
Using Off-The-Shelf Middleware to Implement Connectors in 
Distributed Software Architectures 

Eric M. Dashofy Nenad Medvidovic Richard N. Taylor 
Info. and Computer Science Dept. Computer Science Dept. Info. and Computer Science Dept. 

University of California, Irvine University of Southern California University of California, Irvine 
Irvine, CA 92697-3425, U.S.A. Los Angeles, CA 90089-078 1 Irvine, CA 92697-3425, U.S.A. 

edashofy@ics.uci.edu +l-213-740-5579 + l-949-824-6429 
neno@usc.edu taylor@ics.uci.edu 

ABSTRACT 
Software architectures promote development focused on 
modular building blocks and their interconnections. Since 
architecture-level components often contain complex 
functionality, it is reasonable to expect that their interactions 
will also be complex. Modeling and implementing software 
connectors thus becomes a key aspect of architecture-based 
development. Software interconnection and middleware 
technologies such as RMI, CORBA, ILU, and ActiveX 
provide a valuable service in building applications from 
components. The relation of such services to software 
connectors in the context of software architectures, however, is 
not well understood. To understand the tradeoffs among these 
technologies with respect to architectures, we have evaluated 
several off-the-shelf middleware technologies and identified 
key techniques for utilizing them in implementing software 
connectors. Our platform for investigation was C2, a 
component- and message-based architectural style. By 
encapsulating middleware functionality within software 
connectors, we have coupled C2’s existing benefits such as 
component interchangeability, substrate independence and 
structural guidance with new capabilities of multi-lingual, 
multi-process and distributed application development in a 
manner that is transparent to architects. 

Keywords 
Connectors, middleware, software, architectures, C2. 

1 INTRODUC’i’ION 
Software architectural styles, such as UNIX’s pipe-and-filter 
style or blackboard architectures in artificial intelligence, are 
key design idioms [S, 181. Software development based on 
common architectural idioms has its focus shifted from lines- 
of-code to coarser-grained architectural elements (software 
components, connectors, etc.) and their overall interconnection 
structure. An issue associated with architectures that is 
magnified in comparison with conventional software design 
and programming is the existence of software connectors as 
top-level constructs. 

In programming languages, connectors are primitive and 
implicit in, e.g., procedure calls and global variables. Since 
software components at the architectural level may contain 

Pcrtnission to make digital or hard copies of all or part of this work tix 

personal or classroom use is granted without fee provided that copies 

are not made or distributed for profit or commercial advantage and that 

copies hear this notice and the full citation on the first paye. To copy 

otherwise, to republish, to post on scrvcrs or tn rrdistrihute to lists. 

rcquircs prior specific permission and/or a fee. 

ICSE ‘99 Los Angeles CA 

Copyright ACM 1999 I-581 13-074-0/99/05...$5.00 

complex functionality, it is reasonable to expect that their 
interactions will be complex as well. Modeling and 
implementing software connectors with potentially complex 
protocols thus becomes a key aspect of architecture-based 
development [I, 14,231. In architectures, connectors may, e.g., 
be separately compilable message routing devices, shared 
variables, table entries, buffers, instructions to a linker, 
dynamic data structures, procedure calls, initialization 
parameters, client-server protocols, pipes, SQL links between 
a database and an application, and so forth [3,21]. 

While practitioners are typically intimately familiar with 
“connecting” software modules via, e.g., procedure calls, their 
understanding of other interconnection mechanisms, e.g., 
client-server protocols and message routers, is often minimal. 
Several commercial and research off-the-shelf (OTS) 
middleware software systems that explicitly implement such 
interconnection mechanisms are available: Field [20], 
SoftBench [2], Tooltalk [7], Q [9], Polylith [19], DCE [21], 
CORBA [16], ILU [26], COM/DCOM [22], and ActiveX [3]. 
Also, several object-oriented (00) programming languages 
provide remote procedure call (RPC) mechanisms. A 
representative example is Java’s Remote Method Invocation 
(RMI) system [24]. Unfortunately, the applicability of these 
mechanisms and tools to software architectures is not well 
understood. They are rarely used by architecture researchers in 
practice. With the exception of UniCon [23], the focus of 
researchers has instead generally been on formal modeling of 
connector protocols with implementation support for simple 
connections only. 

Consequently, we have begun exploration of these issues and 
have used our work on the C2 architectural style [25] as a basis 
for using OTS middleware in the context of software 
architectures. Our goals were to understand the issues in 
adapting the different technologies and the tradeoffs among 
the levels of support they provide for the needs of software 
architectures. Our implementation infrastructure [ 11, 121 has 
enabled us to experiment with incorporating several existing 
middleware technologies into C2 architectures. We have built 
software connectors that use four middleware packages: the Q 
system, the Polylith software bus, Java’s RMI facility, and 
ILU’s distributed object system. In doing so, we developed and 
experimented with a set of techniques for integrating 
middleware into software connectors. The preliminary results 
of this work were reported in [lo]. Our results to date suggest 
that our approach is general enough to be applicable across 
middleware technologies. 



The remainder of this paper is organized as follows. SeCtion 2 
presents a brief overview of the support for connectors in 
current software architecture research. Section 3 sumr&rizes 
the C2 architectural style and implementation infrastrhcture. 
This section also discusses an example CZstyle architecture, 
which was used to demonstrate the integration of the 
middleware packages into C2 connectors. Sections 4 ,and 5 
discuss our general approach to using middlewar? .with 
software connectors and the results of doing so, respeatively. 
Section 6 discusses our findings and the applicability of these 
findings to software architectures in general. A discusSion of 
future work rounds out the paper. 

