
HAL Id: hal-01959118
https://hal.laas.fr/hal-01959118

Submitted on 18 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Operational Models to Integrate Acting and
Planning

Sunandita Patra, Malik Ghallab, Dana Nau, Paolo Traverso

To cite this version:
Sunandita Patra, Malik Ghallab, Dana Nau, Paolo Traverso. Using Operational Models to Integrate
Acting and Planning. ICAPS Workshop on Integrated Planning, Acting and Execution, Jun 2018,
Delft, Netherlands. hal-01959118

https://hal.laas.fr/hal-01959118
https://hal.archives-ouvertes.fr

Using Operational Models to Integrate Acting and Planning

Sunandita Patra1, Malik Ghallab2, Dana Nau3, Paolo Traverso4

1,3University of Maryland, College Park, USA 2LAAS-CNRS, France, 4FBK-ICT, Trento, Italy
1patras@umd.edu, 2malik@laas.fr, 3nau@cs.umd.edu, 4traverso@fbk.eu

Workshop on Hybrid Planning, ICAPS 2018

Abstract

A significant problem for integrating acting and planning is
how to maintain consistency between the planner’s descrip-
tive action models, which abstractly describe what the actions
do, and the actor’s operational models, which tell how to per-
form the actions with rich control structures for closed-loop
online decision-making. Operational models allow for deal-
ing with a variety of contexts, and responding to unexpected
outcomes and events in a dynamically changing environment.

To circumvent the consistency problem, we use the actor’s
operational models both for acting and for planning. Our
acting-and-planning algorithm, APE, uses hierarchical oper-
ational models inspired from those in the well-known PRS
system. But unlike the reactive PRS algorithm, APE chooses
its course of action using a planner that does Monte Carlo
sampling over simulated executions of APE’s operational
models.

Our experiments with this approach show significant bene-
fits in the success rates of the acting system, in particular for
domains with dead ends.

Introduction

The integration of acting and planning is a long-standing
AI problem that has been discussed by many authors. For
example, (Pollack and Horty 1999) argue that despite suc-
cessful progress to go beyond the restricted assumptions of
classical planning (e.g., handle uncertainty, partial observ-
ability, or exogenous events), in most realistic applications
just making plans is not enough. Their argument still holds.
Planning, as a search over predicted state changes, uses de-
scriptive models of actions (what might happen). Acting, as
an adaptation and reaction to an unfolding context, requires
operational models of actions (how to do things) with rich
control structures for closed-loop online decision-making.

A recent survey shows that most approaches to integrating
acting and planning seek to combine descriptive and opera-
tional representations, using the former for planning and the
latter for acting (Ingrand and Ghallab 2017). This has several
drawbacks in particular for the development and consistency
verification of the models. To ensure consistency, it is highly
desirable to have a single representation for both acting and
planning. But if this representation were a descriptive one, it

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

wouldn’t provide sufficient functionality. Instead, the plan-
ner needs to be capable of reasoning directly with the actor’s
operational models.

In this paper, we provide an integrated acting-and-
planning system, APE (Acting and Planning Engine). APE’s
operational representation language and its acting algorithm
are inspired by the well-known PRS system (Ingrand et al.
1996). The operational model is hierarchical: a collection of
refinement methods offers alternative ways to handle tasks
and react to events. Each method has a body that can be
any complex algorithm. In addition to the usual program-
ming constructs, the body may contain commands (includ-
ing sensing commands), which are sent to an execution plat-
form in order to execute them in the real world, and sub-
tasks, which need to be refined recursively. APE’s acting en-
gine is based on an expressive, general-purpose operational
language with rich control structures for closed-loop online
decision-making.

To integrate acting and planning, APE extends the reactive
PRS-like acting algorithm to include a planner, APE-plan.
At each point where APE needs to decide how to refine a
task, subtask, or event, APE-plan does Monte Carlo rollouts
with a subset of the applicable refinement methods. At each
point where a refinement method contains a command to the
execution platform, APE-plan takes samples of its possible
outcomes using a predictive model of what each command
will do.

We have implemented APE and APE-plan and have done
preliminary empirical assessments of them on four domains.
The results show significant benefits in the success rates of
the acting system, in particular for domains with dead ends.

The related work is described in the following section.
Then we briefly summarize the operational model. APE and
APE-plan are presented in the following section. We present
our benchmark domains and experimental results. Finally,
we discuss the results and provide conclusions.

Related Work

To the best of our knowledge, no previous approach has pro-
posed the integration of acting and planning by looking di-
rectly within the language of a true operational model like
that of APE. Our approach is based on the operational rep-
resentation language and RAE algorithm in (Ghallab, Nau,
and Traverso 2016, Chapter 3), which in turn were inspired

by PRS (Ingrand et al. 1996). RAE operates purely reac-
tively. If it needs to choose among several refinement meth-
ods that are eligible for a given task or event, it makes the
choice without any attempt to plan ahead. The approach has
been extended with some planning capabilities in Propice-
Plan (Despouys and Ingrand 1999) and SeRPE (Ghallab,
Nau, and Traverso 2016). The two systems model com-
mands with classical planning operators; they both require
the action models and the refinement methods to satisfy clas-
sical planning assumptions of deterministic, fully observable
and static environments, which are not acceptable assump-
tions for most acting systems.

Various acting approaches similar to PRS and APE have
been proposed, e.g., (Firby 1987; Simmons 1992; Sim-
mons and Apfelbaum 1998; Beetz and McDermott 1994;
Muscettola et al. 1998; Myers 1999); some of these pro-
vide refinement capabilities. While such systems offer ex-
pressive acting environments, e.g., with real time handling
primitives, none of them provide the ability to plan with the
operational models used for acting, and thus cannot integrate
acting and planning as we propose here. Most of the men-
tioned systems do not reason about alternative refinements.

