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Résumé

Nous démontrons la création d’états intriqués dans un ensemble d’atomes neutres fondée
sur la dynamique Zénon quantique (QZD), à l’aide d’un microrésonateur optique. Notre
dispositif expérimental combine une puce à atomes avec une cavité Fabry-Perot fibrée
(FFP) et nous permet de piéger un ensemble d’atomes de 87Rb dans un seul ventre d’un
piège dipolaire créé dans la cavité. Les atomes sont couplés fortement et identiquement
au mode lumineux de la cavité, ce qui permet une mesure non-destructive de leur état
collectif.

Nous réalisons la QZD en modifiant, par des mesures fréquentes, la dynamique induite
par radiation micro-ondes. Nous démontrons que la QZD créé des états intriqués mul-
tiparticules de façon déterministe et rapide. Nous caractérisons ces états à l’aide de
mesures de la fonction de Husimi Q, donnant accès à la partie symétrique de la ma-
trice densité. Nous étudions l’évolution temporelle d’états impliquant un minimum de
3 à 11 atomes intriqués, qui présentent une fidélité par rapport à l’état W à 36 atomes
atteignant 0.37. Nous étudions l’influence de la force de la mesure et des imperfections
expérimentales et nous montrons que notre système est bien décrit par des modèles
simples sans paramètres ajustables.

Nous présentons aussi un travail réalisé en vue de l’amélioration des cavités FFP. Nous
discutons notamment la limitation due à l’écart en fréquence des modes propres de pola-
risation dans des cavités formées par deux fibres optiques microfabriquées avec un laser
CO2. Nous démontrons que cet effet dépend de la symétrie des structures microfabriquées
et qu’il peut être contrôlé tant au niveau de la fabrication que pendant l’assemblage de
la cavité.
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Abstract

In this thesis, we show how an optical microcavity setup can create multiparticle entan-
glement in an ensemble of neutral atoms by means of quantum Zeno dynamics (QZD).

Our setup combines an atom chip with a fibre Fabry-Perot (FFP) resonator and allows
us to load an ensemble of 87Rb atoms into a single node of an intracavity dipole trap,
coupling the atoms strongly and identically to the cavity light field which enables us to
perform a quantum non-destructive measurement of their collective state.

We realise QZD by modifying the dynamics of the collective state (encoded in atomic
hyperfine states addressed with MW radiation) by means of frequent cavity measure-
ments at optical frequency. This QZD is shown to create multiparticle entanglement
in a fast and deterministic scheme. To analyse the created states, we reconstruct the
symmetric part of the atomic density matrix from 2d measurements of the ensemble’s
Husimi Q-distribution. We give a time-resolved account of the creation of states with
at least 3-11 entangled atoms and fidelity of up to 0.37 with respect to a W state of
36 atoms. Studying the influence of measurement strength and experimental imperfec-
tions, we show that our experiments are well described by simple models with no free
parameters.

This thesis also presents work towards improved FFP cavities. We discuss the problem
of frequency splitting of polarisation eigenmodes in cavities made from two fibres micro-
fabricated with a CO2 laser. We show that this effect depends on the symmetry of the
microfabricated structures and demonstrate that it can be controlled both at the level
of fabrication and when assembling a cavity.
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Introduction

The 20th century brought the fundamental insight that, on very small scales, nature
behaves very differently from what we are used to in our macroscopic lives. Studied
on the scale of single particles, light and matter - the basic elements describing the
macroscopic physical world - have proven to be strange and unintuitive to our classical
minds. We ascribe these observations to the fact that these two building blocks only
come in certain quanta and describe this microscopically granular world through the
framework of quantum physics.

Quantum physics has been at the heart of several of the developments that have shaped
our world in the last decades [1]: semiconductor technology has enabled the computer
revolution, lasers and associated optical devices have transformed information and tele-
communication technology, atomic clocks allow us to measure time with unprecedented
accuracy, effects at the quantum level are the basis for most definitions in the new SI
system of units.

The main challenge to harnessing the power of quantum systems is to obtain strong
control over their state while at the same time isolating them from the influence of
the environment that tends to drown out the non-classical behaviour in most cases.
To control the interaction between quantum matter and light, powerful experimental
techniques have been developed, one of them being the use of a resonator. Purcell
predicted in 1946 that the spontaneous decay of an atom can be modified by placing
it in a cavity [2]. The cavity mirrors change the mode structure of the electromagnetic
field inside the resonator which changes the decay channels to which the atom is coupled.
This concept of tailoring and amplifying the interaction between matter and light is the
basis for the research field of cavity quantum electrodynamics (cQED). Designing the
cavity in a way that reduces the losses induced by the mirrors while increasing the
coupling between light and atom leads to the strong coupling regime of cQED where
coherent energy exchange between atom and light field is faster than all loss processes.
This situation has been implemented in the microwave domain to enable remarkable
experiments [1], ranging from the realisation of a two-photon maser [3] to the creation
and active stabilisation of Fock field states [4]. Strong coupling in the optical domain
[5, 6, 7] has been used to observe the trajectories of single atoms [8], create single photons
on demand [9, 10] or to realise a light switch operated by a single atom [11]. Cavities
are also used to manipulate trapped ions [12] and the strong coupling regime has been
realised in other quantum systems such as superconducting qubits [13] or quantum dots
[14]. These diverse efforts are echoed by the Nobel prize 2012 awarded (in part) to
Serge Haroche “for ground-breaking experimental methods that enable measuring and
manipulation of individual quantum systems”.
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Firm control over quantum systems allows one to study a particularly interesting phe-
nomenon, entanglement. This term was introduced by Schrödinger [15, 16] to describe
the fact that the state of two initially separate quantum systems that have interacted
with each other, in general, can no longer be described in terms of the single systems. In-
stead, their state has become “interwoven” or entangled [17]. There exist numerous ideas
to use the fundamentally non-classical character of entanglement for practical applica-
tions. Subsumed under the term quantum information technology, these developments
promise advancements in several of today’s key technological sectors:

• Quantum communication aims at transmitting information encoded in quantum
states [18]. Using entangled states as information carriers allows communication
protocols that are secure against manipulation as well as eavesdropping [19]. A
major challenge is to develop means of relaying entanglement from one system to
another to transport it over long distances [20].

• Quantum computing is centred around the idea of processing data not with clas-
sical bits (that are in one of two well-defined states) but with qubits that can
be in superposition states [21]. In some applications, the increased information
content available to quantum superpositions then allows higher performance than
that of a classical computer. Computations are performed in quantum gate op-
erations where individual qubits are entangled, or alternatively by preparing a
multiparticle entangled resource state and performing measurements on it. In any
case, the qubits need to be precisely manipulable, strongly isolated from disturbing
influences of the environment and implemented so that their number is scalable.

• Quantum metrology improves the precision of interferometric measurements by
exploiting the correlations present in multiparticle entangled quantum states [22].
The direction of the total effective spin of an ensemble of uncorrelated particles
necessarily carries a minimum uncertainty which limits the accuracy achievable in a
phase measurement. In entangled states, the spin uncertainty can be redistributed
to produce higher sensitivity in the spin direction that is measured.

Since multiparticle entangled quantum states are a useful resource specifically for quantum
computation and quantum metrology, significant effort is devoted to their creation and
characterisation. Typical methods are based on unitary operations in an ensemble of
quantum systems. These implementations can be based on addressing and manipulating
individual qubits, for example ions in a linear Paul trap [23, 24? ] or superconducting
qubits [25, 26], or based on the evolution arising from collective interactions, leading
to specific forms of entanglement such as spin-squeezing [27, 28, 29] or Dicke-like states
[30].
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In these schemes, entanglement is generated by coherent operations exclusively and
coupling to the environment is, by all accounts, a detrimental influence that needs to
be minimised as much as possible, or completely eliminated. However, recent research
in quantum technology has shown that there exist complementary methods in which
coupling to the environment can be a useful tool to create interesting quantum states. It
has been shown theoretically that purely dissipative processes can be used to implement
universal quantum computation [31] and to create multiparticle entangled states [32]
when a number of quantum particles are connected to a set of environments with spe-
cifically engineered couplings. Experimentally, dissipative dynamics have been exploited
to create squeezing in an atomic ensemble coupled to an optical cavity [33], to create
EPR-type entanglement in two atomic ensembles [34], Bell and GHZ states in trapped
ions [35, 36] and Bell states in superconducting qubits [37].

Quantum Zeno dynamics (QZD) is another intriguing example of the powerful forms of
quantum dynamics that can arise from combining coherent manipulation and environ-
ment coupling. QZD is based on the fundamental phenomenon that in quantum physics,
measuring frequently enough the state of a system can constrain its time evolution. This
was first pointed out by Misra and Sudarshan who showed that a measurement that pro-
jects a quantum system back on its initial state can freeze it in place, even if the state
is otherwise unstable, which they termed the quantum Zeno paradox [38]. However,
when the measurement projects on a multidimensional subspace of the system’s Hilbert
space, the freezing gives way to dynamics which are restricted to the subspace but free
within its boundaries. Adding a Zeno measurement to a regular coherent evolution, the
system can reach quantum states that are inaccessible to the regular evolution alone.
The resulting quantum Zeno dynamics has been studied theoretically for more than a
decade [? ? ]. Experimentally, it has been proposed for tailoring entangled states of a
cavity light field [39]. QZD has been demonstrated in a BEC system with losses induced
on a specific atomic state [40] and has been realised very recently in a single Rydberg
atom [41], and with photons in a superconducting microwave cavity [42].

The experimental realisation of QZD is challenging since it requires measuring the state
of a quantum system without disturbing or destroying it. In practice, such a non-
demolition measurement is difficult to implement, given that it means coupling a micro-
scopic quantum system to a macroscopic metre. Previous work in our group has demon-
strated that we can perform a suitable non-demolition measurement in our experimental
system, an ensemble of ultracold 87Rb atoms coupled to a high finesse Fabry-Perot cav-
ity [43, 44]. Our setup combines an atom chip with a fibre-based micro-resonator and
allows us to load the atomic ensemble into a single node of an intracavity dipole trap,
identically coupling the atoms to the cavity light field. The unique properties of the
fibre Fabry-Perot cavity make it possible to achieve the strong coupling regime of cQED
for each atom.
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In this thesis, we use our atom chip/fibre cavity setup to implement QZD in an ensemble
of several tens of atoms. The cavity serves to perform a non-destructive measurement of
the collective atomic state which we combine with coherent collective rotations to realise
QZD. Through suitable choice of the coherent evolution, the QZD leads to the creation
of multiparticle entanglement in a fast and deterministic scheme. We can create different
types of entangled states which we analyse by performing quantum state tomography
based on a measurement of the atomic ensemble’s Husimi Q-distribution. Extending
this tomography technique (developed in [45]) to 2d enables us to give a time-resolved
account of the entanglement generation. We also study the influence of the measurement
strength and of imperfections in the experimental setup and find that our QZD is well
described by simple models with no free parameters.

Based on these results, we demonstrate, to our knowledge for the first time, the creation
of multiparticle entanglement via QZD and show that QZD can be a versatile, experi-
mentally feasible tool for quantum engineering applications.

In addition, this thesis also presents work towards improving fibre Fabry-Perot (FFP)
cavities. The FFP cavity at the heart of our current experimental setup is constructed
from two optical fibres whose end facets have been microfabricated with a CO2 laser. The
fabrication process can create concave structures with parameters not achievable with
macroscopic mirror substrates and makes it possible to build optical resonators with low
losses, high finesse and small mode volume, which is the key to achieving strong coupling
[46]. However, our current FFP cavity features two orthogonally polarised eigenmodes
at different frequencies. This effect is detrimental to the experimental performance,
limiting for example the purity of the entangled states created by QZD. On the way
towards building an improved FFP setup, we have systematically investigated the origin
of this frequency splitting. We have found that the effect depends on the symmetry of the
concave structure and that it can be controlled both at the level of the microfabrication
and when assembling a cavity made from two fibres. These insights inform current work
performed in the group towards the realisation of next generation FFP resonators.
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Outline

The first chapter presents the theoretical description of our experiments which realise
quantum Zeno dynamics in an ensemble of trapped atoms strongly coupled to an optical
cavity. We first consider a basic model describing QZD in a spin-N/2 system in which
the dynamics of a unitary rotation is modified by an infinitely strong measurement of
the collective state. We then develop a more realistic model, describing our system in a
cQED framework with a finite-strength, non-destructive cavity-based measurement.

In the second chapter, we give a summary on the experimental setup and describe the
steps to prepare a sample of ultra-cold atoms from a vapour at room temperature, load
it into the intracavity dipole trap, and initialise it in a well-defined quantum state.

The third chapter details how we analyse the quantum state of the atomic ensemble. We
show how a tomographic measurement of the ensemble’s Husimi Q-distribution allows us
to reconstruct its density matrix. We also present the two criteria used to characterise
the entanglement properties of the corresponding multiparticle state.

The fourth chapter presents the preparation and characterisation of multiparticle en-
tangled states by means of QZD. We first show the experimental sequence that leads
to the creation of different entangled states and discuss the influence of experimental
imperfections. We then present the results of our measurements, following the temporal
evolution of the ensemble by means of 2d tomographic snapshots of its Q-distribution.
The dynamics agree quantitatively with our models and the experimentally created states
are shown to be entangled according to the criteria.

Chapter five is devoted to our investigation of the frequency splitting of polarisation
modes in fibre Fabry-Perot cavities.

Finally, a conclusion summarises the main results and gives an outlook on future exper-
iments.
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Chapter 1

Quantum Zeno dynamics in an
atomic ensemble

This chapter presents the basic concepts necessary to understand our experiments. We
start with a brief description of quantum Zeno dynamics, showing how frequent meas-
urements can partition the state space accessible to a quantum system (Section 1.1).
Section 1.2 shows the most basic model that describes our QZD experiments, a spin-
N/2 system in which the dynamics of a unitary rotation is modified by a measurement
of the collective state. We finally show in Section 1.3 how we implement this model
experimentally in an ensemble of cold atoms strongly coupled to an optical resonator.
Specifically, we show how the cavity can be used to implement a strong, non-destructive
measurement of the collective state of the atomic ensemble.

1.1 From Zeno’s paradox to Quantum Zeno dynamics

To give an intuitive idea of the origin of quantum Zeno dynamics, we start this section
with an elementary example of the quantum Zeno effect which we then extend towards a
basic description of QZD. Our account of these phenomena will neglect the mathematical
rigour which is a large point of the theoretical work devoted to them. Instead, we focus
on a minimal description that is sufficient for the experimental considerations presented
in the subsequent section. Our presentation follows the review in [47] which also contains
ample references with a formally stringent approach.

1.1.1 The quantum Zeno effect

“An unstable particle observed continuously whether it has decayed or not
will never be found to decay! Since this evokes the famous paradox of Zeno
denying the possibility of motion to a flying arrow, we call this result the
Zeno’s paradox in quantum theory.”

This quote summarises the key idea that B. Misra and E. Sudarshan discuss in their
seminal 1977 paper [38]. Let us illustrate their result by considering the short scale time
evolution of a quantum system under the action of an hermitian Hamiltonian H. The

6



1.1. FROM ZENO’S PARADOX TO QUANTUM ZENO DYNAMICS

system could, for example, describe a quantum particle in an unstable state that would
decay into an orthogonal state under the action of H. We assume that the system is
initially prepared in the pure state |ψ(t = 0)〉 = |ψ0〉. After a short time t, the system
will be in the state:

|ψ(t)〉 = e− i
~

Ĥt|ψ0〉 = |ψ0〉 − i

~
Ĥt|ψ0〉 − 1

2~
Ĥ2t2|ψ0〉 +O(t3) . (1.1)

The probability that the system has not evolved away from its initial state is then given
by:

p(t) = |〈ψ(t)|ψ0〉|2 = 1 − t2

τ2
z

+O(t4) , (1.2)

with the “Zeno time” τZ :

τ2
Z =

1

~2

(

〈ψ0|H2|ψ0〉 − 〈ψ0|H|ψ0〉2
)

. (1.3)

Let us now perform N projective measurements at regular time intervals τ = t/N to
check whether the system is still in |ψ0〉. If the intervals are short enough, the survival
probability for each measurement is high, so that after every interval τ , the system will
be projected back onto its initial state. The total survival probability at time t is then:

pN (t) = p(t/N)N ≈
(

1 −
(
t

N

1

τZ

)2
)N

N≫1−−−→ exp

(

− t2

Nτ2
Z

)

. (1.4)

For large N , the evolution is slowed down and in the limit of N → ∞, t = const., the
survival probability tends towards unity. This phenomenon is what Misra and Sudarshan
called the quantum Zeno paradox: observing frequently enough whether the system is
still in its initial state will freeze its evolution. While this result can seem paradoxical at
first, it really is a direct consequence of the quantum mechanical law of time evolution,
specifically the initially quadratic decrease in probability prescribed by the Schrödinger
equation.

Eventually, the “paradox” was renamed the quantum Zeno effect and was demonstrated
experimentally, first in a cloud of trapped ions [48] and later in various different physical
systems, among them photons [49], individual ions [50], unstable atoms [51] and BECs
[52].

1.1.2 Quantum Zeno dynamics

In the example of the previous section (as well as in Misra and Sudarshan’s original
paper), the “observation” took the form of a projective measurement in the sense of von
Neumann that was applied in regular pulses. We now show that there are more general
conditions that lead to the Zeno effect. Additionally, we only considered two outcomes

7



CHAPTER 1. QUANTUM ZENO DYNAMICS IN AN ATOMIC ENSEMBLE

of the measurement, decay or no decay from the initial state, which lead to completely
restricting the evolution of the system. In this section, we will see that an observation
that leaves more freedom to the system results in richer dynamics, the quantum Zeno
dynamics introduced in [53].

Let us extend the example of the previous section to a more general case. Let ρ be a
density matrix that describes a quantum system in the Hilbert space H. We assume that
the time evolution of ρ is governed by the unitary operator Û = exp(−iĤt) where the
Hamiltonian H is time-independent and lower-bounded. We describe the measurement
still in terms of pulsed projections, however, we now follow the evolution of ρ in the
complete Hilbert space H instead of just asking if our system is in one specific state or
not. Specifically, we assume the measurement to consist of a (countable) set of projectors
{

P̂n

}

so that

P̂nP̂m = δnmP̂m,
∑

n

P̂n = 1 . (1.5)

Each projector spans a subspace Hn, so that the total Hilbert space is partitioned as H =
∑Hn. The measurement described by these projectors is given by the superoperator

Pρ =
∑

n

P̂nρP̂n . (1.6)

Equation 1.6 is seen to transform ρ into a block-diagonal form by eliminating off-diagonal
elements between blocks corresponding to the different Pn, i.e. different subspaces. By
performing this measurement, we prepare the system in the initial state

ρ0 = Pρ(t = 0) . (1.7)

The free evolution of the system is then given by

ρ(t) = U(t) = Û(t)ρ0Û
†(t), Û(t) = exp(−iĤt) . (1.8)

We now consider performing N measurements at regular time intervals τ = t/N . This
leads to the evolution

ρ(N)(t) = V(N)(t)ρ0 , (1.9)

governed by the superoperator

V(N)(t) = P (U(t/N)P)N−1 . (1.10)

We now want to take the limit N → ∞, t = const. that produces the Zeno effect. It
can be shown that if the Hamiltonian H is bounded and the subspaces Hn are of finite

8
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1

2

3 4

5

Figure 1.1: Illustration of Quantum Zeno dynamics. Left: A system in the Hilbert space
H can occupy a number of states (black circles) coupled by an interaction Hamiltonian
(blue lines). Centre: Introducing a Zeno measurement hinders the evolution between
the different subspaces Hn. Right: In the limit of infinitely frequent or infinitely strong
measurement, the dynamics is completely confined in each subspace.

dimension (both conditions are met in our experiments), this limit is well defined and
Equations 1.9 and 1.10 take the form [53]:

ρZ(t) =
∑

n

V Z
n (t)ρ0

(

V Z
n

)†
(t) , (1.11)

(

V Z
n

)†
V Z

n = P̂n ∀n (1.12)

V Z
n (t) = P̂n exp(−iĤZt) , (1.13)

ĤZ =
∑

n

P̂nĤP̂n .

Equation 1.11 shows that ρZ(t) is in a block-diagonal form in which any coherences
between different subspaces Hn is eliminated (cf. Equation 1.6). This also means that

pn(t) = Tr(ρ(t)P̂n) = Tr(ρ0P̂n) = pn(0) , (1.14)

i.e. the probability for the system to be in any of the subspaces in conserved during
the modified evolution. In the limit of infinitely frequent measurements, the resulting
quantum Zeno dynamics takes place in a Hilbert space partitioned by hard walls that
prevent any leakage between the individual Zeno subspaces. Equation 1.13 shows that
the dynamics contained in each subspace is unitary and governed by the effective Zeno
Hamiltonian HZ . This situation is illustrated in Figure 1.1. We note that if pn(0) = 1,
the system is initially completely contained in one of the subspaces which corresponds to
the situation originally examined by Misra and Sudarshan (and to the example discussed
in Section 1.1.1 if the subspace is additionally formed by a single state).

9
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1.2 Measurement-based QZD in a spin N/2 system

In its most basic form, our experimental implementation of QZD can be modelled as a
spinN/2 system in which we modify regular Rabi dynamics by a projective measurement.
In the following, we present our Hilbert space (which is given by the collective qubit state
of N atoms), the unitary dynamics taking place in the absence of the Zeno measurement
and the QZD that is induced from a projective state measurement.

1.2.1 Multiparticle state space

The multiparticle system we study in our experiments consists of an ensemble of N
atoms. Each atom can be considered as a qubit with a ground state |0〉 and an excited
state |1〉. For our purposes, it is useful to describe the state of the ensemble in terms of
Dicke states.

