

the tight control threshold at baseline. He was censored from the tight control group 90 days after 

baseline. He later crossed the loose control threshold, switched within the grace period, and died. 

The deaths of individuals 9-22 counted towards both the loose and tight control groups. 

Individuals 10-15 died without crossing either threshold or switching. Individuals 16-20 crossed 

the thresholds for both tight and loose control at baseline and later died during the grace period 

without switching. Individuals 21-28 crossed both thresholds at baseline, switched within the 

grace period, and died. Individual 29 crossed both thresholds after baseline, switched within the 

grace period, and died. 
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APPENDIX 3 

When not requiring confirmation of virologic failure, there were 6,320 individuals who 

met the baseline inclusion criteria for the mortality analysis and 5,310 for the AIDS or death 

analysis. Of the 12,640 replicates in the mortality analysis, 76% of the tight control group and 

68% of the loose control group were censored. Among the uncensored, the median (IQR) follow-

up time was 82 (35, 157) weeks for the tight control group and 80 (38, 154) weeks for the loose 

control group.  

 There were 50 deaths and 68 AIDS or death events in the tight control group, and 63 

deaths and 83 AIDS or death events in the loose control group (Appendix Table 4).  Among 

those who died, the median (IQR) time to death was 34 (8, 80) weeks for the tight control group 

and 37 (9, 87) weeks for the loose control group. Among those who developed AIDS or died, the 

median (IQR) time to AIDS or death was 9 (3, 46) weeks for the tight control group and 19 (5, 

57) weeks for the loose control group. Compared with tight control, the fully-adjusted hazard 

ratios (95% CI) for loose control were 0.86 (0.55, 1.33) for death and 1.06 (0.79, 1.43) for AIDS 

or death.  

 Appendix Figure 2 plots the estimated 3-year survival and 3-year AIDS-free survival 

when we did not require confirmation of virologic failure. The survival at 3 years was 96.5% 

(94.5%, 98.4%) for tight control and 97.0% (95.7%, 98.3%) for loose control. The 3-year 

survival difference was 0.5% (-1.0%, 2.0%). The AIDS-free survival proportion was 94.9% 

(92.8%, 97.0%) for tight control and 94.6% (92.6%, 96.6%) for loose control. The 3-year AIDS-

free survival difference was -0.3% (-1.9%, 1.4%). 
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Table 1: Eligible initial regimens 
 
Regimen Classification Eligible initial regimens* 

  
PI + ≥2 NRTI 

all regimens where the PI is either fosamprenavir (FAPV) or atazanavir (ATV) 
except those containing the NRTI tenofovir (TNV) or an excluded drug† 

bPI + ≥2 NRTI all regimens except those containing an excluded drug† 

NNRTI + ≥2 NRTI all regimens except those containing an excluded drug† 
<6 drugs including FI/INSTI (+ entry 
inhibitors)  

all drug regimens with ≥3 drugs except those containing an excluded drug† 

 
Abbreviations: PI, protease inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; bPI, boosted protease inhibitor; NNRTI, non-
nucleoside reverse transcriptase inhibitor; FI, fusion inhibitor; INSTI, integrase strand transfer inhibitor 
* Eligible regimens were determined by a panel of clinicians on the basis of treatment guidelines. 
† The following drugs are excluded from initial regimens: enfuvirtide (ENF), zalcitabine (DDC), tipranavir (TPV), alovudine (ALO), 
capravirine (CPV), DPC 083 (DPC083), delavirdine (DLV), emivirine (EMV), lodenosine (DDA or LDN), loviride (LOV), mozenavir 
(MOZ), vicriviroc (VIC), and any unspecified drugs (ART, PI, NNRTI, NRTI). 
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Table 2: Changes from initial regimens (columns) to new regimens (rows) that are considered switches* 
 

Regimen 
Classification 

Switch from 
(PI + ≥2 NRTI)? 

Switch from 
(bPI + ≥2 NRTI)? 

Switch from 
(NNRTI + ≥2 NRTI)? 