Finite State Automata (FSA) and Petri Nets have also
been used as representations for acting models, e.g.,(Verma
et al. 2005; Wang et al. 1991), again without planning ca-
pability. For example, the ROS execution system SMACH
(Bohren et al. 2011), implements an automata-based ap-
proach, where each state of a hierarchical state machine cor-
responds to the execution of a command. However, the se-
mantics of constructs available in SMACH is limited for rea-
soning on goals and states, and there is no planning.

The Reactive Model-based Programming Language
(RMPL) (Ingham, Ragno, and Williams 2001) is an object-
oriented language that allows a domain to be structured
through an object hierarchy with subclasses and multiple in-
heritance. It combines a system model with a control model,
using state-based, procedural control and temporal represen-
tations. The system model specifies nominal as well as fail-
ure state transitions with hierarchical constraints. The con-
trol model uses standard reactive programming constructs.
RMPL programs are transformed into Temporal Plan Net-
works (TPN)(Williams and Abramson 2001), an extension
of Simple Temporal Networks with symbolic constraints
and decision nodes. Temporal reasoning consists in finding
a path, i.e., a plan, in the TPN that meets the constraints.
The execution of generated plans allows for online choices
(Conrad, Shah, and Williams 2009). TPNs are extended with
error recovery, temporal flexibility, and conditional execu-
tion based on the state of the world (Effinger, Williams, and
Hofmann 2010). Primitive tasks are specified with distri-
butions of their likely durations. A probabilistic sampling
algorithm finds an execution guaranteed to succeed with a
given probability. Probabilistic TPN are introduced in (San-
tana and Williams 2014) with the notions of weak and strong
consistency. (Levine and Williams 2014) add the notion of
uncertainty to TPNs for contingent decisions taken by the
environment or another agent. The acting system adapts the
execution to observations and predictions based on the plan.
RMPL and subsequent developments have been illustrated

with a service robot which observes and assists a human.
It is a quite comprehensive CSP-based approach for tempo-
ral planning and acting; it provides refinement, instantiation,
time, nondeterminism, a plan repair. Our approach does not
handle time; it focuses instead on decomposition into com-
municating asynchronous components.

Behavior trees (BT) (Colledanchise 2017; Colledanchise
and Ögren 2017) aim at integrating acting and planning
within a hierarchical representation. Similarly to our frame-
work, a BT can reactively respond to contingent events that
were not predicted. The authors propose a mechanism to
synthesize a BT that has a desired behavior. The construc-
tion of the tree refines the acting process by mapping the
descriptive model of actions onto an operational model. Our
approach is different since APE provides the rich and general
control constructs of a programming language and we do
planning directly within the operational model, rather than
through a mapping from the descriptive to an operational
model. Moreover, the BT approach does not allow for re-
finement methods, which are a rather natural and practical
way to specify different possible refinements of tasks.

Approaches based on temporal logics or situation calculus
(Doherty, Kvarnström, and Heintz 2009; Hähnel, Burgard,
and Lakemeyer 1998; Claßen et al. 2012; Ferrein and Lake-
meyer 2008) specify acting and planning knowledge through
high-level descriptive models and not through operational
models like used in APE. Moreover, these approaches inte-
grate acting and planning without exploiting the hierarchical
approach based on refinement methods described in this pa-
per.

Our framework has some similarities with HTN (see, e.g.,
(Nau et al. 1999)), since tasks can be refined with different
methods. However, our methods are significantly different
from HTN ones since our methods are programs that can
encode rich control constructs rather than simple sequences
of primitive tasks. This is what allows us to provide a frame-
work for acting and planning.

(Bucchiarone et al. 2013) propose a hierarchical represen-
tation framework that includes abstract actions and that can
interleave acting and planning for composing web services.
However this work focus on distributed processes, which are
represented as state transition systems, and does not allow
for refinement methods.

Finally, a wide literature on probabilistic planning and
Monte Carlo tree search refers to simulated execution, e.g.,
(Feldman and Domshlak 2013; Feldman and Domshlak
2014; Kocsis and Szepesvári 2006; James, Konidaris, and
Rosman 2017) and sampling outcomes of action models
e.g., the RFF algorithm (Teichteil-Königsbuch, Infantes, and
Kuter 2008), FF-replan (Yoon, Fern, and Givan 2007) and
hindsight optimization (Yoon et al. 2008). Beyond the fact
that all these works are based on a probabilistic MDP frame-
work, the main conceptual and practical difference with our
work is that they consider just a descriptive model, i.e., ab-
stract actions on finite MDPs. Their focus is therefore en-
tirely on planning, and do not allow for an integration of
acting and planning. Most of the papers refer to doing the
planning online – but they are doing the planning using de-
scriptive models rather than operational models. There is no

notion of integration of acting and planning, hence no notion
of how to maintain consistency between the planner’s de-
scriptive models and the actor’s operational models. More-
over, they have no notion of hierarchy and refinement meth-
ods.

Operational Models
Our formalism for operational models of actions is based on
the one in (Ghallab, Nau, and Traverso 2016, Chapter 3).
It has features that allow for dealing with a dynamic envi-
ronment which has other actors and exogenous events. The
main ingredients are tasks, events, commands, refinement
methods, and state variables. Some of the state variables are
observable, i.e., the execution platform will automatically
keep them up-to-date through sensing operations. We illus-
trate this representation through the following examples.