2 OVERVIEW OF THE ROLE OF CONNECTORS IN 
SOFTWARE ARCHIECTURES 
The key role of connectors in architecture-based software 
development has been accepted by the majority of the sqftware 
architecture community. For example, this is reflected in 
connectors becoming a part of the “core ontology” ;in the 
ACME architecture interchange language [4]. Ho,wever, 
current architecture research is characterized by inconsistent 
approaches to fulfilling this key role of connectors. :Three 
projects representative of the state of the practice are Wright 
[l], UniCon [23], and Rapide [8]. 

Wright is an architecture description language (ADL) iwhose 
particular focus is formally specifying protocols of inte:action 
among components in an architecture. To this end, it employs a 
subset of communicating sequential processes (CSP) [6]. 
Given an architectural specification, Wright is able to 
determine the interaction characteristics of components 
communicating through any given connector, e.g., whether 
they will deadlock. However, Wright does not provide any 
support for the (correct) implementation of connectors. , 

UniCon, on the other hand, focuses on implementing 
connectors. To that end, it supports a predefined ,set of 
connectors: pipe, file I/O, procedure call(s), data acckss(es) 
and remote procedure call(s). UniCon’s shortcoming is, that it 
supports a limited set of connectors. Several of the connectors 
UniCon currently supports are simple and ’ their 
implementation is either already provided by the khosen 
underlying programming language or is otherwise ‘trivial. 
UniCon provides an elaborate mechanism and accomphnying 
process for specifying new connector types with/ more 
complex protocols. However, it is unclear how or whether this 
mechanism can be used to incorporate any of thk OTS 
middleware technologies discussed in Section I. 

I 
Rapide is an ADL whose accompanying toolset provides 
extensive modeling, analysis, simulation, and code get&ration 
capabilities. However, Rapide does not model conneciors as 
first-class entities, but rather specifies them in-line. Thii limits 
their reusability and renders their verification more diffibult, as 
each connection must be analyzed indivgdually. 
Implementation strategies and guidelines are thus required for 
each individual connector, rather than each connector t&e. 

There is, therefore, a need for an approach where powe&l and 
extensible connector modeling formalisms are couple’d with 
connector implementation support and architecture simplation 
and code generation. This is a complex task. Our hypothesis is 

Communication 

Fig. 1. A sample C2 architecture. Jagged lines represent the parts of 
the architecture not shown. 

that implementing connectors with these properties can be 
made easier by building upon existing middleware 
technologies. 

3 OVERVIEW OF THE C2 ARCHITECTUR.AL 
STYLE 
We chose the C2 architectural style as a foundation upon 
which to explore issues of integrating middleware with 
software connectors. The C2 style has an explicit notion of 
connectors as first-class entities and provides facilities to 
explore specific properties of software connectors such as 
filtering, routing, and broadcasting (described in more detail 
below). Further, the style is well-suited to a distributed 
environment, allowing us to leverage the networking 
capabilities of middleware technologies. The sty1.e supports a 
paradigm for composing systems in which components may be 
running in a distributed, heterogeneous environrnent without 
shared address spaces, architectures may Ibe changed 
dynamically, multiple users may be interacting with the 
system, multiple user interface toolkits may be employed, 
multiple dialogs may be active (and described in different 
formalisms), and multiple media types may be involved. 

For those unfamiliar with the C2 style, it is described in [25]. 
The C2 style can be informally summarized as a network of 
concurrent components hooked together by connectors, i.e. 
message routing devices. Components and connectors both 
have a defined top and bottom. The top of a component may be 
connected to the bottom of a single connector and the bottom 
of a component may be connected to the top of a single 
connector. There is no bound on the number of components or 
connectors that may be attached to a single connector (see 
Fig. 1). All communication in a C2 architecture is solely 
achieved by exchanging messages. Message-based 
communication is extensively used in distributed environments 
for which C2 is suited. 

Each component may have its own thread(s) of control. This 
simplifies modeling and implementation of mult:i-component, 
multi-user, and concurrent applications and enables 
exploitation of distributed platforms. Note that separating 
components into different threads of control is not a 
requirement. Moreover, a proposed architecture is distinct 
from its implementation(s) so that it is indeed possible for 

4 I 



tCon_n l;/////A 

(a) 

(a 

Fig. 2. C2 connectors have context reflective interfaces. Each C2 
connector is capable,of supporting any number of C2 components. 
(a) Software architect selects a set of components and a connector 

from a design palette. The connector has no communication 
ports, since no components are attached to it. 

(b-d) As components are attached to the connector to form an 
architecture, the connector creates new communication ports 
to support component intercommunication. 

components to share threads of control. This separation of 
architecture from implementation is a key aspect of our 
approach to integrating middleware technologies into C2, as 
discussed in Section 4. 

Finally, there is no assumption of a shared address space 
among C2 components. Any premise of a shared address space 
could be unreasonable in an architectural style that allows 
composition of heterogeneous, highly distributed components, 
developed in different languages, with their own threads of 
control, internal structures, and domains of discourse. 

3.1 C2 Connectors 
Connectors bind components together into a C2 architecture. 
They may be connected to any number of components as well 
as other connectors. A connector’s primary responsibility is 
the routing and broadcast of messages. A secondary 
responsibility is message filtering. 

Connectors may provide a number of filtering and broadcast 
policies for messages, such as the following: 

. no jltering - each message is sent to all connected com- 
ponents on the given side of the connector (top or bottom). 

l notification jiltering - each notification is sent to only 
those components that have registered for it. 

l prioritized - the connector defines a priority ranking over 
its connected components, based on a set of evaluation cri- 
teria specified by the software architect during the con- 
struction of the architecture. This connector then sends a 
notification to each component in order or priority until a 
termination condition has been met. 

. message sink - the connector ignores each message sent 
to it. This is useful for isolating subsystems of an architec- 
ture as well as incrementally adding components to an 
existing architecture. A developer can connect a new com- 
ponent to the architecture and then “turn on” its connector, 
by changing its filtering policy, when the component is 
ready to start sending and receiving messages. 

