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Using open-source data to 
construct 20 metre resolution maps 
of children’s travel time to the 
nearest health facility
Gary R. Watmough  1,2,3 ✉, Magnus Hagdorn2, Jodie Brumhead1,2, Sohan Seth1,4, 
Enrique Delamónica1,6, Charlotte Haddon1,2 & William C. Smith  1,5

Physical access to health facilities is an important factor in determining treatment seeking behaviour 
and has implications for targets within the Sustainable Development Goals, including the right to 
health. The increased availability of high-resolution land cover and road data from satellite imagery 
offers opportunities for fine-grained estimations of physical access which can support delivery planning 
through the provision of more realistic estimates of travel times. The data presented here is of travel 
time to health facilities in Uganda, Zimbabwe, Tanzania, and Mozambique. Travel times have been 
calculated for different facility types in each country such as Dispensaries, Health Centres, Clinics and 
Hospitals. Cost allocation surfaces and travel times are provided for child walking speeds but can be 
altered easily to account for adult walking speeds and motorised transport. With a focus on Uganda, 
we describe the data and method and provide the travel maps, software and intermediate datasets for 
Uganda, Tanzania, Zimbabwe and Mozambique.

Background & Summary
Access to services such as schools, health centres, markets and larger regional towns are important for individu-
al’s wellbeing, health and livelihoods in rural areas of developing countries. Increased travel times to key services 
can result in decreased utilisation1,2 and in Uganda 44.0% of women in rural areas reported that distance to 
health centre contributed to deciding not to access healthcare for themselves3. Access to health centres is a key 
component of national preparedness for infectious disease planning4 and a component of several Sustainable 
Development Goals (SDGs). Therefore, understanding access to key services at sub-national levels is required 
for improved delivery. Here we present new data of 20-m spatial resolution travel time estimates to health facil-
ities for Uganda, Zimbabwe, Tanzania and Mozambique. We describe here the data characteristics and method 
for Uganda and provide access to the data for Uganda, Zimbabwe, Tanzania and Mozambique. It is our intention 
to provide the travel time maps for all sub-Saharan countries periodically through the Edinburgh data share 
portal https://datashare.ed.ac.uk/handle/10283/3898.

Utilisation of health facilities can be characterised by a complex mixture of travel time, financial costs 
involved in attending and travelling to a location, education of parents, quality of previous care and other polit-
ical and societal barriers sometimes preventing access5,6. Here we are focused only on travel time as a physical 
measure of access. Travel time to key services such as schools, clinics and markets is seen as a key component 
of rural poverty and a major barrier preventing the realization of the right to health among children and, thus, 
impact child poverty (SDG 1.2.2). However, little empirical evidence currently exists on the levels to which 
time to travel to health centre contributes to health and poverty outcomes of populations. Therefore, these data 
provide an opportunity to establish high-resolution estimates of travel time to explore the impact that it has on 
socioeconomic outcomes such as poverty.
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Measuring distance to health services using straight line or Euclidian distance methods overestimate geo-
graphical access or underestimate travel time to services as it does not account for transport routes and barriers 
to travel such as waterbodies7–11. Least cost path estimates are often used to estimate travel time across sur-
faces12–14 as they allow for the mode of transport to be considered4. Using a least cost path approach Weiss et 
al. 202014 estimated that approximately 43% of the World’s population could not reach a health facility within 
1 hour of walking. Travel time was based on data with a 1 km spatial resolution produced by Weiss et al.15. The 
size of cell used in cost surfaces impacts the results with coarser resolution cells leading to the sinuosity of 
roads being simplified, roads being overrepresented compared with other land cover and the over connection of 
roads across a landscape (Fig. 1). We developed an estimate of travel time to health centres following published 
methods15,16 using 20 m spatial resolution data. We chose 20 m as it is the finest spatial resolution land cover data 
available globally at the time of analysis (from Sentinel-2 http://2016africalandcover20m.esrin.esa.int/) and thus 
is repeatable and transferable. The intention of this study and data is to provide a fine resolution estimation of 
travel time to service access points to be used by governments and humanitarian agencies such as UNICEF to 
explore development issues for example, exploring the links between access to health facilities and poverty or 
planning vaccination rollouts. To the authors’ knowledge we have created the finest spatial resolution travel time 
data currently available which also uses a more detailed roads dataset from the Mapwith AI project (https://
github.com/facebookmicrosites/Open-Mapping-At-Facebook/wiki/Available-Countries) not previously used 
in travel time map creation.

Methods
The least cost path method used here can be broken down into two key phases: the first involves creating a ‘cost’ 
allocation surface which can also be referred to as an effort or friction surface14. This represents the effort to 
travel across a particular pixel and can thus consider the variation in effort (cost) required to travel across dif-
ferent land surfaces. The second phase uses this cost allocation (or effort surface) in a least cost path analysis to 
estimate travel time from every pixel to the nearest destination location (in this case health centres). This is done 
using Dijkstra’s algorithm17 to create Dijkstra trees which find the shortest path from one point to another12. It is 
implemented here using the graph module of scikit-image in python18.