Switch from 
 (<6 drugs including 
FI/INSTI + (entry 

inhibitors))? 

 
    PI + ≥2 NRTI no† no yes yes 

bPI + ≥2 NRTI yes yes if PI changes† yes yes 

NNRTI + ≥2 NRTI yes yes 
yes if NNRTI to  

etravirine (ETV) † 
yes 

bPI + PI/NNRTI (+ 
other) 

yes yes 
yes if NNRTI to  

etravirine (ETV) † 
yes 

<6 drugs including 
FI/INSTI (+ entry 
inhibitors) 

yes yes yes 

yes if FI/II/entry 
inhibitor changes or 

addition of a 
FI/II/entry inhibitor† 

 
If the cell reads “no” this type of change is never considered a switch. Changes to regimen classifications other than those in the table 
are never switches. If the cell reads “yes” this type of change is always considered a switch. If the cell reads “yes if…” the 
condition(s) listed must be met for the change to be considered a switch. Other aspects of the regimen may also change or stay the 
same.  
 
Abbreviations: PI, protease inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; bPI, boosted protease inhibitor; NNRTI, 
nonnucleoside reverse transcriptase inhibitor; FI, fusion inhibitor; INSTI, integrase strand transfer inhibitor 
* Eligible regimens were determined by a panel of clinicians on the basis of treatment guidelines. 
† Our primary definition of switching above does not include NRTI-only changes. An alternative definition includes some NRTI-only 
changes (i.e., any NRTI to tenofovir (TNV) and tenofovir (TNV) to zidovudine (AZT)). According to this alternative definition, a 
change where the regimen classification does not change is considered a switch if any part of the regimen changes (according to the 
conditions above). 
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Finally, individuals must change to regimens that do not include any of the following drugs: zalcitabine (DDC), alovudine (ALO), 
capravirine (CPV), DPC 083 (DPC083), delavirdine (DLV), emivirine (EMV), lodenosine (DDA or LDN), loviride (LOV), mozenavir 
(MOZ), vicriviroc (VIC), or any unspecified drugs (ART, PI, NNRTI, NRTI).  
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Table 3: Characteristics of 2,001 HIV-infected individuals in the mortality analysis at baseline in 
the ART-CC, the CNICS, and the HIV-CAUSAL Collaboration, 2002-2012. 
 
Characteristic 

 
No. of individuals (%) 

  Western Europe North America 
1,503 498 

      
Sex Male 959 (63.8) 418 (83.9) 

Female 544 (36.2) 80 (16.1) 
      

Age, years < 35 540 (35.9) 92 (18.5) 
35 – 50 774 (51.5) 278 (55.8) 
> 50 189 (12.6) 128 (25.7) 

      

Geographic 
Origin 

North America 0 (0) 498 (100.0) 
Western Europe 587 (39.1) 0 (0) 
Sub-Saharan Africa 516 (34.3) 0 (0) 
Other/Unknown 400 (26.6) 0 (0) 

      
Race White 509 (33.9) 176 (35.3) 

Black 398 (26.5) 215 (43.2) 
Other/Unknown 596 (39.7) 107 (21.5) 

      
Acquisition 
group 

Heterosexual 836 (55.6) 102 (20.5) 
Homosexual 482 (32.1) 158 (31.7) 
Injection drug use 97 (6.5) 81 (16.3) 

Other/Unknown* 88 (5.9) 157 (31.5) 
      
CD4 cell 
count, per 
mm3 

< 200 387 (25.7) 150 (30.1) 
200 – 499 801 (53.3) 250 (50.2) 

≥ 500 315 (21.0) 98 (19.7) 
      
HIV-1 RNA, 
copies/mL 

≤ 400 317 (21.1) 147 (29.5) 
401 - 1000 270 (18.0) 95 (19.1) 

>1,000 916 (60.9) 256 (51.4) 
      
Calendar 
year 

2002 – 2004 256 (17.0) 157 (31.5) 
2005 – 2007 714 (47.5) 226 (45.4) 

≥ 2008 533 (35.5) 115 (23.1) 
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Regimen 
Class at 
Initiation 