A unique feature of C2 connectors is that they have context 
reflective interfaces: a C2 connector is not defined to have a 
particular interface; instead, its interface is a function of the 
interfaces of components attached to it (see Fig. 2). A given 
C2 connector must be capable of supporting (message-based) 
communication among any C2 components. We have 
exploited this feature of C2 connectors to support both 
specification-time and run-time evolution of C2-style 
architectures [ 14, 151. 

C2 connectors and components are joined with intermediary 
entities called “ports.” Ports form message pathways between 
connectors and components, but they do not play an active role 
in filtering messages. 

3.2 Implementing C2 Style Architectures 
The ultimate goal of any software design and modeling 
endeavor is to produce the executable system. An elegant and 
effective architectural model is of limited value unless it can be 
converted into a running application. Doing so manually may 
result in many problems of consistency and traceability 
between an architecture and its implementation. For example, 
it may be difficult to guarantee or demonstrate that a given 
system correctly implements an architecture. Furthermore, 
even if this is currently the case, one has no means of ensuring 
that future changes to the system are appropriately traced back 
to the architecture and vice-versa. It is, therefore, desirable, if 
not imperative, for architecture-based software development 
approaches to provide source code generation tools. 

To support implementation of C2 architectures, we developed 
an extensible framework of abstract classes for C2 concepts 
such as components, connectors and messages, as shown in 
Fig. 3. This framework is the basis of development and 
middleware integration in C2. As we will discuss, the 
framework encapsulates all access to integrated middleware, 
ensuring that the use of middleware is transparent to an 
architect, and, indeed, to the implementor of a particular 
architecture. In Section 5, we will show that middleware can 
be further encapsulated completely within the connector 
elements of the framework. The framework implements 
interconnection and message passing protocols. Components 
and connectors used in C2 applications are subclassed from 
the appropriate abstract classes in the framework. This 
guarantees their interoperability, eliminates many repetitive 
programming tasks, and allows developers of C2 applications 
to focus on application-level issues. The framework supports a 
variety of implementation configurations for a given 
architecture: the entire resulting system may execute in a 
single thread of control, or each component may run in its own 
thread of control or operating system (OS) process. 

5 



CZObject 

L 

CaMessage 

t 
CaRequest 
C2Notification , 

C2Port 
L- C2Port-FIFO 

CaBrick 
C2 onnector 

D 

C2ConnectoySameProcess 1 
C2Connector-Thread 
C2Connector-IPC 

C2 omponent 

IL 
CZArchitecture 
C2 omponent_Threads 

F C2Architecture-Threads 

Fig. 3. C2 object-oriented class framework. 

3.3 An Example C2 Application 
The example application that was used in our investigation of 
OTS middleware integration in C2 is a version of the video 
game IUAX. A description of the game is given in Fig. 4. This 
particular application was chosen because game play imposes 
some real-time constraints on the application, bringing 
performance issues to the forefront. 

The architecture of the system is depicted in Fig. 5. The 
components that make up the KLAX game can be divid,ed into 
three logical groups. At the top of the architecture are the 
components which encapsulate the game’s state. The game 
state components respond to requests and emit notifications of 
internal state changes. Notifications are directed to the next 
level where they are received by both the game logic 
components and the artist components. 

1 

The game logic components request changes of game state in 
accordance with game rules and interpret game state change 
notifications to determine the state of the game in progress. 

KLAX Chute 
Tiles of random colors 

j 
, 

drc&E;gEn times 

KLAX Palette 
Palette catches tiles cornink 
down the Chute and drops 
them into the Well. 

KLAX Well 
Horizontal, vertical, and ’ 
diagonal sets of three or 1 
more consecutive tiles of I 
the same color are removed 
and any tiles above them 1 
collapse down to fill in the; 
newly-created empty spa&. 

KLAX Status I 

Fig. 4. A screenshot and description of our implementation of the 
KLAX video game. I 

! 

Fig. 5. Conceptual C2 architecture for KLAX. Shaded ovals 
represent process boundaries in the three-process implementations 
of KLAX. 

The artist components also receive notifications of game state 
changes, causing them to update their depictions. Each artist 
maintains the state of a set of abstract graphical objects which, 
when modified, send state change notifications in the hope that 
a lower-level graphics component will render them on the 
screen. 

The GraphicsBinding component receives all notifications 
about the state of the artists’ graphical objects and translates 
them into calls to a window system. User events, .such as a key 
press, are translated into requests to the artist components. 

The IUAX application was used as a testbed for our research 
on middleware. We used the partitioning shown in Fig. 5 for 
testing 0I’S middleware technologies, although other 
partitionings are possible. Two KLAX implementations were 
built using the C++ and Java frameworks shown in Fig. 3. 
Both implementations consist of approximately 13000 lines of 
commented code, in addition to the base framework’s 3000 
lines of code. A variation of the architecture shown in Fig. 5 
was also used as the basis of a distributed, multi-player KLAX 
application implemented using the Java framework. In this 
variation each player executes a copy of KLAX on his own 
machine. A player competes against other game participants 
by issuing requests to a central GameServh to, e.g., add an 
extra tile to a given player’s chute. The GameServer, in turn, 
notifies the appropriate players of the changes to their states in 
response to their opponent’s action. 

Performance of the different implementations of KLAX easily 
exceeds human reaction time if the ClockLogic component is 
set to use short time intervals. Although we have not yet tried 
to optimize performance, benchmarks indicate that the C++ 
framework can send 1200 simple messages per second when 
sending and receiving components are in the same process, 
with the Java framework being somewhat slower. In single- 

6 



player KLAX, a keystroke typically causes 10 to 30 message 
sends, and a tick of the clock typically causes 3 to 20 message 
sends 

4 THE ROLE OF MIDDLEWARE 
Middleware is a potentially useful tool when building software 
connectors. First, it can be used to bridge thread, process and 
network boundaries. Second, it can provide pre-built protocols 
for exchanging data among software components or 
connectors. Finally, some middleware packages include 
features of software connectors such as filtering, routing, and 
broadcast of messages or other data. 