Dicke states

The state of a single qubit is completely determined by the expectation value of the vector
Ŝ = 1

2 (σ̂x, σ̂y, σ̂z) composed of the three Pauli spin-1/2 operators. For an ensemble of N

identical spin-1/2 particles, we can then define a collective spin vector Ĵ =
∑N

i=1 Ŝi which
is the sum over the individual spin vectors Ŝi.

In analogy to angular-momentum formalism, a convenient basis for the N -particle space
are the states {|J,m〉} which are simultaneous eigenstates of Ĵz and Ĵ

2 with

Ĵ
2|J, Jz〉 = J(J + 1)|J, Jz〉 and Ĵz|J, Jz〉 = Jz|J, Jz〉 , (1.15)

where J = N/2,N/2 − 1, . . . ;J ≥ 0 and Jz = −J,−J + 1, . . . J . The structure of these
states is depicted in Figure 1.2. Of special importance for us are the states with maximal
spin J = N/2: they are symmetric and invariant under particle exchange. In the N -
particle Hilbert space (of dimension (2S + 1)N = 2N ), these states span the symmetric
subspace Hs (of dimension 2NS + 1 = N + 1) which is closed under operations that
affect all particles in the same way. Hs is spanned by the Dicke states [54] :

{|nN 〉 ≡ |J = N/2, Jz = −N/2 + n〉} n = 0, 1, . . . , N . (1.16)

In the Dicke state |nN 〉, the total spin is J = N/2 while the projection along the z-axis is
Jz = −J+n. This means that n individual particle spins are in |1〉 and N −n are in |0〉.
The Dicke states describe a well defined number of excitations in the spin system which
makes them the atomic analoga to the Fock states describing a well defined number of
excitations of a light field. They are non-classical and an atomic ensemble in a qubit
Dicke state features multiparticle entanglement, as detailed in Section 3.3.1.
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J= N/2

J= N/2 -1

J= N/2 -2

n  =    0  1 2 4 3

J
z
 = -N/2  -N/2+1  -N/2+2  ...

 ...

Figure 1.2: Structure of the angular momentum states |J, Jz〉 for N two-level
atoms. The subspace Hs of fully symmetric states is spanned by the Dicke states
{|nN 〉 ≡ |J = N/2, Jz = −N/2 + n〉}.

Collective spin rotation

In our experiments, the qubit states are two hyperfine ground states of 87Rb. This allows
us to induce coherent rotations of the collective spin by means of MW radiation. In the
following, we consider a rotation around the x-axis, generated by the operator Ĵx which,
in the basis of Dicke states, has the following form:

Ĵx =
1

2












0
√

n− n2 + 2nN
2 0 . . .

√

n− n2 + 2nN
2 0

. . .

0
. . .

. . .
...












(1.17)

=
1

2










0
√
N 0 . . .√

N 0
√

2N − 2

0
√

2N − 2
. . .

. . .
...

. . .










. (1.18)

Driving this rotation with the Rabi frequency Ω is described by the Hamiltonian

ĤMW = ~ΩĴx. (1.19)

1.2.2 Unitary QZD in a spin N/2 system

Let us consider the dynamics that arises when driving a unitary rotation of the collective
spin of N atoms while measuring the population of one of the Dicke states |nN 〉. The
measurement is then described by a projection either on this state, given by the projector

P̂|nN 〉 = |nN 〉〈nN | , (1.20)
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Figure 1.3: Comparison of Rabi and quantum Zeno dynamics in a spin N/2 system. The
plots show the populations ρii(t) for a system of N = 7 atoms driven at Rabi frequency
Ω = π/T . Left: Rabi dynamics in the absence of Zeno measurement. Centre: unitary
QZD when measuring the state |4N 〉. Right: unitary QZD when measuring the state
|7N 〉.

or on the complementary Zeno subspace HZ

P̂HZ
= 1− P̂n . (1.21)

To obtain QZD (as opposed to a quantum Zeno effect), we prepare the system so that it
is initially in a state ρ(0) within HZ . The probability to populate the state |nN 〉 is then
zero at all times so that the time evolution of ρ(t), given by Equations 1.11 - 1.13, reads

ρZ(t) = V̂Z(t)ρ(0)V̂ †
Z(t) V̂Z(t) = P̂HZ

exp(− i

~
ĤZt) , (1.22)

ĤZ = P̂HZ
ĤMWP̂HZ

= ~ΩP̂HZ
ĴxP̂HZ

, (1.23)

where ĤZ is the effective Zeno Hamiltonian resulting from the measurement.

The evolution according to Equations 1.22 and 1.23 is plotted in Figure 1.3 for N = 7.
In the absence of measurement (left frame), Rabi oscillations populate all states of
the system, transferring the population from |0N 〉 at t = 0 to |7N 〉 at t = T = π/Ω.
Introducing a Zeno measurement of the state |4N 〉 (centre frame), the dynamics is heavily
modified. As the system cannot cross the boundary to |4N 〉, it highly populates the
state|3N 〉 before “bouncing” back towards |0N 〉. This dynamics is also faster than normal
Rabi oscillations, with the maximal population ρ33 ≈ 0.9 being reached at t ≈ 4

7T . If
the measurement is instead performed on state |7N 〉 (right frame), the QZD leads to
strong population of the state |6N 〉, with a maximum of ρ66 ≈ 0.95 reached at t ≈ 6

7T .

In both examples, we see that the QZD creates states that are not accessible to the
unitary dynamics alone. In the work presented in this thesis, we use this feature to
experimentally create multiparticle-entangled states in an atomic ensemble.
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1.3 QZD in an atomic ensemble coupled to an optical res-
onator

In this section, we present our experimental implementation of QZD. We work with an
ensemble of 87Rb atoms coupled to a high finesse Fabry-Perot cavity according to the
configuration shown in Figure 1.4. By means of an atom chip, we prepare an atomic
ensemble and load it into an intra-cavity dipole trap. An external magnetic bias field
of 12.5 G lifts the degeneracy of the Zeeman states which allows us to implement an
atomic qubit in the hyperfine states |0〉 = |F = 1,mF = 0〉 and |1〉 = |F = 2,mF = 0〉
of the 5 2S 1

2
ground state multiplet. These states are magnetically insensitive which

reduces the effect of ambient magnetic fields. They are split by about 6.8 GHz so that
we can realise unitary rotations of the ensemble’s collective spin through pulses of MW
radiation. The cavity can be probed with a laser tuned to the transition |1〉 → |e〉 =
F ′ = 3,mF = 0〉 close to the D2-line at 780 nm. As the atoms are well confined in real
and momentum space, the MW and probe radiation affects all of them near-identically
so that we can coherently manipulate the collective quantum state of the ensemble.
Due to slight asymmetries in the mirrors, our cavity features two orthogonally polarised
eigenmodes with a frequency splitting of about 540 MHz. In the present experiments,
probe and dipole lights are coupled to the higher frequency cavity mode. The magnetic
bias field is oriented parallel to the corresponding eigenaxis of the cavity so that both
lasers are π-polarised.

With this configuration, we can realise in good approximation a QZD scheme similar
to the spin-N/2 model described in the previous section. The key point is to modify
the collective qubit dynamics driven with the MW by means of a Zeno measurement
arising from probing the cavity on the |1〉 → |e〉 transition. In the following sections
we show that, in the case of strong atom-cavity coupling, this makes it possible to
realise a measurement that projects the atomic ensemble either on the Dicke state |0N 〉,
corresponding to all atoms in the cavity being in state |0〉, or on the complementary
subspace in which at least one atom is in |1〉.

1.3.1 Multiparticle cQED in the strong-coupling limit

In this section, we present the fundamental concepts of cavity quantum electrodynamics
(cQED) with which we can describe our experimental system, an ensemble of three-level
atoms strongly coupled to an optical resonator.

The Jaynes-Cummings Hamiltonian

The simplest cQED model is that of a single two-level system (in our case an atom)
coupled to one cavity mode. Neglecting the decay channels of the atom and the light
field in the cavity, this system is described by the Jaynes-Cummings Hamiltonian [55].
In the dipole and rotating wave approximations and setting the energy of the vacuum
field to zero, it is given by:
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F=1  

F=2

 F’=3

mF -3 -2 -1 0 1 2 3

MW

π probe laser,
blue cavity mode

 

red cavity mode

5 2S
1/2

 5 2P
3/2 e

π
dipole laser

Figure 1.4: Experimentally relevant part of the 87Rb level scheme. A magnetic field
is applied along the polarization direction of the blue cavity mode, which is also the
polarization of the probe beam. A resonant microwave (MW) at 6.8 GHz allows applying
arbitrary rotations to the atomic qubit implemented in the states |0〉 = |F = 1,mF = 0〉
and |1〉 = |F = 2,mF = 0〉. Probe laser and the blue cavity eigenmode are resonant
with the transition |1〉 → |F ′ = 3,mF = 0〉.

Ĥ = ~ωaσ̂
+σ̂− + ~ωcâ

†â+ ~g(â†σ̂− + σ̂+â) , (1.24)

where σ̂+ = |e〉〈g| and σ̂− = |g〉〈e| are the atomic raising and lowering operators between
the ground state |g〉 and the excited state |e〉, ωa/2π and ωc/2π are the frequencies of
the atomic and cavity resonance, â† and â are the photon creation and annihilation oper-

ators (with the bosonic commutation relation
[

â, â†
]

= 1), and g describes the coupling

between atom and light field. In Equation 1.24, the first two terms give the energy of
the atom and light mode, respectively, and the third one the interaction between them,
where â†σ̂− describes a photon exciting the atom and σ̂+â the atom relaxing by coherent
emission of a photon. The coupling constant g is given by

g =

√
ωc

2~ǫ0V
µge , (1.25)

where V is the resonator mode volume and µge is the dipole matrix element between |g〉
and |e〉. Note that in our experiment, we use a miniaturised resonator with small mode
volume resulting in strong coupling.

By diagonalising Equation 1.24, the eigenstates of the coupled atom-cavity system can
be obtained. They consist of a ground state |g, 0〉 (atom in the ground state zero photons
in the cavity mode) and a ladder of excited doublet states corresponding to n excitations
in the system. These “dressed” states are:
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Figure 1.5: Schematic of the relevant processes in the open atom-cavity system. Photons
are coherently added to the cavity at a pump rate η, atom and cavity are coupled with
strength g and photons get lost due to spontaneous emission (at a rate γ) or leaking
from the cavity mirrors (at a rate κ). Adapted from [45].

|+, n〉 = sinϑn|g, n〉 + cosϑn|e, n− 1〉 , (1.26)

|−, n〉 = cosϑn|g, n〉 − sinϑn|e, n− 1〉 , (1.27)

with the mixing angle

tanϑn =

√
ng0

∆ac/2 +
√

g2
0n+ (∆ac/2)2

∆ac = ωa − ωc . (1.28)

Their energy eigenvalues are:

En,± = n~ωc +
~

2

(

∆ac ±
√

∆2
ac + 4ng2

0

)

. (1.29)

The energy eigenvalues of the excited states form a ladder, spaced by n~ωc, of doublets
with splitting increasing proportional to

√
ng0. For n = 1, this phenomenon is known

as vacuum Rabi splitting: one excited atom coupled to the cavity leads to a splitting of
the resonance frequency into two peaks.

Open system description of the Jaynes-Cummings model

In the experiment, we cannot study the closed system described by the Jaynes-Cummings
Hamiltonian. Instead, we need to take into account that our quantum system is coupled
to an environment. In our case, depicted schematically in Figure 1.5, one effect of the
coupling is decoherence. Firstly, an atom in the cavity can decay by spontaneously
emitting a photon into free space, described by the decay rate γ. Secondly, photons leak
through the cavity mirrors with the rate κ. Additionally, we can add photons to the
resonator by coherently pumping it with the rate η.
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Master equation

This open system can be well described with a master equation approach [56, 57]. Given
a quantum system described by the density operator ρ, its evolution under coupling to
a reservoir can be described by a master equation of the form:

d

dt
ρ = − i

~

[

Ĥ, ρ
]

+
∑

i

2γiD
[

d̂i, ρ
]

, (1.30)

D
[

d̂i, ρ
]

= d̂iρd̂
†
i − d̂†

i d̂iρ̂/2 − ρd̂†
i d̂i/2 , (1.31)

where the hermitian Ĥ describes the evolution of the unperturbed system and the effect

of the interaction with the environment is given by the super-operators D
[

d̂i, ρ̂
]

that

model decay processes with respective decay rates 2γi. In our case, we need to include
spontaneous emission at rate 2γ with the jump operator d̂γ = σ̂ and cavity decay at

rate 2κ with the jump operator d̂κ = â. To describe the pump process with photons of
frequency ωp, we incorporate the following term into Ĥ [58]:

Ĥp = −i~η
(

exp(iωpt)â− exp(−iωpt)â†
)

. (1.32)

Transforming into the frame rotating with ωp the complete master equation reads:

d

dt
ρ = − i

~

[

Ĥ, ρ
]

+ 2γD [σ̂, ρ] + 2κD [â, ρ] , (1.33a)

Ĥ = −∆ap~σ̂
+σ̂− + ∆cp~â

†â+ g~(â†σ̂− + σ̂+â) − i~η
(

â− â†
)

, (1.33b)

where ∆ap = ωa − ωp and ∆cp = ωc − ωp.

Analytical solution for the steady-state

In the limit of weak excitation1, Equations 1.33a and 1.33b can be solved analytically
by restricting the state space to the three states |g, 0〉, |e, 0〉 and |g, 1〉. Specifically, the
steady-state solutions for the atom excitation probability pex and the average photon
number in the cavity ncav can be calculated to be [60]:

pexc = 〈σ̂+σ̂−〉 =
η2g2

(g2 − ∆ap∆cp − κγ)2 + (γ∆cp + κ∆ap)2 (1.34)

ncav = 〈â†â〉 =
η2/κ2

(

1 + g2

γκ
1

1+∆2
ap/γ2

)2
+
(

∆cp

κ − g2

κγ
∆ap/γ

1+∆2
ap/γ2

) . (1.35)

1As discussed in [59], the analytical solution renders the atomic excited state probability well if η2/g2 ≪
1. The results for the average photon number, however, are only valid as long as η2/g2 ≪ 1/C2.

16



1.3. QZD IN AN ATOMIC ENSEMBLE COUPLED TO AN OPTICAL RESONATOR

� � � � � � � � � � � � � � �
� 	 � �

� 	 � �

� 	 � �

� � � �

� � �

�

�

�

�	

�

��
��

��
��


��
��

��
��

	�

� � � � 
 � 	 
 � �  �  � � ∆
� �

� � � � � �
� � � � � � � � � � � �

Figure 1.6: Transmission of the uncoupled (black) and coupled (red) atom-cavity sys-
tem as a function of probe detuning with the cavity resonant to the atomic resonance
(∆cp =∆ap). Our experimental parameters are (γ, κ, g) = 2π(3, 53, 190) MHz.

The cavity transmission T is related to the steady state photon number by:

T = κncav . (1.36)

Since we assume lossless mirrors, the transmission for an empty cavity on resonance is
equal to the photon flux Φ that enters the cavity:

Tempty = κ
η2

κ2
=
η2

κ
= Φ . (1.37)

Figure 1.6 shows a plot of Equation 1.36 with and without an atom coupled to the
cavity for the parameters of our experiment. The characteristic splitting of the resonance
frequency in the coupled system can be clearly seen. Additionally, we observe that for
∆cp =∆ap = 0, i.e. for cavity and probe both resonant with the atomic transition, the
transmission of the coupled system T is strongly decreased compared to the one of the
empty cavity Tempty. From Equation 1.35, we find:

T

Tempty
=

1
(

1 + g2

γκ

)2 =
1

(1 + 2C)2
, (1.38)

where we define the single atom cooperativity parameter C as:

C ≡ g2

2γκ
. (1.39)

The cooperativity characterises how strong the coherent atom-cavity coupling is com-
pared to the incoherent loss mechanisms. The situation g ≫ γ, κ (and consequently
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C ≫ 1) is known as the “strong coupling” limit of cQED, where already a single excit-
ation changes the behaviour of the coupled system significantly. The parameters of our
experimental system are (γ, κ, g) = 2π(3, 53, 190) MHz which corresponds to a cooper-
ativity C ≈ 110.

The atomic excitation probability allows us to calculate Γeff, the rate of spontaneous
emission events in the coupled system. On resonance and for g ≫ γ, κ, Equation 1.34
gives:

Γeff = 2γpexc = 2γ
η2g2

(g2 − κγ)2 ≈ 2γη2

g2
=

1

C
Φ . (1.40)

Tavis-Cummings model

So far, we have considered the coupling of one atom to the cavity, in our experiments,
however, we work with ensembles of tens to hundreds of atoms. We describe this situation
with the Tavis-Cummings model of n identical two-level systems all equally coupled with
strength g to one mode of the light field. The Tavis-Cummings Hamiltonian reads [61]:

Ĥn = ~ωcâ
†â+ ~ωa

n∑

i=1

σ̂+
i σ̂

−
i + ~g

n∑

i=1

(â†σ̂−
i + σ̂+

i â)

︸ ︷︷ ︸

ĤI
n

. (1.41)

Let us consider the lowest eigenstates of the Tavis-Cummings model, starting with the
uncoupled system. The states can be characterised by the number of excitations M in
the system. For M = 0, all atoms are in the ground state and there are no photons in
the cavity:

|M = 0〉n = |g1 . . . gn〉|0〉cav . (1.42)

For M = 1, we can distinguish two cases. Either the atoms are in the ground state and
there is a single photonic excitation:

|M = 1〉n,cav = |g1 . . . gn〉|1〉cav , (1.43)

or there is a single atomic excitation. If this weak excitation was applied in a process
that acts identically on all atoms, the system will be described by the state:

|M = 1〉n,atoms = |1̃n〉|0〉cav , (1.44)

|1̃n〉 =
1√
n

(|eg . . . g〉 + |geg . . . g〉 + . . .+ |g . . . ge〉) , (1.45)
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where |1̃n〉 is the first Dicke state, a symmetric, coherent superposition describing one
excitation shared by the atomic ensemble.2

How strong is the coupling between the atomic ensemble and the light field? Defining
a collective coupling gn as the matrix element of the interaction Hamiltonian ĤI

n in
Equation 1.47 between the states with one atomic and one photonic excitation, we find:

gn = 〈M = 1|n,atomsĤ
I
n|M = 1〉n,cav =

√
ng . (1.46)

The coupling of the ensemble to the light mode can be considered as that of one “super
atom” with an effective coupling of gn =

√
ng. With this approach, we can extend

Equation 1.29, derived from the Jaynes-Cummings model, to obtain the vacuum Rabi
splitting for n atoms coupled to the resonator:

E±,n = ~ωa ± ~
√
ng . (1.47)

The corresponding eigenstates are, similar to the Jaynes-Cummings model, dressed states
containing atomic and photonic contributions. On resonance ωa = ωc, the dressed states
for M = 1 are:

|±,M = 1〉n =
1√
2

(

|M = 1〉n,cav ± |M = 1〉n,atoms

)

. (1.48)

Similarly, we find from Equations 1.39 and 1.38 the collective cooperativity

Cn =
g2

N

2γκ
= n · C (1.49)

and the transmission drop at resonance due to the vacuum Rabi splitting:

Tn

T0
=

1

(1 + 2Cn)2
≈ 1

n2

1

4C2
. (1.50)

The behaviour described by Equation 1.50 is at the centre of our cQED experiments.
Specifically, the strong reduction in cavity transmission (and increase in reflection) for
N > 1 can be used to detect with high fidelity whether no atoms or at least one atom
is coupled to the cavity [62, 45]. In the present work, we exploit this effect to imple-
ment the Zeno measurement discussed in the next section, as well as the quantum state
tomography presented in Section 3.1.

What is the effective spontaneous emission rate if N atoms are coupled to the cavity?
From Equation 1.40, we find:

Γeff,n = 2γpexc,n =
1

Cn
Φ =

1

Cn
Φ . (1.51)

2Distinguish the state |1̃n〉, describing one of n atoms coupled to the cavity being optically excited,
from the state |1N 〉 introduced in see Section 1.2.1 which describes one atom in an ensemble of N
being in the qubit state |1〉.
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In this calculation, we assume that the spontaneous decay of the excited ensemble is
not enhanced by super-radiance. This corresponds to the assumption that the spatial
separation of the atoms in the ensemble is large compared to the emission wavelength
λ. In our experiments, we work with a thermal ensemble of atoms in a dipole trap and
estimate the dimensions of the ensemble on the trap axis and perpendicular to it to be
on the order of σ‖ ≈ 40 nm and σ⊥ ≈ 800 nm ? λ respectively (see Section 2.8.1).

1.3.2 Implementing the Zeno measurement

In the following, we show how we generate QZD by a process that has the character
of a strong, continuous, non-destructive quantum measurement which distinguishes the
collective atomic state |0N 〉 from all other states in the symmetric subspace.

Measurement by coupling to a metre

So far, we have considered the measurement that induces the QZD to consist of in-
stantaneous projections. This description is an idealisation of the physical process of
a measurement. From a practical point of view, a quantum measurement comes about
when the system under study interacts with an external metre which is macroscopic in
the sense that we do not know or care about the details of its quantum state. The metre
performs a measurement not necessarily in a way that makes the result known to the
experimenter, for example with a detector that clicks or has an indicator. The import-
ant points are that the measurement is irreversible (like a von Neumann projection) and
that it discriminates between different states. In this way, the experiments of [52, 40]
have made use of spontaneous emission to realise an effective Zeno measurement: this
process is irreversible and entangles the state of the system under consideration with
the environment. In our case, we measure the state of the atomic ensemble through the
photons decaying from the cavity light field.