PI + ≥ 2 NRTI 8 (0.5) 9 (1.8) 

bPI + ≥ 2 NRTI 703 (46.8) 219 (44.0) 

NNRTI + ≥ 2 NRTI 785 (52.2) 268 (53.8) 

<6 drugs including 
FI/INSTI (+ entry 
inhibitors) 

7 (0.5) 2 (0.4) 

 
 

    
Regimen 
Class at 
Baseline 

PI + ≥ 2 NRTI 15 (1.0) 10 (2.0) 

bPI + ≥ 2 NRTI 732 (48,7) 229 (46.0) 

NNRTI + ≥ 2 NRTI 747 (49.7) 257 (51.6) 

<6 drugs including 
FI/INSTI (+ entry 
inhibitors) 

9 (0.6) 2 (0.4) 

 
Abbreviations: HIV, human immunodeficiency virus; PI, protease inhibitor; NRTI, nucleoside 
reverse transcriptase inhibitor; bPI, boosted protease inhibitor; NNRTI, nonnucleoside reverse 
transcriptase inhibitor; FI, fusion inhibitor; INSTI, integrase strand transfer inhibitor 
* Other/Unknown acquisition group included all VACS-VC participants includes all VACS 

participants. 
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Table 4: Hazard ratios of clinical outcomes under tight and loose control switching strategies in the ART-CC, the CNICS, and the 
HIV-CAUSAL Collaboration, 2002-2012. 
 

Outcome 

Strategy 
(HIV-1 RNA 
threshold in 
copies/mL) 

No. of 
outcomes  
(overlap 

with 
tight) 

Median 
(IQR) time 
to event in 

weeks 

Hazard Ratio,  
95% confidence interval 

   
 

     
   

   

 
Unadjusted 

 
Baseline-adjusted  

Baseline and time-
varying adjusted* † 

   
 

     
   

Death Tight (400) 21 31 (11, 52) 1 (ref.)   1 (ref.)   1 (ref.)  

Loose (1,000) 28 (20) 42 (14, 113) 1.11 0.88, 1.41  1.13 0.93, 1.38  1.10 0.73, 1.66 

   
 

     
   

AIDS or 
death 

Tight (400) 33 11 (2, 29) 1 (ref.)   1 (ref.)   1 (ref.)  

Loose (1,000) 41 (31) 15 (7, 60) 1.08 0.90, 1.28  1.05 0.90, 1.23  1.04 0.86, 1.27 

 
Abbreviations: HIV, human immunodeficiency virus; IQR,  interquartile range; ref, reference 
* Adjusted for the baseline covariates (sex, age, race, geographic origin, mode of acquisition, CD4 cell count, HIV RNA, calendar 

year, regimen class at initiation, and regimen class at baseline) and time-varying covariates (CD4 cell count, HIV RNA, AIDS-
defining illness, and time since last laboratory measurement).  

† Time-varying adjustment carried out by inverse probability weighting with weights truncated at the 99th percentile. 
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Appendix Table 1: Hazard ratios of changing to an ineligible regimen and switching to an eligible regimen in the ART-CC, the 
CNICS, and the HIV-CAUSAL Collaboration, 2002-2012. 
 
 Characteristic 

 
Hazard Ratio, 95% confidence interval 

 
        

  

Change to an 
ineligible 
regimen 

 

Switch to an 
eligible regimen 

 

        Baseline hazard per 13 weeks (linear) 0.88 0.84, 0.92 
 

0.91 0.86, 0.96 
 per 13 weeks (quadratic) 1.00 1.00, 1.01 

 
1.00 1.00, 1.01 

   
     Baseline 

Covariates  
Sex Male 1.10 0.86, 1.39 

 
0.96 0.77, 1.18 

Female (ref.) 
  

(ref.) 
   

     Age, years < 35 1.28 0.96, 1.71 
 

0.98 0.75, 1.28 
35 – 50 1.14 0.88, 1.49 

 
1.14 0.90, 1.44 

> 50 (ref.) 
  

