

16

[Mittal & Frayman, 1989] S. Mittal and F. Frayman: Towards a Generic Model of Configuration
Tasks. In

Proceedings of the 11th International Joint Conference on Artificial Intelligence -
IJCAI ‘89

, San Mateo, CA, Morgan-Kaufman, 1989.
[Mizoguchi et al., 1995] R. Mizoguchi, J. Vanwelkenhuysen, and M. Ikeda: Task Ontologies for

reuse of Problem Solving Knowledge. In N. J. I. Mars (ed.),

Towards Very Large Knowledge
Bases,

IOS Press, 1995.
[Motta & Zdrahal, 1996] E. Motta and Z. Zdrahal: Parametric Design Problem Solving. In

Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´96)

, Banff, Canada, November 9-14, 1996.
[Newell & Simon, 1972] A. Newell and H. A. Simon:

Human Problem Solving

, Prentice Hall,
1972.

[Puppe, 1993] F. Puppe:

Systematic Introduction to Expert Systems: Knowledge Representation
and Problem-Solving Methods

, Springer-Verlag, Berlin, 1993.
[Reynaud & Tort, 1997] C. Reynaud and F. Tort: Using Explicit Ontologies to Create Problem

Solving Methods,

International Journal of Human-Computer Studies (IJHCS)

, 46:339—364,
1997.

[Schreiber et al., 1994] A. TH. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde, and
R. de Hoog: CommonKADS. A Comprehensive Methodology for KBS Development,

IEEE
Expert

, 9(6):28—37, 1994.
[Steels, 1990] L. Steels: Components of Expertise,

AI Magazine

, 11(2), 1990.
[ten Teije, 1997] A. ten Teije:

Automated Configuration of Problem Solving Methods in Diagnosis

,
PhD thesis, University of Amsterdam, Amsterdam, NL, 1997.

[Terpstra et al., 1993] P. Terpstra, G. van Heijst, B. Wielinga, and N. Shadbolt: Knowledge
Acquisition Support Through Generalised Directive Models. In M. David et al. (eds.):

Second
Generation Expert Systems

, Springer-Verlag, 1993.
[Top & Akkermans, 1994] J. Top and H. Akkermans: Tasks and Ontologies in Engineering

Modeling,

International Journal of Human-Computer Studies (IJHCS)

, 41:585—617, 1994.
[van Heijst and A. Anjewerden, 1996] G. van Heijst and A. Anjewerden: Four Propositions

concerning the specification of Problem-Solving Methods. In

Supplementary Proceedings of
the 9th European Knowledge Acquisition Workshop EKAW-96

, Nottingham, England, May
14-17, 1996.

[van de Velde, 1988] W. van de Velde: Inference Structure as a Basis for Problem Solving. In

Proceedings of the 8th European Conference on Artificial Intelligence (ECAI-88)

, Munich,
August 1-5, 1988.

[van Harmelen & Fensel, 1995] F. van Harmelen and D. Fensel: Formal Methods in Knowledge
Engineering,

The Knowledge Engineering Review

, 10(4), 1995.
[van Heijst et al., 1997] G. van Heijst, A. T. Schreiber, and B. J. Wielinga: Using Explicit

Ontologies in Knowledge-Based System Development,

International Journal of Human-
Computer Interaction (IJHCI)

, to appear 1997.
[Wielinga et al., 1995] B. J. Wielinga, J. M. Akkermans, and A. Th. Schreiber: A Formal Analysis

of Parametric Design Problem Solving. In

Proceedings of the 9th Banff Knowledge
Acquisition Workshop (KAW-95)

, Banff, Canada, January 26 - Feruary 3, 1995.
[Yost & Rothenfluh, 1996] G. R. Yost and T.R. Rothenfluh: Configuring elevator systems,

International Journal of Human-Computer Studies (IJHCS)

, 44(3/4):521—568, 1996.
[Zdrahal & Motta, 1995] Z. Zdrahal and E. Motta: An In-Depth Analysis of Propose & Revise

Problem Solving Methods. In

Proceedings of the 9th Banff Knowledge Acquisition Workshop
(KAW-95)

, Banff, Canada, January 26 - Feruary 3, 1995.

15

[Chandrasekaran, 1990] B. Chandrasekaran: Design Problem Solving: A Task Analysis.

AI
Magazine

, 11(4):59—71, Winter Issue, 1990.
[Chandrasekaran et al., 1992] B. Chandrasekaran, T.R. Johnson, and J. W. Smith: Task Structure

Analysis for Knowledge Modeling,

Communications of the ACM

, 35(9): 124—137, 1992.
[Eriksson et al., 1995] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta, and M. A. Musen: Task

Modeling with Reusable Problem-Solving Methods,

Artificial Intelligence

, 79(2):293—326,
1995.

[Farquhar et al., 1997] A. Farquhar, R. Fickas, and J. Rice: The Ontolingua Server: a Tool for
Collaborative Ontology Construction,

International Journal of Human-Computer Studies
(IJHCS)

, 46(6):707—728, 1997.
[Fensel, 1997a] D. Fensel: An Ontology-based Broker: Making Problem-Solving Method Reuse

Work. In

Proceeedings of the Workshop on Problem-Solving Methods for Knowledge-based
Systems (W26) during IJCAI-97,

 Japan, August 23, 1997.
[Fensel, 1997b] D. Fensel: The Tower-of-Adapters Method for Developing and Reusing Problem-

Solving Methods. To appear in

Proceedings of European Knowledge Acquisition Workshop
(EKAW-97)

, LNAI, Springer-Verlag, 1997.
[Fensel & Groenboom, 1997] D. Fensel and R. Groenboom: Specifying Knowledge-Based

Systems with Reusable Components. In

Proceedings of the 9th International Conference on
Software Engineering & Knowledge Engineering (SEKE-97)

, Madrid, Spain, June 18-20,
1997.