4.1 Middleware Evaluation Criteria 
When evaluating OTS middleware technologies, we focused 
on several factors. We do not expect a single technology to 
satisfy all of these requirements. The selection process must be 
at least partially based on the characteristics and needs of a 
specific application: 

inter- and intra-process communication support - a dis- 
tributed application is likely to contain a mix of compo- 
nents that execute in a single thread of control, in different 
threads of control (but in the same process), and in differ- 
ent processes, some of which will reside on different 
machines. If a given middleware technology effectively 
supports only interprocess communication, its utility is 
limited and additional types of middleware may need to be 
employed. Note that multiple types of middleware in an 
application may indeed be preferable, as each may opti- 
mize a particular type of communication. 

features of software connectors - a middleware technol- 
ogy may only provide the ability for two processes to 
exchange data. The needs of software connectors are 
broader: event routing (e.g., broadcast, multicast, point-to- 
point), filtering, registration, and so forth [17]. If such fea- 
tures are not supported, additional infrastructure must be 
provided before such a technology may be used in a distrib- 
uted architecture, such as the one depicted in Fig. 5. 

platform and language support - software architectures, 
and C2 architectures in particular, are intended to support 
the development of distributed systems, built out of com- 
ponents which are potentially implemented in different 
programming languages and executing on multiple plat- 
forms. An interconnection technology that supports multi- 
lingual and multi-platform applications is thus a better can- 
didate for integration than one that does not. The penalties 
(e.g., adoption costs, performance) accrued by using a 
technology that only supports a single language and/or 
platform may outweigh any benefits of using it. 

communication method - similarly to the different types 
of connectors at the architectural level (see Section I), 
methods of communication across middleware technolo- 
gies vary and can include remote procedure calls @PC), 
message passing, passing object references, shared mem- 
ory, and so forth. A middleware technology that is not 
suited to an architectural style may cause implementation 
difficulties when used in the context of that style. However, 
as we will show, it is possible to implement connectors that 
make translations from one communication method to 
another (e.g. RPC to message-passing) to fit within a given 
architectural style. 

ease of integration and use - if integrating an OTS tech- 
nology into the implementation infrastructure and/or its 
use in an application requires a substantial amount of 
effort, its effectiveness and power may be rendered irrele- 
vant. For example, if an interconnection tool assumes that 
it is the application’s main thread of control, it is not well 
suited for use with C2, since C2 mandates that all compo- 
nents execute independently of each other. The amount of 
work required to integrate Q, Polylith, RMI and ILU (see 
Section 5) was relatively minor, typically only requiring 
additions of message routing or marshaling code. 

multiple instances in an application - one benefit of dis- 
tributed systems is that they do not have to depend on a sin- 
gle set of resources, thus avoiding performance 
bottlenecks. Analogously, it may be useful to physically 
distribute the very tool used to interconnect a distributed 
system. Centralized OTS middleware tools that use a single 
point of communication form potential bottlenecks and 
single points of failure. 

support for dynamic change - for an important class of 
safety- and mission-critical software systems, such as air 
traffic control or telephone switching systems, shutting 
down and restarting the system for upgrades incurs unac- 
ceptable delays, increased cost, and risk. Support for run- 
time modification is thus a key aspect of these systems. A 
middleware technology that does not support dynamic 
change is not an adequate candidate for them. 

performance - performance is a key issue in systems with 
real-time requirements. For example, in the KLAX appli- 
cation from Section 3, several hundred messages may be 
generated every second. The ability to efficiently ferry 
these messages among the components and across process 
boundaries is paramount. 

4.2 Supporting Cross-Process Communication 
Of all the issues noted above, the need for effectively 
supporting inter-process communication is particularly 
important to us. Distributed applications require this and most 
middleware technologies emphasize this capability. 
Consequently we focused particular attention on how 
middleware could be used to support connectors transparently 
spanning process boundaries. After examining the field of 
available middleware packages and their capabilities, we 
examined four possible approaches to connecting parts of a C2 
application running in multiple processes and possibly on 
multiple machines. These approaches are independent of the 
choice of underlying middleware; they do not depend on the 
properties of any particular middleware package. Two of these 
approaches divide an architecture along a single 
communication port, while the other two do so along a 
connector, as indicated in Fig. 5. 

4.2.1 Linking Ports across Process Boundaries 
The first approach that we examined and attempted to 
implement involved linking two C2 ports across a process or a 
machine boundary using a middleware package to bridge those 
boundaries. All accesses to the middleware technology would 
be entirely encapsulated within the port entity and would not 
be visible to architects or developers. The single-process 
implementation of a C2 connector links two ports together by 
having each port contain a reference to the other one. In this 
way, the ports can call methods on each other, sending 

7 



Fig. 6. Two communication ports in separate processes comprise a 
single “virtual port.” For clarity, we do not highlight component 
and connector ports. Shaded ovals represent process boundaries. 

messages as method.parameters. Our intent was to simply use 
the middleware to exchange port references across process 
boundaries and use the existing technique for message passing. 

We attempted to implement this strategy, but found that it was 
infeasible for several reasons. Most importantly, ports,, being 
complex objects, were not easily serializable. For each of the 
middleware technologies we evaluated, any objects sent across 
a process or network boundary must first be serialized into a 
byte stream. C2 ports contain references to complex C2 
objects to which they are attached (connectors, compbnents, 
and entire architectures), which would, in turn, also have to be 
serialized - hardly a reasonable approach. Secondly, 
references to objects are typically not preserved across process 
boundaries since all network data is passed by copy instead of 
by reference. Thus, even if we could overcome the 
serialization issue and pass port objects through the network, a 
connection made by using the references to them woul{ not be 
preserved over the network. This experience indicated that any 
passing of complex objects across a process or detwork 
boundary would be impossible using our available middleware 
technology. 