Creating cost allocation surfaces. The cost allocation or effort surface was assembled using three primary 
input datasets on land surface characteristics that help or hinder travel speeds: land cover, roads and topography. 
Initial processing and analysis were undertaken on the individual datasets before being combined into a final 
cost allocation surface which depicts travel times from health centres across the country. The following sections 
detail the methodology and technical details of the cost surface creation as well as details on the choices made and 
research undertaken to feed into the travel time estimates.

Transport mode choice. There is little published information on how patients in Uganda access health 
services. However, in Kenya over 80% of patients were found to access health services by walking19. To measure 
travel-time we focused on pedestrian access because non-motorised transport is used for 50% of journeys in 
Uganda20 and at least 50% of households in rural Uganda do not own any form of transport asset21. Further, chil-
dren are most often the responsibility of women but most means of transport in Uganda are owned by men21,22. 
Some women do utilise bicycles, but issues of cost and gender relations make it easier for men to own and use 
bicycles and there are also negative cultural traditions which inhibit women’s use of transport20.

Public transport mostly exists in Uganda through boda bodas (motorcycle taxis) or matutus (shared min-
ibuses). It is likely that when accessing health services further away or when in need of particular medical 

Fig. 1 The roads polygon file (a) used in the analysis was a combination of Open Street Map and MapwithAi 
road datasets. The sinuosity of the roads was maintained when using a 20 m raster grid (b) compared to a 1 km 
raster grid (c) which is used in other studies.
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attention that motorised transport of some form would be used. However, we did not at the time of development 
have access to transport speed information. Thus, we only consider walking/pedestrian travel in this study.

Child walking speed definitions. Published walking speeds specific to road surface and land cover type for 
modelling access to services for Niger23 and the Horn of Africa24 were used as the baseline for speed estimations 
in Uganda. We used the maximum walking speed of 5 km/hr (1.39 m/s) that is commonly used to be representa-
tive of adult walking speeds19,23,24. Speeds ranged from 1.0 km/hr to 3.0 km/hr for non-road and path pixels such 
as grassland, cropland (Table 1) and from 3.5 km/hr to 5.0 km/hr for paths and road (Table 2). Speeds were fastest 
on main roads such as highways, primary roads and trunk roads. Pedestrians often walk along the side of these 
main roads (Fig. 2e) in many countries including Uganda, Mozambique and Zimbabwe as they are easier to trav-
erse than unsealed roads, footpaths and other land cover types. Therefore, we preferentially pushed pedestrians 
to walk along these roads.

In the current work we have focused on child walking speeds since our work in Uganda seeks to understand 
the impact of access to health centres on multidimensional childhood poverty. Therefore, we reduced walking 
speeds to account for adults accompanied by children. Bouterse and Wall-Scheffler22 observed that unloaded 
adults travelling alone had an average speed of 1.001 m/s which decreased to 0.773 m/s when they had to carry a 
child or to 0.785 m/s when older children were present that did not require carrying (they were not counted as a 
load but were accompanying the adult). Thus, the approximate decrease in travel speed was 22% and we reduced 
the speeds proposed by23 by 22% in the child travel time maps. The speed reduction can be easily switched off or 
adapted in the software25.

Data acquisition. Data sources were selected based upon resolution and coverage with fine spatial resolution 
data preferred. As it was intended for the research to be applicable over multiple countries in which UNICEF is 
working as well as being user friendly for the wider scientific community, data sources were selected which had at 
least continental Africa coverage. The three data sets required for the travel-time maps are described below and 
in Supplementary Table A.

•	 Land cover – Land cover was derived from the Sentinel 2 CCI Land Use Land Cover (LULC) 2016 (20 m 
resolution) data product http://2016africalandcover20m.esrin.esa.int/26–28, (Supplementary Table A). Other 
products with a greater number of land cover classes were available but only for a limited number of coun-
tries. The larger number of land cover classes was of little use as walking speeds were only available from the 
literature for a limited number of land cover types.

•	 Elevation – Shuttle radar topography mission (SRTM) Digital Elevation Model (DEM) no-void filled data at 
30 metres resolution29, (Supplementary Table A) is available globally. Finer resolution datasets were availa-
ble in some places, however, the use of the SRTM 30 m data allows for standardisation of the elevation data 
globally.

•	 Roads – OpenStreetMap (OSM) roads data https://www.openstreetmap.org (Supplementary Table A) is 
available for most countries globally30. Open street map is known to have inconsistent coverage due it being 
created using volunteered geographic information31. Thus, it was merged with the OSM mapwith.ai project 
(https://github.com/facebookmicrosites/Open-Mapping-At-Facebook/wiki/Available-Countries) data which 
used AI and high-resolution imagery to identify roads missing in OSM data to produce a more complete road 
dataset. The standard OSM road data and the mapwith.ai road data are available globally.