[Fensel & Schönegge, 1997] D. Fensel and A. Schönegge: Specifying and Verifying Knowledge-
Based Systems with KIV. In

Proceedings of the European Symposium on the Validation and
Verification of Knowledge Based Systems EUROVAV-97

, Leuven Belgium, June 26-28, 1997.
[Fensel et al., 1996] D. Fensel, H. Eriksson, M. A. Musen, and R. Studer: Developing Problem-

Solving by Introducing Ontological Commitments,

International Journal of Expert Systems:
Research & Applications,

vol 9(4), 1996.
[Gennari et al., 1994] Gennari, J. H., Tu, S. W., Rothenfluh, T. E., Musen, M. A. Mapping

Domains to Methods in Support of Reuse. In

Proceedings of the 8th Banff Knowledge
Acquisition Workshop (KAW-94)

, Banff, Canada, 1994.
[Gruber, 1993] T. R. Gruber: A Translation Approach to Portable Ontology Specifications,

Knowledge Acquisition

, 5(2), 1993.
[Gruber, 1995] T. R. Gruber: Toward Principles for the Design of Ontologies Used for

Knowledge Sharing,

International Journal of Human-Computer Studies (IJHCS)

, 43(5/
6):907—928, 1995.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and
Frame-Based Languages,

Journal of the ACM

, 42, 1995

.

[Klinker et al., 1991] G. Klinker, C. Bhola, G. Dallemagne, D. Marques, and J. McDermott:
Usable and Reusable Programmin Constructs,

Knowledge Acquisition,

 3:117—136, 1991.
[Lenat & Feigenbaum, 1987] D. B. Lenat and E. A. Feigenbaum: On the Thresholds of

Knowledge. In

Proceedings of the 10th International Joint Conference on Artificial
Intelligence (IJCAI-87)

, 1987.
[Marcus et al., 1988] S. Marcus, J. Stout, and J. McDermott VT: An Expert Elevator Designer

That Uses Knowledge-based Backtracking,

AI Magazine

, 9(1):95—111, 1988.
[Marcus & McDermott, 1989] S. Marcus, and J. McDermott: SALT: A Knowledge Acquisition

Language for Propose and Revise Systems,

Artificial Intelligence

, 39(1):1—37.
[Mc Dermott, 1988] J. Mc Dermott: Preliminary Steps Toward a Taxonomy of Problem-Solving

Methods. In S. Marcus (ed.).

Automating Knowledge Acquisition for Experts Systems

, Kluwer
Academic Publisher, Boston, 1988.

14

competence of PSMs ([ten Teije, 1997] abstracts from all heuristic search knowledge
that is essential in specifying PSMs). In contrast with these approaches we use formal
ontologies to provide declarative, axiomatic specifications of both generic problem
classes (task ontologies) and PSMs (method ontologies). Moreover, we demonstrated
the use of adapters as a formal technique to integrate tasks and method ontologies.

An ontology-driven bottom-up development process is described in [Reynaud & Tort,
1997], which shows how to derive a reasoning method from an expert ontology.
Therefore, their aim is orthogonal to our approach, which is concerned with the reuse of
existing reasoning methods. However, it would be worthwhile to investigate whether
their approach can be used to select and refine PSMs based on the ontological
characterization proposed here.

[Mizoguchi et al., 1995] use ontologies to characterize tasks. A task ontology is used to
decompose a task into subtasks, to identify the required knowledge types and to
construct a problem solver that simulates the problem-solving behaviour of a domain
expert. Again, the main distinction to our approach is that we aim for a declarative
(black-box) characterization of problems and PSMs which does not refer to internal
details of the problem-solving process.

In conclusion, in this paper we have shown an approach which centres on formal,
axiomatic, reuse-oriented specifications of generic KBS components. Like all research
on software reuse, it is the ultimate effectiveness of our approach will have to be
validated empirically, by trying it out on a number of different application domains.

Acknowledgement.

 We thank Annette ten Teije, Frank van Harmelen, Mark
Willems, and two anonymous reviewers for helpful comments on drafts of the
paper.

6 References

[Akkermans et al., 1993] J. M. Akkermans, B. Wielinga, and A. TH. Schreiber: Steps in
Constructing Problem-Solving Methods. In N. Aussenac et al. (eds.):

Knowledge-Acquisition
for Knowledge-Based Systems

, Lecture Notes in AI, no 723, Springer-Verlag, 1993.
[Angele et al., 1996] J. Angele, D. Fensel, and R. Studer: Domain and Task Modelling in MIKE.

In A. Sutcliffe et al. (eds.),

Domain Knowledge for Interactive System Design

, Chapman &
Hall, 1996.

[Benjamins, 1995] R. Benjamins: Problem Solving Methods for Diagnosis And Their Role in
Knowledge Acquisition,

International Journal of Expert Systems: Research and Application

,
8(2):93—120, 1995.