(ref.) 
   

     Residence North America 1.18 0.85, 1.62 
 

0.71 0.52, 0.97 
Western Europe 1.30 0.93, 1.81 

 
1.29 0.95, 1.75 

Sub-Saharan Africa 1.06 0.78, 1.45 
 

1.27 0.98, 1.66 
Other/Unknown (ref.) 

  
(ref.) 

   
     Race White 1.00 0.76, 1.32 

 
0.67 0.51, 0.87 

Black 1.23 0.95, 1.59 
 

0.91 0.72, 1.15 
Other/Unknown (ref.) 

  
(ref.) 

   
     Acquisition group Heterosexual 1.52 1.08, 2.13 

 
1.14 0.84, 1.55 
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Homosexual 1.65 1.17, 2.32 
 

1.37 1.00, 1.88 
Injection drug use 1.45 0.98, 2.14 

 
1.06 0.73, 1.55 

Other/Unknown* (ref.) 
  

(ref.) 
   

     CD4 cell count,  
per mm3 

< 200 1.00 0.66, 1.49 
 

0.92 0.62, 1.37 
200 – 499 1.15 0.85, 1.57 

 
1.24 0.92, 1.67 

≥ 500 (ref.) 
  

(ref.) 
   

     HIV-1 RNA,  
copies/mL 

≤ 400 1.00 0.77, 1.29 
 

1.11 0.86, 1.43 
401 - 1000 1.09 0.85, 1.4 

 
0.91 0.70, 1.17 

>1,000 (ref.) 
  

(ref.) 
   

     Calendar year 2002 – 2004 1.98 1.52, 2.58 
 

0.81 0.64, 1.03 
2005 – 2007 1.46 1.15, 1.85 

 
0.90 0.74, 1.09 

≥ 2008 (ref.) 
  

(ref.) 
  

      Regimen Class at 
Initiation 

non-NNRTI based 1.12 0.81, 1.55 
 

1.12 0.85, 1.48 
NNRTI-based (ref.) 

  
(ref.) 

  

      Regimen Class at 
Baseline 

non-NNRTI based 0.79 0.57, 1.09 
 

0.59 0.45, 0.78 
NNRTI-based (ref.) 

  
(ref.) 

  
       Time-

varying 
covariates 

CD4 cell count,  
per 10 mm3 

Restricted cubic spline: 
5 knots at 10, 200, 350,  
500, 1,000 mm3 

1.04 1.00, 1.08 
 

0.96 0.93, 0.99 
0.64 0.46, 0.88 

 
1.11 0.84, 1.47 

3.82 
1.35, 
10.80 

 
0.86 0.34, 2.19 

0.31 0.10, 0.97 
 

0.98 0.33, 2.92 
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HIV-1 RNA,  
copies/mL 

≤ 400 0.43 0.34, 0.54 
 

0.25 0.20, 0.32 
401 - 1000 0.48 0.33, 0.69 

 
0.63 0.46, 0.86 

>1,000 (ref.) 
  

(ref.) 
  

      Time since last 
laboratory measurement 
(weeks) 

<4 4.52 3.35, 6.09 
 

12.17 8.08, 18.32 
4 - 7 1.91 1.36, 2.68 

 
4.89 3.17, 7.55 

8 - 11 1.01 0.67, 1.55 
 

2.84 1.74, 4.62 
≥ 12 (ref.) 

  
(ref.) 

   
     AIDS-defining illness No 0.96 0.86, 1.07 

 
0.90 0.73, 1.11 

Yes (ref.) 
  

(ref.) 
  

Abbreviations: HIV, human immunodeficiency virus; NNRTI, nonnucleoside reverse transcriptase inhibitor; ref, reference 
* Other/Unknown acquisition group included all VACS-VC participants includes all VACS participants. 
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Appendix Table 2: Distribution by cohort of the 43,803 individuals at initiation and 2,001 
individuals at baseline in the mortality analysis  in the ART-CC, the CNICS, and the HIV-
CAUSAL Collaboration, 2002-2012. 
 