Rasterizing roads. The roads data from OpenStreetMap30 is crowdsourced geographic data uploaded by 
volunteers31. This means completeness varies spatially both across and within countries, with Uganda being esti-
mated to be 70% complete31. The mapwith.ai project by Facebook in conjunction with OpenStreetMap, have 

Sentinel-2 Land 
Cover Categories CCI Land cover Code Walking Speed (km/h)

Walking speed weighted for 
children (22% reduction)

Trees 1 1.50 1.17

Shrubs 2 1.50 1.17

Grassland 3 3.00 2.34

Cropland 4 3.00 2.34

Often Flooded 5 N/A N/A

Sparse Vegetation 6 3.00 2.34

Bare Areas1 7 1.15 0.89

Built-Up 8 1.50 1.17

Open Water 10 1.00 0.78

No Data 200 N/A N/A

Table 1. Sentinel-2 land cover categories and associated walking speeds assigned with and without children. 
1Areas identified as ‘Bare Areas’ within the Sentinel-2 LULC 2016 for Uganda were primarily dry riverbed or 
sandbanks within rivers.

https://doi.org/10.1038/s41597-022-01274-w
http://2016africalandcover20m.esrin.esa.int/
https://www.openstreetmap.org
https://github.com/facebookmicrosites/Open-Mapping-At-Facebook/wiki/Available-Countries


4Scientific Data |           (2022) 9:217  | https://doi.org/10.1038/s41597-022-01274-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

applied artificial intelligence alongside human validation to add missing roads and footpaths to the OSM dataset. 
The roads in both OSM and Mapwith.AI datasets were merged using ArcMap 10.7.132 ‘merge’ function in the 
ArcToolBox. The merged data required a new ‘tag’ attribute to be created which contained the road type and is the 
only editing a user is required to perform prior to running the code on a new location.

There are up to 29 types of road and path categories in the merged road data and walking speeds for each 
were derived from speeds used in existing studies (Table 2). Roads categorised as ‘motorway’ or ‘trunk’ are 
restricted to motorized vehicles according to OSM metadata. However, pedestrians were seen on the sides of 
some of these roads in Google Maps Street View (Fig. 2e). Therefore, walking speeds were allocated for all road 
types including motorways (Table 2). Roads are generally considered to be faster for travelling, but also most 
likely to be used by those walking as they allow easier navigation, therefore the walking speeds assigned to roads 
were faster than the walking speeds assigned to different landcover types.

The roads data were converted from a polyline shapefile (vector) to a raster surface so that they could be 
combined with the land cover and elevation data. Vector to raster conversion of roads can introduce issues 
related to the Modified Areal Unit Problem33 as linear data is aggregated into the grid format of the raster sur-
face34. When using a coarser cell size, it is more likely that multiple roads will be present inside the same cell. For 
example, when using a 1 km cell size Delamater et al.16 found that road coverage was overestimated which would 
result in faster travel time estimations. The overestimated road coverage derives from simplifying the landcover 
within each 1 km pixel from multiple ground features (different types of road, paths and other landcovers) to 
a single feature. Often the fastest road type is prioritised when rasterizing multiple polygons into a single grid 
cell as was performed in Weiss et al.15 and in our approach. This overestimation of road coverage will result in 
overestimation of access or underestimation of travel time to services. Further simplifications such as over con-
nections of roads that result from smoothing the complex edges of polygons and reducing the sinuosity of the 
roads will also contribute to the overestimation of access or underestimation of travel times.

A 20 m cell size was used for the OSM roads in Uganda to match the CCI land cover data. While 20 m is still 
wider than many roads it is likely that the impact of time taken to reach the road from within a 20 m cell would 
be lower than larger cell sizes. Overlapping roads were prioritised by speed with the fastest roads given priority 
but this can be turned off in the software25. However, due to the fine resolution cell size of 20 m, the raster surface 
remained representative of the road network with little over connection between roads (Fig. 1) this merged data set 
is published through the Edinburgh Data Share portal for Uganda35, Mozambique36, Zimbabwe37 and Tanzania38.

OSM Roads 
Feature Class

Count 
(Total)

Notes (Ministry of Works and Transport - The Republic of Uganda, 2012; Ramm, 
2019; OpenStreetMap, 2020)

Walking 
Speed (km/h)

motorway 105 A restricted access major divided highway, normally with 2 or more lanes plus emergency 
hard shoulder. 5.0

motorway_link 20 Connecting slip road/ramp 5.0

Trunk & 
Trunk_link 370 + 91

A main road with a motorway-like layout with multiple lanes which is restricted to 
motorised vehicles. Unlike motorways, trunk roads might have crossings or traffic lights. 
Their surface is always tarmacked.