Example 1. Consider several robots (UGVs and UAVs)
moving around in a partially known terrain, performing op-
erations such as data gathering, processing, screening and
monitoring. In this domain, let

• R = {g1, g2, a1, a2} be the set of robots,

• L = {base, z1, z2, z3, z4} be the set of locations,

• survey(r, l) be a command performed by robot r in loca-
tion l that surveys l and collects data

• loc(r) ∈ L and data(r) ∈ [0, 100] be observable state
variables that contain the robot r’s current location and
the amount of data it has collected.

Let explore(r, l) be a task for robot r ∈ R to reach loca-
tion l ∈ L and perform the command survey(r, l). In order
to survey, the robot needs some equipment that might either
be available or in use by another robot. Robot r should col-
lect the equipment, then move to the location l and execute
the command survey(r, l). Each robot can carry only a lim-
ited amount of data. Once its data storage is full, it can ei-
ther go and deposit data to the base, or transfer it to an UAV
via the task depositData(r). Here is a refinement method to
do this.

m1-explore(r, l)
task: explore(r, l)

body: get-Equipment(r, ‘survey’)
moveTo(r, l)
if loc(r) = l then:

Execute command survey(r, l)
if data(r) = 100 then:

depositData(r)
return success

else return failure

Above, get-Equipment(r, ‘survey’), moveTo(r, l) and de-

positData(r) are subtasks which need to be further refined
via suitable refinement methods. Only UAVs have the ability
to fly. So, there can be different possible refinement methods
for the task moveTo(r, l) based on whether r can fly or not.

Each robot can hold a limited amount of charge and is
rechargeable. Depending on what locations it needs to sur-
vey, it might need to recharge by going to the base where
the charger is located. Different ways of doing this can be
captured by multiple refinement methods for the task doAc-

tivities(r, locList). Here are two of them:

m1-doActivities(r, locList)
task: doActivities(r, locList)

body: for l in locList do:
explore(r, l)

moveTo(r, ‘base’)
if loc(r) = ‘base’:

recharge(r)
else return failure
return success

m2-doActivities(r, locList)
task: doActivities(r, locList)

body: for l in locList do:
explore(r, l)
moveTo(r, ‘base’)
if loc(r) = ‘base′:

recharge(r)
else return failure

return success

Note that a refinement method for a task t specifies how
to perform t, i.e., it gives a procedure for accomplishing t by
performing subtasks, commands and state variable assign-
ments. This procedure can include any of the usual program-
ming constructs, e.g., if-then-else, loops and so forth.

The above example illustrates tasks and refinement meth-
ods. Let us give the robots a method for reacting to an event.

Example 2. Suppose that an alien is spotted in one of the
locations l ∈ L of Example 1 and a robot has to react to it
by stopping its current activity and going to l. Let us repre-
sent this with an event alienSpotted(l). We also need an ad-
ditional state variable: alien-handling(r)∈{T, F} which indi-
cates whether the robot r is engaged in handling an alien.
Here is a refinement method for this event:

m-handleAlien(r, l)
event: alienSpotted(l)
body: if alien-handling(r) = F then:

alien-handling(r)← T
moveToAlien(r, l)
Execute command negotiate-with-alien(r, l)
alien-handling(r)← F
return success

else return failure

This method can succeed if robot r is not already engaged in
negotiating with another alien. After negotiations are over,
the methods changes the value of alien-handling(r) to F.

APE and APE-plan
Algorithm 1, APE (Acting and Planning Engine), is based
loosely on the RAE (Refinement Acting Engine) algorithm
in (Ghallab, Nau, and Traverso 2016, Chapter 3). APE’s first
inner loop (line (1)) reads each new job, i.e., each task or
event that comes in from an external source such as the user
or the execution platform, as opposed to the subtasks gen-
erated by APE’s refinement methods. For each such job τ ,
APE creates a refinement stack analogous to a computer pro-
gram’s execution stack. Agenda is the set of all current re-
finement stacks.

In the second inner loop (line (4)), for each refinement
stack in Agenda, APE progresses the topmost stack ele-
ment by one step. The stack element includes (among other
things) a task or event τ and the method instance m that
APE has chosen to use for τ . The body of m is a program,
and progressing the stack element (the Progress subroutine)
means executing the next step in this program. This may in-
volve monitoring the status of a currently executing com-
mand (line (6)), following a control structure such as a loop
or if-then-else (line (7)), executing an assignment statement,
sending a command to the execution platform, or handling
a subtask τ ′ by pushing a new stack element onto the stack

APE()
Agenda← empty list
loop

for each new task or event τ in the input stream, do (1)
s← current state
M ← {applicable method instances for τ in state s}
T ← APE-plan(M, s, τ) (2)
if T = failed then output(“failed to address”, τ)
else do

m← the method instance at the top of T (3)
stack← a new, empty refinement stack
push (τ,m, nil, ∅) onto stack
insert stack into Agenda

for each stack ∈ Agenda do (4)
Progress(stack)
if stack is empty then remove it from Agenda (5)

Progress(stack)
(τ,m, step, tried)← top(stack)
if step 6= nil then // i.e., if we have started executing m

// step is the current step of m
if type(step) = command then (6)

// step is running on the execution platform
case execution-status(step):

still-running: return
failed: Retry(stack); return
successful: pass // continue to next line

if there are no more steps in m then pop(stack); return
step← next step of m after accounting for the effects

of control statements (loops, if-then-else, etc.) (7)
case type(step):

assignment: update s according to step; return
command:

send step to the execution platform; return (8)
task: pass // continue to next line

τ ′ ← step; s← current state (9)
M ′ ← {applicable method instances for τ ′ in state s}
T ′ ← APE-plan(M ′, s, τ ′) (10)
if T ′ = failed then Retry(stack); return
m′ ← the method instance at the top of T ′ (11)
push (τ ′,m′, nil, ∅) onto stack (12)

Retry(stack)
(τ,m, step, tried)← pop(stack)
add m to tried // the things we tried that didn’t work
s← current state
M ← {applicable method instances for τ in state s}
T ← APE-plan(M \ tried, s, τ) (13)
if T 6= failed then

m′ ← the method instance at the top of T (14)
push (τ,m′, nil, tried) onto stack

else if stack is empty then
output(“failed to accomplish”, τ)
remove stack from Agenda

else Retry(stack)

Algorithm 1: APE, the Acting and Planning Engine.