Cohort No of individuals (%) 

 

Eligible at 
initiation 

Eligible at 
baseline 

 
43,803 2,001 

     AMACS 705 (1.6) 17 (0.9) 
ATHENA 3314 (7.6) 97 (4.9) 
Alberta 360 (0.8) 7 (0.4) 

Aquitaine 501 (1.1) 13 (0.7) 
BCCfE 1146 (2.6) 34 (1.7) 
CBC 521 (1.2) 25 (1.3) 
CHIC 13693 (31.3) 699 (34.9) 

CWRU 288 (0.7) 38 (1.9) 
CoRIS 894 (2.0) 13 (0.7) 
EuroSIDA 531 (1.2) 13 (0.7) 
FENWAY 292 (0.7) 10 (0.5) 

FHDH 6852 (15.6) 286 (14.3) 
Frankfurt 104 (0.2) 5 (0.3) 
GEMES 196 (0.5) 7 (0.4) 
HAVACS 200 (0.5) 9 (0.5) 

ICONA 864 (2.0) 32 (1.6) 
JH 470 (1.1) 36 (1.8) 
PISCIS 1230 (2.8) 32 (1.6) 
PRIMO 251 (0.6) 1 (0.1) 

SEROCO 14 (0.0) 0 (0.0) 
SHCS 1892 (4.3) 42 (2.1) 
UAB 337 (0.8) 23 (1.2) 
UCSD 637 (1.5) 44 (2.2) 

UCSF 583 (1.3) 47 (2.4) 
UKREG 692 (1.6) 37 (1.9) 
UNC 450 (1.0) 43 (2.2) 
VACH 3743 (8.6) 184 (9.2) 

VACS 2231 (5.1) 146 (7.3) 
Vanderbilt 451 (1.0) 42 (2.1) 
Washington 361 (0.8) 19 (1.0) 

 
* The full names of the cohorts are provided in Appendix 1.
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Appendix Table 3:  Key dates and HIV-1 RNAs for the 29 individuals contributing deaths in the ART-CC, the CNICS, and the HIV-
CAUSAL Collaboration, 2002-2012. 
 

Strategy Individual 
Baseline 

Crosses 
Tight Threshold 

Crosses 
Loose Threshold 

Switch 
Date 

Death 
Date 

Date RNA Date RNA Date RNA   
          

400 only 1 7/18/2006 404 7/18/2006 404   10/11/2006 7/27/2007 

1000 only 

2 6/22/2004 210 8/8/2005 477 . . . 9/25/2006 
3 5/25/2004 258 5/26/2005 838 . . . 3/21/2008 
4 3/12/2005 271 12/31/2005 744   . 6/2/2006 
5 10/21/2002 871 10/21/2002 871 . . . 2/11/2003 
6 1/20/2009 641 1/20/2009 641  . . 7/13/2010 
7 11/16/2007 584 11/16/2007 584 . . . 1/15/2012 
8 11/16/2004 479 11/16/2004 479 . . . 9/8/2005 
9 9/28/2004 614 9/28/2004 614 9/6/2006 19076 9/21/2006 11/22/2006 