Continuous state selective measurement

We now consider the evolution that takes place when we apply MW radiation and probe
light at the same time. The unitary evolution due to the MW drive and the optical
measurement with the cavity are simultaneous and continuous processes. It is therefore
natural to describe the system in a master equation approach. Neglecting for now
spontaneous emission, the evolution of the atomic density matrix ρ is given by:

d

dt
ρ = − i

~

[

ĤMW , ρ
]

+ d̂ρd̂† − 1

2
ρd̂†d̂− 1

2
d̂†d̂ρ . (1.52)

The first term describes the unitary evolution due to the microwave field with ĤMW =
~ΩĴx (cf. Section 1.2.1). The last three terms account for the loss of photons from
the cavity with the jump operator d̂ =

√
2κâ, where â annihilates a cavity photon.
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Supposing the atoms are in the Dicke state |nN 〉 and the photon flux is Φ, a coherent
field |αn〉 builds up in the cavity. Its amplitude is given by Equations 1.35 and 1.50:

αn = ncav =

√

Φ

κ

1

1 + 2Cn
. (1.53)

As the photons carry information about the atomic state, the loss of a photon corresponds
to an effective measurement. In our case, we keep both the flux Φ and the Rabi frequency
Ω small compared to the cavity decay rate κ. We can then assume that the cavity field
follows the number of atoms in state |1〉 instantly. Neglecting transient effects and
tracing out the cavity, the loss of a cavity photon transforms into a jump operator for
the atoms, which is given by

d̂ =
∑

m,n

|mN 〉〈αm|
√

2κâ|αn〉〈nN | (1.54)

=
∑

m,n

|mN 〉
√

2καn e
− 1

2
|αn−αm|2〈nN | (1.55)

≃
∑

n

√

r
(n)
m |nN 〉〈nN | , (1.56)

where the approximation is valid for sufficiently low flux Φ and where r
(n)
m is the effective

measurement rate

r(n)
m =

2Φ

(1 + 2Cn)2
. (1.57)

In the strong-coupling limit of cQED, C ≫ 1, Equation 1.57 describes a highly state-

selective measurement: for n > 0, the effective measurement rate r
(n)
m is strongly sup-

pressed compared to the case n = 0. This situation can be understood in terms of the
Tavis-Cummings model as depicted schematically in Figure 1.7. Our Hilbert space is
given by the symmetric subspace Hs which is spanned by the qubit Dicke states |nN 〉.
We can couple the states |nN 〉 with the MW leading to dynamics with Rabi frequency Ω.
The qubit Dicke states |nN 〉 without optical excitation correspond to the states |M = 0〉n

of Equation 1.42. Pumping the cavity (weakly) with photons at rate η couples the states
|M = 0〉n to the states with one excitation |M = 1〉n. In the case of n = 0, there exists
only one state |M = 1〉0,cav (Equation 1.43). The population of this state is “measured”
by photons leaving the cavity at rate κ which leads to the effective measurement rate of
the qubit state |0N 〉

rm = 2
η2

κ
= 2Φ .

For the higher Dicke states |nN 〉, coupling to the excited states |±, 1〉n is strongly reduced

due to the vacuum Rabi splitting. This leads to the reduced measurement rate r
(n)
m ∝

rm/(Cn)2.
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Figure 1.7: Implementing a state selective measurement with the cavity. A description
in terms of the Tavis-Cummings model (left) translates into an effective continuous

measurement (right). For r
(0)
m > NΩ > r

(n)
m , the measurement confines the system in

the Zeno subspace HZ .

Degeneracy of the measurement

We have seen in Section 1.1.2 that, in order for QZD to arise, we need to have a meas-
urement that distinguishes a multidimensional subspace of the Hilbert space. Looking
at Equation 1.57, we see that our measurement rate is different for every state |nN 〉.
The key to realising QZD therefore lies in the relative strength of the measurement rates
of the different states (corresponding to the Zeno subspaces) compared to the strength
of the MW used to drive the dynamics. We see easily that an interesting regime is given
by

rm ≃ 2Φ >
√
NΩ > r(n)

m ≃ 2Φ
1

(2Cn)2
∀n > 0 . (1.58)

In this case, the measurement is strong enough to change the dynamics of the MW
rotation for the state |0N 〉 (given by the Rabi frequency

√
NΩ, cf. the explicit form

of the rotation operator given by Equation 1.18) while being too weak to influence
the subspace formed by the other Dicke states. Preparing the atomic state within the
subspace HZ ∈ Hs spanned by all Dicke states |nN 〉 with n > 0, the measurement
will act as a barrier preventing the system to move into the state |0N 〉. In our case,
the strong atom-cavity coupling with C ≈ 100 gives us enough range to accommodate
the MW drive with a typical frequency of Ω/2π ≃ 0.1 MHz for around N ≃ 40 with a
typical photon flux in the cavity Φ ≃ 10 MHz. Working in this parameter regime, we
can describe our experiments with the master equation 1.52, where the jump operator
is simply

22



1.3. QZD IN AN ATOMIC ENSEMBLE COUPLED TO AN OPTICAL RESONATOR

d̂ =
√
rm|0N 〉〈0N | =

√
2Φ|0N 〉〈0N | . (1.59)

Non-destructive nature of the measurement

We have seen that the cavity measurement can define Zeno subspaces. However, we also
need to make sure that the measurement does not destroy the atomic state. The main
concern in our case is spontaneous emission. The following rough calculations can serve
to estimate the order of magnitude of the limits this poses on our scheme. We will see
later that our experiments in the current setup are actually limited by the detrimental
effect of the second cavity mode which leads to much higher scattering rates than the
ones expected for a single mode cavity (see also Section 4.1.2).

On the one hand, an optically excited atom in F ′ = 3 can leave the qubit space by
scattering into another Zeeman level. If it does fall back into the qubit subspace, the
resulting collective state is non-symmetric with probability p = 1 − 1/N . For 40 atoms,
p > 80%, so to first order any resonant excitation will lead to loss from our Hilbert
space. To observe QZD, the scattering rate needs to be small compared to the dynamics
of the Rabi oscillation. This imposes the following condition on the resonant scattering
rate for n atoms in |1〉, Γeff,n given by Equation 1.51 (for C ≫ 1) :

√
NΩ > Γeff,n ≃ Φ

1

Cn
. (1.60)

Comparing this condition with Equation 1.58, we see that the scattering limits the
maximal photon flux we can use to produce the Zeno measurement.

We can also have non-resonant scattering by atoms in the qubit state |0〉. The scattering
rate in this case is given by Equation 1.34, with ∆ap = ∆HF S ≫ g, κ, γ:

Γeff,F =1 = 2γpexcnF =1 ≈ 2γ
η2g2

κ2∆2
HFS

nF =1 (1.61)

= CΦ
(2γ)2

∆2
HFS

nF =1 ≈ 3 · 10−4ΦnF =1 . (1.62)

The off-resonant scattering is maximal in the state |0N 〉. For our parameters (N =
40,Φ . 10 MHz) it attains a maximal value on the order of Γmax

eff,F =1
≈ 2π · 0.1 MHz.

This is the same order of magnitude as our typical Rabi frequency Ω, thereby limiting
the maximal ensemble size to about 100 atoms. In a new cavity setup, this limit could
be improved by changing the cavity parameters, specifically the cooperativity. However,
decreasing Γeff,F =1 would require to decrease C which leads to higher resonant scattering
as well as a lower measurement rate. Due to this trade-off, a detailed analysis would be
necessary to optimise this limit (which in the end is set by the hyperfine state structure
of Rb).
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1.4 Conclusion

In this chapter, we have presented from a conceptual point of view how quantum Zeno
dynamics can be produced in an experimental setup that allows to couple an ensemble
of N atoms to an optical resonator. Our scheme relies on a continuous measurement of
the collective atomic state which is strong enough to prevent MW-induced dynamics in
a certain subspace of the complete atomic state space. Specifically, our system can be
described by the Dicke states of an effective spin-N/2 qubit system in which probing the
cavity can distinguish the state |0N 〉 from all other states. The measurement process
needs to be non-destructive in order not to scramble the dynamics inside the Zeno sub-
space due to spontaneous emission. We have shown that we can meet these requirements
experimentally, notably because of the strong collective coupling we can achieve between
the atoms and a high finesse resonator. We also have introduced models that describe
our system for both infinite and finite strength of the Zeno measurement.

24



Chapter 2

Experimental Setup

This chapter presents the experimental apparatus. Its core component is an atom chip
with two integrated miniature Fabry-Perot resonators. An optical setup generates the
necessary light fields. As the apparatus has been described extensively in [63, 59, 62], we
concentrate here on a brief overview of its most important features and a documentation
of the modifications made during this thesis.

In Section 2.1, we describe the apparatus used to create ultracold atomic samples on the
atom chip as well as the integrated fibre Fabry-Perot cavities and the additional optical
setup. In Section 2.7 we detail the work performed on the setup during the present work,
which includes a significant speed up in the experimental cycle time and the realisation of
short pulses of probing light necessary for the QZD experiments presented in Chapter 4.

2.1 Overview

The central idea behind the setup is to combine two different technologies that are at the
same time simple and compact yet experimentally versatile and powerful. An atom chip
allows us to create well confined ensembles of cold atoms in a single vacuum cell design.
A high finesse Fabry-Perot resonator made from optical fibres provides light fields with a
small mode volume. Integrating chip and cavity enables to position the atomic ensemble
in a single antinode of the standing wave in the resonator, realising cavity QED in the
strong coupling regime.

The core part of the experimental apparatus consisting of atom chip, ultra high vacuum
(UHV) apparatus and fibre cavities was completed in 2007 [63] and has stayed basically
unmodified since then. It is still running fine at the time of writing without major
maintenance which speaks for its careful construction as well as for the robustness of the
miniaturised approach.

2.2 The atom chip

2.2.1 Magnetic traps and atom chips

To study atoms at the quantum mechanical level it is necessary to confine them spatially.
One option to trap neutral atoms is to make use of the potential energy shift they
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experience in an external magnetic field due to their magnetic moment. If the energy
shift ∆E is small compared to the hyperfine splitting, it can be written as ∆E(B) =
µBgFmF |B| where µB is the Bohr magneton, gF the Landé factor and mF the magnetic
quantum number [64]. If gFmF < 0, atoms are attracted towards minima of the magnetic
field. Since local maxima of the magnetic field in free space are forbidden by Maxwell’s
equations, only these low field seeking states can be trapped with static magnetic fields.
For 87Rb in the 5S1/2 multiplet, the states |F = 1,mF = 1〉 and |F = 2,mF = 1, 2〉 are
low field seekers.

The spatially inhomogeneous fields required for magnetic trapping are typically gener-
ated from electric currents passing through conductors. According to the Biot-Savart
law, the magnetic field B is inversely proportional to the distance r from a current-
carrying wire and the field gradient ∂B

∂r decreases quadratically. To create steep traps,
it is therefore advantageous to bring the conductors as close to the atoms as possible.
This idea lead to the proposal of microscopic wire structures that can be patterned on
planar substrates [65]. The structures can be realised using common photolithography
techniques used in microelectronics. Reducing the typical length scales to 10...100 µm,
such planar microfabricated substrates (“atom chips”) are a simple way to create com-
plex field geometries, not only providing high gradients but also transport and other
manipulation techniques [66, 67, 68, 69, 70]. The tightly confining traps that can be
created by microstructures are especially interesting for the production of BECs, allow-
ing condensation by evaporative cooling to be one order of magnitude faster than in
macroscopic traps and relaxing the requirements on the vacuum quality [71, 72].

A review of common wire configurations to create trapping potentials such as quadrupole,
Ioffe-Pritchard, waveguide and dimple can be found in [73].

2.2.2 The FFP chip

The atom chip in our setup consists of two individual AlN substrates glued together
with a thermally conductive, electrically insulating and vacuum compatible glue. The
bigger “base” chip measuring 0.8 mm×35 mm×45 mm carries in its centre the smaller
“science” chip measuring 0.63 mm×25 mm×28 mm (see Fig. 2.1). The wire structures
on the chips are made from Au and produced in thin-film hybrid design. The structures
are 7 µm thick with dimensions of 0.2 mm - 1 mm on the base chip down to 50 µm
on the science chip. Structurally, the base chip seals the top end of a glass cell that
acts as a vacuum chamber with excellent optical access. The base chip also serves as
a feedthrough for all wire connections. It protrudes on two sides over the glass cell to
give easy access to 2×24 electric contacts, of which 2×19 are connections to the science
chip while the rest addresses magnetic trap structures on the base. The science chip is
completely enclosed in the vacuum cell and electrically contacted to the base through
bonding wires. Due to the piggyback construction, optical access to the surface of the
science chip is not obstructed by the unavoidable glue meniscus between (base) chip and
cell.

The science chip provides the physical support for the fibre Fabry-Perot cavities as well
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Figure 2.1: The two microsubstrates of the atom chip in the experiment. a) The base
chip. Fine dashes indicate the position of the glass cell, rough dashes the position of the
science chip. The red line indicates the U wire used for the quadrupole field of the chip
MOT (cf. Section 2.8.1). The left and right edges serve as connectors for the chip wires.
b) The science chip. The dotted line indicates the position of the resonator support
bridge. The initial MOT and the first magnetic trap are at position 1, the centre of the
first FFP resonator is at position 2. Adapted from [63] .

as the magnetic potentials that allow us to position ultracold atoms in the first resonator.
To be able to load atoms into the magnetic traps, we first cool them in a magneto-optical
trap (MOT) [74]. Efficient loading requires a high spatial overlap between the magnetic
trap and the MOT which is difficult to achieve with a standard six-beam configuration
due to the chip surface. We therefore make use of a mirror MOT [66]: the surface of the
science chip is covered with a mirror coating, which allows a configuration of four light
beams to create a MOT close to the chip. As explained in Section 2.5, the geometrical
position of the mirror-MOT beams is still constrained by the finite size of the fibre cavity
assembly, so that the MOT can only be created at a certain distance from the resonators.
The specific series of magnetic potentials that realises the transport of the atoms from
the MOT to the resonator is described in Section 3.

2.3 FFP cavity assembly

The centre-piece of the experiment are the two miniature Fabry-Perot cavities integrated
on the atom chip. In the experiments, only the “science” cavity FFP1 is coupled to the
atoms while the other (FFP2) serves for locking purposes. Each FFP is formed by two
optical fibres facing each other with their end facets having been microfabricated (see
also Section 5.2) and treated with a highly reflective coating1 [46]. This technology has

1A dielectric multilayer coating custom made at the Laser Zentrum Hannover.
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5 mm

Figure 2.2: FFP cavity assembly (schematic). A support bridge made from ceramic
(light grey) carries two shear piezos (yellow). Each piezo carries two silicon substrates
(blue) into which the microfabricated fibres are glued.

several strong advantages:

• Small mode volume: The microfabricated mirrors can be small while having large
curvatures. By making the resonator length small, this makes it possible to build
stable cavities with very small mode volume which translates into strong atom-light
coupling (cf. Equation 1.25).

• High finesse: The microfabrication produces surfaces of very low roughness which
translates into high finesse.

• Compact size: The small size of the optical fibres allows to approach the surface of
the atom chip where the confinement of the magnetic traps is strong. This allows
one to load an ensemble of thousands of atoms into one specific antinode of the
standing wave inside the resonator.

For an FFP resonator to perform optimally as atom-light interface in the experiment,
it is critical that the two fibres are well aligned with respect to each other and that the
cavity as a whole is well aligned with the atom chip. In the present setup, these two
challenges are realised separately by introducing a support which carries the correctly
aligned cavities, which can then be placed as a whole at the desired position on the
atom chip. The approach is furthermore to fix as many degrees of freedom as possible
during construction, retaining as only variable the cavity length (which is indispensable
to control the cavity resonance).

The support assembly for the FFP cavities in the present experiment is shown schemat-
ically in Figure 2.2. Two piezoelectric shear actuators are glued onto a support bridge
made from machinable ceramic (Macor). The shear piezos have a stroke of ≃1 nm/V
which is sufficient to change the cavity length within one free spectral range (≃390 nm)
with a typical high voltage driver. Once in place, the piezos are cut along the long sym-
metry axis of the bridge to be able to control the length of both cavities independently.
The microfabricated fibres (� 125µm) are glued into silicon v-groove substrates which
are then aligned precisely while, in turn, gluing the substrates to the piezos with a slow-
curing epoxy glue. This step is critical, as the tolerance for the positions of the fibres
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Figure 2.3: Photographies of the completed FFP setup. a) The completed FFP cavity
assembly before gluing on the chip. The hole in the centre of the bridge gives optical
access to the cavity region. b) Close-up of the two FFP cavities. c) The science layer
of the atom chip. d) The mounted FFP cavity assembly. The assembly is flipped over
compared to the position shown in Figure 2.2. The copper wires to the left and right of
the bridge electrically contact the shear piezos, what appears like thinner wires are the
copper-coated FFP fibres. Adapted from [63].

with respect to each other is on the order of 1 µm. During the first 12 hours of curing,
it was therefore necessary to monitor the cavity transmission and adjust the alignment
to correct for displacement of the shrinking glue.

The completed FFP cavity assembly was then attached with UV glue to the atom chip
while ensuring the correct alignment of the fibre facets with the wire structures. The dis-
tance between the chip surface and the fibres (cavity mode) is ≃ 90(150)µm. Figure 2.3
shows photographies of the FFP assembly and the completed chip setup.

2.3.1 FFP cavity characteristics

Both cavities consist of a single-mode fibre2 (SMF) on the input side and a multi-
mode fibre3 (MMF) on the output side which relaxes the requirements on the resonator

2Oxford Electronics SM800-125CB.
3Oxford Electronics GI50-125CB.
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parameter FFP1 FFP2 source

geometry

r1: ROCa single-mode fibre 450 µm 350µm
estimated [63]

r2: ROC multi-mode fibre 150 µm 100 µm

d: effective resonator length 39 µm 27 µm computed from F SR = c
2d

optical parameters at 780 nm

FSR: free spectral range 3.9 THz 5.6 THz
measured [62]

∆νF W HM : linewidth (FWHM) 106 MHz 156 MHz

F : finesse 37000 36000 computed from F = F SR
δν

∆ν: frequency splitting 540 MHz 730 MHz measured [63]

T : mirror transmission 31 ppm measured [63]

L: mirror losses 56 ppm computed from F = 2π
T +L

T0: total cavity transmission 9.4% n.a.
measured [63]

R0: maximal cavity reflection 47% n.a

w0: mode waist 3.9 µm 3.2 µm computed from r1, r2, d

Vm: mode volume 461µm 217µm see text!

κ/2π: decay constant 53 MHz 78 MHz measured [62]

gm/2π: coupling constant 240 MHz 313 MHz measured [62]

C: cooperativity 181 210 computed from C = g2

2κγ

optical parameters at 830 nm

∆νF W HM : linewidth (FWHM) 260 MHz 390 MHz measured [62]

F : finesse 14000 13100 computed from F = F SR
δν

aROC: radius of curvature

Table 2.1: Geometrical and optical parameters of the two FFP cavities.

alignment. The fibres are commercially available and feature a Cu coating on the exterior
which makes them UHV compatible and increases their mechanical stability.

The relevant parameters of the two fibre cavities in the experiment are collected in
Table 2.1. All relevant cQED parameters have been measured in previous experiments.
Free spectral range FSR, decay rate κ, birefringent mode splitting ∆, as well as total
cavity transmission T0 and reflection R are easily accessible from direct optical measure-
ments. The coupling constant of the σ+ transition |F = 2,mF = 2〉 → |F = 3,mF = 3〉
has been derived from spectroscopic measurements of the vacuum Rabi splitting of the
coupled atom-cavity system to be gm = 240(10) MHz for FFP1. For the experiments
performed in this thesis, we work on the transition |F = 2,mF = 0〉 → |F = 3,mF = 0〉.
Taking into account the different Clebsch-Gordan coefficients, we find a value of g =
√

2/3gm ≈ 190 MHz which we use as an input parameter for our calculations.

The radius of curvature (ROC) r of each cavity mirror has been estimated from the
fibre fabrication process. We note that these values can be used to obtain a theoretical
value for gm based on cavity geometry. The waist w0 of a Gaussian beam matched to a
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resonator of length d made from mirrors with ROC r1, r2 is given by [75]:

w2
0 =

λ

π

√

d(r1 − d)(r2 − d)(r1 + r2 − d)

(r1 + r2 − 2d)2
. (2.1)

The volume of the fundamental mode is (see [63], p. 15):

Vm =
πw2

0d

4
. (2.2)

Inserting the computed Vm and the dipole matrix element d22→33 for the σ+ transition
|F = 2,mF = 2〉 → |F = 3,mF = 3〉 into Equation 1.25, we obtain a theoretical value

of gtheor
0 /2π ≃ 210 MHz. Taking into account that the ROC have not been determined

with precision, this agrees reasonably well with the measured value.

The distance between the first/second mirror and the waist is given by [75] :

d1/2 =
d(r2/1 − d)

r1 + r2 − 2d
, (2.3)

which evaluates for FFP1 to d1/2 ≃ 8.3µm/30.7µm as the distance from the SMF/MMF.

The FFP1 resonator used to couple to the atoms shows a frequency splitting between two
polarisation eigenmodes of the TEM00 mode. The modes are linearly orthogonally po-
larised and separated by about 540 MHz. In the experiments presented here, both probe
and dipole light address the higher frequency polarisation mode (see also Section 4.1).
The effect of the second mode in our experiments is discussed in detail in Section 4.1.1.
The origin of the polarisation mode splitting is discussed in detail in Chapter 5.

Dipole trap

Each FFP resonator is constructed to allow having an intra-cavity standing wave dipole
trap [76]. In practice, we use light at ≃830 nm that serves both to lock the cavity length
and to trap atoms inside FFP1. Because of the different wavelengths of probe (780 nm)
and dipole light, care has to be taken that the antinodes of both overlap to couple all
atoms uniformly and maximally to the probe light field. The cavity length and the
wavelength of the dipole laser are therefore chosen so that probe and dipole light fields
both have an antinode at the geometric centre of the cavity. For details on how the
coupling changes with the position in the cavity, see Section 2.8.3.