With this knowledge, we refined our approach: rather than 
attempting to send whole C2 port objects across process and 
network boundaries, we simply sent messages, which consist 
only of data and are easily marshaled. In this approaCh, two 
ports are created, one per process, to simulate a single ‘%rtual 
port,” as shown in Fig. 6. Rather than sending a reference to 
itself to the other port, each port simply sends messages. 

4.2.2 Linking Connectors across Process Boundaries I 
Sharing communication ports across process boundaries gave 
us fine-grained control over implementing an architect&e as a 
multi-process application. However, it required additional 
functionality in the C2 implementation framework and idid not 
isolate the change to the appropriate abstraction: the co nectar. 

1 In order to remedy this, we devised two connect0 -based 
approaches. Both of these approaches consist of impletienting 
a single conceptual software connector using two oi more 
actual connectors that are linked across process or Getwork 
boundaries. Each actual connector thus becomes a segrhent of 

8 

(a) 

Fig. 7. Connectors as a primary vehicle for interprocess 
communication. A single conceptual connector can be “broken up” 
vertically (a) or horizontally (b) for this purpose. Shaded ovals 
represent process boundaries. 

a single “virtual connector.” All access to the underlying 
middleware technology is encapsulated entirely within the 
abstraction of a connector, meaning that it is unseen by both 
architects and developers. 

We call the first approach “lateral welding,” depicted in 
Fig. 7(a). Messages sent to any segment of the multi-process 
connector are broadcast to all other segments. Upon receiving 
a message, each segment has the responsibility of filtering and 
forwarding it to components in its process as appropriate. Only 
messages are sent across process boundaries. 

While the lateral welding approach allowed us to “vertically 
slice” a C2 application, we aIso developed an approach to 
“horizontally slice” an application, as shown in Fig. 7(b). This 
approach is similar to the idea of lateral welding: a conceptual 
connector is broken up into top and bottom segments, each of 
which exhibits the same properties as a single-process 
connector to the components attached above and below it, 
respectively. However, the segments themseives are joined 
using the appropriate middleware. 

When used with a middleware technology that supports 
dynamic change at run-time, all of these approaches, both 
using ports and connectors, can be used to build; applications 
where processes can join and leave a running application. Only 
a small bit of additional infrastructure is required to notify a 
running architecture that a new process is joining or leaving 
the application. 

5 USE OF OTS MIDDLEWARE TECHNOLOGIES 
To explore the use of OTS middleware with software 
connectors, we chose four representative technologies from 
the field of available middleware packages. These were Q, an 



RPC system, Polylith, a message bus, RMI, a connection 
mechanism for Javalobjects, and ILU, a distributed objects 
package. 

5.1 Q 
The Q system [9], developed at the University of Colorado, is 
intended to provide interoperability support for multilingual, 
heterogeneous component-based systems. Q presents a layer 
of functionality between software components communicating 
across process boundaries. It is based on remote procedure 
calls (RPC) and provides support for marshaling and 
unmarshaling of arbitrarily complex type structures. Q also 
supports placement of components executing in a single thread 
or in multiple threads of control inside a single process. It 
ensures the proper communication of multi-threaded 
components with other parts of a system. Q addresses the issue 
of performance by adding an asynchronous message interface 
on top of a standard RPC interface, so that processor time is 
used for interprocess communication only when it is known 
that data is pending. 

Q uses a remote procedure call (RPC) mechanism for 
communication, which is dissimilar to C2’s message-based 
style. Nonetheless, we easily emulated message passing using 
RPC by passing serialized messages as parameters in remote 
calls. Q supports systems built in several languages: C/C++, 
Ada, Java, Tel, Lisp, and Prolog. It was originally built for the 
UNIX platform, although its Java interface presents the 
potential for moving to other platforms. We have made use of 
its support for C/C++ and Ada with the intent to exploit its 
support for Java in the near future. 

Our approach to integrating Q with the C2 implementation 
infrastructure consisted of encapsulating Q inside a C2 
connector (we refer to it as a “Q-C2 connector” below). Q is 
not a software bus, so it does not support typical connector-like 
features, such as event registration, filtering, and routing. 
However, this layer of support is added easily in a Q-C2 
connector. 

A Q-C2 connector exports the same interface as a regular C2 
connector, so architects attach components to it in the usual 
manner. Internally, however, a Q-C2 connector provides a 
mechanism for communicating across process boundaries via 
Q. At each process boundary, a conceptual C2 connector is 
“broken up” into two or more Q-C2 connectors, one per 
process, as shown in Fig. 7b. When using Q-C2 connectors, all 
processes containing C2 subarchitectures must register with a 
single “name server.” All links across process boundaries are 
specified in the Q-C2 connector, by naming the attached 
connectors, and are maintained by Q at execution time. 
Clearly, care must be taken to ensure that there are no naming 
conflicts, i.e., that multiple Q-C2 connectors do not share a 
name. 

Given that we can explicitly specify the connections among Q- 
C2 connectors in an architecture, a single instance of Q is 
sufficient to support the needs of an architecture. Since Q is 
UNIX-based, it supports addition and removal of processes at 
execution time. Any additional support for dynamism, such as 
transactions, state preservation during change, or component 
(i.e., process) replacement, must be built on top of Q. 