(line (12)). A method succeeds in accomplishing a task when
it returns without any failure.

Whenever APE creates a stack element for a task τ , it must
choose (lines (3), (11), and (14)) a method instance m for τ .
In order to make an informed choice of m, APE calls (lines

(2), (10), and (13)) a planner, APE-plan, that returns a plan
for accomplishing τ . The returned plan, T , will begin with
a method m to use for τ . If m contains subtasks, then T
must include methods for accomplishing them (and so forth
recursively), so T is a tree with m at the root.

Once APE has selected m, it ignores the rest of T . Thus
in line (9), where m has a subtask τ ′, APE doesn’t use the
method that T used for τ ′. Instead, in line (11), APE calls
APE-plan to get a new plan T ′ for τ ′. This is a receding-
horizon search analogous to how a game-playing program
might call an alpha-beta game-tree search at every move.1

The pseudocode of APE-plan is given in the appendix. It is
a modified version of the APE pseudocode that incorporates
these main modifications:

1. Each call to APE-plan returns a refinement tree T whose
root node contains a method instance m to use for τ . The
children of this node include a refinement tree (or termi-
nal node) for each subtask (or command, respectively)
that APE-plan produced during its Monte Carlo rollout
of m.

2. In lines (2), (10), and (13), APE-plan calls itself recur-
sively on a set M ′ ⊆ M that contains the first b mem-
bers of M a list of method instances ordered according to
some domain-specific preference order (with M ′ = M
if |M | < b), where b is a parameter called the search
breadth.This produces a set of refinement trees. If the set
is nonempty, then APE-plan chooses one that optimizes
cost, time or any other user-specified objective function.
If the set is empty, then APE-plan returns the first method
instance from M ′ if |M ′| >= 1; otherwise it returns
failed. See Figures 5 and 6 in the appendix for more
details.

3. Each call to Retry is replaced with an expression that just
returns failed. While APE needs to retry in the real world
with respect to the real actual state, APE-plan considers
that a failure is simply a dead end for that particular se-
quence of choices.

4. In line (8) (the case where step is a command), instead
of sending step to the actor’s execution platform, APE-

plan invokes a predictive model of what the execution
platform would do. Such a predictive model may be any
piece of code capable of making such a prediction, e.g.,
a deterministic, nondeterministic, or probabilistic state-
transition model, or a simulator of some kind. Since dif-
ferent calls to the predictive model may produce differ-
ent results, APE-plan calls it b′ times, where b′ is a pa-
rameter called the sample breadth. From the b′ trial runs,
APE-plan gets an estimate of step’s expected time, cost,
and probability of leading to success. See Figures 8 and
10 in the appendix for more details.

1(Ghallab, Nau, and Traverso 2016) describes a “lazy looka-
head” in which an actor keeps using its current plan until an unex-
pected outcome or event makes the plan incorrect, and a “concur-
rent lookahead” in which the acting and planning procedures run
concurrently. We tried implementing these for APE, but in our ex-
perimental domains they did not make much difference in APE’s
performance.

5. Finally, APE-plan has a search depth parameter d. When
APE calls APE-plan, APE-plan continues planning ei-
ther to completion or depth d, whichever comes earlier.
Such a parameter can be useful in real-time environ-
ments where there may not be enough time to plan all
the way to completion.

Experimental Evaluation

Domains

We have implemented and tested our framework on four do-
mains. The Explorable Environment domain (EE) extends
the UAVs and UGVs setting of Example 1 with some addi-
tional tasks and refinement methods. This domain has dead
ends because a robot may run of charge in an isolated loca-
tion.

The Chargeable Robot Domain (CR) consists of several
robots moving around to collect objects of interest. The
robots can hold a limited amount of charge and are recharge-
able. To move from one location to another, the robots use
Dijkstra’s shortest path algorithm. The robots don’t know
where objects are unless a sensing action is performed in
the object’s location. They have to search for an object be-
fore collecting it. Also, the robot may or may not carry the
charger with it. The environment is dynamic due to emer-
gency events as in Example 2. A task reaches a dead end
when a robot, which is far away from the charger, has run
out of charge.

The Spring Door domain (SD) has several robots are try-
ing to move objects from one room to another in an envi-
ronment with a mixture of spring doors and ordinary doors.
Spring doors close themselves unless they are held. A robot
cannot carry an object and hold a door simultaneously. So,
whenever it needs to move through a spring door, it needs to
ask for help from another robot. Any robot which is free can
act as the helper. The environment is dynamic because the
the type of door is unknown to the robot. But, there are no
dead ends.

The Industrial Plant domain (IP) consists of an industrial
workshop environment, as in the RoboCup Logistics League
competition. There are several fixed machines for painting,
assembly, wrapping and packing. As new orders for assem-
bly, paint, etc., arrive, carrier robots transport the necessary
objects to the required machine’s location. An order can be
complex, like, paint two objects, assemble them together,
and pack the resulting object. Once the order is done, the
final product is delivered to the output buffer. The environ-
ment is dynamic because the machines may get damaged
and need repair before being used again; but there are no
dead ends.