5.0

Primary & 
primary_link 973 + 57 National roads connect the most important cities/towns in a country. These may be 

tarmacked and show centre markings. 5.0

Secondary & 
secondary_link 1991 + 47 Major transportation routes connecting cities and large towns. May be tarmacked but 

often not. 4.5

Tertiary & 
Tertiary_link 5460 + 62 These are busy through roads that link smaller towns and larger villages. Most often 

unpaved, but wide enough to allow two cars to pass safely. 4.5

residential 483527 Roads lined with housing in urban or village areas and where roads do not serve a 
through connection function. 4.0

unclassified 179029
Minor collector roads that link settlements. These roads are usually unpaved and are only 
wide enough for one vehicle. Primarily in rural areas and outside of inhabited places, 
though unclassified roads can be used to link suburbs in a city or town.

3.5

track 80217 This tag is usually used for roads providing access to agricultural or forestry facilities. In 
Africa, roads within National Parks mostly qualify as tracks too. 3.5

track_grade1-5 644 Solid, usually paved or sealed 3.5

service 14557 Driveways, entrances, private roads, service roads for industry etc 3.5

Bridleway & 
cycleway 38 Visual inspection shows no specific features to identify as bridleway 3.5

living_street 325 Streets where pedestrians have priority 4.0

pedestrian 121 Pedestrian only streets 4.0

path 153656 Paths are usually impassable for motorised vehicles but may be passable by motorcycles. 3.5

footway 8857 Pedestrian only, separated from parallel highway for vehicles. Can often be obstructed by 
traders and motor vehicles. 3.5

steps 176 Pedestrian only by nature 3.5

unknown 1507 Unknown type 3.5

Table 2. Open Street Map (OSM) road categories provided in the data downloads from OSM and Map with 
AI. Associated walking speeds assigned in the CPAS software are listed. These are based on previous speeds 
assigned in other studies. The speeds can be changed easily in the CPAS software to reflect local variations or the 
availability of motorised transport.
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The cost surface is a scalar field but roads are directional. Rasterising a road implies that a cell can be crossed 
equally from left to right as bottom to top. At coarser resolution this may be a problem which could be dealt 
with by using an anisotropic cost surface. Using a 20 m resolution approach it is likely that anisotropic rasters are 
not required because the pixels adjacent to a road would have a higher cost and therefore the cost surface would 
preferentially push people in the correct direction.

Converting land cover data to travel speeds. The nine land cover categories available in the CCI (Trees; 
Shrubs; Grassland; Cropland; Often flooded; sparse vegetation; bare area; built-up; open water) were mapped to 
walking speeds from Blanford et al.23 (Table 1). Open-water was initially coded as NA to create a barrier to travel 
as it would result in pixels with values of infinity in the least cost path allocation. A secondary cost surface model 
was created with a travel speed of 1.0 km per hour for the ‘Open Water’ category (the water speed can be changed 
in the configuration file of the software). This is because many of the island populations in Uganda are unlikely 
to be able to access services and, in particular healthcare services, without travelling over water. The reason for 
doing so is that when we use the cost allocation surfaces to estimate travel time we are able to prevent travel across 
water unless it is absolutely necessary. We define absolutely necessary as those living on islands where there are 
no health facilities present on the island and therefore, the inhabitants would have to use water to travel. This pre-
vents travel times being calculated across water bodies where there may be no ferry service and forces the model 
to use roads. These speeds can be altered in the software easily and so other users can experiment with these.

Weighting speeds using topography. Methods of estimating the impact of gradient on walking speeds 
such as Tobler’s Formula or the Naismith-Langmuir rule are often used when modelling access to services39. 
Recent adaptations to these have been developed to account for slopes up to 30% or approximately 17°39 and 
slopes up to 100% approximately 45°39. Therefore, to calculate the impact of gradient on walking speed we used 
Eq. 1 from Irmischer and Clarke40.

Speed m s e( / ) 0 11 (1)
S( 5)

2 30

2

2= . +
− +

×

where, S is the slope in percent.

Fig. 2 Travel time to any health centre in (a) Uganda, (b) Tanzania (c) Zimbabwe and (d) Mozambique 
calculated using the CPAS method and produced on a 20 m raster grid. These data are available for download 
(see Supplementary Table B). Google street view images showing pedestrians using the sides of major roads and 
highways in Uganda (e), included to demonstrate that a walking speed of 5 km/hr is appropriate for highways.
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The impact on walking speeds is calculated by computing the ratio of the walking speed for a slope and a flat 
surface. Slopes over 100% (over 45° gradient) were considered impassable. An assumption was made that those 
travelling to healthcare services were making a return trip and this was accounted for by taking a mean of the 
speed for a positive slope and negative slope of the same slope value39. The impact of negative and positive slopes 
is not equal (Eq. 2).
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assembling the cost allocation surface. Two cost allocation surfaces are created using the above meth-
ods and are included in the data downloads for each country (Supplementary Table B). The first defines open 
water as a barrier to travel and so the speed allocated to this landcover is ‘NA’. The second defines open water with 
an associated speed. To create a walking speed array, first the road walking speeds were used and then missing val-
ues were filled with landcover walking speed values. This walking speed array was multiplied by the slope impact 
grid. The speed for each cell was converted from kilometers per hour to meters per second. Finally, the time (in 
seconds) to walk across each cell was calculated using Eq. 3 where distance is equal to cell size (20 m). These travel 
time or friction surfaces as they are also known are published and made available through the Edinburgh Data 
Share Portal41–44.