2.4 Cell and vacuum setup

The vacuum cell is shown schematically in Figure 2.4. The chip forms the top wall
of a glass cell4 that provides - via a glass to metal transition - the connection to the

4Hellma 704.001-OG with anti-reflective coating on the outside.
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Figure 2.4: Schematic of the experiment cell. The chip forms the top wall of the va-
cuum cell. It is electrically contacted by two PCI connectors. On top of the chip is the
U-shaped copper bracket, the copper piece and thermoelectric cooler (TEC) for temper-
ature stabilisation and the water cooled copper block for heat dissipation. The different
positions of the initial MOT and the resonator are also shown. Adapted from [63].

UHV apparatus. To the top side of the chip, a macroscopic “U”-shaped copper piece
is attached. This piece is used to create the quadrupole field for the first MOT at the
beginning of the experimental sequence (see Section 3). The currents in the atom chip
wires and the “U” bracket generate considerable resistive heat. The “U” is therefore
embedded in a copper block that is cooled by a thermoelectric cooler (TEC). The TEC
is controlled by a servo loop using a thermistor in the copper block as sensor to actively
stabilise its temperature. In previous work, the servo loop was active during all phases
of the experiment, so that the current through the TEC, in principle, was varying at
all times. The magnetic field associated with the current being a potential noise source,
we modified the setup during the present work to switch off the TEC during the critical
part of the experimental cycle. The heat of the TEC is dissipated by a water cooled
copper block.

Figure 2.5 shows a schematic of the ultra high vacuum setup. As rubidium source we
use a dispenser placed inside the glass-metal transition which is connected to the top
port of a six-way cross5. The bottom port is a window for optical access, the cross also
connects to a titanium sublimation pump, an electrical feed-through for the dispensers
and another four-way cross. Here, a pressure gauge, an ion pump and the valve for
attaching the turbo pump are connected.

Around the glass cell, there is a metal cage that holds four pairs of water-cooled coils.
Three pairs in Helmholtz configuration generate bias fields in the three spatial directions
and one pair in anti-Helmholtz configuration creates a field gradient for the magnetic

5There is another dispenser inside the cross which we have not used. Both models are SAES-Getters
RB/NF/3.4/12FT10+10.
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Figure 2.5: Vacuum setup. a) Side view. b) Top view. Adapted from [63].

transport.

A microwave antenna is placed at a distance of approximately 50 cm from the cell and
directed towards it. It is connected to the microwave system described in Section 2.7.2
that allows us to drive Rabi oscillations between the hyperfine ground state levels F = 1
and F = 2 of 87Rb that are separated by ≃ 6.8 GHz.

A home-built coil (10 turns, � ≈ 30 mm) close to the cell is used to inject RF in the
range of 30...1 MHz for evaporative cooling.

2.5 Optical setup

In the experiments, we need light fields for six different purposes:

• cooling the atoms in the MOT and optical molasses,

• pumping the atoms into a magnetically trappable Zeeman state,

• imaging the atoms via absorption imaging,

• probing the atoms in the cavity,

• creating a dipole trap in the cavity,

• locking the fibre cavity length.

The first four points require light frequencies close to resonance with the D2 line of 87Rb
at around 780 nm (see Figure 2.6), for the last two tasks we use far red-detuned light
at 830 nm. We generate all light fields from home-built external grating stabilised laser
diodes [77]. They are frequency-locked to reference signals via feedback on the grating
angle.

The optical setup is organised in four parts, the “main optical table”, the “locking” table,
the “detection” table, and the optics surrounding the vacuum cell.

33



CHAPTER 2. EXPERIMENTAL SETUP

F’=3

F’=2

F’=1

F’=0

F=2

F=1

co
o

li
n

g

re
p

u
m

p

p
u

m
p

p
ro

b
e

, i
m

a
g

in
g

267 MHz

157 MHz

72 MHz

6834 MHz5S
1/2

5P
3/2

λ
=

 7
8

0
.2

4
 n

m

Γ=
2

π
 5

.9
 M

H
z

Figure 2.6: Level scheme of the D2 line of 87Rb with relevant laser light frequencies.

2.5.1 Main table

The beam paths on the main table are shown in Figure 2.7. There are three diode
lasers at around 780 nm, each locked to a frequency modulated Doppler-free absorption
spectroscopy [78, 79]. They generate the following light fields close to resonance with
the D2 line of 87Rb:

• Cooling: The light for cooling the atoms in the MOT and optical molasses is
generated from the “main” laser locked to the F = 2 → F ′ = 2, 3 crossover
transition. The main part of its output light is used to inject the tapered amplifier
(TA) (see Section 2.7.1), while a small fraction is sent to the “locking” table to
lock the auxiliary laser there. A small part of the TA output is used to create
a beat lock signal with the FFP probe laser. The main part of the TA output
is frequency-shifted by +2 × 96 MHz using an acousto-optic modulator (AOM) in
double-pass configuration [80] and then shifted by a fixed amount of −80 MHz
using a single pass AOM. The double-pass AOM serves to vary the red detuning of
the cooling light between ∼ 7Γ (MOT phases) and ∼ 11Γ (molasses phase). The
cooling light is then coupled into four polarisation-maintaining (PM) single-mode
(SM) optical fibres leading towards the vacuum cell where the four beams for the
mirror MOT are created.

• Repump: Atoms can get lost from the cooling cycle by falling into F = 1. They
are recovered by light on the F = 1 → F ′ = 2 transition which is created with
a “repump” laser locked to the F = 2 → F ′ = 1, 2 crossover and an AOM at
−83 MHz. The light is overlapped with one of the MOT cooling beams and coupled
into the same fibre.

• Detection: A small part of the TA output after the double-pass is sent through
another AOM at +53 MHz. The resulting light is resonant to the (Zeeman-shifted)
F = 2 → F ′ = 3 transition and used for absorption imaging of the atoms outside
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of the cavity. The two detection beams “x” and “y” corresponding to different
imaging regions on the chip are coupled into fibres leading to the cell.

• Pump: A small part of the “main laser” light is shifted by −2 × 66 MHz to make
it resonant to the F = 2 → F ′ = 2 transition. It is overlapped with the x-
detection beam and used to pump the atoms into the magnetically trappable state
|F = 2,mF = 2〉 (cf. Sections 2.2 and 2.8).

• Probe: To probe the atoms resonant to the F = 2 → F ′ = 3 transition, we employ
the “FFP probe” laser. A fraction of its light overlapped with the main laser goes
to a photodiode (PD). The resulting beat signal is used to lock the probe to the
main laser via an offset lock that allows us to precisely control the lock point (see
also Section B). The main part of the light is shifted by a double-pass AOM at
+2 × 207 MHz and coupled into a fibre leading to the “locking” table.

2.5.2 Locking table

This part of the optical setup provides the light for locking the FFP cavities and to
create a dipole trap inside. For both purposes, a “dipole” laser at around 830 nm is
used. We stabilise and control its frequency in a chain of several locking steps [62]: The
dipole laser is locked to a macroscopic transfer cavity that is locked to an “auxiliary”
laser at 780 nm that is locked to the “main” laser (which is locked spectroscopically).
The beam paths on the table are shown in Figure 2.8.

A fraction of the light from the auxiliary laser (aux) and the small part of the main
laser coming from the main table are overlapped on a PD. The resulting beat signal is
used for the offset-lock (based on a digital frequency-to-voltage converter) of the aux laser
frequency to the “main laser” frequency. The rest of the aux laser light is mode-filtered
and then used to lock the transfer cavity in a Pound-Drever-Hall (PDH) scheme [81].
The aux light is phase-modulated with a free-space electro-optical modulator (EOM)6

to apply sidebands at around 18 MHz and then sent to the transfer cavity. The light
reflected from the cavity is collected on a PD to produce an error signal used to stabilise
the cavity length via a piezo actuator to the aux laser frequency.

The dipole laser light is split into three beam paths. Part of the light is superimposed
with the aux laser to implement another PDH lock with the transfer cavity. The reflected
light at 830 nm is separated from the aux beam with a filter and sent to a separate PD
to produce an error signal that is used to lock the dipole laser frequency to the transfer
cavity. Another part of the dipole light is sent through a double-pass AOM that shifts
its frequency by 2 × (175...225) MHz and then through a fibre-coupled EOM7 towards
the “detection” table (where it is coupled to the FFP1 cavity). The EOM imprints
side-bands at 1.8 GHz which are used for a PDH lock of the fibre cavity length to the

6Qubig High-Q 17.85 MHz.
7Photline NIR-MPX800-LN-10.
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dipole light. The rest of the dipole laser light is sent to the detection table where it is
coupled to the FFP2 cavity.

The length of the science cavity FFP1 is locked to the dipole laser frequency. We note
that the lock chain provides two ways of shifting the resonance frequency of FFP1 during
the experiment, first by changing the lock point of the offset lock between aux and main
laser (which provides a range of up to 1 GHz, with a speed of about 500 MHz/20ms, not
addressed by the real-time microcontroller8), second by changing the double-pass AOM
frequency (with a range of about 100 MHz, addressed by the microcontroller8).

The locking table also holds some components for the probe light. The probe power can
be controlled by varying the RF power sent to an AOM at a fixed frequency of +83 MHz.
In particular, the AOM serves to switch the probe on and off to create the Zeno light
pulse as detailed in Section 2.7.2. After the AOM, the probe light is monitored with a
PD and sent to the “detection” table.

2.5.3 Detection table

The detection table comprises all optical components necessary to control and monitor
the way dipole and probe light beams are transmitted and reflected by the two fibre
cavities. The beam paths are shown in Figure 2.9.

8The different experiment control schemes are explained in Section 2.6.
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The dipole and probe light beams for FFP1 coming from the locking table are overlapped
and coupled into the resonator. A set of wave plates allows us to control independently
the polarisation of dipole and probe light so that they can be aligned with respect to
the cavity’s polarisation eigenaxes (cf. Section 2.3.1). A beam splitter and several filters
are employed to send 90% of the incoming dipole light to a PD used to stabilise its
intensity9 and to send 90% of the light reflected from the cavity to a PD to lock the
length of FFP1 to the dipole light frequency in a PDH scheme. The reflected probe light
is detected with either a PD or an avalanche photodiode (APD)10. The dipole (probe)
light transmitted from FFP1 is analysed with another PD (another SPCM).

In the present experiments, FFP2 is used to help locking FFP1. An important source of
cavity length fluctuations are temperature changes (for example due to ohmic heating
from the chip wires varying during the experimental sequence). As these thermic drifts
act very similarly on both fibre cavities, the error signal of the length stabilisation of one
can be used to stabilise the other. During the experimental sequence, this is important
when loading the atoms from the magnetic trap into the dipole trap inside FFP1. For
this transfer to be efficient, the dipole light needs to be switched of briefly while the
atoms are brought into the correct position. During this time where there is no lock
signal from FFP1, its length is stabilised with the error signal from FFP2. We note that
the error signal from FFP2 is obtained directly from the reflected light intensity. In a
situation similar to the tilt-locking scheme [82], the light coupled to the cavity excites
both the TEM00 and a higher order spatial mode which results in a reflection signal with
a dispersive feature suitable for locking.

2.5.4 Optical setup at the vacuum cell

The optical components surrounding the vacuum cell are shown schematically in Fig-
ure 2.10. They serve to distribute the MOT, detection and pump light brought by the
fibre cables from the main table. The MOT beams are collimated to a diameter of about
2.5 cm. The two horizontal ones are overlapped with the x-detection and the pump
beam. Figure 2.10 b illustrates the geometric constraints that impose a certain distance
of the MOT position from the resonator bridge due to the size of the two 45° beams for
the mirror MOT. Position and direction of the y-detection are also determined by the
space available for the collimating optics and the cameras11.

2.6 Experiment control

The experiment is controlled by a personal computer equipped with two interface sys-
tems. The main experimental control consists of a home-developed script language

9The dipole light intensity is stabilised in an analogue feedback circuit using this PD as sensor and the
RF power to the double-pass AOM on the locking table as actuator.

10Perkin-Elmer SPCM AQR-14.
11JAI CV-M50-IR.
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(“GoodTime”) that is used to program digital I/O boards12 to address the current
sources, AOM drivers, shutters etc. as well as some GPIB devices and the MW source.
These control sequences are static and cannot react to experimental results, which makes
them sufficient to load a cold sample into the cavity but not adequate for subsequent
manipulations such as the atom number preparation described in Section 2.8.5. In [59],
our setup was therefore complemented with a second control interface in the form of a
real-time microcontroller13 which provides several digital and two analogue outputs.

2.7 Modifications

This section details the two most important modifications made to the experimental
setup during the present thesis in order to realise the QZD experiments. An improved
cooling system based on a tapered amplifier (TA) has allowed us to reduce the experi-
mental cycle time from 9 s to less than 4 s, as described in Section 2.7.1. The apparatus
to create the synchronised light and MW pulses for the quantum Zeno dynamics is
described in Section 2.7.2.

We note at this point that the experimental setup had not been in use for more than
one year prior to the present work. Part of setting up the experiment therefore consisted
in bringing the apparatus back to working condition. We found that a number of com-
ponents had to be replaced, namely several RF components in the main-probe beat lock

12National Instruments PCI-3360 and PCI-4820.
13Jäger GmbH ADwin light with digital I/O extension card.
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Figure 2.11: Optical power Popt at output (black squares) and scattered back into input
direction (red circles) of the TA as a function of the operating current ITA. The TA
was injected with 17 mW of optical power.

(see also Appendix B), AOM driving electronics and current sources used on the chip
wires. After accounting for the problems caused by these external components, the core
of the apparatus needed no major adjustments of the experimental parameters.

2.7.1 Improved experimental cycle time

To perform quantum state tomography on the atomic ensemble it is necessary to take
a large number of individual measurements. As detailed in Section 3.1, we need on the
order of 104 individual samples to acquire sufficient statistic for one 2d state tomography
measurement. The experimental cycle time is therefore a critical parameter for the
practical realisation of our measurement scheme. In the current implementation, we
need to produce a new atomic sample for every measurement as there is no feasible
way to reinitialise and reuse the sample. The longest part of the experimental cycle
is the MOT phase which, prior to the work presented here, took 6 s.14 In contrast,
once the atoms are in the first magnetic trap, it takes only about 500 ms to have the
ultracold ensemble ready inside the cavity, a few hundreds of µs to perform the QZD
manipulations, about 100 ms to prepare for the next cycle and 1 s for the control software
to reset.

The purpose of the MOT is to provide enough atoms for the subsequent experiment. In
our case, we need to have around 103 atoms after evaporative cooling (see Section 2.8.1).
The number of atoms captured in a MOT operated for some fixed time increases with
the optical power of the cooling beams [83, 84]. Previously, the cooling beams were
generated from an additional “slave” diode laser on the main table which was injection-

14Additionally, there was an unnecessary waiting time of about 1 s in the interaction of the main
experiment control software with the MW control software which we have eliminated.
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Figure 2.12: Captured atoms in the MOT as a function of the loading time. Black
squares: cooling power 230 mW as in the new TA configuration. Red circles: cooling
power 40 mW as in the old master-slave laser configuration. The atom number is extrac-
ted from absorption imaging which was not calibrated correctly to give absolute values.
The dispenser current was Idisp = 3.45 A.

locked to the “master” main laser diode laser. The slave had an optical ouput power
of 120 mW which resulted in 40 mW available for coupling into the fibre cables for the
MOT, or about 8 mW each in the horizontal beams and 4 mW each in the 45° beams.

We have replaced the slave laser diode with a tapered amplifier (TA) specified to provide
around 1 W of optical output power 15. The amplifier module is mounted in a home made
copper piece carrying the input and output collimating lenses16. The mount is placed
inside a case that includes a Peltier element for temperature stabilisation and a circuit
board to connect to standard laser current drivers. The output beam is asymmetric
and astigmatic which we compensate with a cylinder lens. Figure 2.11 shows the output
power Popt measured directly after the TA as well as the light scattered back into the
input direction due to spontaneous emission. The TA performs as specified, delivering
about 1.4 W output at its maximum specified current IT A = 3 A. To prolong its lifetime,
we operate it below the maximum output. The light scattered back into the input
direction attains several tens of mW. We therefore protect the main laser with a 35 dB
optical isolator17 on the input side of the amplifier (in addition to the 35 dB OI directly
after the laser). To protect the TA from the light coming back from the double-pass
AOM, we introduce a double-stage optical isolator18 (specified isolation > 60 dB) at its
output. In the experiment, we operate the TA at IT A = 2.55 A injecting it with 17 mW
of light from the main laser. We then have an optical power of about 1.2 W after the

15Eagleyard Photonics EYP-TPA-0780-1000.
16Thorlabs molded glass aspherics, EFL 2.0 mm.
17IO-5-780-PBS.
18Linos Dl1-1.
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two-stage OI, 340 mW after the double-pass and 230 mW to couple into the MOT fibre
cables, about six times the amount of the old configuration. Figure 2.12 shows the atom
number captured in the MOT as a function of loading time for the two different cooling
powers. As can be seen, the higher power allows us to shorten the MOT loading phase
from 6 s to 2 s to capture the required number of about 107atoms.

2.7.2 Control of the probing light pulses

To implement the QZD, we need to produce synchronised pulses of probe light and
microwave (MW) radiation, as detailed in Section 4.1. The realisation of the MW
pulses for qubit manipulation is the same as in previous work and has not required
any modifications. Our MW system is home-built and described in [59]. In principle,
the MW is generated by adding the signal of an oscillator at 6800 MHz to that of a
direct-digital-synthesizer (DDS) at 1-500 MHz. The DDS has 4 channels which can be
programmed by a PC and then subsequently switched in real-time via TTL signals. The
resulting MW signal is amplified by 51 dB resulting in a power of about 15 W that is
sent to the antenna placed close to the vacuum cell.19 A TTL-controlled switch allows
us to switch the MW output on and off with a rise time below 10 ns.

During the experiment, we use TTL signals generated by the real-time micro-controller
to realise MW pulses of well defined phase (by switching between the DDS channels)
and length (via the TTL switch).

The synchronised probe light pulses need to be:

• short (duration on the order of a Rabi period, which is < 10µs in our experiment);

• variable in power (as we want to study the influence of measurement strength on
the QZD);

• stabilised in power (as the experiment requires taking statistics for up to several
days).

We can satisfy these requirements with the existing apparatus with only minimal modific-
ations to the optical setup but some additional control components shown schematically
in Figure 2.13. The principle is to modulate the probe beam power by varying the RF
power sent to the single-pass AOM on the locking table. Such a scheme was already
implemented previously to stabilise the optical power of the probe beam by acting on
a voltage-controlled attenuator for the RF. The lock is implemented as a sequence on
the the real-time controller; at the beginning of each experimental cycle, the power is
adjusted until the reflection counts from the off-resonant cavity correspond to the pre-
determined set-point value. We now implement a copy of this locking scheme, allowing
for two different set-points for the optical probe power (corresponding to two different

19The MW pulses for the adiabatic transfer described in Section 2.8.4 are generated with an additional
MW source (Agilent E8257D). The output of both MW sources is combined with a directional coupler
(Pasternak Enterprise PE2204-30) and the combined signal sent to the amplifier chain.
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Figure 2.13: Simplified schematic of the RF electronics to regulate the probe intensity
during the QZD. All components are from Minicircuits. Yellow diamonds indicate input
from the real-time micro-controller. The analogue “aomvoltage” gives the feedback to
stabilise the optical power of the probe either for the QZD or detection. The digital
“ZenoAux” switches between the attenuators. The digital “MW pulse” synchronises the
light pulse with the MW pulse during the QZD. Dashed arrows indicate omitted addi-
tional components which are necessary to work around different technical limitations. A
complete schematic and full description can be found in Appendix C.

attenuator control voltages). One set-point is for the probe power corresponding to
the measurement process that induces the QZD (which varies with the experiment), the
other for detection of the atomic state in the cavity (which is the same in all experiments,
but necessary to compensate intensity drifts of the probe power occurring on the time
scale of several minutes). In the experimental sequence, we want to switch as quickly as
possible from the QZD measurement power level to the detection power to shorten the
time until detection which reduces the effect of decoherence. The variable attenuator
is too slow for our purposes (specified fall time 25µs), we therefore use two switches
(response time around 10 ns) to change quickly between two different attenuators. To
synchronise the QZD light pulse with the MW pulse, we use an additional switch which
takes as TTL input the same signal used for switching the MW on and off.

Figure 2.14 shows typical signals illustrating the probe light pulses used during the QZD
sequence. As can be seen, the probe power during the QZD is much stronger than during
the detection. Nonetheless, due to the two-attenuator setup, both pulses are to good
approximation rectangular. Using a single attenuator, the detection pulse would start at
a higher intensity and then settle towards its target value. This increase would depend
on the strength of the QZD pulse and change the count rates during the detection by
up to 50% for our parameters.
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Figure 2.14: Oscilloscope traces showing the timing of the synchronised MW (blue)
and probe light (red) pulses during the experimental sequence that produces the QZD.
To visualise the MW at 6.8 GHz, it is mixed with a signal at a similar frequency to
obtain a beat signal with an envelope following the pulse shape. The first three pulses
correspond to the state preparation. During the third MW pulse, the probe light is
switched on to induce the QZD. The following two MW pulses rotate the atomic state
for the tomographic measurement which is performed with the subsequent (weaker) light
pulse (which is in total 120µs long). A detailed description of the complete sequence is
given in Section 4.2.2.
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2.8 Coupling a sample of cold atoms to the cavity

This section details how we prepare the atomic ensemble used for the experiments. First,
we produce a sample of cold atoms by means of a MOT and evaporative cooling on the
atom chip. The sample is then loaded into an intra-cavity dipole trap, placing it at the
position of strongest coupling with the probe light field in the cavity. Finally, we prepare
the ensemble to contain a well defined number of atoms.