These four domains have different properties, summa-
rized in Figure 1. CR includes a model for the sensing ac-
tion where the robot can sense a location and identify ob-
jects in that location. SD models a situation where robots
need to collaborate with each other. They can ask for help
from each other. EE models a combination of robots with
different capabilities (UGVs and UAVs) whereas in the other
three domains all robots have same capabilities. It also mod-
els collaboration like the SD domain. In the IP domain, the

Domain Dynamic Dead Sensing Robot Concurrent
events ends collaboration tasks

CR X X X – X

EE X X – X X

SD X – – X X

IP X – – X X

Figure 1: Properties of our domains

allocation of tasks among the robots is hidden from the user.
The user just specifies their orders; the delegation of the sub-
tasks (movement of objects to the required locations) is han-
dled inside the refinement methods. CR and EE are domains
that can represent dead-ends, whereas SD and IP do not have
dead-ends.

Experiments and Analysis

The objective of our experiments was to examine how APE’s
performance might depend on the amount of planning that
we told APE to do. For this purpose, we created a suite of
test problems. Each test problem included 1 to 4 jobs to ac-
complish, and for each job, there was a randomly chosen
time point at which it would arrive in APE’s input stream.

The amount of planning done by APE-plan depends on its
search breadth b, sample breadth b′, and search depth d. We
used b′ = 1 (one outcome for each command), and d = ∞
(planning always proceeded to completion), and five differ-
ent search breadths, b = 0, 1, 2, 3, 4. Since APE tries b al-
ternative refinement methods for each task or subtask, the
number of alternative plans examined by APE is exponential
in b. As a special case, b = 0 means running APE in a purely
reactive way without any planning at all. Our objective func-
tion for the experiments is the number of commands in the
plan.

In the CR, EE, SD and IP domains, our test suites con-
sisted of 60, 54, 60, and 84 problems, with the numbers of
jobs to accomplish being 114, 126, 84 and 276, respectively.
In our experiments we used simulated versions of the four
environments, running on a 2.6 GHz Intel Core i5 processor.

Success ratio. Figure 2 shows APE’s success ratio, the pro-
portion of jobs that it successfully accomplished in each do-
main. For the two domains with dead ends (CR and EE), the
success ratio generally increases as we increase the value
of b. In the CR domain, the success ratio makes a big jump
from b = 1 to b = 2 and then remains nearly the same for
b = 2, 3, 4. This is because for most of the CR tasks, the sec-
ond method in the preference ordering (in our experiments,
this order is decided by the domains’ author)turned out to
be the best one, so higher value of b did not help much. In
contrast, in the EE domain, the success ratio continued to
improve significantly for b = 3 and b = 4.

In the domains with no dead ends, b didn’t make very
much difference in the success ratio. In the IP domain, b
made almost no difference at all. In the SD domain, the suc-
cess ratio even decreased slightly from b = 1 to b = 4. This
is because in our preference ordering for the tasks of the SD
domain, the methods appearing earlier are better suited to
handle the events in our problems whereas the methods ap-

Domains having dead ends: Domains having no dead ends:

Figure 2: Success ratio (number of successful jobs / total
number of jobs) for different values of search breadth b.

pearing later produce plans that are shorter but less robust to
unexpected events. These experiments confirm the expecta-
tion that planning is critical in domains where the actor may
get stuck in dead ends. It also has benefits in acting costs (the
retry ratio and speed to success measurements described be-
low).

Retry ratio. Figure 3 shows the retry ratio, i.e., the number
of times that APE had to call the Retry procedure, divided by
the total number of jobs to accomplish. The Retry procedure
is called when there is a failure in the method instance m that
APE chose for some task τ (see Algorithm 1). Retry works
by trying to use another applicable method instance for τ
that it hasn’t tried already. Although this is a little like back-
tracking, a critical difference is that since the method m has
already been partially executed, it has changed the current
state, and in real-world execution (unlike planning), there is
no way to backtrack to a previous state. In many applica-
tion domains it is important to minimize the total number
of retries, since recovery from failure may incur significant,
unbudgeted amounts of time and expense.

In all four of the domains, the retry ratio decreases slightly
from b = 0 (purely reactive APE) to b = 1, and it generally
decreases more as b increases. This is because higher values
of b make APE-plan examine a larger number of alternative
plans before choosing one, thus increasing the chance that it
finds a better method for each task. In the CR domain, the
big decrease in retry ratio from b = 1 to b = 2 corresponds
to the increase in success ratio observed in Figure 2. The
same is true for the EE domain at b = 2 and b = 4. Since the
retry ratio decreases with increasing b in all four domains,
this means that the integration of acting and planning in APE

is important in order to reduce the number of retries.

Speed to success. An acting-and-planning system’s perfor-
mance cannot be measured only with respect to the time
to plan; it must also include the time to success, i.e., the
total amount of time required for both planning and act-
ing. Acting is in general much more expensive, resource
demanding, and time consuming than planning; and unex-
pected outcomes and events may necessitate additional act-
ing and planning.

For a successful job, the time to success is finite, but for a
failed job it is effectively infinite. To make all of the numbers
finite so that they can be averaged, we use the reciprocal

Domains having dead ends: Domains having no dead ends:

Figure 3: Retry ratio (number of retries / total number of
jobs) for different values of search breadth b.