9 

We used Q to generate a multi-process version of KLAX, 
shown in Fig. 5. Connectors IPconnl and IPconn2 were used 
at process boundaries. The rest of the application remained 
identical to single-process I$LAX. This three-process 
configuration allowed us to explore issues in supporting 
multilingual applications in C2. For example, we were able to 
replace the “middle” process in KLAX, where the ZZeArtist 
component and both connectors were initially implemented in 
C++, with their Ada implementations. This can be done at 
specification or execution, time. If the change is made at run- 
time, a part of the game state is lost, as no one receives the 
notifications issued by components in the “top” process or 
requests issued by the “bottom” process components during 
the course of the change. The performance of this variation of 
KLAX easily exceeded human reaction time if the ClockLogic 
component used short time intervals. 

5.2 Polylith 
The Polylith software bus was developed at the University of 
Maryland [19]. Polylith was built to allow several parts of an 
application to communicate across process boundaries using 
messages made up of arbitrarily complex type structures. 
Polylith uses messages for communication, which made it 
well-suited for implementing C2-style connectors. Polylith can 
transfer messages among processes running on a single 
machine or on multiple machines using the TCP/IP 
networking protocol. The Polylith toolkit is implemented in C 
and runs on several variants of UNIX. Polylith supports 
applications developed in C/C++; support for additional 
programming languages is under development. 

Polylith is inherently built to communicate among UNIX 
processes. Although there is no support for multithreading in 
Polylith, multiple threads within a process are allowed in 
principle. Polylith has support for marshaling and 
unmarshaling of C basic types and structures. The Polylith bus 
itself runs in its own process and acts as a message queue for 
other processes, which are individually responsible for 
periodically sending and retrieving messages to and from the 
bus. 

Like the Q-C2 connector, the “Polylith-C2” connector is an 
extension of the standard, in-process C2 connector. All access 
to Polylith is done within the C2 connector, and is transparent. 
Components can attach themselves to a Polylith-C2 connector 
in the usual manner. 

The process-level structure of a C2 application that uses 
Polylith is defined statically, i.e., at compile time, using a 
proprietary language called MIL. The MIL code can be 
generated automatically in a fairly straightforward manner. AS 
a software bus, Polylith has the ability to route messages at the 
process level, but it was necessary for us to implement our own 
intra-process routing mechanisms. There is no support for 
message filtering in Polylith. 

The current Polylith toolkit uses the UNIX process scheduler 
for all process scheduling. Polylith applications with specific 
scheduling needs must explicitly make system-level calls from 
within the application. Such performance limitations became 
problematic when Polylith-C2 was used in the implementation 
of the KLAX application from Section 3. The implementation 
suffered from poor performance due to the UNIX process 
scheduler giving large time slices to each process, resulting in 



messages being handled in bursts rather than in a fluid manner. 
This may be unacceptable in a real-time application such as 
KLAX. The authors of Polylith acknowledge this problem; an 
experimental, as yet unreleased version of Polylith alleviates 
this shortcoming. 

5.3 RMI 
Java’s Remote Method Invocation (RMI) [24] is a technology 
developed by Sun Microsystems to allow Java objects to 
invoke methods of other objects across process and machine 
boundaries. RMI supports several standard distributed 
application concepts, namely registration, remote method 
calls, and distributed objects. Currently, RMI only supports 
Java applications, but there is indication of a forthcoming link 
between RMI and CORBA that would remedy this. 

Each RMI object that is to be shared in an application defines a 
public interface (a set of methods) that can be called remotely. 
This is similar to the RPC mechanism of Q. These methods are 
the only means of communication across a process boundary 
via RMI. Because RMI is not a software bus, it has no concept 
of routing, filtering, or messages. However, Java’s Ibuilt-in 
serialization and deserialization capabilities handle marshaling 
of basic and moderately complex Java objects, including C2 
messages. 

RMI is fully compatible with the multithreading capabilities 
built into the Java language, and is therefore well suited for a 
multithreaded application. It allows communication among 
objects running in different processes which may be on 
different machines. Communication occurs exclusively over 
the TCP/IP networking protocol. 

Like the Polylith- and Q-integrated connectors, the RMI-C2 
connector we developed has all the capabilities of a single- 
process C2 connector. Additionally, it has the ability to register 
and deregister itself at run-time with the Java-RMI name 
server, and to be linked to other registered connectors. All 
access to RMI facilities is encapsulated within the connector 
and is transparent. 

Minimal modification was required to convert the existing C2 
KLAX application into a multi-process application that uses 
RMI-C2 connectors. RMI supports application modification at 
run-time, a capability enabled by Java’s dynamic class loading. 
The performance of the three-process implementation of 
KLAX using RMI-C2 was satisfactory. Another variation of 
the IUAX application built using RMI-C2 connectors was 
multiplayer KLAX. This variation allowed players to remotely 
join a game already in progress and compete against other 
participants. 

RMI’s properties make it ideal for use within a Java C2 
application. Its native support in Java 1 .l makes it more 
available to architecture implementors than third party 
alternatives. Also, using software connectors that work with 
RMI does not preclude an application implemented partially or 
completely in Java from using another middleware technology, 
such as Q or ILU, as well. 

5.4 ILU 
Xerox PARC’s ILU (Inter-Language Unification) [26] was 
developed as a free CORBA-like object brokering system. 
Functionally, it is similar to Java RMI, allowing objects to call 
methods on other objects across process or network 

boundaries. ILU is different from RMI in that it has wide 
platform and language support: C, C++, Java, Python, LISP, 
Modula-3, Per1 and Scheme on both Windows and UNIX 
platforms. The current ILU implementation can be thought of 
as a CORBA Object Request Broker (ORB), but ILU is not yet 
fully CORBA compliant. 