= ∗ ∗ −Travel time over cell cell size/(speed speed impact (1 child impact)) (3)

Least cost path analysis for estimating travel time to health facilities. A World Health 
Organization (WHO) validated spatial database of health facilities in sub-Saharan Africa45 was used to indi-
cate the location of health services in Uganda. The data were clipped to Uganda using GADM administrative 
boundary level-0 data. Health facilities with invalid locations such as those outside Uganda or located on water 
are identified and removed in the software25 and a report is generated in csv format. Healthcare facilities which 
were located within cost surface cells that had been deemed impassable were identified and if adjacent cells were 
passable were randomly moved to one of these or if no adjacent cells were passable then the location was removed 
from the analysis, these facilities are also identified and included in a report produced by the software25.

The cost allocation surface and health facilities locations are combined using the least cost path method to 
calculate travel time from each cell in the array to the nearest health facility. The code first uses the cost alloca-
tion surface with water having an NA for travel time. Where travel time to healthcare services was measured as 
infinite, this indicated cells that had to traverse water in order to reach a health facility. In these cases, the travel 
time was measured using the water passable cost allocation surface in our example this meant the water had a 
travel speed of 1 km/hr applied (Table 1).

Type of health facilities. We provide several travel time maps for each country one of which is the travel 
time to the closest facility of any type (Figs. 2a, 3). Since this is a simplification of the reality of accessing health 
facilities, we split the health facility data by type and calculate travel times to each. For each country there are 
different facility types in the Maina et al.45 data thus we describe below briefly which facility types have been used 
in Uganda, Tanzania, Zimbabwe and Mozambique.

The health facility types available in the Uganda data were: clinics, health centres (Level II, III and IV), hospi-
tals and regional referral hospital. We used the Uganda Hospital and Health Centre Survey Census46 to identify 
the services available at each facility type. Level II centres were excluded as they provide only basic medical care, 
whereas level III and IV facilities provide maternity care, basic lab services and inpatient care. Level IV facilities 
are the only facility type to have qualified doctors46. Hospitals represent access to surgical care and specialist 
health services. Therefore, in Uganda we have produced the following maps of travel time to: (1) any type of 
facility47 (Fig. 2a); (2) level III health centre48; (3) level IV health centres49, and; (4) level IV health centres and 
hospitals50. Regional and national referral hospitals were excluded as to access these facilities a patient must be 
referred from another health facility (Level IV). Clinics were excluded because they are undefined in the census 
document, although we did not calculate travel time to Level II facilities these are the most frequent and there-
fore are covered in the map of travel time to any facility.

The health facility types available in the Zimbabwe data were; clinics, rural health clinics, rural hospital, 
district hospital, provincial hospital and central hospital. We used the USAID supported Zimbabwe Health 
System Assessment51 to identify what type of services were available at each facility type. Rural health clinics 
and hospitals provide basic preventative medicine, maternity care and curative services. District hospitals pro-
vide primary health care services and can treat emergencies. Therefore, in Zimbabwe we have produced the 
following travel time maps to: (1) any health facility (Fig. 2c)52 which includes all the health facilities available 
in Zimbabwe from the Maina et al. (2019) data; (2) rural health centres53; and (3) rural and district Hospitals54. 
Clinics were excluded from some of the maps as, despite several clinic types being mentioned in the literature, it 
was not possible to differentiate these types in the data. However, since they were the most common facility type 
in Zimbabwe they are included in the maps to any facility type.

https://doi.org/10.1038/s41597-022-01274-w
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The health facility types in Tanzania were; dispensary, health centre, hospital, district hospital, designated 
district hospital, referral hospital and national hospital. We used the Health Sector Strategic Plan July 2015 – 
Jun 202055 to identify the type of services available at each facility type. Dispensaries provide the most basic of 
services and do not provide inpatient care. Health centres can admit patients and sometimes provide surgical 
services. Hospitals and district hospitals provide medical and basic surgical services. Referral, regional referral 
and national hospitals provide specialist medical care and medical training. Therefore, for Tanzania we have 
provided the following travel time maps to the following types of health facility: (1) dispensary (Fig. 2b)56; (2) 
health centres57 and (3) hospitals and district hospitals58.

For Mozambique we provide a single travel time map to any health facility (Fig. 2d) listed in the Maina et al.45 
database59. At the current time it was not possible to identify the services offered at each type of clinic but these 
will be updated in the near future.

Data Processing Software

•	 Python 3.
•	 Python - required packages: fuzzywuzzy; numpy; pandas; osgeo; geopandas; skimage; xarray; rioxarray; 

Fiona; rasterio – these get installed automatically using the setup script or can be installed into a conda envi-
ronment using the environment file.