[Beys et al., 1996] P. Beys, R. Benjamins, and G. van Heijst: Remedying the Reusability-
Usability Tradeoff for Problem-solving Methods. In

Proceedings of the 10th Banff Knowledge
Acquisition for Knowledge-Based System Workshop (KAW´96)

, Banff, Canada, November 9-
14, 1996.

[Breuker & Van de Velde, 1994] J. Breuker and W. Van de Velde (eds.):

The CommonKADS
Library for Expertise Modelling

, IOS Press, Amsterdam, The Netherlands, 1994.
[Bylander & Chandrasekaran, 1988] T. Bylander, and B. Chandrasekaran: Generic Tasks in

Knowledge-Based Reasoning: The Right Level of Abstraction for Knowledge Acquisition. In
B. Gaines et al. (eds.),

Knowledge Acquisition for Knowledge-Based Systems

, vol 1, pp. 65—
77. Academic Press, London, 1988.

13

independent and task-specific PSMs.

A number of authors have discussed task-independent PSM specifications. In particular
[van Heijst and A. Anjewerden, 1996] formulate task-independent PSMs in terms of

acceptance criteria

. For instance, their task-independent formalization of cover &
differentiate states that the 'cover' part of the method is applicable to domains where
there is a relation X, which is transitive, anti-symmetric and anti-reflexive. However,
this formulation does not say anything about the feasibility of applying the method to a
domain. In other words it does not provide a replacement problem solving model (or
paradigm) for the task-specific model provided by cover & differentiate. As a matter of
fact most of the time it won't make much sense to apply the cover sub-method to a
relation with the given properties. In contrast with this approach our task-independent
PSMs are described as variations of search methods - i.e. they substitute a task-specific
problem solving paradigm with a generic one.

The approach taken by [van Heijst and A. Anjewerden, 1996] also postulates a clear
separation between task-specific and task-independent descriptions of PSMs. A similar,
dualistic view is also taken by McDermott [Mc Dermott, 1988], who compares role-
limiting methods to weak methods and indicates that “a weak method is more open with
respect to control than a role-limiting method can be; a weak method does not put any
limits on the nature or complexity of the task-specific control knowledge it uses“. We
believe this characterization of strong vs weak methods is too coarse-grained. For
instance a weak method such as A* makes precise assumptions about the existence of
heuristic knowledge, which make it possible to converge to an optimal solution.
Moreover, as this paper shows, it is possible to reformulate a strong method such as
propose & revise as a specialised, but task-independent search mechanism. So, is such a
task-independent propose & revise a weak or a strong method? Basically it is a search
algorithm - just like hill-climbing and A* - which makes strong assumptions about the
availability of domain-specific knowledge to avoid backtracking when an inconsistent
state is found. In a nutshell there are no strong and weak methods, there is a continuum
in which one can define search strategies which make stronger and stronger
assumptions about the availability of task-specific control knowledge. But there is no
sharp dividing line.

In this paper we have characterised this method specialization process as one which
consists of carrying out the appropriate ontology mappings. This approach clearly
separates the specification of a task-independent reasoning strategy from the issue of
adapting the strategy to alternative classes of tasks. Another example of this approach is
given in [Fensel et al., 1996] who investigated the board game method. This method is a
refinement of chronological backtracking for one-player board games. Therefore, the
board game method is already a task-specific refinement of a generic search strategy.
However, it can be further specialized to become applicable to assignment or parametric
design tasks (cf. [Eriksson et al., 1995]).

The use of ontologies for characterising tasks and PSMs is not completely new. For
example, [ten Teije, 1997] defines a task ontology for diagnostic problems and [Gennari
et al., 1994] have proposed to use ontologies as a way to specify the knowledge
requirements of a problem solving method. However, the latter define mainly names for
knowledge types and neither approach provides a black-box-style specification of the

12

A drawback of this generalized specification is the weakened notion of the competence
of the method. We can guarantee optimality only in the sense that a successor state is a
local optimum of the environment of a predecessor state (see Ax 4.2´).

4 Integrating Method and Task Ontologies to Produce Task-
specific Versions of a PSM

In the previous sections we have specified a task ontology for parametric design and
weaker and stronger versions of a task-independent propose & revise problem solver. It
remains to connect both, i.e. to configure propose & revise for parametric design.

This step consists of producing the relevant

adapter

 - see Fig. 6.

4

 The main ontological
decision is to interpret a state in terms of a design model. Specifically, the definitions in
Fig. 6 identify correct states with valid design models, complete states with complete
design models, and partial completeness with the set of parameters which are assigned a
value by a design model. Order and equality of partial completeness are defined in terms
of set inclusion and set equality of parameter sets.

The crucial axiom is Ax 6.3, which ensures that the output of the method corresponds to
the goal of the task. The proof of this axiom is rather trivial. The main effort in verifying
our ontological specification is to ensure the optimality of the output of propose and
revise as assumed by Ax 4.2. Methodologies and tools for verifying such axioms are
described in [Fensel & Schönegge, 1997].

5 Conclusions, Related and Future Work

In this paper we have defined i) an ontology for the parametric design task, which is
independent of any domain and PSM; ii) an ontology for propose & revise, which is
independent of any domain and task model; and finally iii) an adapter which integrates
task and method specifications. The resulting model constitutes a task-specific variant
of propose & revise: propose & revise for parametric design. Thus, we have provided
descriptions which enable reuse of task specifications as well as reuse of task-

4. The infix-notation in is used to distinguish terms from parametric design (infix PD) and terms
from propose & revise (infix P&R).