Domains having dead ends: Domains having no dead ends:

Figure 4: Speed to success ν averaged over all of the jobs,
for different values of search breadth b.

amount, the speed to success, which we define as follows:

ν =

{

0 if the job isn’t successful,

α/(tp + ta + nctc) if the job is successful,

where α is a scaling factor (we used α = 10, 000, otherwise
all of our numbers would be very small), tp and ta are APE-

plan’s and APE’s total computation time, nc is the number of
commands sent to the execution platform, and tc the average
amount of time needed to perform a command. In our exper-
iments we used tc = 250 seconds. The higher the average
value of ν, the better the performance.

Figure 4 shows how the average value of ν depends on
b. In the domains with dead-ends (CR and EE), there is a
huge improvement in ν from b = 1 (where ν is nearly 0)
to b = 2. This corresponds to a larger number of successful
jobs in less time. As we increase b further, we only see slight
change in ν for all the domains even though the success ratio
and retry ratio improve (Figures 2 and 3). This is because of
the extra time overhead of running APE-plan with higher b.

In summary, for domains with dead ends, planning with
APE-plan outperforms purely reactive APE. The same oc-
curs to some extent in the domains without dead ends, but
there the effect is less pronounced thanks to the good do-
main specific heuristics in our experiments.

Concluding Remarks

We have proposed a novel algorithm APE for integrating
acting and planning using the actor’s operational models.

Our experimentation covers different interesting aspects of
realistic domains, like dynamicity, and the need for run-
time sensing, information gathering, collaborative and con-
current tasks (see Figure 1). We have shown the difference
between domains with dead ends, and domains without dead
ends through three different performance metrics: the suc-
cess ratio, retry ratio and speed to success. We saw that act-
ing purely reactively in the domains with dead ends can be
costly and dangerous. The homogenous and sound integra-
tion of acting and planning provided by APE is of great ben-
efit for domains with dead ends which is reflected through a
higher success ratio. In most of the cases, the success ratio
increases with increase in the parameter, search breadth, b
of APE-plan. In the case of safely explorable domains, APE

manages to have a similar ratio of success for all values of b.
Our second measure, the retry ratio, counts the number of

retries of the same task done by APE before succeeding. Per-
forming many retries is not desirable, since this has a high
cost and faces the uncertainty of execution. We have shown
that both in domains with dead ends and without, the retry
ratio significantly diminishes with APE-plan, demonstrating
the benefits of using APE-plan also in safely explorable do-
mains.

Finally we have devised a novel, and we believe realistic
and practical way, to measure the performance of APE and
similar systems. While most often the experimental evalu-
ation of systems addressing acting and planning is simply
performed on the sole planning functionality, we devised a
speed to success measure to assess the overall time to plan
and act, including failure cases. It takes into account that
the time to execute commands in the real world are usu-
ally much longer than the actor’s computation time. We have
shown that, in general, the integration of APE-plan reduces
time significantly in the case of domains with dead ends,
while there is not such significant decrease in performance
in the case of safely explorable domains.

Future work will include more elaborate experiments,
with more domains and test cases, and different settings of
APE-plan’s search breadth, search depth, and sample breadth
parameters. We also plan to test with different heuristics,
compare APE with other approaches cited in the related
work, and finally do testing in the physical world with ac-
tual robots.

Appendix
In this section, we describe the pseudocode of APE-plan, the
planner of our acting-and-planning engine, APE. b, b′ and d
are global variables representing the search breadth, sample
breadth and search depth respectively (described in the main
paper). The main procedure of APE-plan is shown in Fig-
ure 5. APE-plan receives as input a task τ to be planned for,
a set of methods M and the current state s. APE-plan returns
a refinement tree T for τ . It starts by creating a refinement
tree with a single node n labeled τ and calls a sub-routine
APE-plan-Task which builds a complete refinement tree for
n.

APE-plan has three main sub-procedures: APE-plan-Task,
APE-plan-Method and APE-plan-Command. APE-plan-Task

looks at b method instances for refining a task τ . It calls

APE-plan (M, s, τ)
n← new tree node
label(n)← τ
T0 ← tree with only one node n
(T, v)← APE-plan-Task(s, T0, n,M, 0)
if v 6= failure then

return (T, v)
else:

B ← { Applicable method instances for τ in M
ordered according to a preference ordering }

if B 6= ∅ then
n← Create new node
label(n)← B[1]
T ← tree with only one node n as the root
return (T, 0)

else:
return null, failure

Figure 5: The pseudocode of the planner used by APE

APE-plan-Method for each of the b method instances and re-
turns the tree with the most optimal value. Every refinement
tree has a value based on probability and cost. Once APE-

plan-Task has chosen a method instance m for τ , it re-labels
the node n from τ to m, in the current refinement tree T .
Then it simulates the steps in m one by one by calling the
sub-routine APE-plan-Method.

APE-plan-Task (s, T, n,M, dcurr)
τ ← label(n)
B ← { Applicable method instances for τ in M ordered

according to a preference ordering }
if |B| < b then

B′ ← B
else:

B′ ← B[1...b]
U, V ← empty dictionaries
for each m ∈ B′ do

label(n)← m
U [m], V [m]← APE-plan-Method(

s, T, n,M, dcurr + 1)
mopt ← arg-optimalm{V [m]}
return (U [mopt], V [mopt])

Figure 6: The pseudocode for APE-plan-Task

APE-plan-Method first checks whether the search has
reached the maximum depth. If it has reached the maximum
depth, APE-plan-Method makes an heuristic estimate of the
cost and predicts the next state after going through the steps
present inside the method. Otherwise, it creates a new node
in the current refinement tree T labeled with the first step in
the method. If the step is a task, then APE-plan-Task is called
for the task. If the step is a command, then APE-plan-Method

calls the sub-routine APE-plan-Command.
APE-plan-Command first calls the sub-routine Sam-

pleCommandOutcomes. SampleCommandOutcomes sam-
ples b′ outcomes of the command com in the current state s.
The sampling is done from a probability distribution speci-
fied by the domain’s author. SampleCommandOutcomes re-