2.8.1 Cold atom preparation

We start by capturing atoms in a first MOT produced with a bias field from the external
coils and a magnetic quadrupole field from the copper U piece above the atom chip. The
centre of this MOT is about 4 mm away from the surface of the atom chip (compare
Figure 2.10 b). The atoms are then transferred into a MOT whose quadrupole field is
generated by an U-wire on the base chip (compare Figure 2.1). The centre of this “chip
MOT” is brought to a distance of about 0.8 mm from the surface of the science chip.
After a phase of optical molasses, the atoms are then optically pumped into the state
|F = 2,mF = 2〉 and loaded into a first magnetic trap (“Trap1”20) formed by an external
bias field and the P-trap wire (see Figure 2.15 showing a schematic of the science chip
wires used during atom preparation).

By changing the orientation of the bias field, the main axis of the quadrupole trap
generated by the P-wire can be rotated to transfer the atoms efficiently into a trap
generated by the waveguide wire and an external quadrupole field [85] (Trap3). By
varying the zero point of the external quadrupole field, the waveguide can then be used
to move the atoms about 11 mm towards the cavity region (Trap4).

To be able to load the cloud of cold atoms into the cavity, its size and temperature
needs to be reduced. The atoms are therefore first loaded into a Z-type trap formed
by the Ioffe wire while a current through the stop wire creates a barrier that prevents
the cloud from colliding with the cavity fibres (Trap5). This barrier in place, the Ioffe
trap is compressed to move it closer to the chip and the dimple wire is used to create a
dimple trap (which the atoms cannot reach yet) close to the final position the resonator
(Trap6). Next, the current through the stop wire is turned off, and the atoms collect
in the dimple trap where they are cooled via RF-evaporation (Trap7). Now follows the
transfer into a pure dimple trap and a second phase of evaporative cooling (Trap8). For
reference, Table 2.2 shows typical values for the number of atoms in the ultracold sample
up to this point in the preparation sequence.

After the second RF evaporation, the dimple trap is moved closer to the cavity (Trap9).
Now the sample temperature can be reduced further by bringing the atom cloud close to
the fibres which will lead to evaporative cooling by removing the hottest atoms through
contact with the fibre surface [66] (Trap10). Trap11 consists of moving the dimple trap to

20We use the term “trap” to signify the complete parameter set of external magnetic fields and chip
wire currents characterising each step of manipulating the atom cloud on the chip.
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Figure 2.15: Wire configuration on the science chip highlighting wires used for the atom
preparation sequence. The initial MOT and the first magnetic trap are at position 1,
the centre of the science FFP resonator is at position 2. Adapted from [62].

experimental phase Nat

chip MOT after molasses 20 · 106

chip MOT after pumping 20 · 106

in Trap1 5.5 · 106

in Pturn 5 · 106

in Trap3 4.5 · 106

in Trap5 (after quadrupole transport) 1.3 · 106

in Trap6 1.3 · 106

in Trap7 (after first RF evaporation) 2000

in Trap8 (after second RF evaporation) 1200

Table 2.2: Characteristic parameters for the preparation of cold atomic samples. The
table gives typical values for the number of atomsNat extracted from absorption imaging.
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position the atoms into the exact desired position for loading into the dipole trap (which
needs to be switched off during that time). The general preparation sequence then ends
with loading the atoms into the dipole trap by ramping its intensity up (Trap12) and
ramping down the magnetic fields and wire currents (Trap13).

2.8.2 Dipole trap depth

The choice of the dipole trap depth is influenced by two considerations. On the one hand,
the dipole laser power needs to be strong enough to give a useful error signal for the lock
of FFP1 throughout the sequence. On the other hand, higher trap depth leads to the
ensemble of atoms having higher temperature after the atom number preparation scheme
described in Section 2.8.5. This higher temperature translates into faster decoherence. In
our experiments, we load the atoms into a dipole trap with a depth of approximately U ≈
0.3 mK. From previously performed measurements, we infer the average temperature
of the trapped ensemble to be T ≈ U/6 = 0.05 mK. This is a factor of 10 lower
than in previous experiments which increases the experimental coherence time by about
an order of magnitude while still providing a stable locking signal. We estimate the
trapping frequencies along and perpendicular to the trap axis to be ωaxis ≈ 2π300 kHz
and ω⊥ ≈ 2π15 kHz respectively.

2.8.3 Position of the atoms in the resonator

As mentioned in Section 2.1, FFP1 is constructed so that dipole light and probe light
both feature an antinode at the geometric centre of the cavity. In previous experiments,
atoms were loaded into this common central antinode. However, this is not the position of
strongest coupling, since the cavity geometry is slightly asymmetric so that the position
of the probe beam waist does not coincide with the centre of the cavity. To quantify how
the coupling varies with the position along the cavity axis, we measure the transmission
of the cavity with an ensemble of atoms in F = 2 and cavity and probe tuned to
the transition F = 2 → F ′ = 3. In this configuration, stronger coupling leads to
longer lifetime and lower cavity transmission (compare Equation 1.50). Figure 2.16
shows the lifetime of the atoms and the normalised average cavity transmission when
varying the position of the ensemble in Trap11. The lifetime shows a characteristic
modulation with maxima spaced by ≃ 6.5µm. They correspond to maximal overlap
between the dipole light at λ1 = 830 nm and the probe light at λ2 = 780 nm which
occurs after multiples of the beat length λbeat = λ1λ2

2(λ1−λ2) ≈ 6.4µm . At positions
x ≃ −20µm and x ≃ 18µm, the end surfaces of the resonator fibres lead to atom loss
(in agreement with the resonator length of d ≃ 39µm). It can be seen that the coupling
is not strongest in the central antinode but in an antinode at a distance of ≃ 6µm
from one of the fibres which agrees with the distance of the waist from the SM fibre
d1 ≃ 8µm computed in Section 2.3.1. The cavity transmission is reduced strongly in the
coupled atom-cavity system (see Equation 1.36). For the central antinode, we measure
a normalised transmission T/Tmax = 2.7(6) · 10−4, for the antinode closest to the waist
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Figure 2.16: Lifetime of the atoms and cavity transmission as a function of the position
x of the coupled ensemble along the cavity axis. Upper panel: With the probe light
continuously on, lifetime is higher for higher coupling. The maxima correspond to posi-
tions where probe and dipole laser antinodes have maximal overlap. The coupling varies
slowly with the diameter of the probe light mode which has its waist close to x = 11µm.
The line is a guide to the eye. Lower panel: normalised cavity transmission T/Tmax

averaged over 100µs, logarithmic scale. Atoms coupled to the cavity strongly suppress
cavity transmission.

T/Tmax = 1.6(4) ·10−4. In the present experiments, we load the atoms into this position
of strongest coupling.

2.8.4 Zeeman state preparation

The experimental setup is not shielded against ambient magnetic field fluctuations; to
minimise their impact on the stability of the qubit system, we have implemented it in the
present work in the Zeeman states |0〉 ≡ |F = 1, mF = 0〉 and |1〉 ≡ |F = 2, mF = 0〉
which are to first order insensitive to the magnetic field. To initialise the atoms into
the state |0〉, we apply three adiabatic MW sweeps to transfer them from the state
|F = 2, mF = 2〉 (in which they are loaded out of the magnetic trap into the dipole
trap) first to the state |F = 1, mF = 1〉, then |F = 2, mF = 1〉 and then into |0〉.
Since our MW source does not allow frequency sweeps, we keep the MW frequency fixed
while varying the external magnetic bias fields to bring the Zeeman-shifted levels into
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resonance with the MW.21 Each sweep takes 3 ms to vary the bias field around ±5% of
the resonant value. The transfer efficiency of the complete sequence is larger than 90%.

2.8.5 Atom number preparation

An ensemble of ultracold atoms loaded into the dipole trap as described so far does not
contain a well defined number of atoms. To perform quantum state tomography, however,
it is necessary to collect statistics over a large number of identical ensemble realisations.
In our experiments, we therefore use a method to prepare ensembles of well-defined atom
number that was developed in [45]. It is shown schematically in Figure 2.17. With the
cavity and probe tuned to the F = 2 → F ′ = 3 transition, we load about 150-200 atoms
in F = 1 into the dipole trap. These atoms are far detuned from the cavity resonance
∆ca = ∆HF S = 2π·6.8 GHz. The field in the cavity is then given by Equation 1.35 with
∆ca ≫ g2/κ:

〈a†
a〉 ≈ η2/κ2

(

∆cp

κ − g2
nF =1
κ∆ap

) =
η2/κ

(

∆cp − nF =1
g2

1
∆ap

) , (2.4)

where nF =1 is the number of atoms in F = 1. We see that the atoms act like a medium

of different refractive index, shifting the cavity resonance by the amount nF =1
g2

1
∆ap

to-
wards lower frequencies. The coupling constant g1 takes into account the coupling to all

transitions F = 1 → F ′ = 0, 1, 2 and can be computed to be g1 =
√

2
3g

σ+

22→33[59]. For
our parameters, the light shift per atom evaluates to 5.6 MHz.

We now turn on the probe light and measure the cavity transmission which is initially
low, as the atoms detune the cavity (left-hand side of Figure 2.17). However, the probe
light induces light-assisted atom losses from the dipole trap through the mechanism of
radiative escape [86]. As atoms get continually lost from the trap, cavity transmission
increases. We monitor the rising transmission until it reaches the threshold correspond-
ing to a certain atom number at which point we stop the loss process by switching the
probe light off. By shifting the empty cavity resonance with respect to the probe before
the preparation sequence, different atom numbers can be prepared. In the present exper-
iments, we select a target number of 40 atoms by setting the cavity to be resonant with
20 atoms in F = 1 (we do this by locking the cavity to be resonant with the probe and
then shifting the set-point of the beat lock between main and auxiliary laser by about
120 MHz before the preparation). We set the transmission threshold for the preparation
to 1

5 of the resonant value, which corresponds to the detuning caused by another 20
atoms.

21The MW source is operated at a fixed frequency of 6858 MHz. This frequency is about 24 MHz higher
than the unperturbed transition |F = 1, mF = 1〉 → |F = 2, mF = 2〉, corresponding to the Zeeman
shift caused by the magnetic field of about 12 G used to lift the degeneracy of the ground state levels.
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Figure 2.17: Principle of the atom number preparation scheme. The detuning between
cavity and probe laser ∆cp changes proportionally to the number of off-resonant atoms
in the cavity. Removing atoms until the transmission crosses a certain threshold allows
us to prepare a well-defined atom number. Source: [45].
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Quantum state tomography and
entanglement detection

To understand the multiparticle atomic states created in our experiments and to make
statements about their quantum features (such as entanglement), we need to know as
much as possible about their quantum state. We therefore perform quantum state tomo-
graphy to reconstruct the ensemble’s density matrix from the measurements experiment-
ally accessible to us. Section 3.1 describes our tomography method which is based on
measuring the Husimi Q-distribution with the cavity. From 2d tomographic measure-
ments of the Q−distribution, we reconstruct the symmetric part of the density matrix of
the atomic ensemble as detailed in Section 3.2. To determine whether the states feature
entanglement, we use two criteria described in Section 3.3, one based on the populations
in the first two Dicke states and the other based on computing the quantum Fisher
information.

3.1 Quantum state tomography

Our method is based on measuring the Husimi Q-distribution of the multiparticle state
which describes its overlap with a coherent spin state. By coherently rotating the state,
we can perform 2d tomography.

3.1.1 Coherent spin states

If the Dicke states introduced in Section 1.2.1 are the atomic counterpart to the electro-
magnetic field Fock states, the coherent field states have as analogon the coherent spin
states (CSS) [87, 88]. The CSS |θ, φ〉 is the coherent superposition of all individual
particle spins pointing in the same direction

|θ, φ〉 =
N⊗

i=1

[

cos(θ/2)|0〉i + sin(θ/2)eiφ|1〉i

]

. (3.1)

The state |θ, φ〉 can also be understood as the result of operating a collective rotation
operator R̂(θ, φ) on the collective ground state:

|θ, φ〉 = R̂(θ, φ)|0N 〉 . (3.2)
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The CSS are completely symmetric and the most “classical” spin states, featuring no
correlations between individual particles. Due to the uncertainty relation, the direction
of the total spin of a CSS is not precisely determined. Instead, the spin direction is as-
sociated with fluctuations which for the CSS are isotropic in all directions perpendicular
to the mean spin direction. In this sense, and similar to the optical coherent states, the
CSS therefore have a finite extension and they are not orthogonal:

|〈θ′ = 0, φ′ = 0|θ, φ〉|2 = cos(θ/2)2N . (3.3)

It follows that the CSS form an overcomplete basis of the symmetric subspace Hs:

N + 1

4π

ˆ

dΩ|θ, φ〉〈θ, φ| = 1 with dΩ = sin θdθdφ . (3.4)

In the basis of Dicke states, the CSS set reads [89]:

|θ, φ〉 =
N∑

n=0

(
N !

(N − n)!n!

) 1
2

cos(θ/2)N−n sin(θ/2)ne−inφ|nN 〉 . (3.5)

3.1.2 Husimi Q-distribution and generalised Bloch sphere representa-
tion

To visualise multiparticle quantum states, it is useful to introduce the HusimiQ-distribution
[90, 91]. It is a quasiprobability distribution defined in phase space that represents the
overlap of the quantum state with a CSS. If the N -qubit quantum state is described by
the density matrix ρ, the Husimi Q-distribution is defined as:

Q(θ, φ) ≡ N + 1

4π
〈θ, φ|ρ|θ, φ〉 =

N + 1

4π
〈0N |R̂†

(θ, φ)ρR̂(θ, φ)|0N 〉 . (3.6)

It follows directly that Q is non-negative, bounded and normalised:

0 ≤ Q(θ, φ) ≤ N + 1

4π
, (3.7)

ˆ

dΩQ(θ, φ) = 1 dΩ = sin θdθdφ . (3.8)

Given that the CSS form an overcomplete basis of the symmetric subspace Hs, Q is
equivalent to ρ in containing the full information of a state in the symmetric subspace.

The Q-distribution can be visualised on a generalised Bloch sphere of radius J = N/2.
States in Hs then lie on the surface of the sphere, its south pole (θ = 0) corresponds
to the state |0N 〉 and its north pole to |NN 〉. Figure 3.1 shows the Q representation of
several symmetric multiparticle states on the Bloch sphere. Figure 3.1a illustrates the
finite extension of the probability distribution for the total spin direction of a given CSS
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Figure 3.1: Depiction of multiparticle states on the generalised Bloch sphere. The
pictures show 4π

N+1Q(θ, φ) for different states. a) CSS |θ = π
4 , φ = 0〉 of 36 atoms. b)

Dicke state |n = 1N=36〉. c) Dicke state |n = 3N=36〉. d) Coordinate system for a), b)
and c).

|θ = π
4 , φ = 0〉. The Q-distribution which is nothing else but a projection on CSS, is

therefore limited in its resolution of the spin direction. This becomes clear in Figure 3.1b
showing the Q-representation of the Dicke state |1N 〉. In the Dicke state, Jz is known
precisely while Jx and Jy are undetermined. While the Q-distribution renders the latter
fact well by showing a symmetric ring-like shape in x and y, its variance in z-direction
(which is zero for a Dicke state) is smeared out (to ∼ 1/

√
N). This also means that

the Q-functions for different Dicke states (which are orthogonal) overlap, as can be seen
comparing Figure 3.1b with Figure 3.1c showing the Q-representation of the Dicke state
|3N 〉.

3.1.3 Measuring the Q-distribution with our cavity

As explained in the previous section, the Q-function of the state ρ at the angle (θ, φ) is a
measurement of the overlap of ρ with the coherent spin state |θ, φ〉. Our cavity provides
an immediate way to perform this measurement.

As described in Section 1.3.1, given an ensemble of N atoms in the cavity, we can
distinguish between two situations: If all atoms are in the qubit ground state, which
corresponds to the ensemble being in

⊗N
i=1 |0〉 = |0N 〉, the cavity shows high transmission

and low reflection. If at least one atom is in |1〉, the cavity shows low transmission and
high reflection. The probability p(|0N 〉) for the measurement outcome |0N 〉 directly gives
the value of the Q-distribution at (θ = 0, φ = 0):

Q(0, 0) =
N + 1

4π
〈θ = 0, φ = 0|ρ|θ = 0, φ = 0〉 =

N + 1

4π
〈0N |ρ|0N 〉 =

N + 1

4π
p(|0N 〉) .

(3.9)

If we rotate the state ρ before the cavity measurement, we can determine the value of
the Q-distribution at arbitrary angles:

Q(θ, φ) ≡ N + 1

4π
〈θ, φ|ρ|θ, φ〉 =

N + 1

4π
〈0N |R̂†

(θ, φ)ρR̂(θ, φ)|0N 〉 . (3.10)

54



3.2. MAXIMUM LIKELIHOOD QUANTUM STATE RECONSTRUCTION

Experimentally, the qubit states |0〉 and |1〉 correspond to the hyperfine states |F =
1, mF = 0〉 and |F = 2, mF = 0〉 of 87Rb so that we can realise the rotation R̂(θ, φ)
using resonant MW pulses. Each individual measurement can only give the outcome 0
or 1. To obtain the expectation value 〈θ, φ|ρ|θ, φ〉, we repeat the measurement many
times at the same angle (θ, φ). The experimental tomography procedure is detailed in
Section 4.2.3 together with the complete experimental cycle.

What happens if the state ρ of the atomic ensemble in the cavity is not completely
symmetric? To answer this question, we decompose ρ in the part ρs that lies in the
symmetric subspace and the remaining part ρns by introducing the projection operator
P that projects on Hs and P̄ = 1− P :

ρ = (P + P̄ )ρ(P + P̄ ) = PρP
︸ ︷︷ ︸

ρs

+PρP̄ + P̄ ρP + P̄ ρP̄
︸ ︷︷ ︸

ρns

. (3.11)

The crucial point is that the CSS |θ, φ〉 is symmetric so that

P̄ |θ, φ〉 = 0 . (3.12)

Inserting 3.11 and 3.12 into 3.10, we find

Q(θ, φ) =
N + 1

4π
〈θ, φ|(ρs + ρns)|θ, φ〉 =

N + 1

4π




〈θ, φ|ρs|θ, φ〉 + 〈θ, φ|ρns|θ, φ〉

︸ ︷︷ ︸

0




 . (3.13)

Measuring the Q-distribution collects only information about the symmetric part of the
density matrix of the atomic ensemble. We complement this result with the example of
the state |ψsc〉 which describes one well-defined atom in |1〉 and all others atoms in the
ensemble in |0〉. This state corresponds to the situation of one specific atom scattering a
photon which makes it distinguishable from the others. In the qubit product basis, this
state is |ψsc〉 = |10 . . . 0〉; in the basis of angular momentum eigenstates it reads [45]:

|ψsc〉 =
1√
N

|1N 〉 +
1√
N

N∑

i=1

|J = N/2 − 1,m = −(N/2 − 1)〉i . (3.14)

Only the first term in 3.14 contributes to the Q-distribution so that the state appears
as the first Dicke state with a reduced amplitude.

3.2 Maximum likelihood quantum state reconstruction

As detailed in the previous section, knowledge of the full Q-distribution of a multiparticle
quantum state amounts to having complete information about the symmetric part of its
density matrix. However, deducing the density matrix from experimental observations
can be a delicate process [92]. Let us assume that the quantum state ρ can be fully
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measured by performing projective measurements {|yi〉〈yi|} with M different possible
outcomes:

M∑

i=1

|yi〉〈yi| = 1 . (3.15)

In principle, ρ will then give the measurement results

pi = 〈yi|ρ|yi〉 , (3.16)

which could be inverted to determine ρ. The probabilities 3.16, however, correspond
to an infinite amount of repetitions for each measurement i. In our case, the inversion
would also require to measure Q(θ, φ) for all angles (θ, φ) on the Bloch sphere [93].
These conditions are obviously impossible to realise experimentally. In practice, the
experimenter can only measure frequencies:

fi
∞ measurements−−−−−−−−−−−−→ pi , (3.17)

which are subject to statistical and systematic errors. Inverting 3.17 instead of 3.16 can
be sensitive to noise and errors [94] and produce artefacts such as unphysical density
matrices [95].

The problems associated with the inversion technique can be avoided by using a max-
imum likelihood (ML) approach to reconstruct the density matrix [95]. Where the
inversion aims at finding the quantum state determined by the probabilistic frequencies
observed, the ML method amounts to finding the quantum state that is most likely to
have produced the observed data. Such a method was implemented previously in our
group. There, however, it was limited to the reconstruction of the diagonal elements of
the density matrix [45]. For the present experiments, we perform full 2d tomographic
measurements which allow us to extend the reconstruction to all elements of the density
matrix.

Implementation

To reconstruct the most likely density matrix, we employ the iterative algorithm de-
scribed in [96]. Given the measurement operators 3.15 and the observed frequencies
3.17, we look for the density matrix ρ that maximises the likelihood functional

L(ρ) =
M∏

i=1

〈yi|ρ|yi〉fi . (3.18)

In our case, we measure the Q-function at certain angles {|(θ, φ)i〉〈(θ, φ)i|} and the result
can be either 0 or 1 so that 3.18 becomes

L(ρ) =
M∏

i=1

(p1
i )f1

i · (p0
i )f0

i p1
i = 〈(θ, φ)i|ρ|(θ, φ)i〉, p0

i = 1 − p1
i , (3.19)
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where f1
i (f0

i ) is the frequency of measuring 1 (0) at angle (θ, φ)i normalised to the
number of measurements at that angle. The density matrix ρm that maximises 3.19 can
be found by introducing the operator K(ρ):

K(ρ) =
∑

i

f1
i

p1
i

πi +
f0

i

p0
i

(1− πi) πi = |(θ, φ)i〉〈(θ, φ)i| . (3.20)

We know that for ρm, fk
i ∝ pk

i so that K(ρm) ∝ 1. We can therefore start with an
arbitrary density matrix (we use the identity) and iterating the series

ρ(k+1) = N
[

K(ρ(k))ρ(k)
K(ρ(k))

]

, (3.21)

where N denotes normalisation to a unitary traces. In each step, the likelihood mono-
tonically increases and the series asymptotically approaches ρm.