Def 6.1 StateP&R : Design modelPD

Def 6.2 CompleteP&R : Complete design modelPD

Def 6.3 Set with a total order and equalityP&R : SET OF parameterPD

Def 6.4 <P&R : ⊂ PD, =P&R : =PD

Def 6.5 CorrectP&R = Valid design modelPD

Ax 6.1 PreferenceP&R(sP&R,s´P&R) ↔ cost(dPD) < cost(d´PD) ∧ sP&R = dPD ∧ s´P&R = d´PD

Ax 6.2 Partial completenessP&R(dP&R) = {pPD | (pPD,vPD) ∈ dPD}

Ax 6.3 outputP&R = goalPD

Fig. 6. The PSM ontology of propose & revise for parametric design.

11

transition leads to an optimal state (Ax 4.4); the revise knowledge never fails (Ax 4.5);
the application of a revise transition does not change the completeness of a state (Ax
4.6); and the application of a revise transition leads to a (not necessarily complete)
optimal design model (Ax 4.7). We need the notion of partial completeness of states for
formulating the requirement that propose does monotonically extend the completeness
of a state and revise does not change this partial completeness (Def 4.4). This completes
our description of a method ontology for an optimal and complete propose & revise
problem solver.

3.2 Weakening of Propose and Revise

Instead of requiring global optimality, it may only be realistic to require local
optimality. That is, propose and revise transitions are only optimal with respect to same
local environment of the current state. We can use this idea to generalize the definition
of the Ax 4.2, Ax 4.4, and Ax 4.7.

These generalized definitions are provided in Fig. 5. Ax 4.4´ and Ax 4.7´ ensure local
optimality of propose and revise transitions. According to the properties of the domain
knowledge used to define such environments these axioms define relatively weaker or
stronger requirements. The definitions correspond to the original axioms of section 3.1
in the case where each environment consists of the entire problem space.

Terminology
Def 5.1 States : SET OF State
Def 5.2 Environment ≤ States

Competence
Ax 4.2´ The output is a complete, correct and local optimal state

Complete(output) ∧ Correct(output) ∧ local-optimal(output)
local-optimal(x) ↔

∃ s ∀ s´ . (s ∈ State ∧ ¬ (Complete(s) ∧ Correct(s)) ∧ x ∈ Environment(s) ∧
s´ ∈ Environment(s) ∧ Complete(s´) ∧ Correct(s´)
→ ¬(x,s´) ∈ Preference)

Knowledge Requirements
Ax 4.4´ The application of a propose leads to a local optimal state

¬ Complete(s) →
¬∃ s´ . (s´ ∈ State ∧ Correct(s´) ∧ propose(s) < s´ ∧
Partial completeness(s) < Partial completeness(s´)
= Partial completeness(propose(s) ∧ s´ ∈ Environment(s))

Ax 4.7´ The application of revise leads to a a local optimal state
¬ Correct(s) →

¬ ∃ s´ . (s´ ∈ State ∧ Correct(s´) ∧
Partial completeness(revise(s)) = Partial completeness(s´) ∧ revise(s) < s´ ∧
s´ ∈ Environment(s))

Fig. 5. An extended method ontology for a locally optimal propose & revise.

StatesEnvironment State

10

requirements on propose and revise knowledge are necessary: the propose knowledge
never fails and monotonically extends the state (Ax 4.3); the application of a propose

Terminology
Def 4.1 State
Def 4.2 Preference: State x State
Def 4.3 Complete ≤ State
Def 4.4 Partial completeness : State → set with a associated total order and equality
Def 4.5 Correct ≤ State
Def 4.6 State transition : State → State
Def 4.7 Propose ≤ State transition
Def 4.8 Revise≤ State transition

Competence
Ax 4.1 output ∈ State
Ax 4.2 The output is a complete, correct and optimal state

Complete(output) ∧ Correct(output) ∧
¬∃ s . (s ∈ State ∧ Complete(s) ∧ Correct(s) ∧ (output,s) ∈ Preference))

Knowledge Requirements
Ax 4.3 The propose knowledge never fails and monotonically extends the state

¬ Complete(s) → Partial completeness(s) < Partial completeness(propose(s))
Ax 4.4 The application of a propose leads to an optimal state

¬ Complete(s) →
¬∃ s´ . (s´ ∈ State ∧ Correct(s´) ∧ propose(s) < s´ ∧
Partial completeness(s´) = Partial completeness(propose(s))

Ax 4.5 The revise knowledge never fails
¬ Correct(s) → Correct(revise(s))

Ax 4.6 The application of revise does not change the completeness of a state
Partial completeness(revise(s)) = Partial completeness(s)

Ax 4.7 The application of revise leads to an optimal state
¬ Correct(s) →

¬ ∃ s´ . (s´ ∈ State ∧ Correct(s´) ∧
Partial completeness(revise(s)) = Partial completeness(s´) ∧ revise(s) < s´)

Fig. 4. A method ontology for a globally optimal propose & revise.