APE-plan-Method (s, T, n,M, dcurr)
m← label(n)
if dcurr = d then

s′, cost′ ← HeuristicEstimate(s,m)
n′, d′ ← NextStep (s′, T, n, dcurr)

else:
step← first step in m
n′ ← new tree node
label(n′)← step
Add n′ as a child of n
d′ ← dcurr
cost′ ← 0
s′ ← s

case type(label(n′)):
task: T ′, v′ ← APE-plan-Task(s′, T, n′,M, d′)
command: T ′, v′ ← APE-plan-Command(

s′, T, n′,M, d′)
end: T ′ ← T ; v′ ← 0

return (T ′, v′ + cost′)

Figure 7: The pseudocode for APE-plan-Method

APE-plan-Command (s, T, n,M, dcurr)
res← SampleCommandOutcomes (s, label(n))
value← 0
for (s′, v, p) in res do

n′, d′ ← NextStep (s′, T, n, dcurr)
case type(label(n′)):

command:
Ts′ , vs′ ← APE-plan-Command(

s′, T, n′,M, dcurr)
task:

Ts′ , vs′ ← APE-plan-Task(s′, T, n′,M, dcurr)
end:

Ts′ ← T ; vs′ ← 0
value← value+ (p ∗ (v + vs′))

return T, value

Figure 8: The pseudocode for APE-plan-Command

turns a set consisting of three tuples of the form (s′, v, p),
where s′ is a predicted state after performing command com,
and v and p are the cost and probabilities of reaching that
state estimated from the sampling. We need the next state
s′ to build the remaining portion of the refinement tree T
starting from the state s′. The cost v contributes to the ex-
pected value of T with probability p. Now, after getting this
list of three tuples from SampleCommandOutcomes, APE-

plan-Command calls the NextStep sub-routine.

NextStep (shown in Figure 9) takes as input the current
refinement tree T and the current node n being explored. If
n refers to some task or command in the middle of a refine-
ment method m, then NextStep creates a new node labeled
with the next step inside m. The depth of nnext will be same
as n. Otherwise, if n is the last step of m, it continues to
loop and travel towards the root of the refinement tree until
it finds the root or a method that has not been fully simulated
yet. It returns end when T is completely refined or a node
labeled with the next step in T according to s and its depth.

NextStep (s, T, n, dcurr)
dnext ← dcurr
while(True)

nold ← n
n← parent(nold) in T
m← label(n)
step← next step in m after label(nold) depending on s
if step is not the last step of m then

nnext ← new tree node
label(nnext)← step
break

else
dnext ← dnext − 1
if dnext = 0 then

nnext ← new tree node
label(nnext)← end

break
else

continue
return nnext, dnext

Figure 9: The sub-routine NextStep

After APE-plan-Command gets a new node n′ and its
depth from NextStep, it calls APE-plan-Command or APE-

plan-Task depending on the label of n′. It does this for every
s′ in res and estimates a value for T from these runs.

SampleCommandOutcomes (s, com)
S ← φ
Cost,Count← empty dictionaries
loop b′ times:

s′← Sample(s, com)
S ← S ∪ {s′}
if s′ in Count:

Count[s′]← 1
Cost[s′]← costs,m[i](s

′)
else:

Count[s′]← Count[s′] + 1
normalize(Count)
res← φ
for s′ ∈ S do

res← res ∪ {(s′,Cost[s′],Count[s′])}
return res

Figure 10: The sub-routine SampleCommandOutcomes

References

[Beetz and McDermott 1994] Beetz, M., and McDermott, D.
1994. Improving robot plans during their execution. In
AIPS.

[Bohren et al. 2011] Bohren, J.; Rusu, R. B.; Jones,
E. G.; Marder-Eppstein, E.; Pantofaru, C.; Wise, M.;
Mösenlechner, L.; Meeussen, W.; and Holzer, S. 2011.
Towards autonomous robotic butlers: Lessons learned with
the PR2. In ICRA, 5568–5575.

[Bucchiarone et al. 2013] Bucchiarone, A.; Marconi, A.; Pis-
tore, M.; Traverso, P.; Bertoli, P.; and Kazhamiakin, R. 2013.

Domain objects for continuous context-aware adaptation of
service-based systems. In ICWS, 571–578.

[Claßen et al. 2012] Claßen, J.; Röger, G.; Lakemeyer, G.;
and Nebel, B. 2012. Platas—integrating planning and the
action language Golog. KI-Künstliche Intelligenz 26(1):61–
67.

[Colledanchise and Ögren 2017] Colledanchise, M., and
Ögren, P. 2017. How behavior trees modularize hybrid
control systems and generalize sequential behavior compo-
sitions, the subsumption architecture, and decision trees.
IEEE Trans. Robotics 33(2):372–389.

[Colledanchise 2017] Colledanchise, M. 2017. Behavior
Trees in Robotics. Ph.D. Dissertation, KTH, Stockholm,
Sweden.

[Conrad, Shah, and Williams 2009] Conrad, P.; Shah, J.; and
Williams, B. C. 2009. Flexible execution of plans with
choice. In ICAPS.

[Despouys and Ingrand 1999] Despouys, O., and Ingrand, F.
1999. Propice-Plan: Toward a unified framework for plan-
ning and execution. In ECP.

[Doherty, Kvarnström, and Heintz 2009] Doherty, P.; Kvarn-
ström, J.; and Heintz, F. 2009. A temporal logic-based plan-
ning and execution monitoring framework for unmanned air-
craft systems. J. Autonomous Agents and Multi-Agent Syst.
19(3):332–377.