•	 ArcMap 10.7.1

Fig. 3 (a) Travel time to any clinic in minutes calculated using the CPAS 20 m method. (b) Travel time to 
clinics and hospitals using the method from Weiss et al.16 and a 1 km grid (c) Elevation data derived from the 
Shuttle radar topography mission (SRTM) showing mount Stanley. (d) Density plots showing the distribution 
of travel times for 682 Demographic and Health Survey Clusters across Uganda for both CPAS and Weiss et al. 
methods. (e) Scatterplot showing the monotonic relationship between the travel times estimated by the CPAS 
and Weiss et al. methods. Note in 3E the point at the top-left is not an outlier, it is a DHS cluster located on an 
Island with no health centre recorded in the WHO data. The white pixels in (a) indicate no data and result from 
CPAS removing any pixels with a slope >45 degrees. Using a 1 km grid as in (c) results in aggregation of slope 
angles and therefore there are unlikely to be any pixels with slipes >45 degrees. This results in the 1 km grid 
approach producing faster travel time estimates in the steepest cells which in reality are likely to be avoided by 
pedestrians65–69.

https://doi.org/10.1038/s41597-022-01274-w
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Data Records
All data generated in this study are available at Edinburgh Data Share35–38,41–44,47–50,52–54,56–59. Supplementary 
Table B provides the descriptions of the data shared on Edinburgh Data Share and DOIs for each of the data-
sets as part of the submission. These data include the children’s travel time to any health centre, the children’s 
travel time to specific health centre types (3 additional maps in Uganda and 2 additional maps in Tanzania 
and Zimbabwe). We also provide the cost allocation/effort surfaces for children and the health facility loca-
tions (Supplementary Table B). The external data sources used for generating the cost surface are listed in 
Supplementary Table A.

Technical Validation
To validate the travel times from the CPAS software we have compared the travel times from CPAS with those esti-
mated by Weiss et al.14 at 1 km spatial resolution which have been validated against GoogleMaps API data in the 
past60. We used 682 village clusters in the Ugandan 2016 Demographic and Health Survey (DHS)3. We overlaid vil-
lage clusters onto both cost surfaces and used the ‘extract to point’ function in ArcMap 10.7.132. We created sum-
mary statistics, density plots and ran a Spearman’s rank correlation to compare the travel times estimated by the two 
approaches. A scatterplot (Fig. 3e) shows that the two travel time estimations are monotonically related which is 
further supported by the Spearman’s rank correlation between the two walking speeds (rho 0.89 and p < 0.01). The 
density plots (Fig. 3d) indicate that the CPAS method estimates a wider distribution of travel times than the Weiss et 
al. method. The walking times estimated in both the Weiss et al.14 1 km and the CPAS 20 m approaches are skewed 
towards lower values (Fig. 3d) which is expected as there will be more health centres located near to populated areas. 
Those clusters with higher estimated travel times are either located on Islands in Lake Victoria or in isolated mountain 
regions of Uganda.

Comparing the distribution of travel times and correlation indicates that there is strong agreement 
between the two methods as to which clusters have the greatest access to health facilities. The differences 
lie in the absolute values or the total minutes estimated for walking to the nearest health centre. Summary 
statistics show that the CPAS walking times have no zero estimated walking times (Table 3). This is because 
at 20 m resolution it is highly unlikely that a village/cluster will fall within the same grid cell as a health cen-
tre. In comparison, the Weiss et al.14 estimations have 72 clusters estimated to have zero minutes travel time 
(Table 3). This is due to the aggregation of the landscape using a 1 km resolution grid and the smoothing 
involved in this approach, as zero minutes in Weiss et al.14 could translate into a travel distance of 0–1000 m 
whereas in the CPAS approach a 0-minute travel time would only occur if the village cluster was 20 m or less 
from the health centre.

The median and mean estimated travel times (Table 4) are roughly twice as large in the CPAS travel times 
than the Weiss et al. travel times (Table 3). This further support conclusions from Delamater et al.16 that a larger 
grid overestimates road coverage and therefore underestimates travel times. This is due to the simplification of 
road sinuosity in larger grids that is occurring in the Weiss et al.14 1 km estimations allowing roads and particu-
larly the fastest roads to be overrepresented over-connected compared with other land cover types (Fig. 1b,c).

The overall differences between the two approaches are considerable when considering how many village clus-
ters are reported as being within 30 minutes of a health centre. According to the Weiss et al.14 method roughly half 
(344/682) of DHS clusters are within a 30-minute walk of the nearest health centre. But if using the CPAS method this 
drops to a quarter of DHS clusters (159/682). It is expected that, given the improvement in sinuosity of roads (Fig. 1b), 
the addition of roads and footpaths previously missed in OSM data and the finer resolution (Fig. 3), the CPAS method 
is more accurately characterising travel time by pedestrians. This could have large implications for public health plan-
ning in Uganda. If using the finer resolution approach in CPAS and targeting a 30-minute travel time then potentially 
the 1 km grids produced by Weiss et al.14 are overestimating access or underestimating the time it takes for people to 
walk to a health centre. Further work is needed to fully validate these travel speeds using ground-based surveys which 
were not possible during this study due to travel restrictions imposed by the COVID-19 pandemic.