State

State

Preference

Revise

Complete

Partial

Set with a
total order

completeness

Correct

Propose

and equality

transition

9

problem solving is propose & revise [Marcus & McDermott, 1989] [Zdrahal & Motta,
1995]. Actually, as argued in [Zdrahal & Motta, 1995] the term 'propose & revise' is
better used to describe a class, rather than a specific PSM; different control regimes and
revision strategies can be used within the basic propose & revise framework. The basic
idea underlying propose & revise is the use of knowledge-based backtracking to focus
search. That is, instead of either backtracking to the last chronological choice point or
using dependency-directed backtracking, a propose & revise problem solver reacts to
inconsistency by means of application-specific fix knowledge. This approach removes
the need for 'blind' backtracking, thus improving the performance of the problem solver.

In the following, we define method ontologies for both 'weak' and 'strong' versions of
propose & revise. The first specification, which is shown in section 3.1, describes a
problem solver which is assumed to be capable of finding complete, correct and optimal
states. To achieve this competence strong assumptions on available (heuristic)
knowledge have to be made. In particular the method assumes that the available propose
and fix knowledge is sufficient to reach complete, correct and optimal states.

This specification is obviously quite 'optimistic' and therefore in section 3.2 we will
discuss a more 'realistic version of propose & revise, which replaces the assumption of
global optimality with one which only assumes locally optimal transitions, thus
exhibiting weaker competence.

3.1 Propose and Revise with optimal Competence
We take a state-based view to describe task-independent PSMs. That is, PSMs are
described in terms of state (cf. Def 4.1) and (elementary and complex) state transition
(Def 4.6). Such an approach is in accordance with [Motta & Zdrahal, 1996] who
characterise KBS problem solving as a search-based process. Thus, in the following, we
provide a task-independent specification of propose & revise as a search-based process.

Propose & revise distinguishes two types of state transitions and, as a result, two types
of states these transitions are applied to. A Propose transition (cf. Def 4.7) extends the
completeness of a state while the Revise transition (cf. Def 4.8) transforms an illegal
state into a correct one. Thus, the ontological commitment here is not formulated in
task-specific terms but in terms of generic notions such as completeness and
correctness. In other words we assume that the problem solver is able to identify
complete and correct states (cf. Def 4.3 and Def 4.5).

Def 4.2 introduces a preference on states that is used to model the assumption that
propose and revise steps in our problem solver always result into optimal states (Ax 4.2,
Ax 4.4, Ax 4.7). Of course this assumption formulates very strong requirements on both
propose and revise knowledge. Specifically, it assumes that the search space defined by
propose and revise steps is complete with respect to optimality. This assumption is
much too strong, for instance it is not satisfied by the fix knowledge in the VT domain,
and therefore in the next section we will substitute it with a weaker notion of optimality,
which is contextualised with respect to the space of possible moves.3

The competence of the method is characterized by Ax 4.1 and Ax 4.2. The output is a
complete, correct and optimal state. To achieve this competence the following

3. Not even completeness is guaranteed in the VT case.

8

model, in order to minimise ontological commitments [Gruber, 1993]. However, it is
feasible to envisage situations in which cost is defined also for non solution models. For
instance, a design system which uses a case-based approach to design could use cost as
one of a number of criteria for selecting a design model from a case library. In this
scenario the selected model is not necessarily a solution model.

Finally, Ax 3.4 and Ax 3.5 define the goal of the task. It is to find the optimal solution
design - i.e. the cheapest of all possible solution design models.

3 A PSM-Ontology for Propose & Revise

A well-known problem solving method which can be used for parametric design

Design model

Consistent
design modelSuitable

design model
Complete
design model

Valid
design model

Solution
design model cost

Cost

Fig. 3. Types of design models.

Def 3.1 Preference:: Design model x Design model
Def 3.2 Suitable design model ≤ Design model
Def 3.3 Consistent design model ≤ Design model
Def 3.4 Complete design model ≤ Design model
Def 3.5 Valid design model ≤ Suitable design model, Consistent design model
Def 3.6 Solution design model(cost → Cost)

≤ Valid design model, Complete design model
Def 3.7 Cost has an associated total order.
Ax 3.1 d ∈ Suitable design model ↔

(d ∈ Design model ∧ for all r ∈ Requirement holds r ∈ fulfil (d))

Ax 3.2 d ∈ Consistent design model ↔ (d ∈ Design model ∧ violate(d) = ∅)
Ax 3.3 d ∈ Complete design model ↔

(d ∈ Design model ∧ p ∈ Parameter → ∃ v . (v ∈ range(p) ∧ d(p) = v))

Ax 3.4 goal ∈ Solution design model

Ax 3.5 ¬ ∃ d . (d ∈ Solution design model ∧ cost(d) < cost(goal) ∧ d ≠ goal)

Preference

7

constraints.

Figure 3 shows a taxonomy of types of design models. A solution design is defined as a
design model which is both valid and complete (Def 3.6). A valid design model is
suitable and consistent (Def 3.5). A suitable design model fulfils all requirements (Def
3.2 and Ax 3.1). A consistent design model does not violate any constraint (Def 3.3 and
Ax 3.2). A complete design model is one in which each parameter has a value (Def 3.4
and Ax 3.3).

Def 3.1 introduces the notion of preferences. Preferences describe task knowledge
which, given two design models, D1 and D2, is used to specify which of the two - if any
- is the 'better' one, in accordance with some criterion. We model each preference as a
binary relation which specifies a partial order over design models. Each element of the
class Preference is such a relation.

While preferences typically define local criteria to choose between alternative design
models, a cost function provides a global criterion for assessing the cost of a design
model. The class Cost has to be well-founded to introduce an order on costs (Def 3.7).