[Effinger, Williams, and Hofmann 2010] Effinger, R.;
Williams, B.; and Hofmann, A. 2010. Dynamic execution
of temporally and spatially flexible reactive programs. In
AAAI Wksp. on Bridging the Gap between Task and Motion
Planning, 1–8.

[Feldman and Domshlak 2013] Feldman, Z., and Domshlak,
C. 2013. Monte-carlo planning: Theoretically fast conver-
gence meets practical efficiency. In UAI.

[Feldman and Domshlak 2014] Feldman, Z., and Domshlak,
C. 2014. Monte-carlo tree search: To MC or to DP? In
ECAI, 321–326.

[Ferrein and Lakemeyer 2008] Ferrein, A., and Lakemeyer,
G. 2008. Logic-based robot control in highly dynamic do-
mains. Robotics and Autonomous Systems 56(11):980–991.

[Firby 1987] Firby, R. J. 1987. An investigation into reactive
planning in complex domains. In AAAI, 202–206. AAAI
Press.

[Ghallab, Nau, and Traverso 2016] Ghallab, M.; Nau, D. S.;
and Traverso, P. 2016. Automated Planning and Acting.
Cambridge University Press.

[Hähnel, Burgard, and Lakemeyer 1998] Hähnel, D.; Bur-
gard, W.; and Lakemeyer, G. 1998. GOLEX – bridging
the gap between logic (GOLOG) and a real robot. In KI,
165–176. Springer.

[Ingham, Ragno, and Williams 2001] Ingham, M. D.;
Ragno, R. J.; and Williams, B. C. 2001. A reactive model-
based programming language for robotic space explorers.
In i-SAIRAS.

[Ingrand and Ghallab 2017] Ingrand, F., and Ghallab, M.
2017. Deliberation for Autonomous Robots: A Survey. Ar-
tificial Intelligence 247:10–44.

[Ingrand et al. 1996] Ingrand, F.; Chatilla, R.; Alami, R.; and
Robert, F. 1996. PRS: A high level supervision and control
language for autonomous mobile robots. In ICRA, 43–49.

[James, Konidaris, and Rosman 2017] James, S.; Konidaris,
G.; and Rosman, B. 2017. An analysis of monte carlo tree
search. In AAAI, 3576–3582.

[Kocsis and Szepesvári 2006] Kocsis, L., and Szepesvári, C.
2006. Bandit based monte-carlo planning. In ECML, vol-
ume 6, 282–293.

[Levine and Williams 2014] Levine, S. J., and Williams,
B. C. 2014. Concurrent plan recognition and execution for
human-robot teams. In ICAPS.

[Muscettola et al. 1998] Muscettola, N.; Nayak, P. P.; Pell,
B.; and Williams, B. C. 1998. Remote Agent: To boldly go
where no AI system has gone before. Artificial Intelligence
103:5–47.

[Myers 1999] Myers, K. L. 1999. CPEF: A continuous plan-
ning and execution framework. AI Mag. 20(4):63–69.

[Nau et al. 1999] Nau, D. S.; Cao, Y.; Lotem, A.; and
Muñoz-Avila, H. 1999. SHOP: Simple hierarchical ordered
planner. In IJCAI, 968–973.

[Pollack and Horty 1999] Pollack, M. E., and Horty, J. F.
1999. There’s more to life than making plans: Plan man-
agement in dynamic, multiagent environments. AI Mag.
20(4):1–14.

[Santana and Williams 2014] Santana, P. H. R. Q. A., and
Williams, B. C. 2014. Chance-constrained consistency for
probabilistic temporal plan networks. In ICAPS.

[Simmons and Apfelbaum 1998] Simmons, R., and Apfel-
baum, D. 1998. A task description language for robot con-
trol. In IROS, 1931–1937.

[Simmons 1992] Simmons, R. 1992. Concurrent planning
and execution for autonomous robots. IEEE Control Systems
12(1):46–50.

[Teichteil-Königsbuch, Infantes, and Kuter 2008] Teichteil-
Königsbuch, F.; Infantes, G.; and Kuter, U. 2008. RFF: A
robust, FF-based MDP planning algorithm for generating
policies with low probability of failure. In ICAPS.

[Verma et al. 2005] Verma, V.; Estlin, T.; Jónsson, A. K.;
Pasareanu, C.; Simmons, R.; and Tso, K. 2005. Plan exe-
cution interchange language (PLEXIL) for executable plans
and command sequences. In i-SAIRAS.

[Wang et al. 1991] Wang, F. Y.; Kyriakopoulos, K. J.;
Tsolkas, A.; and Saridis, G. N. 1991. A Petri-net coordi-
nation model for an intelligent mobile robot. IEEE Trans.
Syst., Man, and Cybernetics 21(4):777–789.

[Williams and Abramson 2001] Williams, B. C., and Abram-
son, M. 2001. Executing reactive, model-based programs
through graph-based temporal planning. In IJCAI.

[Yoon et al. 2008] Yoon, S. W.; Fern, A.; Givan, R.; and
Kambhampati, S. 2008. Probabilistic planning via deter-
minization in hindsight. In AAAI, 1010–1016.

[Yoon, Fern, and Givan 2007] Yoon, S. W.; Fern, A.; and Gi-
van, R. 2007. Ff-replan: A baseline for probabilistic plan-
ning. In ICAPS, volume 7, 352–359.

	Introduction
	Related Work
	Operational Models
	APE and APE-plan
	Experimental Evaluation
	Domains
	Experiments and Analysis

	Concluding Remarks
	Appendix