In our implementation of the ML algorithm, we account for the angle-dependent detec-
tion errors ǫ10

i and ǫ01
i introduced in the previous section by modifying 3.20 to read:

K(ρ) =
∑

i

f1
i

p1
i

[

(1 − ǫ01
i )πi + ǫ10

i (1− πi)
]

+
f0

i

p0
i

[

(1 − ǫ10
i )(1− πi) + ǫ01

i πi

]

. (3.22)

As reconstruction basis we choose the Dicke states and an additional state in the non-
symmetric subspace which allows us to reconstruct ρs, the symmetric part of the multi-
particle density matrix, with possibly non-unitary trace.

The reconstruction is associated with a certain statistical error due to the finite number
of observations and the detection errors. We estimate this error with the bootstrapping
method [97]. For each 2d tomography measurement, we create 1000 artificial datasets
having the same number of samples with the same mean observed frequencies. Recon-
structing these gives a set of resampled density matrices and therefore a distribution of
values for each matrix entry. We report the standard deviation of the spread of this
distribution as the statistical error of the reconstruction.

3.3 Assessing multiparticle entanglement

Entanglement between multiple quantum systems is a fundamental phenomenon of
quantum mechanics and at the heart of many proposed applications of quantum tech-
nology. While the concept itself can be described in fairly simple terms, detecting and
quantifying multiparticle entanglement is, in general, not straightforward. This section
summarizes how, given a density matrix for an atomic ensemble, we detect entangle-
ment by computing the quantum Fisher information and, for certain states, quantify it
by means of a previously developed criterion.
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3.3.1 Quantum entanglement

When initially separate quantum systems interact with each other, their resulting state
can, in general, not any more be described in terms of the individual system states.
This phenomenon, which is a consequence of the basic principles of quantum mechanics
(namely coherent superposition), was pointed out by Schrödinger who described the
systems as having become “entangled” by their interaction [15, 16]. Limiting ourselves
to pure states for simplification, we can define [17]:

An N -particle pure state |ψ〉 ∈ H =
⊗N

i=1 Hi is called entangled if it cannot
be written in the form

|ψ〉 =
N⊗

i=1

|ϕi〉 |ϕi〉 ∈ Hi . (3.23)

Otherwise, it is called fully separable.

From this definition, we can understand the origin of entanglement by considering the
difference between classic phase space and the Hilbert space of quantum mechanics. In
the classical case, the total state space for N identical particles is the Cartesian product
of the individual spaces; its dimension scales linearly with N . In contrast, the total
Hilbert space for N identical quantum systems is the tensor product of the individual
Hilbert spaces which scales exponentially with N . It is exactly this scaling property that
makes entanglement an interesting resource for quantum information applications [98].

On closer examination, entanglement between multiple particles is a complex concept.
For example, according to 3.23, both the following three-particle qubit states are en-
tangled:

|GHZ〉 =
1√
2

[|000〉 + |111〉] , (3.24)

|Ψ〉 =
1√
2

[|000〉 + |110〉] =
1√
2

[|00〉 + |11〉] ⊗ |0〉 . (3.25)

In a way, |Ψ〉 is “less entangled” than the state |GHZ〉1, as one particle can be factored
out into a separated state. We therefore introduce the following definition of “partial
entanglement” [100] 2:

For k ≤ N , an N -particle pure state |ψ〉 is called k-particle entangled if it
cannot be written in the form

|ψ〉 =
m⊗

l=1

|ϕl〉 m ≥ N

k
, (3.26)

where the |ϕl〉 are states of maximally k− 1 particles. Otherwise, it is called
(k-1)-producible.

1States of this class were introduced by Greenberger, Horne and Zeilinger in [99].
2For a formally precise definition of k-particle entanglement, see [101]. A k-particle entangled state can
also be described as having “depth of entanglement” k [102].
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For a mixed state described by a density matrix ρ, these definitions can be extended
through convex combination [100]. If we can write

ρ =
∑

i

pi|ψi〉〈ψi| , pi ≥ 0 ∀i,
∑

i

pi = 1 , (3.27)

with |ψi〉 at most (k − 1)-producible, the state given by ρ is called (k − 1)-producible.
Physically, this means that ρ can be described by only (k−1)-producible pure states and
statistical mixing. Consequently, a mixed state ρ contains k-particle entanglement, if and
only if the correlations cannot be explained by assuming the presence of (k− 1)-particle
entanglement only.

A fully N -particle entangled state can therefore not even be decomposed into the product
of two states |ϕA〉 ⊗ |ϕB〉 where A and B are disjoint subsets of {1, . . . , N}. Applying
the definition 3.26 to the state |Ψ〉 in Equation 3.25, we find that it is not 3-particle
entangled but 2-particle producible.

Examples for fully entangled states are, for N = 3, the state |GHZ〉 in Equation 3.24 as
well as the W state (see Equation 4.3):

|1N=3〉 =
1√
3

[|100〉 + |010〉 + |001〉] . (3.28)

Still, these two maximally entangled states belong into inequivalent classes [103]. Tracing
out one particle in |GHZ〉 produces a statistical mixture of separable two-qubit states,
for |1N=3〉, however, it results in an entangled 2-qubit state.

3.3.2 Quantum Fisher information

Entangled states are not only interesting for quantum information applications but also
specifically for metrology purposes. Formulating the metrology process in terms of es-
timating an interferometric phase ϑ with a probe made of N quantum systems, the
measurement error scales as ∆ϑ ∝ 1√

N
when the probe systems are uncorrelated. Using

entangled states instead, this so-called standard quantum limit (SQL) can be under-
cut to improve the scaling towards ∆ϑ ∝ 1

N , the so-called Heisenberg limit imposed
by the uncertainty relation [22]. Approaching the concept of entanglement from this
perspective, the phase sensitivity of an arbitrary interferometric measurement strategy
can shown to be given by the Quantum Cramer-Rao bound

∆ϑQCR =
1

√

FQ(ρ)
=

χ√
N
, (3.29)

where FQ(ρ) is the quantum Fisher information (QFI) of the state ρ used as input for

the measurement [104] and χ =
√

N
FQ(ρ) . Let us consider an ensemble of qubits that can

be assigned the operator J~n describing a rotation of the total spin around the axis ~n.
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The QFI for this rotation is then:

FQ(ρ,J~n) = 2
∑

i,j

(pi − pj)2

pi + pj
|〈i|J~n|j〉|2 , (3.30)

where pi and {|i〉} are the eigenvalues and eigenvectors of the ensemble state ρ. Intuit-
ively, FQ(ρ,J~n) can be understood as a measure of the “speed with which the state ρ
moves in Hilbert space” when performing the rotation J~n. For a state with high QFI,
already a small change in the rotation angle ϑ corresponds to a difference in its position
in Hilbert space that is large enough to be distinguished in a measurement subject to
quantum uncertainty [105].

According to Equation 3.29, states with χ < 1 achieve phase estimation better than the
SQL. Indeed, the relationship between beating the SQL and entanglement of the probe
state can be used to derive an entanglement criterion based on the state’s QFI [106]:

The quantum state ρ of an ensemble of N qubits is particle entangled if

χ2 ≡ N

FQ(ρ)
< 1 , (3.31)

where FQ(ρ,J~n) is the QFI for a rotation around an arbitrary axis ~n.

If the criterion 3.31 is fulfilled, the state ρ is (at least 2-)particle entangled and features
a metrological useful gain over fully separable states.3

As detailed in the previous section, we can reconstruct the symmetric part ρs of the
atomic state ρ. In the following, we show that FQ(ρ) ≥ FQ(ρs) and computing the
quantum Fisher information in the symmetric subspace gives us a lower bound for FQ(ρ).
We consider the completely positive trace preserving map M which transforms ρ into
M [ρ] = ΠρΠ + Π̄ρΠ̄, where Π is the projector onto the symmetric subspace J = N/2
and Π̄ = 1 − Π. Under a rotation of the atomic spin around the direction ~n by an
angle θ, ρ transforms into ρ(θ). The quantum Fisher information associated with the
measurement of the angle θ, which we denote by FQ({ρ(θ)}), cannot increase under the
action of M [108] and FQ({ρ(θ)}) ≥ FQ({M [ρ(θ)]}). Because the norm of the atomic
spin is conserved by rotations, we have M [ρ(θ)] = ρs(θ)+ρns(θ), where ρs(θ) and ρns(θ)
are respectively the rotated symmetric part of the density matrix ρs and the rotated
non-symmetric part of the density matrix ρns = Π̄ρΠ̄. We thus conclude that

FQ({ρ(θ)}) ≥ FQ({ρs(θ) + ρns(θ)}) = FQ({ρs(θ)}) + FQ({ρns(θ)}) , (3.32)

where the last equality comes from the additivity of the quantum Fisher information
under direct sum [109].

We note that the QFI of the Dicke state |nN 〉 is [110]:

FQ [n,N ] = N(1 +
N

2
− 2

N
(n− N

2
)2) , (3.33)

which for n = 0, 1, 2 evaluates to N,≈ 2.9N,≈ 4.8N .

3Criteria that quantify multiparticle entanglement based on the QFI can be found in [107].
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3.3.3 Spin squeezing

The concept of spin squeezing is similar to the QFI in the sense that it provides a way of
characterising the sensitivity of quantum states for metrology applications and can serve
to detect entanglement [111, 112]. For multiparticle spin systems, a squeezed state can
be defined as achieving higher resolution in a Ramsey spectroscopy experiment compared
to a coherent spin state [113]. According to this definition, the fluctuation of the spin
component orthogonal to the mean spin direction ∆J2

⊥ needs to be below the value for
the CSS ∆J2

⊥ = J/2 = N/4, which leads to introducing the spin squeezing parameter ξ
and the following criterion:

A system of N spin-1
2 particles with total mean spin 〈J〉 is called spin-

squeezed if

ξ2 ≡ N
(∆J⊥)2

〈J〉2
< 1 . (3.34)

We note that for the Dicke state |nN 〉, the spin squeezing parameter takes the value

[112] ξ2 = (N
n )2(1 + N

2 − (N/2−n)2

N/2 ) ≥ 1, which for N = 36 and n = 0, 1, 2 evaluates to
1,≈ 3.3,≈ 6.0.

3.3.4 Entanglement criterion in the vicinity of the W state

The quantification of entanglement is, in general, not straight-forward [17, 114]. A
convenient criterion for multiparticle states that are close to the W state was developed
previously in our group. We employ this method in this work to analyse some of the
states created by QZD and limit ourselves here to sketching its concept. It was first
applied in [44] and is described in detail in [45].

Given a symmetric N -qubit state ρ in the basis of Dicke states, a lower bound for the
depth of entanglement in the ensemble can be obtained from the populations ρ00 and
ρ11 in the states |0N 〉 and |1N 〉. More precisely, for an ensemble of N qubits that is
k-producible, ρ11 can only attain a certain maximum C(N, k, ρ00) which depends on ρ00.
If ρ11 is higher than this threshold, ρ features at least (k+1)-particle entanglement. The
function C(N, k, ρ00) is plotted in Figure 3.2 for N = 36 and different k.
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Figure 3.2: Entanglement criterion in the vicinity of the W state. States with ρ11 above
a certain bound C(N, k, ρ00) must be at least (k + 1)-particle entangled. The plotted
curves are for N = 36 which is the ensemble size in the QZD experiments presented in
Chapter 4.
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Chapter 4

Creation of multiparticle
entanglement through QZD

This chapter presents how we experimentally realise QZD to create multiparticle en-
tanglement in an ensemble of several tens of atoms. Combining our cavity-based Zeno
measurement with two different trajectories of the MW drive, we can realise different
dynamics, one leading to entangled states close to the W state, the other offering the
possibility for spin-squeezing. These schemes are presented in Section 4.1, where we also
discuss the influence of experimental imperfections, notably due to finite measurement
strength and spontaneous emission arising from the second cavity mode.

In practice, our experiments consist of a cycle that begins with the preparation of an
atomic ensemble of well-defined atom-number and its initialisation in a well-defined
quantum state. We then perform the actual QZD sequence and end with a detection
phase in which we analyse the resulting state of the ensemble by performing quantum
state tomography. The individual steps of this experimental cycle are described in
Section 4.2.

The experimental results are presented in Section 4.3. We show that we realise dynamics
that follows the basic model of unitary QZD introduced in the first chapter of this
thesis. We analyse the multiparticle entanglement of the created atomic states and
discuss the influence of finite measurement rate and the second polarisation mode in the
cavity, showing that they can be reproduced by a model without any free parameters.
We conclude by discussing the potential improvement expected from improved cavity
parameters.

4.1 Deterministic entanglement generation by means of
QZD

The general concept behind our experiments has already been presented in Chapter 1,
the key point being that our cavity setup can produce a good approximation of an
ideal projective measurement acting collectively on the ensemble of 87Rb atoms coupled
to the FFP cavity. Applying MW radiation to drive unitary qubit dynamics, while
simultaneously probing the ensemble with the cavity, results in QZD. In the following,
we present the specific experimental sequences we use to generate entanglement.
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Figure 4.1: The Hilbert space of the symmetric atomic spin states Hs is spanned by
the Dicke states |nN 〉 (compare with Figure 1.2). The top row shows the generalised
Bloch sphere representations of the Husimi Q-distribution for some states |nN 〉. The
MW induces dynamics within Hs (solid blue arrows); they are modified (dashed arrows)
by probing the cavity transmission which corresponds to a projection on the state |0N 〉
or the complementary subspace HZ . See also Figure 1.7.

As detailed in Sections 1.2 and 1.3, the relevant Hilbert space consists of the symmet-
ric states of the collective atomic spin Hs, which is spanned by the Dicke states |nN 〉.
Furthermore, we implement a cavity-based measurement that, under the conditions dis-
cussed in Section 1.3.2, distinguishes the state |0N 〉 (all atoms in |0〉, high transmission),
from the subspace HZ of all other states (low transmission), see Figure 4.1. Adopting a
simplified description, the cavity measurement corresponds to a projection P , either on
|0N 〉:

P̂0 = |0N 〉〈0N | , (4.1)

or on the complementary Zeno subspace HZ :

P̂HZ
= 1− P̂0 . (4.2)

This projection gives rise to the QZD in our experimental system. In the following, we
detail the general idea of our experiments: to observe the QZD that occur when taking
the atomic system from a state close to |NN 〉, that is within HZ and far away from the
subspace boundary, towards the state |0N 〉.
Figure 4.2 displays the time-evolution according to Equations 4.1, 1.22 and 1.23 for
two different initial states. In both cases, we start within HZ , close to the state |NN 〉
which has the lowest overlap with the state |0N 〉 outside HZ and drive a rotation of the
collective spin around the x-axis with Rabi frequency Ω = π/T .

The first trajectory (I) starts in |NN 〉, a coherent spin state at the north pole of the
Bloch sphere. This trajectory passes exactly through the south pole of the Bloch sphere.
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a b

0.81 0.92 1.03

II

I

I
II

t/T

Figure 4.2: Unitary QZD induced by the cavity measurement for two different traject-
ories on the generalised Bloch sphere. a) Trajectory I follows a meridian from |NN 〉
at the north pole of the sphere through |0N 〉 at the south pole. Trajectory II starts
with a state that is slightly displaced from the north pole and follows a smaller circle
around the sphere, passing not exactly through the south pole. b) Calculated Husimi
Q-distribution of the atomic state (N = 36) at certain times t close to the π-pulse time
T in the presence of measurement. For Trajectory I (upper row), there is no initial
rotation φd = 0, for Trajectory II (lower row) φd = π/10 .

As evident in the top panel of Figure 4.2b, in the presence of the cavity measurement,
the Husimi Q-distribution of the atomic state is strongly modified when the state comes
close to the boundary of HZ . Specifically, as the QZD does not allow the atomic state to
populate |0N 〉, it builds a high overlap with the state |1N 〉, visible in the characteristic
ring shape of the Q-distribution in the top central frame in Figure 4.2b. At this position
of highest overlap with |1N 〉, the mean spin points in the direction −z. We note that
during QZD, this does not occur at t = T , as is the case during regular Rabi dynamics,
but at an earlier time. We have already seen in Section 1.2 that this faster dynamics is
a typical feature of QZD.

The Dicke state |1N 〉 is also known as “W state” [103]. It describes one atomic excitation
shared symmetrically between N particles and can be written in the qubit product basis
as:

|1N 〉 =
1√
N

(|10 . . . 0〉 + |010 . . . 0〉 + . . .+ |0 . . . 01〉) . (4.3)

The W state features N -particle entanglement that is robust against particle loss which
makes it interesting for applications in quantum information [115], quantum commu-
nication [116] and quantum metrology [106]. W states have been realised in different
physical systems such as ions [117], neutral atoms [118], photons [119], and supercon-
ducting qubits [26]. They were studied previously with our experimental setup in [44].

The second trajectory (II) starts from a position slightly displaced from the north pole,
obtained by rotating the coherent state |NN 〉 by a small angle φd around the y-axis. The
lower panel of Figure 4.2b shows the Q-distribution along this trajectory for an initial
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Figure 4.3: Predicted values for Fisher information FQ and spin squeezing parameter ξ2

along unitary QZD trajectories with different φd. Upper panel: FQ/N > 1 (dashed line)
indicates particle entanglement. Lower panel: ξ2 < 1 indicates spin squeezing.

rotation of φd = π/10. As the atomic state passes close to the boundary of the Zeno
subspace, its Q-distribution gets distorted into an elongated shape. As the state moves
away from the boundary, the distribution keeps the squeezed shape it has acquired.

Can we use this method to shape states that are interesting for quantum technology
applications? As detailed in Section 3.3.3, we can answer this question and related
ones concerning the entanglement properties of the distorted states by examining their
Quantum Fisher information (QFI) FQ and the spin squeezing parameter ξ2. Specific-
ally, the criterion FQ > N indicates particle entanglement (see Equation 3.31) and the
criterion ξ2 < 1 indicates spin squeezing (see Equation 3.34). Both cases imply a sens-
itivity gain for metrological applications. Figure 4.3 shows the calculated values for FQ

and ξ for unitary QZD trajectories passing the boundary of the Zeno subspace in varying
distance, given by varying φd between 0 and π/5. Looking at the QFI, we find that it
reaches its maximum of about 4.5N for φd = 0, at the position of maximum overlap
with the W state. Once the atomic states pass and leave the boundary region, the QFI
decreases towards a final value (however, FQ/N stays above unity).

Regarding the spin squeezing parameter ξ, the situation is slightly different. For the
Dicke-like states that result for φd ≤ π/10, ξ attains values above unity (as expected,
see Section 3.3.3). However, for atomic states that have passed and left the boundary
region, ξ2 gets minimal and attains values below unity, indicating that the squeezed
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states displayed in the lower right-hand part of Figure 4.2 do feature spin-squeezing. We
also see that there is an optimal φd (in our case around π/10) that minimises ξ2 (in our
case down to about 0.46).

We conclude that the measurement-induced QZD along trajectory I, in the unitary
limit, creates states close to the W state which are highly particle-entangled and offer an
advantage in interferometric phase estimation. The deformed states created along tra-
jectory II lead, in principle, to spin squeezing which makes them interesting for quantum
metrology applications.

4.1.1 Influence of finite measurement strength

We have already seen in Section 1.3.2 that we cannot perform the experiments with
infinitely high measurement rate because increasing the photon flux also increases spon-
taneous emission which leads to atoms leaving the symmetric subspace. Let us study
the difference between Rabi dynamics, unitary QZD and the influence of finite probing
strength for the experiment along trajectory I described in Figure 4.2. We compute

numerically the populations ρ00 and ρ11 and the transverse spin length 2
N

√

J2
x + J2

y in

the absence of measurement (Equation 1.52 without the Lindblad terms), for unitary
QZD according to Equations 4.1, 1.22 and 1.23, and for finite measurement rate (Equa-
tions 1.52 and 1.59) rm = 23 Ω; the results are shown in Figure 4.4. During ordinary
Rabi oscillations, the population ρ00 reaches a value of unity at t = T , which is also the
turning point of the mean spin direction. The maximum population in the state |1N 〉 is
ρ11 ≃ 0.37 (with ρ00 having the same value at this position). In contrast, during unit-
ary QZD, ρ00 is completely suppressed, while ρ11 reaches a maximum of about 0.93 at
t ≃ 0.93T which is also the turning point of the mean spin direction. Not surprisingly,
the evolution induced by a finite-strength measurement proceeds in between the two
limiting cases of Rabi and unitary dynamics. We will see in Section 4.3 that this simple
model reproduces well the evolution of the atomic state inside the symmetric subspace
Hs but cannot account for the loss of atoms from Hs.

4.1.2 Effect of spontaneous emission

In order to take into account the effect of spontaneous emission and calculate the expec-
ted decay of the population in the symmetric subspace, we consider an anti-Hermitian
operator H̄loss and the modified master equation

dρ

dt
=

1

i~
[ĤMW, ρ] +

1

i~
{H̄loss, ρ} + d̂ρd̂† − 1

2
ρd̂†d̂− 1

2
d̂†d̂ρ . (4.4)

We suppose that H̄loss is diagonal in the Dicke state basis with matrix elements given
by 〈nN |H̄loss|nN 〉 = −iγn where γn = γ pexc,n and pexc,n is the probability for one
atom among the n atoms in |1〉 to be optically exited. Here, we neglect the probability
(∼ 1/N) to fall back into the symmetric subspace after a spontaneous emission.
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Figure 4.4: Comparison between atomic dynamics in the absence of measurement (stand-
ard Rabi oscillations, green), measurement-induced unitary QZD (blue) and QZD with
finite measurement rate (black) rm = 23 Ω along trajectory I of Figure 4.2. Upper panel:
population ρ00. Centre panel: population ρ11. Lower panel: transverse spin length
2
N

√

J2
x + J2

y .
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Figure 4.5: Calculated effective loss rates for the Master equation taking into account
spontaneous emission. γn is the loss rate when the atoms are in state |nN 〉 at a meas-
urement rate of rm = 23Ω. Black squares: Simulation including the second cavity mode.
Red circles: Values for a single mode cavity calculated from Equation 4.5.