The ontology associates a cost with a solution design, rather than with a generic design

Def 2.1 Parameter(range → Value range)
Def 2.2 Value range(allowed values → SET OF Value)
Def 2.3 Value
Def 2.4.a Design model :: Parameter → Value
Def 2.4.b Design model(fulfil → SET OF Requirement, violate → SET OF Constraint)

with for all d ∈ Design model holds:
d(p) ∈ allowed values(range(p)) if d is defined for p.

Def 2.5 Design models : SET OF Design model
Def 2.6 Requirement ≤ Design models
Def 2.7 Constraint ≤ Design models
Ax 2.1 For all d ∈ Design model and r ∈ Requirement holds: d ∈ r ↔ r ∈ fulfil(d)

Ax 2.2 For all d ∈ Design model and c ∈ Constraint holds: d ∈ c ↔ c ∈ violate(d)

Parameter

Fig. 2 Entities in the parametric design task ontology.

Value

range

Values

allowed values

Design model

Constraint

Requirement

violate

fulfil

range

Design models

6

by enumerating the design models or by providing an intensional characterisation of the
sufficient and necessary conditions for fulfilling the requirement.2

The attributes fulfil and violate deliver for each design model the set of fulfilled
requirements and violated constraints (see Def 2.4.a). The two axioms, Ax 2.1 and Ax
2.2, ensure the appropriate relationships between design models, requirements, and

2. The reader might find surprising that requirements and constraints are modelled as set of
design models. The advantage of the approach we have chosen is that it does not require to
postulate the existence of an additional domain lexicon to support the specification of constraints
and requirements. For instance, the parametric design framework discussed in [Wielinga et al.,
1995] introduces a domain vocabulary and the notion of domain theory. Here, we have chosen to
minimise the number of concepts required to discuss the ontology and therefore we characterise
requirements and constraints as subset of design models. However, the rationale for this choice is
pragmatic, rather than ontological.

Def 1.1 A class definition
A

Def 1.2 An is-a link
A ≤ B

Def 1.3 A class definition with an attribute having B as range.
A(attribute → B)

Def 1.4 A class definition with an attribute having the power set of B as range
A(attribute → SET OF B)

Def 1.5 A class describing a relation (i.e., each element of the class is an element of the
relation)

A(...): B1 x B1 x ...
Def 1.6 A class describing a function

A(...): B1 x B1 x ... x Bn → C
Def 1.7 A class describing a set of relations (i.e., each element of the class is a relation)

A(...):: B1 x B1 x ...
Def 1.8 A class where each element of the class is a function

A(...):: B1 x B1 x ... x Bn → C
Def 1.9 The class B is the powerset of class A

B : SET OF A

Fig. 1 Legend of S-logic.

attribute

Relation A

Class

Function

is-a link

B

B is power

set of A

attribute

the power set of the range
class is the range of the
attribute (Def. 1.4)

Relations Functions

Graphical notation

(Def 1.1)
(Def 1.2) (Def 1.3)

(Def 1.5) (Def 1.6) (Def 1.7) (Def 1.8)
(Def 1.9)

Linear notation

A B BA

5

applications.

The VT elevator design problem [Marcus et al., 1988] [Yost & Rothenfluh, 1996]
provides a well-known example of a parametric design task. Here the problem is to
configure an elevator in accordance with the given requirement specification and the
applicable constraints. The parametrised solution template consists of 199 design
parameters which specify the various structural and functional aspects of an elevator -
e.g. number of doors, speed, load, etc.

More precisely a parametric design application can be characterised as a mapping from
a six-dimensional space <P, VR, C, R, Pr, cf> to a set of solution designs, { ,.......,

}, where

• P = Parameters = {p1,......, pn};

• Vr = Value ranges = {V1,......, Vn}, where Vi = {vi1,....., };

• C = Constraints = {c1,....., cm};

• R = Requirements = {r1,......, rk};

• Pr = Preferences = {pr1,......., prj};

• cf = Cost Function.

These concepts are discussed in the next section, where we illustrate a semi-formal
specification - given in S-logic - of the different entities which make up the parametric
design task ontology.

2.2 A Semiformal Specification of Parametric Design with S-Logic
The basic element of parametric design is the concept of parameter. We model
parameters by means of a class, Parameter (see Def 2.1 in Fig. 2). Each parameter has a
value range, which constrains the possible values which the parameter can take in a
design model. The union of all value ranges defines the set of all legal parameter values.
The latter is modelled by means of class Value range. The attribute allowed values
associates a range with a set of values (Def 2.2). The attribute range models the
association between a parameter and a range (Def 2.1).

One could also expect that a parameter is directly associated with a value. But a
parameter gets a value assigned by a design model and has not a value by itself. That is,
there is no functional (i.e., attributional) dependency between parameters and values. It
is a design model that introduces a mapping between parameters and values. Such a
design model can therefore be modelled as a (partial) function between the parameters
and values provided by their ranges (see Def 2.4.a). Incomplete design models, i.e.,
design models that do not assign a value to each parameter are partial functions. The
class Design model models the solution space of our task.