Like RMI, each ILU object that is to be shared in an 
application defines a public set of methods that ‘can be called 
remotely. There is no inherent concept of messages in ILU, but 
messages can be passed as parameters in remote method calls. 
Similarly to Q, ILU has the ability to serialize moderately 
complex objects across language boundaries. As with other 
distributed object systems, references are not preserved across 
the serialization boundary. ILU does not include a name 
server, but it facilitates object registration through a method 
called “simple binding” that is part of the ILU package. Our 
integration of ILU with C2 was done using the Java 
implementations of the C2 framework and the ILU package. 
The ILU-C2 connector thus created has all the capabilities of 
an in-process C2 connector, but it is also capable of lateral 
connection to ILU-C2 connectors in other processes. Again, 
all access to ILU is done entirely within the connector, in a 
manner that is transparent to architects and developers. 

ILU takes full advantage of Java’s multithreading capabilities 
and works in multithreaded applications writ.ten in other 
languages, even if such threading is provided by the operating 
system rather than the language itself. This makes it well 
suited for real-time, asynchronous message passing 
architectures, such as C2-style architectures. Minimal 
modification was required when converting a single-process 
C2 application to a multi-process C2 application. ILU allows 
objects to be registered and deregistered at run-time, therefore 
enabling dynamic application construction at :run-time. We 
utilized this feature to demonstrate a set of components and 
connectors joining a larger, already executing application at 
run-time. 

5.5 Simultaneous Use of Multiple Middleware Technolo- 
gies 
Each middleware technology we evaluated has unique 
benefits. By combining multiple such technologies in a single 
application, the application can potentially obtain the benefits 
of all of them. For instance, a middleware technology that 
supports multiple platforms but only a single language, such as 
RMI, could be combined with one that supports multiple 
languages but a single platform, such as Q, to create an 
application that supports both multiple languages and multiple 
platforms. 

The advantages of combining multiple middleware 
technologies within software connectors are manifold. In the 
absence of a single panacea solution that supports all required 
platforms, languages, and network protocols, ,the ability to 
leverage the capabilities of several different middleware 
technologies significantly widens the range of applications that 
can be implemented within an architectural style such as C2. 

We combined our implementations of ILU-C2 and RMI-C2 
connectors in a version of the KLAX application. We were 
able to do so with no modification to the C2 framework or the 
connectors themselves by combining the lateral welding 
technique shown in Fig. 7(a) with the horizontal slicing 

10 



ILU-C2 Connector RMI-C2 Connector 

Virtual Connector 

Fig. 8. An example of a three-process C2 application using different 
OTS middleware types. A single virtual connector is implemented 
with two in-process and two multi-process connectors. The in- 
process connectors facilitate message passing between the multi- 
process connectors. Shaded ovals represent process boundaries. 

technique shown in Fig. 7(b). An example of this combined 
binding method is shown in Fig. 8. The approach shown in this 
figure creates a three-process “virtual connector” using two in- 
process C2 connectors to laterally bind two multi-process 
connectors. This approach works for any combination of OTS 
connectors that use the lateral welding technique. An 
alternative approach would have been to create a single 
connector that supported both ILU and RMI, but this would 
have required changes to the framework. Using the technique 
shown Fig. 8 avoids this difficulty with a slight efficiency cost 
due to the addition of in-process connectors to bind the multi- 
process connectors. 

6 DISCUSSION 
Because software connectors provide a uniform interface to 
other connectors and components within an architecture, 
architects need not be concerned with the properties of 
different middleware technologies as long as the technology 
can be encapsulated within a software connector. Internally, 
however, connectors based on different middleware 
technologies have different abilities. Implementors of a given 
architecture can use this knowledge to determine which 
middleware solutions are appropriate in a given 
implementation of an architecture. In this way, encapsulating 
middleware functionality within software connectors 
maintains the integrity of an architectural style by keeping it 
separate from implementation-dependent factors such as how 
to bridge process boundaries within a single architecture. 

Currently, a major challenge in computing is the integration of 
existing legacy systems with new software capabilities. 
Another aspect of this problem is retrofitting existing 
components’ interfaces to use them in new contexts. By 
encapsulating legacy systems and new software in software 
component wrappers as described in [ 11, 121 and binding these 
components together with middleware-integrated software 
connectors, building new software systems with legacy 
packages becomes less difficult. Consider the case where a 
legacy server must be integrated with new client software. If 
the server and client packages are both encapsulated within 
software components, middleware-enabled connectors such as 
those described above can be used to bridge language, 
platform, and network boundaries. The middleware 
transparently performs platform- and language-independent 

data transfer across the network, allowing the old and new 
components to communicate in a manner that is defined by the 
architecture rather than the implementation. 

Software connectors have been embraced as a critical 
abstraction by software architecture researchers. Connectors 
remove from components the responsibility of knowing how 
they are interconnected. They also introduce a layer of 
indirection between components. The potential penalties paid 
due to this indirection (e.g., performance) should be 
outweighed by other benefits of connectors, such as their 
encapsulation of complex intercommunication protocols that 
can be reused relatively inexpensively across applications. 
Modeling and implementation of software connectors with 
potentially complex protocols thus becomes an important 
aspect of architecture-based development. 

Our research to date has identified advantages and 
shortcomings in several middleware packages when used in a 
real-time component- and.message-based architectural style. 
Using techniques such as those described here, we speculate 
that such middleware could be integrated with other 
architectural styles. 

7 FUTURE WORK 
In the process of integrating four different OTS middleware 
technologies with the C2 implementation infrastructure, we 
developed several techniques for using middleware that show 
potential for general applicability. In our ongoing project we 
plan to widen our base of integrated middleware technolggies 
to include technologies such as CORBA and DCOM 5221. 
Based on our experience, we believe that integrating other 
middleware will proceed similarly to that described here. We 
intend to further refine our existing connectors to improve 
performance and capabilities. We also intend to analyze the 
efficiency implications of using OTS middleware. Lastly, our 
work suggests that the techniques we have developed can be 
used to integrate OTS middleware within other architectural 
styles that have explicit notions of connectors. We intend to 
explore this idea. 