In a single-mode cavity, γn is given by Equation 1.51, which reads for C ≫ 1:

γn =
1

2Cn
Φ ≈ rm

4nC
. (4.5)

To include the influence of the second cavity mode, we calculate the probability of
excitation pexc,n from the steady-state solution of an independent atom-cavity master
equation describing the coupling of n atoms to the TEM00 mode taking into account all
known experimental parameters for our setup (magnetic field strength and orientation,
lattice depth, ...), in particular the presence of the orthogonally polarized TEM00 cavity
mode. This model is the same used in [120] and is described in detail in [62].

Figure 4.5 shows the calculated rates γn as a function of n for a typical measurement
rate rm used in the experiment. We observe that the second polarisation mode leads to a
considerably increased loss rate. At n = 3, γn has a peak with a value increased by more
than one order of magnitude which we attribute to a resonance feature of the second
cavity mode. Specifically, the second mode can become resonant to the D2 transition
due to the dispersive shift of the light frequency arising from atoms in F = 1 in the
cavity (see Section 2.8.5).

We use the model described by Equations 4.4 and 4.5 (which has no adjustable para-
meters) in Section 4.3 to describe our experimental data taking into account the losses
from the symmetric subspace.
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4.2 Experimental realisation

This section presents the procedure we use to realise the experiments described in the
previous section. The experimental sequence can be divided into three parts: initialisa-
tion of the atomic state (Section 4.2.1), inducing the desired QZD with a sequence of
MW and probing light pulses (Section 4.2.2) and analysing the resulting atomic state
by performing quantum state tomography (Section 4.2.3).

4.2.1 State initialisation

We begin the experimental cycle by preparing a sample of several hundreds of ultra-
cold atoms according to the procedure detailed in Section 2.8. The atoms magnetically
trapped on the atom chip are initially in the |F = 2,mF = 2〉 state. We then load them
into an intra-cavity dipole trap (trap depth approximately 50 µK) and transfer them into
the qubit state |0〉 = |F = 1,mF = 0〉 by means of three consecutive microwave sweeps.
Next, we prepare an ensemble of well-defined atom number as described in Section 2.8.5.
In brief, atoms in F = 1 are not resonant with the light field in the cavity, thereby
shifting the cavity resonance. We send probe light into the cavity causing atom losses
via light-assisted collisions and simultaneously monitor the rising cavity transmission
which allows us to infer the number of atoms left in the cavity. When our target value
of 40 atoms is reached, we switch off the probe beam. We terminate the preparation
sequence with a weak measurement pulse to check for faulty sample preparation (atoms
at t = 0 in state |1〉, occurring in about 25% of all runs).

We have verified the prepared atom number by tomographic measurements and find
that we have about 36 atoms in the state |0〉 (see Section 4.8). The difference to the
target value Ntot = 40 can be explained by the fact that the preparation leads to some
atoms changing the Zeeman state. These “spectator” atoms in |F = 1, mF 6= 0〉 still
shift the cavity resonance but are not addressed by subsequent qubit manipulations.
We can estimate the uncertainty this induces on the number of atoms manipulated in
the experiment by making the worst-case assumption that the atoms are spread over
all three Zeeman states in the F = 1 manifold. The probability that in Ntot tries, k
atoms are in the correct Zeeman state can then be described by a binomial distribution
B(Ntot, k, p) =

(Ntot

k

)
pk(1 − p)Ntot−k with (from our observation) a success probability

p = 36
40 . B(Ntot, k, p) has the standard deviation σ =

√

Ntot p (1 − p) which in our case
evaluates to σ = 1.9.

4.2.2 QZD sequence

Once the atoms are prepared in the desired state, we start one of the trajectories I or
II described in Figure 4.2 by applying a combination of suitable MW and probe light
fields.1 Initially, all atoms are in |0〉 so that the total spin points to the south pole of

1The MW frequency is 6834.75 MHz. This is 60 kHz higher than the unperturbed transition frequency
corresponding to the differential light shift between |0〉 and |1〉 induced by the dipole trap.The technical
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Figure 4.6: Sequence of MW and probe light pulses to realise QZD along trajectory I
(a) and trajectory II (b). The upper part of each panel shows the timing sequence
of the pulses, the lower part visualises the evolution of the state on the Bloch sphere.
Oscilloscope traces showing the precise timing of (a) are depicted in Figure 2.14.
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the Bloch sphere. The QZD sequence itself should start with a state fully inside HZ .
The most basic protocol would therefore consist in first applying a π pulse to get from
|0N 〉 to |1N 〉, and then a pulse corresponding to θ = −πt/T accompanied by cavity
measurement to perform the Zeno dynamics. However, it is crucial for the production of
the W state to use a trajectory that passes exactly through the south pole. Therefore, to
realize trajectory I starting from |0N 〉, we first perform a (θ = −2π)-pulse, then a π pulse
immediately followed by the (θ = −πt/T )-pulse accompanied by measurement. It has
been shown that this pulse sequence compensates for both pulse length and detuning
fluctuations [121], ensuring that the trajectory in the absence of measurement passes
through the south pole of the Bloch sphere. To perform trajectory II, starting with all
atoms in |0〉, we first apply a small rotation around the y-axis (we choose φd = π/10 as
motivated in Section 4.1) and then a θ = π rotation followed by the θ = −πt/T rotation
accompanied by the probing of the cavity. Figure 4.6 shows schematically the timing
sequence of MW and probe light fields as well as the evolution of the atomic state on
the Bloch sphere for both trajectories.

4.2.3 Tomographic measurement of the Q-distribution

As detailed in Section 3.1.3, we can use our cavity to measure the Husimi Q-distribution.
For one complete 2d tomography measurement, we scan the tomography angles θ (around
X) and φ (around Y ) each between −0.26π, ..., 0.26π, resulting in a 7x7 grid of individual
measurements at different (θ, φ). To perform the required rotation R(θ, φ), we apply two
consecutive microwave pulses, with adjustable durations (0.4...1.2µs here) and phases;
for technical reasons, there is a delay of 6 µs between successive pulses leading to a total
time delay of 14 µs between preparation and tomography.

We then probe the cavity for 120 µs with an intra-cavity flux of 0.9 · 106 photons/s on
resonance and measure the photon counts in transmission and reflection with APDs.
We assign the result to one of the two outcomes “the atomic ensemble was in the state
|0N 〉” or “at least one atom in the ensemble was in |1〉”. Repeating this measurement
several times, we obtain an expectation value for Q which is subject to statistical and
systematic errors. The statistical error can be estimated from the standard deviation of a
binomial distribution. Repeating each measurement at least 50 times keeps the absolute
(relative) statistical error below 0.07 (14%). Each individual measurement is subject to
the systematic error ǫ01 of assigning the state “at least one atom in |1〉” when in reality
all atoms were in |0〉 and ǫ10 (assigning the state |0N 〉 when in reality there was an atom
in |1〉). To reduce these errors, we do not just compare the counts to fixed thresholds but,
building on methods developed in previous works [62, 45], use the additional information
contained in the time evolution of the APD signals2. We employ a maximum-likelihood
(ML) method to determine for each trace if it is more likely to have been produced by
the state |0N 〉 or the complementary one. In this calculation, we also allow for jumps

implementation of the synchronised light and MW pulses is detailed in Section 2.7.2.
2For a single atom in the cavity, [62] showed that analysing the whole trace achieves detection errors
below 0.01, 20-30% lower than the ones obtained from 2d-thresholding.
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Figure 4.7: 2d tomography of the Husimi distribution Q(θ, φ) for a coherent state with
N ≃ 36 atoms. a) 4π

N+1Q(θ, φ) corresponding to the probability to detect all atoms in
|0〉. b) The error ǫ01 of assigning the state “at least one atom in |1〉” when in reality all
atoms were in |0〉 and the error ǫ10 of assigning the state |0N 〉 when in reality there was
an atom in |1〉. Both errors are higher when there are more atoms in |0〉 which makes
them dependent on the tomography angle (θ, φ).

between the two states during the detection time which are characterised by their average
“lifetime” τ0 and τ1. These depend on the relative populations of atoms in the states
|0〉 and |1〉 which, in turn, depend on the tomography angles (θ, φ). The full parameter
set needed for the detection consists of six parameters: τ0,τ1, the average count rates in
transmission and reflection for |0N 〉, and the count rates in the complementary state. For
each tomographic measurement, we first extract these six parameters from the data. The
life-times are obtained from a ML method and the average count rates from histograms
of the detection and transmission counts.

We can determine the error of our detection method by creating a large set of artificial
APD traces with the given detection parameters and subsequently analysing them with
the ML algorithm also used for the experimental data. In all measurements we have
performed, the absolute (relative) detection errors are below 0.06 (10%). Figure 4.7
shows the result of a typical tomographic measurement of the Husimi distribution Q(θ, φ)
of a coherent state together with the detection errors ǫ01 and ǫ10.

4.3 Experimental Results

This section presents the results of the different QZD experiments carried out during this
thesis. In all experiments, we prepare an ensemble of N ≃ 36 atoms, induce QZD for a
variable time t and then perform tomographic measurements in two dimensions to record
“snapshots” of theQ−distribution of the atomic state as it evolves. Specifically, we follow
the QZD along the trajectories I and II described above and use the measurements
to reconstruct the symmetric part ρs of the atomic density matrix. We demonstrate
that the time evolution of ρs is well described by the models discussed in Section 4.1.
Using the criteria presented in Section 3.3, we discuss the entanglement properties of the
experimentally created states. Due to experimental imperfections, there is an optimum
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Figure 4.8: Tomography of quantum Zeno dynamics along trajectory I. High-resolution
1d cuts of the Husimi-Q distributions Q(θ, φ = 0) for t = 0.96T without measurement
(upper panel) and with a measurement with rate rm ≃ 22Ω (lower panel).

strength for the QZD measurement. We demonstrate the effect of varying measurement
strength and discuss the performance expected for a cavity with improved characteristics.

4.3.1 1d tomography close to the W state

To first investigate the QZD in our system, we have performed tomographic measure-
ments along one axis at one specific point along trajectory I that shows high overlap
with the state |1N 〉. Here, the duration of a π-pulse is T = π/Ω = 4.5µs. Figure 4.8
shows Q(θ) for a fixed evolution time t = 0.96T , once in the absence of the Zeno meas-
urement, once for a measurement with intra-cavity photon flux Φ ≃ 7.6 · 106 photons/s
(corresponding to a measurement rate rm ≃ 22Ω).

As explained in Section 2.7.2, we lock the power for the Zeno light pulse to a reference
value corresponding to a certain photon flux Φoff

R measured with the APD in reflection
from the off-resonant cavity. We compute the flux entering the cavity according to

Φ =
Φres

T

ηF ηAP D

√
T0
, (4.6)

where we have measured the on-resonant transmitted flux Φres
T to be Φres

T /Φoff
R ≈ 0.25

(including the correction factor due to the dead time of the APD). The efficiency of the
fibre coupling to the transmission APD has been measured to be ηF = 0.8, the quantum
efficiency of the APD is specified as ηAP D = 0.55, and the total cavity transmission has
been measured to be

√
T0 ≃ 0.34.

The results demonstrate the difference between the dynamics in absence and presence of
the Zeno measurement. Without the measurement, the Q-function displays the charac-
teristic (see Equations 3.5 and 3.6) cos(θ/2)2N dependence of a coherent state not quite
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centred on the south pole (as expected, since t < T ). Fitting a function of this form
(solid line in the figure) gives the atom number as N = 36 ± 2.

In the presence of measurement, the Q function shows the characteristic distribution
which is slightly wider and has a dip around θ = 0. As these data represent only cuts
along a line, we cannot sensibly reconstruct the full density matrix of the atomic state
including coherences [44]. We can, however, attempt the reconstruction of a diagonal
density matrix, effectively assuming that the distribution Q(θ, φ) is rotationally sym-
metric. With this assumption, the reconstruction of the data in the lower panel gives
the populations ρ00 = 0.12, ρ11 = 0.25, ρ22 = 0.00, ρ33 = 0.03 with Trρs = 0.40. The Q-
function corresponding to this diagonal density matrix is shown as solid line. We see that
the reconstructed Q-distribution reproduces the dip, but does not fit the experimental
data very well (it is lower than the maxima of the data and higher than the minimum).
This can be explained by the fact that the reconstructed Q(θ) is by assumption com-
pletely symmetric about θ = 0. However, we do not expect the experimentally created
state to be symmetric (see Figure 4.2b) and indeed the data shown in Figure 4.8 are
not. To adequately reconstruct states with asymmetric Q-function, we have therefore
performed 2d tomographic measurements.

4.3.2 Time evolution in 2d tomography

We have experimentally recorded the time evolution of the atomic state under QZD close
to the boundary of the Zeno subspace, similar to the simulation in Figure 4.2. As Q(θ, φ)
is strongly radially asymmetric during this evolution, single 1d cuts are in this case not
adequate to fully reconstruct the atomic state. We therefore perform 2d tomography,
measuring Q(θ, φ) on a 7x7 grid spanning an angular sector of 0.52π×, 0.52π around the
south pole of the Bloch sphere. For this measurement, N = 36 ± 2, Ω = 4.65(6)µs and
rm ≃ 23Ω.

The results are shown in Figure 4.9, presenting the raw data and the Q-distribution of
the reconstructed density matrices along trajectories I and II. As the state approaches
the boundary of HZ , its Q-function is deformed such that Q(0, 0), which is proportional
to the population in |0N 〉, remains small at all times. On trajectory I, at t/T = 0.96, a
ring-shaped distribution appears, indicating high overlap with the W state. Driving the
dynamics further, the state recovers its Gaussian character as it leaves the measurement
boundary. On trajectory II, we observe clearly the expected deformation of Q(θ, φ) as
the atomic state passes along and leaves the boundary of HZ .

When reconstructing the symmetric part of the density matrix ρs, we limit the basis to
a certain number of Dicke states. Including too few basis states prevents the reconstruc-
tion from correctly reproducing the experimental data, while including too many states
increases the noise without giving additional information.3 As can be seen in Table 4.1,
when including the Dicke states from |0N 〉 up to |nN 〉, the reconstructed populations

3As the reconstructed density matrix is Hermitian, reconstruction with n basis states corresponds to a
parameter space of n2.
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>

>

Figure 4.9: Measured 2d distributions 4π
N+1Q(θ, φ) at different times t along trajectory I

(upper panel) and trajectory II (lower panel) in the presence of measurement. The 7 × 7
measurement grid is centred around the south pole. In each panel, the upper row shows
raw data, the lower row the Q-distribution corresponding to the reconstructed density
matrices.
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a) ρ00 ρ11 ρ22 ρ33 ρ44 ρ55 ρ66 Tr(ρs)

n = 2 0.16 0.38 0.01 0.55

n = 3 0.17 0.36 0.01 0.01 0.55

n = 4 0.17 0.36 0.01 0.00 0.01 0.55

n = 5 0.17 0.36 0.01 0.00 0.00 0.00 0.55

n = 6 0.17 0.36 0.01 0.00 0.00 0.00 0.00 0.55

b) ρ00 ρ11 ρ22 ρ33 ρ44 ρ55 ρ66 Tr(ρs)

n = 2 0.03 0.13 0.22 0.38

n = 3 0.03 0.08 0.15 0.15 0.40

n = 4 0.02 0.07 0.11 0.12 0.08 0.41

n = 5 0.03 0.05 0.12 0.13 0.07 0.01 0.40

n = 6 0.02 0.07 0.12 0.11 0.07 0.01 0.01 0.41

Table 4.1: Reconstructed populations ρii of the atomic system for different basis trun-
cations. The basis includes the Dicke states from |0N 〉 up to |nN 〉. (a) Reconstructed
populations for the state in Figure 4.9 obtained after a QZD of t/T = 0.96. (b) The
same reconstruction but for the state displayed in the rightmost frame of Figure 4.9.

do not change for n ≥ 4 and we therefore truncate the basis at n = 4 for all presented
measurements. To estimate the statistical error on the reconstructed density matrix, we
use a bootstrapping method. We generate sets of artificial measurements each having
the same number of samples and the same average P0(θ, φ) as the experimental data.
For each 2d tomography measurement, we then operate the reconstruction algorithm
on 1000 artificial datasets to obtain the standard deviations for the populations of the
reconstructed density matrix.

4.3.3 Time evolution of the density matrix

The cavity measurement is characterized by an effective rate which is not infinitely high,
and is accompanied by spontaneous emission, which tends to populate undesired states
outside the symmetric subspace. Figure 4.10a shows the decay of the symmetric subspace
population Tr(ρs) for trajectory I obtained from the reconstructed density matrices. In
order to capture the essential features of the QZD - which takes place in the symmetric
subspace - we plot the measured relative populations ρ′

ii = ρii/Tr(ρs). We observe that
ρ′

00, which would reach unity in the absence of measurement (dotted lines), is strongly
reduced by the measurement (Figure 4.10b), while ρ′

11 is increased (Figure 4.10c). We
also observe that the turning point of the Rabi oscillation of the collective spin shifts to
shorter times (Figure 4.10d), which is expected because the measurement reduces the
dimension of the Hilbert space. The deviation from the ideal QZD (dot-dashed lines) is
well described by the simple model given by Equations 1.52 and 1.59 with rm = 23Ω.

The model given by Equation 4.4 including spontaneous emission (solid lines in Fig-
ure 4.10) gives very similar predictions for ρ′

ii and additionally explains the measured
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decay of Tr(ρs), with no adjustable parameters. We note that Tr(ρs) decays below 60%
as the state approaches the south pole of the Bloch sphere. This loss, due to spontaneous
emission predominantly from the second polarisation mode in the cavity, considerably
limits the maximum population ρ11 we attain.

The full result of the reconstruction is shown in Figure 4.11 including the unnormalised
populations ρii for i < 5 together with the full master equation model. We observe that
the model describes the data well.

4.3.4 Entanglement and quantum Fisher information

To quantify the entanglement of the state at t/T = 0.96, we employ the entanglement
criterion described in Section 3.3.4. Based on the populations ρ00 and ρ11 extracted
from the reconstruction presented in the previous section, we can derive a lower bound
on the depth of entanglement of the multiparticle state. As shown in Figure 4.12, the
experimentally created state lies above the bound for a k-producible state with k = 7.
Including the uncertainty in the total atom number and the reconstructed populations,
we find an entanglement depth of 8+3

−5atoms.

To assess whether the states created by the QZD are interesting for quantum metrology
applications, we compute a lower bound on their quantum Fisher information (QFI) FQ,
as detailed in Section 3.3.2. The result is shown in Figure 4.13. Taking into account
the uncertainty on FQ and on the total atom number N , the first three data points on
trajectory II have FQ/N > 1, which shows that they are (at least 2-) particle entangled
and feature (marginal) metrological gain with respect to classical states.

We have also computed the spin squeezing parameter ξ2, it is larger than unity for all
presented measurements. This is, in accordance with the predictions of the full Master
equation model, due to the high losses from the symmetric subspace and the resulting
shortening of the mean spin length.

4.3.5 Postselecting on cavity transmission

By detecting transmitted photons on the APD behind the cavity, we can access the
result of the Zeno measurement, i.e., obtain information about whether the dynamics
was indeed restricted to HZ . Figure 4.14 shows the fraction of runs where we observe
a transmitted photon during the Zeno measurement pulse together with an estimate
obtained from the full Master equation model. As an effect of the finite measurement
strength, these runs have the atomic state leaking through the boundary of HZ and
populating the state |0N 〉 in which the cavity transmits. We see that the probability to
observe a transmitted photon increases with the duration of the Zeno pulse which is in
line with the observed increase of ρ00 (cf. Figure 4.11). We see that the experimental
observation agrees roughly with a prediction that consists in integrating the theoretically
expected population ρ00 that builds up during the Zeno pulse and multiplying it by the
expected transmission for the state |0N 〉. This calculation neglects the contribution of
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Figure 4.10: Evolution of the atomic population during QZD along trajectory I. (a)
Population in the symmetric subspace. (b),(c): relative populations ρ′

ii = ρii/Tr(ρs).

(d): Transverse spin length 2
N

√

J2
x + J2

y . Green dotted lines in (b)-(d) show the expected

evolution without measurement (Rabi oscillation). The measured data is well described
by the full model with no adjustable parameters (black solid lines). The dynamics within
the symmetric subspace can also be understood when neglecting spontaneous emission
(red dashed lines). Blue dot-dashed lines are predictions for ideal QZD (rm → ∞). Open
symbols: measured evolution excluding runs with nonzero cavity transmission during the
QZD. Error bars are 1σ statistical errors of the reconstruction.
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Figure 4.11: Evolution of the populations during QZD along trajectory I. The data points
are the populations ρii, with i < 5, reconstructed from the tomography measurement
shown in the upper panel of Fig.4.9. The lowest curve shows the total population in the
symmetric subspace. The solid lines are the prediction of Eq. 4.4.
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Figure 4.12: Multiparticle entanglement criterion for the reconstructed atomic state at
t/T = 0.96 along trajectory I. From bottom to top, the blue curves show the bound
C(N, k, ρ00) for a k-producible state of N = 36 atoms for k = 2, 7, 10, 12. The blue
shaded areas limit the bounds for varying the atom number from 34 to 38 which corres-
ponds to 1σ of the atom number distribution. The red ellipses indicates the uncertainty
on the reconstructed populations ρii, dashed red lines: postselecting on zero cavity
transmission. The green curve is the bound for k = 1, states outside the green area are
entangled.
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Figure 4.13: Lower bound for the quantum Fisher information FQ for the data shown in
the lower panel of Figure 4.9. The hatched areas are confidence intervals corresponding
to 68% and 95% probabilities, respectively.
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Figure 4.14: Fraction of runs where an transmitted photon is observed during the QZD
along trajectory I. Black squares: experimental data. Red circles: prediction from the
full Master equation model.

other Dicke states which explains why the calculated values are systematically lower
than the experimental data.