Two further sets are used to characterize subspaces of the solution space. Requirements
should be satisfied by a solution and constraints should not be violated by it. We can
model a requirement as the set of design models that fulfils it and a constraint as the set
of design models that violate it. Therefore, we introduce two classes, Requirement and
Constraint, defined as sets of design models (see Def 2.5, Def 2.6 & Def 2.7). These
definitions should not be confused with their extensional or intensional representation.
The actual set of design models that fulfil a requirement can be described extensionally

Dsol1Dsoln

vini

4

ontology for parametric design. Similar adapters can be defined to adapt propose &
revise to other tasks - see [Fensel, 1997a] for a description of a configuration of a
propose & revise PSM for assignment tasks.

Finally, section 5 discusses the significance of the work, compares our approach to
alternative proposals, and outlines directions of future research.

2 A Task Ontology for Parametric Design

In the following we present a task ontology for parametric design. First, we provide an
informal description of the ontology. Then we discuss a specification using Sloppy-
logic (S-logic). S-logic makes use of rich semantic modelling primitives within the
framework defined by Frame-logic [Kifer et al., 1995] - see Fig. 1.

2.1 A Sketch of Parametric Design
Design can be characterised in generic terms as the process of constructing artifacts.
Thus, the essential feature of design problem solving is its constructive nature: solutions
are constructed rather than retrieved from a pre-existing set.

In order to construct an artifact one needs some building blocks - i.e. a technology
[Chandrasekaran, 1990]. In addition, the design process is subjected to a number of
constraints, which can be related either to the design technology - e.g. technological
limitations impose constraints on the minimum size of supporting walls - or to external
factors - e.g. most civilised countries require a minimum ceiling height in living rooms.

Design is a goal-driven process, where the goals are specified in terms of a number of
functionalities which the target artifact should provide. A good way of informally
characterizing the goal-oriented nature of the design process is to see it as driven by
needs and desires [Wielinga et al., 1995]. Thus, the design process1 can be characterised
as a function which takes as input a set of needs, desires, constraints and a possibly
incomplete set of building blocks, and produces an artifact as output.

A restricted class of design problems is configuration design [Mittal & Frayman, 1989],
which can be defined as a design problem where all building blocks are given as input to
the design process. [Mittal & Frayman, 1989] show that the complexity of the
configuration task decreases significantly by assuming that “the artifacts are configured
according to some known functional architectures“. For instance, a computer
configuration can be functionally described in terms of processor, printing, memory,
data communication, etc. This assumption makes it possible to impose a structure on the
space of feasible designs, thus restricting the number of possible configurations. This
assumption can be characterised as postulating the existence of one or more functional
solution templates.

A stronger assumption, which further restricts the space of possible designs is that
which postulates the existence of a parametrised solution template for the target artifact.
In this scenario design problem solving can be described as the process of assigning
values to design parameters in accordance with the given needs, constraints, and
desires. Applications for which this assumption holds are called parametric design

1. This is of course an idealised description of the design process.

3

[Bylander & Chandrasekaran, 1988]. But essentially the message here is that efficient,
knowledge-based problem solving subscribes to either task- or application-specific
paradigms. The other reason which explains the limited 'appeal' of task-independent
PSMs is the trade-off between usability and reusability [Klinker et al., 1991]. The more
reusable a PSM, the larger the distance between this PSM and an application
specification, which means that more work is required to bridge the representation gap
between the PSM and the application.

Nonetheless, in recent years there has been renewed interest in task-independent
specifications of PSMs (cf. [Beys et al., 1996][van Heijst and A. Anjewerden, 1996]).
van Heijst and Anjewerden point out that the “task specific formulation of PSMs
unnecessarily limits the applicability of PSMs“ [van Heijst and A. Anjewerden, 1996],
and suggest that the applicability conditions of PSMs can be specified in terms of
domain-independent meta-characteristics of the target domain model.

However, the trade-off between usability and reusability requires techniques which
facilitate the process of configuring a task-independent PSM for a particular task and
domain. We see this problem as one of ontology mapping and in this paper we
characterise PSM configuration as a specialization process, during which ontological
commitments are introduced. Specifically, our approach comprises three phases:

• The specification of method-independent ontologies which define task or problem
types.

• The task-independent specification of generic search methods.

• The specification of adapters [Fensel & Groenboom, 1997] which map the
ontology of a generic search method to task-specific terms to produce task-specific
PSMs. Because adapters can be stacked on top of each other (cf. [Fensel, 1997b])
we view the task-specific refinement of generic search strategies as a stepwise
process overcoming the dualistic view of weak and strong PSMs. Hence, our
approach postulates a continuum between both extremes where a step into a more
task-specific variant of a PSM is achieved by means of the relevant adapter.

Contents of the paper

In the following we will illustrate the approach in a formal way, by discussing a test
case which involves the configuration of a task-independent specification of a PSM for
a class of tasks. Specifically, we will discuss the following model components.

• Section 2 describes a specification of a method-independent ontology for
parametric design tasks [Wielinga et al., 1995][Motta & Zdrahal, 1996].

• Section 3 specifies a method ontology for a propose & revise PSM [Marcus &
McDermott, 1989] [Zdrahal & Motta, 1995]. This method ontology expresses the
competence of propose & revise in terms of assumptions over the properties of two
types of state transitions: propose transitions and revise transitions. The former
enrich the completeness of a state, the latter specify a transition from an incorrect
to a correct state. No further commitments are made. This method specification is
highly task-independent. It can be applied to any task whose problem space can be
expressed as a search process on correct, complete and preferred states.