Both 400 
and 1000 

10 7/7/2004 254 . . . . . 3/8/2005 
11 2/15/2005 220 . . . . . 3/21/2007 
12 11/13/2008 366 . . . . . 2/11/2009 
13 4/7/2005 283 . . . . . 7/17/2005 
14 6/4/2008 400 . . . . . 11/15/2008 
15 5/14/2007 400 . . . . . 3/15/2008 
16 5/17/2007 100010 5/17/2007 100010 5/17/2007 100010 . 5/27/2007 
17 6/15/2005 165797 6/15/2005 165797 6/15/2005 165797 . 9/9/2005 
18 6/13/2006 54875 6/13/2006 54875 6/13/2006 54875 . 8/27/2006 
19 4/6/2006 1754 4/6/2006 1754 4/6/2006 1754 . 5/6/2006 
20 4/11/2005 694000 4/11/2005 694000 4/11/2005 694000 . 4/29/2005 
21 10/20/2009 427233 10/20/2009 427233 10/20/2009 427233 11/2/2009 6/7/2010 
22 12/14/2004 54172 12/14/2004 54172 12/14/2004 54172 1/11/2005 12/10/2005 
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23 11/3/2009 3674 11/3/2009 3674 11/3/2009 3674 12/15/2009 4/7/2010 
24 3/9/2006 28000 3/9/2006 28000 3/9/2006 28000 3/9/2006 5/16/2009 
25 3/21/2007 100000 3/21/2007 100000 3/21/2007 100000 4/17/2007 3/15/2012 
26 1/13/2006 1019 1/13/2006 1019 1/13/2006 1019 1/13/2006 1/15/2007 
27 2/17/2004 30705 2/17/2004 30705 2/17/2004 30705 3/3/2004 8/20/2005 
28 12/6/2004 39896 12/6/2004 39896 12/6/2004 39896 2/14/2005 5/23/2008 
29 7/6/2006 246 10/19/2006 1207 10/19/2006 1207 10/19/2006 2/5/2007 
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Appendix Table 4: Hazard ratios of clinical outcomes for tight and loose control switching strategies in the ART-CC, the CNICS, and 
the HIV-CAUSAL Collaboration, 2002-2012: sensitivity analysis when no confirmation of virologic failure is required for eligibility. 
 

Outcome 

Strategy 
(HIV-1 RNA 
threshold in 
copies/mL) 

No. of 
outcomes  
(overlap 

with tight) 

Median 
(IQR) time 
to event in 

weeks 

Hazard Ratio,  
95% confidence interval 

   
 

     
   

   
 

Unadjusted 
 

Baseline-adjusted  
Baseline and time-
varying adjusted* † 

   
 

     
   

Death Tight (400) 50 34 (8, 80) 1 (ref.)   1 (ref.)   1 (ref.)  

Loose (1,000) 63 (47) 37 (9, 87) 1.01 0.86, 1.17  1.01 0.88, 1.17  0.86 0.55, 1.33 

   
 

     
   

AIDS or 
death 

Tight (400) 6860 9 (3, 46) 1 (ref.)   1 (ref.)   1 (ref.)  

Loose (1,000) 83 (66) 19 (5, 57) 1.00 0.90, 1.12  0.99 0.88, 1.10  1.06 0.79, 1.43 
 
Abbreviations: HIV, human immunodeficiency virus; IQR,  interquartile range; Ref, reference 
* Adjusted for the baseline covariates (sex, age, race, geographic origin, mode of acquisition, CD4 cell count, HIV RNA, calendar 

year, regimen class at initiation, and regimen class at baseline) and time-varying covariates (CD4 cell count, HIV RNA, AIDS-
defining illness, and time since last laboratory measurement).  

† Time-varying adjustment carried out by inverse probability weighting with weights truncated at the 99th percentile. 
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Figure 1: Modified CONSORT flow diagram for the mortality analysis in the ART-CC, the CNICS, and the HIV-CAUSAL 

Collaboration, 2002-2012. 
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Figure 2: Survival (left) and AIDS-free survival (right) under tight and loose control switching 
strategies in the ART-CC, the CNICS, and the HIV-CAUSAL Collaboration, 2002-2012. 
 
 

 
*The curves are standardized by the baseline covariates and inverse probability-weighted by the 
time-varying covariates listed under Table 4.
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Appendix Figure 1: Venn Diagram of cohorts participating the ART-CC, the CNICS, and the HIV-CAUSAL Collaboration, 2002-
2012. 
 

 
 
* The full names of the cohorts are provided in Appendix 1.  
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Appendix Figure 2: Survival (left) and AIDS-free survival (right) under tight and loose control 
switching strategies in the ART-CC, the CNICS, and the HIV-CAUSAL Collaboration, 2002-
2012: sensitivity analysis when no confirmation of virologic failure is required for eligibility. 
 

 
*The curves are standardized by the baseline covariates and inverse probability-weighted by the 
time-varying covariates listed under Table 5. 
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