8 ACKNOWLEDGEMENTS 
The authors would like to thank Peyman Oreizy and Ken 
Anderson for their work on various aspects of the C2 style and, 
in particular, for their efforts in integrating Q with the C2 
implementation infrastructure. 

This effort is partially sponsored by the Defense Advanced 
Research Projects Agency, and Rome Laboratory, Air Force 
Materiel Command, USAF, under agreement number F30602- 
97-2-0021. The U.S. Government is authori,zed to reproduce 
and distribute reprints for Governmental purposes 
notwithstanding any copyright annotation thereon. Approved 
for public release - distribution unlimited. The views and 
conclusions contained herein are those of the authors and 
should not be interpreted as necessarily representing the 
official policies or endorsements, either expressed or implied, 
of the Defense Advanced Research Projects Agency, Rome 
Laboratory or the US. Government. 

This effort is also sponsored by Hughes Electronics 
Corporation under UC MICRO grant number 97-177. 

11 



REFERENCES / 

1. 

2. 

3 - . 

4. 

5. 

6. 

7. 

8. 

9. 

R. Allen and D.‘Garlan. A Formal Basis for Architectural 
Connection. ACM Transactions on Software Engineering 
and Methodology, July 1997. I 

M. R. Cagan. The HP SoftBench Environment: An 
Architecture for a New Generation of Software Tools. 
Hewlett-Packard Journal, June l990. 

D. Chappell. Understanding ActiveX and OLE. Microsoft 
Press, Redmond, WA, 1996. 

D. Garlan, R. Monroe, and D. Wile. ACME: An Archi- 
tecture Description Interchange Language. In Proceed- 
ings of CASCON’97, November 1997. 

D. Garlan and M. Shaw. An Introduction to Software 
Architecture: Advances in Software Engineering and 
Knowledge Engineering, volume I. World Scientific Pub- 
lishing, 1993. 

C. A. R. Hoare. Communicating Sequential Processes. 
Prentice Hall, 1985. 

A. Julienne and B. Holtz. Tooltalk and Open Protocols: 
Inter-Application Communication. SunSoft PresslPren- 
tice Hall, April 1993. 

D. C. Luckham and J. Vera. An Event-Based Architec- 
ture Definition Language. IEEE Transactions on Soft- 
ware Engineering, September 1995. 

M. J. Maybee, D. H. Heimbigner, and L. J. Osterweil. 
Multilanguage Interoperability in Distributed Systems: 
Experience Report. In Proceedings of the Eighteenth 
International Conference on Software Engineering, Ber- 
lin, Germany, March 1996. 

10. N. Medvidovic, E. Dashofy, and R. N. Taylor. Employing 
Off-the-Shelf Connector Technologies in C2-Style 
Architectures. Proceedings of the California Software 
Symposium, October 1998. 

11. N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of 
Off-the-Shelf Components in C2-Style Architectures. In 
Proceedings of the 1997 Symposium on Software Reus- 
ability (SSR’97) and Proceedings of the 1997 Intema- 
tional Conference on Software Engineering (ICSE’97), 
Boston, MA, May 1997. 

12. N. Medvidovic and R. N. Taylor. Exploiting Archi!tec- 
tural Style to Develop a Family of Applications. ZL?E Pro- 
ceedings Software Engineering, October-December 
1997. 

13. N. Medvidovic and R. N. Taylor. A Framework fof Clas- 
sifying and Comparing Architecture Description Lan- 
guages. In Proceedings of the Sixth European Software 
Engineering Conference together with the Fifth ACM 

SIGSOFT Symposium on the Foundations of Software 
Engineering, Zurich, Switzerland, September 1997. 

14. N. Medvidovic, R. N. Taylor, and D. S. Rosenblum. An 
Architecture-Based Approach to Software Evolution. In 
Proceedings of the International Workshop on the Princi- 
ples of Software Evolution, Kyoto, Japan, April 20-21, 
1998. 

15. P. Oreizy, N. Medvidovic, and R. N. Taylor. Architec- 
ture-Based Runtime Software Evolution. In Proceedings 
of the 20th International Conference on Software Engi- 
neering (ICSE’98), April 1998, Kyoto, Japan. 

16. R. Orfali, D. Harkey, and J. Edwards. The Essential Dis- 
tributed Objects Survival Guide. John Wiley & Sons, 
Inc., 1996. 

17. D.E. Perry. Software Architecture and its Relevance to 
Software Engineering. Coord’97, September 1997. 

18. D. E. Perry and A. L. Wolf. Foundations for lthe Study of 
Software Architectures. ACM SIGSOFT Software Engi- 
neering Notes, October 1992. 

19. J. Purtilo. The Polylith Software Bus. ACM Transactions 
on Programming Languages and Systems, January 1994. 

20. S. I? Reiss. Connecting Tools Using Message Passing in 
the Field Environment. IEEE Software, pages 57-66, July 
1990. 

2 1. A. Schill, editor. DCE - The OSF Distributed Comput- 
ing Environment. Proceedings of the International DCE 
Workshop, Karlsruhe, Germany, Springer Ve:rlag, Octo- 
ber 1993. 

22. R. Sessions. COM and DCOM: Microsoft’s ‘Vision for 
Distributed Objects. John Wiley & Sons, New York, NY, 
1997. 

23. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. 
Young, and G. Zelesnik. Abstractions for Software 
Architecture and Tools to Support Them. IEEE Transac- 
tions on Software Engineering, April 1995. 

24. Sun Microsystems, Inc. Remote Method Inveocation. 
http://java.sun.com:80/products/jdk/rmi/index.html 

25. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. 
Whitehead, Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and 
D. L. Dubrow. A Component- and Message-Based 
Architectural Style for GUI Software. IEEE Transactions 
on Software Engineering, June 1996. 

26. Xerox Palo Alto Research Center. ILU - Inter-Lan- 
guage Unification. 
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html 

12 I 