The validation detailed above did not make use of ‘ground-truth’ data. We examined the Uganda DHS3 data 
as it sometimes contains information on travel times to health facilities. However, the DHS data for Uganda 
in 2016 did not contain this information. Conducting our own survey was not possible due to budget restric-
tions and the COVID-19 pandemic preventing UNICEFs ground team performing validations. Further, there 
is uncertainty in which health centre households are travelling to. Our model as well as almost all other similar 
approaches assume travel to the nearest facility. But we know from previous field work in other countries that 
households choose to go to different health facilities for a variety of reasons and often these are not the nearest 
facilities to the village but along a route that the individual takes when carrying out other activities for example. 
Thus, there is limited opportunity for validation at this time.

All of the input data that we have used has been independently validated. The walking speeds we have used 
have been published in peer-reviewed journal articles. Each of the component data sets have been validated or 
examined for completeness by others in the literature.

•	 The ESA CCI 2016 Land Cover data for Africa is classed as a prototype dataset and has been independently 
validated61. The validation found that the land cover accuracy was highly variable across Africa with an aver-
age overall accuracy of 65%. In Uganda the accuracy ranged between 46% and 65% due to misclassification 
errors between grassland and cropland. This overall accuracy is low, however, the highly detailed roads data 
available from OSM and mapwith.ai meant that the land cover map was less important for overall estimates of 
travel speeds. Furthermore, the land cover can be improved in the future or can be replaced in the code with 
a user defined Sentinel-2 land cover classification.
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•	 The OSM data is continually validated during the digitisation process by OSM. Road completeness varies 
spatially both across and within countries, with Uganda being estimated to be 70% complete in 201731. How-
ever, this completeness was increased by merging the roads with the mapwith.ai project footpaths and roads.

•	 The mapwith.ai data was manually validated prior to release. However, there were no published estimates of 
the completeness of roads and footpaths across Uganda at the time of this writing.

•	 The health facility location data were validated before being published45.

Usage Notes
Currently, all the input datasets use geographic coordinates which get converted into metres using a constant 
factor so that a cartesian coordinate system can be used to compute the gradient. The code assumes a uniform 
factor to convert degrees latitude and degrees longitude into metres. This approximation works near the equator 
but may be problematic further away from the equator. However, the gradient is used to modify the cost which 
is an approximate model so it will have a small impact on the final cost allocation and travel time estimations. 
The code is open and licensed in such a way that users could adapt it to accept different projected coordinate 
systems should they see fit.

The cost allocation surfaces provided can be used in GIS analysis to estimate time to travel to user selected 
services. The user would need some form of location information for a particular service such as health centre, 
market, school, city or all-weather road for example. Thus, these surfaces can be used by others for further anal-
ysis when considering access to services across different countries.

No editing is required of the ESA CCI land cover data prior to running the code, it just needs to be downloaded 
and clipped to the country boundaries. Users need to ensure that the landcovercosts.csv file has the correct land 
cover class codes and required speeds specified. These land cover classes are the same as those in the ESA CCI land 
cover product so if a user opts to use a different land cover dataset the land cover class values will need to be changed.

The 20 m spatial resolution used in this analysis does mean that some files are very large, preventing the soft-
ware being converted into an online web platform currently. High-performance computing is required for larger 
countries such as Tanzania and Mozambique. If users have a low bandwidth and cannot run the software they 
can make reasonable requests to the corresponding author to calculate travel times to particular facility locations 
of their choosing. The files are large due to being 20 m spatial resolution:

•	 Uganda– 6.7 gb
•	 Tanzania - 26 gb
•	 Zimbabwe – 11.6gb
•	 Mozambique – 37.9 gb

System requirements. The code works out of the box on an Ubuntu 20.04 system. For analysis using data 
for Uganda the code required 50GB of memory. For analysis in larger countries the code required 128GB and 
took approximately 3 hours to run for Zimbabwe, 4.5 hours for Tanzania and 6 hours for Mozambique.

The CPAS software works out of the box in that only standard Python packages and dependencies are 
required for it to run. These packages can be installed into either a conda or standard python virtual environ-
ment. We have run the software on Linux however, it is not restricted to this OS and we have tested in LTS 
ubuntu, but it will work on windows/mac/other linux with a suitable python installation. ArcMap was used for 
some of the preprocessing, but this could be done done in QGIS or GRASS or R if a user does not have access to 
ESRC ArcMap Licenses. It is possible to distribute the CPAS software as a docker container with a user-friendly 
graphical frontend similar to AccessMod5. However, due to of the high-resolution of the datasets, significant 
computational resources are required to compute them.