• Section 4 describes the adapter which specialises the propose & revise method

2

see [Benjamins, 1995], [Breuker & Van de Velde, 1994], [Chandrasekaran et al., 1992],
[Motta & Zdrahal, 1996], and [Puppe, 1993], which support reuse-centred models of
KBS development, thus improving the efficiency of the development process and the
robustness of the target application system.

In this paper, we look at two fundamental issues associated with PSM specifications: i)
the epistemology of the modelling frameworks used to characterise PSMs and ii) the
nature of PSM specifications. These issues are discussed below.

Reuse-centred PSM descriptions

Describing PSMs in the style of CommonKADS [Schreiber et al., 1994] requires to
specify much of the internal reasoning process of a PSM. In particular, the following
descriptions need to be given:

1) the internal reasoning steps of the PSM;

2) the data flows between the reasoning steps;

3) the control that guides the dynamic execution of the internal reasoning steps;

4) the knowledge requirements of a PSM;

5) the goals that can be achieved by a PSM.

However, most of these aspects have to do with understanding how a PSM achieves its
goals. To assess the applicability of a PSM one only needs knowledge about its
competence and domain requirements - i.e. (4) and (5) above ([van de Velde, 1988],
[Akkermans et al., 1993]). In particular, our approach to the specification of the
competence of a PSM makes use of formal ontologies. This approach provides two
main advantages:

• A formal specification adds a precise meaning and enables mechanised support.
Specifications in natural language are necessarily imprecise, contain ambiguity and
are difficult to verify for completeness and consistency [van Harmelen & Fensel,
1995]. Moreover, establishing the competence of a PSM in relation to some
ontological assumptions may require difficult proof processes that are only realistic
if some mechanised proof support can be provided [Fensel & Schönegge, 1997].

• An ontology provides “an explicit specification of a conceptualization“ [Gruber,
1993], which can be shared by multiple reasoning components communicating
during a problem solving process. Using ontological engineering for describing
PSMs provides two important benefits with respect to reuse. The resulting PSM
specification i) is grounded on a common, shared terminology and ii) its
knowledge requirements are conceptualised as ontological commitments [Gruber,
1995].

The nature of PSM descriptions

PSMs are normally described in a task-specific way. There are two main reasons for
this. Task-independent PSMs are often regarded as weak methods [Mc Dermott, 1988]
and much KBS research of the past two decades can be seen as a reaction to the weak -
i.e. task-independent - problem solving paradigms used in the sixties and early seventies
[Newell & Simon, 1972]. This reaction has taken different forms and has been
formulated according to different principles - see for instance the knowledge as power
principle [Lenat & Feigenbaum, 1987] and the knowledge interaction hypothesis

1

Using Ontologies For Defining Tasks, Problem-Solving
Methods and Their Mappings

D. Fensel1, E. Motta2, S. Decker1, and Z. Zdrahal2

1 Institut AIFB, University of Karlsruhe, D-76128 Karlsruhe,
{dieter.fensel,stefan.decker}@aifb.uni-karlsruhe.de

2 Knowledge Media Institute, The Open University, Milton Keynes MK7 6AA, United Kingdom,
{e.motta,z.zdrahal}@open.ac.uk

Abstract. In recent years two main technologies for knowledge sharing and reuse
have emerged: ontologies and problem solving methods (PSMs). Ontologies
specify reusable conceptualizations which can be shared by multiple reasoning
components communicating during a problem solving process. PSMs describe in
a domain-independent way the generic reasoning steps and knowledge types
needed to perform a task. Typically PSMs are specified in a task-specific fashion,
using modelling frameworks which describe their control and inference structures
as well as their knowledge requirements and competence. In this paper we discuss
a novel approach to PSM specification, which is based on the use of formal
ontologies. In particular our specifications abstract from control, data flow and
other dynamic aspects of PSMs to focus on the logical theory associated with a
PSM (method ontology). This approach concentrates on the competence and
knowledge requirements of a PSM, rather than internal control details, thus
enabling black-box-style reuse. In the paper we also look at the nature of PSM
specifications and we show that these can be characterised in a task-independent
style as generic search strategies. The resulting 'modelling gap' between method-
independent task specifications and task-independent method ontologies can be
bridged by constructing the relevant adapter ontology, which reformulates the
method ontology in task-specific terms. An important aspect of the ontology-
centred approach described here is that, in contrast with other characterisations of
task-independent PSMs, it does away with the simple, binary distinction between
weak and strong methods. We argue that any method can be defined in either task-
independent or task-dependent style and therefore such distinction is of limited
utility in PSM reuse. The differences between PSMs which affect reuse concern
the ontological commitments which they make with respect to domain knowledge
and goal specifications.

1 Introduction

The concept of generic problem-solving method (PSM) is present in several knowledge-
engineering frameworks (e.g. Generic Tasks [Chandrasekaran et al., 1992];
Configurable Role-Limiting Methods [Puppe, 1993]; CommonKADS [Schreiber et al.,
1994]; the Method-To-Task approach [Eriksson et al., 1995]; Components of Expertise
[Steels, 1990]; GDM [Terpstra et al., 1993]; MIKE [Angele et al., 1996]). In general a
PSM describes in a domain-independent way which reasoning steps and which types of
knowledge are needed to perform a task. Libraries of PSMs have been developed, e.g.

To appear in
Proceedings of European Knowledge Acquisition Workshop (EKAW-97), Lecture Notes in Artificial
Intelligence (LNAI), Springer-Verlag, 1997.