Min 1st quartile Median Mean 3rd quartile Max

1 km Weiss et al.16 0 15 30 40.85 50.50 958

20 m CPAS 1 33.03 62.76 81.55 102.15 1080

Table 3. Summary statistics for the walking only travel times from the 682 clusters to the nearest health centre 
calculated using the 1 km Weiss et al.16 and 20 m CPAS methods. Calculated using 682 clusters from the 2016 
Ugandan Demographic and Health Survey (DHS).

Weiss et al.16 (1 km) CPAS (20 m)

0 minutes 72 0

< = 15 (including 0) 227 50

>0 & < = 15 155 50

< = 30 344 159

>0 & < = 30 189 109

Table 4. The number of village clusters that were within given walking times of the nearest health centres 
for the 1 km Weiss et al.15 and the 20 m CPAS method. Calculated using 682 clusters from the 2016 Ugandan 
Demographic and Health Survey (DHS).
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Code availability
The software/code works out of the box on a current Ubuntu system using Python, and all source data were 
derived from open and free datasets available for the whole of Sub-Saharan Africa. The Python software25, scripts 
and a virtual environment are provided with the data and requires minimal input from the user.

The software is controlled by a configuration file. The GitHub repository contains an example configuration 
file, creation.cfg. In this file the following should be changed:

• Path to input data sets
• Names of input data sets should these have been changed.
• Path to the location where the output files should be saved
• Names of the output files.

The user can also choose to change the following settings in the configuration file:

•  Walking speed reduction to account for children. As standard it is set to 0.78 to generate a 22% reduction in 
the travel speeds. If a user wishes to generate a cost allocation surface for adult walking speeds they should 
change the factor to 1.0.

•  Water speed can be changed in this file. It is set to NA in the landcover.csv and should remain as such. The water 
speed can also be changed in the configuration file and will appear in the water passable cost allocation surface.

Additional steps required prior to running the code:

•  The roads from the standard OSM roads download and mapwith.ai download should be merged. We used 
the merge function in ArcMap 10.7.132. The merged road data require a new ‘tag’ attribute to be created 
which contains the road type (name).

• The user should check the roadcosts.csv file to ensure the road names match those in the shapefile.
• The user can change the travel speeds assigned to each road type by editing the roadcosts.csv file.
•  The user can change the travel speeds assigned to each land cover type by editing the landcovercosts.csv 

file. If users want to use a different land cover map they can do so by ensuring that the land cover types in 
the landcovercosts.csv match those in the chosen land cover data.

All of the analysis was conducted using Python-3 apart from merging the OSM roads with the MapwithAi roads. 
The code has been developed as an all-in-one software which can be downloaded from Zenodo25 and GitHub 
[https://github.com/ChildPovetyAccesstoServices/cpas/tree/v1.0] and is licensed under the GNU General Public 
License v3.0 only, meaning changes to the code are permitted as long as they are distributed under the same license.

The code includes an example configuration file creation.cfg. This is the only file the user needs to alter to 
repeat the process. Within this file the user specifies the location of the input data and the names and paths for 
the output files. The user can also specify the weighting if they wish to consider children’s travel speed, if not they 
can set the reduction factor to 0 which will generate adult cost allocation surfaces. The code runs in two steps (1) 
calculate the cost allocation surfaces (2) use the least cost path analysis to estimate the travel time from every pixel 
to the nearest health centre.

All rasters are read and written using the rasterio python package (https://github.com/mapbox/rasterio) 
together with xarray62. The steps and python packages used for pre-processing the roads data:

• Walking speed values are assigned to an array based on land cover type.
•  A CSV file of OSM road categories and associated walking speeds was used to input the assigned walking 

speeds into a pandas Data Frame63.
•  A shapefile containing roads was rasterised using the walking speeds assigned to each type of road. The 

fastest walking speeds are used for pixels that contain roads of different types. There were a few steps to this 
which are detailed below:
a.  The road types of the CSV file were matched to the road types of the shapefile using a fuzzy match to 

ensure a walking speed was assigned to every road type in the shapefile.
b.  The road types were grouped by walking speed. Each group of roads was processed separately.
c.  Roads from the shapefile were filtered by road type and rasterised using the rasterize function of the 

rasterio.features module. The walking speed is used as value for the rasterised roads. The all_touched 
option was used so that all grid squares in which road segments existed were counted as road segments 
in the new raster. This was essential so the rasterization of the roads retained the connections.

d.  The resulting walking speed surfaces were merged taking the maximum value at each pixel for all road 
types.

Pre-processing steps of the SRTM data required:
•  Re-sampled to 20 m resolution, using bilinear interpolationSlope is calculated using the formula

=





+ ∗



( )( )slope dH

dx
dH
dy

2 2 100
111120

 

The factor 100 converts the gradient to a percentage slope and the factor 111120 coverts degree latitude/longitude 
to metres. This approximation is only valid close to the equator which is the case in this study.
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As Eq. 1 does not account for gradients over 100%, these were removed and replaced with a NA value.
The cost allocation surface and health facilities locations were combined to calculate travel time from each cell 

in the array to the nearest health facility using the graph.MCP_Geometric() and find_costs() methods from the 
SciPy package64.
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