At the price of excluding the data where a transmitted photon was observed, we can
improve the fidelity of the produced state. Excluding these runs from the analysis indeed
improves the quality of resulting state, as shown by the open symbols in Figure 4.10. As
an example, for t = 0.96T along trajectory I, we obtain an entanglement depth of 11+2

−3

atoms.

4.3.6 Large scale time evolution in 1d tomography

We have also studied the QZD on a larger time scale, by performing 1d tomographic
cuts for varying evolution time t/T = 0, 0.5, 0.96, 1.5, 2. Figure 4.15 shows the resulting
Q(θ) for a tomography range θ = −0.26π, ..., 0.26π. As an upper bound for Q, the
figure includes the symmetric subspace population Tr(ρs) obtained from the full Master
equation simulation.

As expected, we observe that for t < T , far away from the boundary of HZ , the Q-
function follows the symmetric shape for a coherent spin state. Additionally, we see that
for t > T , we recover a Gaussian-like shape. However, the height of Q gets strongly
reduced by the decay into the non-symmetric subspace caused by the second cavity
mode. We observe that this decay increases sharply at t/T ≃ 0.8. This can be explained
by the strong increase in spontaneous emission caused by a resonance with the second
cavity mode (cf. Section 4.1.1) occurring when there are about 3 atoms in |1〉.
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Figure 4.15: QZD along trajectory I. The plot shows the distribution Q(θ) for different
times t/T corresponding roughly to rotations of 0, 1

2π,
3
4π, π,

3
2π, 2π during the QZD.

The solid lines are guides to the eye. The dashed line represents the symmetric subspace
population ρs obtained from the full Master equation model.

4.3.7 Influence of measurement rate

For a given cavity, a higher photon flux Φ increases the measurement rate and thus
reduces the contamination of the state by |0N 〉. However, it also increases the spontan-
eous emission rate and thus the probability to leave the symmetric subspace. Considering
both effects, there exists an optimum measurement strength maximising the entangled
states’ purity.

We have investigated this behaviour experimentally by varying the measurement strength
for a fixed time t along trajectory I, the results are shown in Figure 4.16. The off-resonant
count rates in reflection are locked to (0, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5) M cts/s, respect-
ively, which, corrected for the APD dead time, corresponds to transmitted photon fluxes
Φres

T ≈(0, 0.4, 0.6, 0.9, 1.1, 1.4, 1.6) 106 s−1 and intra-cavity photon fluxes Φ ≈(0, 2.4,
4.0, 5.7, 7.6, 9.3, 10.8) 106 s−1. Increasing the measurement rate from zero, ρ00 decreases
while ρ11 increases as normal dynamics turns into QZD. At the same time, spontaneous
emission increases, reducing the population in the symmetric subspace. The optimum
measurement rate is a compromise between these conflicting effects.

By solving the full Master equation model, we obtain the solid curves in Figure 4.16,
which are in good agreement with the experimental data, and which show a broad
maximum of ρ11 as a function of rm. The data presented in section 4.3.2 is taken at rm ≈
23Ω, which maximizes the number of entangled particles as deduced in Section 4.3.4.
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Figure 4.16: QZD along trajectory I for different measurement strengths. Tomography
measurements are taken after a fixed evolution time t = 0.96T for different measure-
ment rates rm. Filled symbols: reconstructed populations ρ00 (blue) and ρ11 (red), and
population in the symmetric subspace (purple). Solid lines: results of the full model.
The insets show some of the reconstructed Q distributions. Open symbols: runs with
non-zero cavity transmission excluded.

4.3.8 Dependence on cavity parameters

As we have seen in the previous sections, the present experiments are strongly limited by
the spontaneous emission caused by the second cavity mode arising from imperfections
of the cavity mirrors. As shown in Chapter5, it is possible to fabricate fibre cavities with
mode splitting reduced to zero. Additionally, current state-of-the-art dielectric mirror
coatings allow to produce fibre cavities with a finesse approaching 200000 [122, 123,
124], compared to 37000 in our cavity). We have simulated the QZD experiment along
trajectory I for cavities with such improved characteristics by numerically solving the
Master equation 4.4 with accordingly adjusted scattering rate γn and cooperativity C.
Figure 4.17 shows the results for the following three models: a) the current experimental
situation, i.e. a cavity with C = 110 and a second mode detuned by 540 MHz, b) single
polarisation mode cavity with the same C and the loss rate γn given by Equation 4.5)
and c) single-mode cavity with C = 570 and the corresponding γn as could be achieved
with a state-of-the-art mirror coating. We perform the simulations for varying probing
strength rm to find the highest valueρm

11 attained during QZD along trajectory I along
with the corresponding values ρm

00 and tr(ρm
s ).

For the current cavity, we observe the fast decay of ρs due to the second polarisation
mode. The decay limits the maximum fidelity of ρm

11 > 0.5 at a measurement strength
which is comparatively low so that there is a large population of ρm

00 ≈ 0.25. In the
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Figure 4.17: Theoretical expectations for performing the QZD experiment along traject-
ory I with different cavity parameters for N = 36 atoms. In dependence on the cavity
probing rate rm, the plots show the maximum population ρm

11 attained during the QZD
together with the corresponding population ρm

00 and the symmetric subspace popula-
tion tr(ρm

s ) for the following models: a) Current experimental situation, cooperativity
C = 110 with second polarisation mode. b) C = 110, no second mode. c) C = 570, no
second mode.

present case, we can improve the ratio ρ11/ρ00 by slightly increasing rm (as we have also
seen experimentally, see the previous section).

A cavity of same cooperativity but without second mode would be, according to the
simulations, a definite improvement due to the eliminated scattering. This would make
it possible to increase rm to obtain a maximum ρm

11 ≈ 0.7 while at the same time reducing
the contamination ρm

00 ≈ 0.1 before being limited by scattering.

A single-mode cavity with improved finesse is expected to give a further improvement.
The simulations show that the scattering would be essentially be the same, but the
reduced cavity losses would allow to decrease rm and produce a W state with maximal
fidelity ρm

11 ≈ 0.8 with a contamination of ρ00 ≤ 0.1. Applying the entanglement criterion
for states close to the W state, this would correspond to an entanglement depth of at
least 27 out of 36 atoms.
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4.4 Conclusion

In this chapter, we have presented our experimental realisation of QZD in an ensemble of
about 36 87Rb atoms. Through tomographic measurements of the ensemble’s Q function
we have given a time-resolved account of how this deterministic scheme creates multi-
particle entanglement. Specifically, we have created states with depth of entanglement
of at least 3-11 atoms and fidelity of up to 0.37 with respect to a W state of 36 atoms.
We have also shown that the QZD can be used as a tool to create non-classical states
that provide an advantage in quantum metrology applications. We have discussed the
limitations arising from the experimental imperfections of finite probing strength and
scattering due to spontaneous emission and have identified the presence of a second po-
larisation mode caused by imperfections of the cavity mirrors as the limiting factor in
the current experimental setup.
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Chapter 5

Splitting of polarisation modes in
fibre Fabry-Perot cavities

In the previous chapter, we have seen that our QZD experiments have been mainly
limited by the influence of a second polarisation eigenmode of the fibre cavity. This
polarisation-dependent frequency splitting of the fundamental transverse mode is a typ-
ical phenomenon of high finesse resonators and a general inconvenience for cQED exper-
iments. At the beginning of this thesis, the origin of this phenomenon was still unclear.
This chapter presents our work investigating the causes of the frequency splitting, spe-
cifically in FFP cavities, and ways to control it.

Section 5.1 briefly motivates in how far controlling the polarisation mode splitting is
an advantage for cQED experiments. The origin of the splitting in FFP cavities lies
in imperfections in the CO2 laser fabrication of the fibres which we describe in Sec-
tion 5.2. Section 5.3 presents the theoretical description of how the splitting is produced
by slight asymmetry in the microfabricated fibres and how it can be controlled. We
have experimentally confirmed the theoretical predictions and show that the splitting
can be controlled in practice as demonstrated in Section 5.4. These insights have led to
preliminary work sketched in Section 5.5, both towards new experimental setups and to
advancing the fibre fabrication process.

We note that similar work has been done independently in the group of G. Rempe [124].

5.1 Introduction

In our experimental setup, both FFP resonators exhibit a frequency splitting between
two polarisation modes of the TEM00 transversal mode. The modes are linearly or-
thogonally polarised and separated by about 540 MHz (FFP1) and 730 MHz (FFP2)
which in both cases corresponds to about 5 resonator linewidths (FWHM) (compare
Section 2.3.1). This feature was noted at the time of construction and explained as
arising from birefringence in the dielectric mirror coatings applied to the fibres [63, 46]
which can also be observed in macroscopic FP cavities [125, 126].

In the QZD experiments presented in the previous chapter of this thesis, we have coupled
one polarisation eigenmode of the cavity to an atomic resonance so that the second mode
is detuned. During the experimental sequence, however, this second mode can become
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resonant, leading to strongly increased incoherent scattering (see Section 4.1.1). We
have seen in Section 4.3.8, that this scattering induced by the second polarisation mode
is the main limit to the high-fidelity preparation of entangled states via QZD. Previous
experiments with our setup have been similarly limited by the effect of the second mode
[120]. For cQED experiments with atoms, the splitting is also a disadvantage as it
prevents to couple circularly polarised light into the cavity to drive exclusively σ+ or
σ−transitions between Zeeman states.1 If the splitting can be controlled, it is therefore
desirable to make it as large as possible (so that one mode is always far detuned) or to
minimise it (to realise a cavity with degenerate polarisation modes).

We started our investigation of the frequency splitting with the hypothesis that it was
due to birefringence in the highly reflective mirror coatings. This phenomenon is well
known in high finesse resonators made from macroscopic dielectric mirrors, for example
for gravitational wave detection (see [126]). The most frequent cause for the birefringence
in macroscopic mirrors are mechanical stresses arising from mounting the mirrors [127].
Examining experimentally fibre cavities put under mechanical stress, we did not observe
a notable effect and concluded that the birefringence was related to asymmetries of the
microfabricated mirror structures. It is therefore relevant to examine the fibre fabrication
process.

5.2 Fibre production and characterisation

The production of optical fibres suitable for building FFP cavities consists of three main
steps. First, the glass fibre is prepared and cleaved to produce a smooth, regular end
facet. The facet is then microfabricated with a CO2 laser to create the concave geometry
desired to make a stable resonator. Finally, a highly reflective dielectric coating is applied
to the fibre tip. We do the preparation and fabrication ourselves and send the fibres to
an external company that for dielectric coating with an ion beam sputtering process.

The CO2 laser setup used to micro-fabricate the fibres in the current FFP experiment
was build up in [128] and is shown schematically in Figure 5.1. The prepared fibre is
placed on a three axis stage and brought into the focus of a CO2 laser beam with a
wavelength of 10.6 µm. An adjustable telescope before the focussing lens is used to
change the laser beam’s waist size. A dichroic mirror after the focussing lens is used
to image the fibre tip with the help of an optical microscope which is indispensable to
correctly position the fibre in the laser beam.

The fibres are fabricated with pulses of laser light, relying on the fact that silica shows
high absorption at the utilised far-infrared wavelength. The process parameters are
spot size (typically several tens of µm), power (several hundred mW) and duration
(several tens of ms) of the CO2 laser light. The fabrication takes place in a specific
parameter regime in which the energy deposited by the laser beam not only melts the

1With the splitting, light polarised linearly along one polarisation eigenmode can be used to drive both
σ transitions equally. Purely σ+ or σ− polarised light can only be produced from a beam off the cavity
axis.

88



5.2. FIBRE PRODUCTION AND CHARACTERISATION

x

y z

Figure 5.1: Schematic of the CO2 laser setup used to micro-fabricate the fibres for the
FFP experiment. Adapted from [63].

silica (which, alone, would lead to a convex shape determined by surface tension) but
also removes material through evaporation to create the desired concave structure. An
important advantage of this process is the low roughness of the created surface (atomic
force microscope measurements give a RMS surface roughness of σ = 0.2(1) nm) which
limits the scattering losses when using the surface as mirror of an optical resonator
[129]. Additionally, this technique makes it possible to create concave structures with
radii of curvature down to 30 µm and less [122, 129] which is interesting for cQED
applications in which it is advantageous to have short resonators with small mode volume
(cf. Section 2.3.1).

Figure 5.2 shows the analysis of a typical microfabricated fibre with a commercial optical
profilometer. Figure 5.2a shows a full surface profile with the concave depression in the
centre of the fibre facet clearly visible. In a FFP resonator with small mode volume, the
size of the cavity mode on the mirrors is small (in our experiment the diameter is less
than 9 µm) so that the central part of the profile is of special relevance. Figure 5.2b
displays a 1d cut through the fibre centre. We observe that the central part of the
profile is in good approximation spherical. We also see that the local radius of curvature
R (defined in Figure 5.2c) of the profile is minimal at the centre and then increases
towards the edges.

Imperfections

As detailed in the next section, the symmetry of the microfabricated surface is of special
importance for the performance in a high-finesse fibre cavity. Achieving precise control
of the structure requires first that the fibres are well prepared. A badly cleaved fibre
might have a facet of uneven surface or one that is not perpendicular to the fibre axis,
both of which will cause asymmetries during the laser machining. During the production
of the fibres used in the present experiments, the surfaces of the facets were inspected
with an optical microscope to verify that they were even and free of dust. A clean facet
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Figure 5.2: Analysis of microfabricated concave structures on an optical fibre. (a): 3d
plot of the surface profile measured with an optical profilometer. (c): Cut through the
centre of the profile shown in (a). (c): Parameters used to characterise the profile. Our
discussion concentrates on the radius of curvature (ROC) R. Adapted from [129].
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Figure 5.3: Ratio of horizontal to vertical radius of curvature Rx/Ry of CO2 laser-
machined structures (waist size about 32 µm). The dichroic mirror used for alignment
produces astigmatism so that the symmetry of the structures varies with the position
on the beam axis z.
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surface typically indicates a successful cleave which also means that the angle between
cleave surface and fibre axis is 90° to within less than 1°. The asymmetry introduced by
this possible deviation is of minor importance in the old fabrication setup.

One important source of asymmetries in the described setup is the dichroic mirror in-
serted at an angle of 45° to the axis of the fabrication laser beam. After passing the
mirror, the beam is astigmatic so that (cf. Figure 5.1) the waist in x-direction is at a
different position along the z-axis than the waist in y-direction. We have verified this
issue experimentally by machining a silica test slide placed at varying position along z
while keeping all other parameters constant. We have estimated the radii of curvature
(ROC) Rx, Ry in x- and y-direction from optical microscope images of the resulting
concave structures. Figure 5.3 shows the ratio Rx/Ry of the structures produced with
and without the dichroic mirror in the beam path. Without the dichroic mirror, the
structures are symmetric (Rx/Ry = 1 within the measurement precision) everywhere
along z. With the dichroic mirror, the symmetry of the machined structures depends
strongly on the position along z, limiting the creation of symmetric structures to a spe-
cific position on the z-axis. The positioning precision is limited by the depth of field of
the microscope, from the data in Figure 5.3 we expect this to translate into variations
of up to 5% on Rx/Ry.

Other important sources of asymmetries are fluctuations in the CO2 laser intensity and
bad alignment of the fibre axis with the laser beam axis. Characterising the asymmetric
structures by their radii of curvature along two orthogonal axes, we have observed the
ratio of the larger to the smaller ROC R1/R2 to vary overall between 1.01 and up to
1.20 for fibres that were produced with the old setup and deemed good enough to be
sent for coating.

5.3 Theoretical description

This section presents the theoretical description of how asymmetry in the mirror geo-
metry results in a frequency splitting of polarisation modes in a cavity. We start with
a general description of the behaviour of a cavity made from birefringent mirrors. We
then present how an effective birefringence arises as a purely geometric effect when treat-
ing the reflection of a Gaussian mode from an asymmetric mirror beyond the paraxial
approximation.

5.3.1 Jones calculus for a cavity made of birefringent mirrors

Let us consider a resonator made from two birefringent mirrors as shown schematically
in Figure 5.4. We can describe each mirror M1,M2 as a waveplate with two orthogonal
axes so that light polarised along the slow axis is retarded by the phase φ1, φ2 with
respect to the fast axis. Both mirrors are facing each other so that their surfaces are
parallel and their fast axes form the angle ϑ. We now want to determine the polarisation
eigenmodes supported by this cavity and their dependence on φ1, φ2, ϑ. This problem is
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Figure 5.4: Schematic of a resonator made from two birefringent mirrors.

easily treated using Jones calculus for polarised light and is discussed in [130, 131]. The
mirrors Mj , j = 1, 2 can be described as phase retarders with Jones matrices:

M j(φj) =

(

1 0
0 eiφj

)

, (5.1)

so that the total system is described by the matrix:

M tot = R−1(−2ϑ2)M2(φ2)R(2ϑ2)M1(φ1) , (5.2)

where R(ϑ) is a rotation matrix. In our case, the phase shifts are on the order of hundreds
of µrad. By calculating the eigenvectors and eigenvalues of M tot (see Appendix D) with
the approximation φ1, φ2 ≪ 1, we find that the cavity supports two orthogonal modes
of approximately linear polarisation. After one round-trip in the birefringent resonator,
the two modes differ by the round-trip phase shift δ

δ(φ1, φ2;ϑ) =
√

φ2
1 + φ2

2 + 2φ1φ2 cos(2ϑ) . (5.3)

The function δ(ϑ) is plotted in Figure 5.5 for different values of φ1, φ2. We observe that
δ varies between the maximum φ1 + φ2 at ϑ = 0 and the minimum |φ1 − φ2| at ϑ = 90°.
This can be intuitively understood in terms of rotating two waveplates either in a way
that the fast axes align (retardation adds up) or in a way that the fast axis of one plate
is aligned with the slow axis of the other one (retardation subtracts).

We note that for φ1 = φ2, the total phase shift δ chancels out at a sharp minimum. In
this case, δ is linearised around its minimum at ϑ = π/2 as

δlin(φ1 = φ2) ≈ 2φ1|ϑ− π

2
| . (5.4)

Relationship between phase shift and frequency splitting

Assuming two longitudinal modes with frequency ν1 and ν2 that are resonant to a cavity
of length L and differing by a phase shift δ, it must hold (roundtrip phase matching
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Figure 5.5: Round trip phase shift δ for the birefringent cavity depicted in Figure 5.4.

condition):

2π
ν1

c
2L ≡ 2πn , (5.5)

2π
ν2

c
2L− δ ≡ 2πn , (5.6)

with n = 1, 2, 3, ... The frequency shift ∆ν is

∆ν = ν1 − ν2 =
δ

2π
· c

2L
=

δ

2π
· FSR . (5.7)

We note that ∆ν for a given δ does not depend on the cavity finesse, but the ratio of
frequency splitting to cavity linewidth ∆νF W HM does:

∆νF W HM =
1

F
· FSR , (5.8)

∆ν

∆νF W HM
=

δ

2π
· F . (5.9)

5.3.2 Correction to the paraxial theory

In the previous section, we have seen that a cavity features polarisation-dependent fre-
quency splitting if it is made from mirrors that reflect orthogonally polarised light fields
with a differential phase shift. In this section, we briefly summarise the analysis of
[124] which shows that this is exactly what happens when we look beyond the paraxial
approximation at a mirror with asymmetric geometry reflecting a Gaussian beam.

In paraxial theory, the light field of a cavity mode is purely transversally polarised.
The boundary condition for the light field on the cavity mirrors is then simply that the
electric field orthogonal to the propagation direction vanishes.
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The paraxial theory can be extended to describe the light field as a vector field; a
mainly transversally polarised resonator mode will then also have a small polarisation
component in the direction of propagation. In this case, the boundary condition on the
cavity mirror should be taken as that of an ideal electric conductor, i.e. the electric field
transverse to the mirror surface vanishes.

In both cases, the boundary condition on the mirror for a transversally polarised TEM00

mode will correspond to an approximately spherical profile. It is shown in [124], however,
that the radius of curvature (ROC) of this profile in the vector field treatment is slightly
smaller than in the paraxial approximation. The mode function describing the transverse
part of the electric field thus has a slightly larger ROC than the mirror that supports it.
The larger ROC corresponds to a lower resonance frequency.

As this frequency difference depends on the geometric orientation of the polarisation, it
introduces a polarisation dependence not present in the paraxial approximation. In [124],
the authors assume a mirror with elliptical shape, i.e. a profile that can be described as
an elliptic paraboloid with two principal axes having different ROC R1, R2, and calculate
that the frequency shift ∆ν between light (mainly) polarised along the major and minor
axis corresponds to a differential phase shift φ (compare Equation 5.7) given by:

φ =
λ

2π

R1 −R2

R1R2
. (5.10)

5.4 Experimental measurements

This section describes the experimental measurements we have performed to investigate
how to control the polarisation mode splitting by rotating one fibre about the cavity
axis and the link between mirror geometry and frequency splitting.

5.4.1 Methods

Determining fibre mirror radii of curvature

A well-suited technique for characterising the concave structures on micro-fabricated
fibres is optical profilometry which combines fast analysis with good spatial resolution
and a non-contact measurement process. For the present work, we did not have easy
access to a commercial profilometer. We have therefore used a simple white light inter-
ferometry scheme to roughly characterise the symmetry of a microfabricated structure
with a compact setup that can be built up close to the CO2 fabrication apparatus.2

The basic idea is to make an interferometric measurement by imaging the machined
fibre facet with an interferometric microscope objective3. This component looks like a
standard microscope objective but includes a reference mirror in the centre of the ob-
jective lens and an additional semi-transparent mirror to realise a Mirau interferometer.

2The setup and the analysis scheme were originally devised by D. Hunger.
320X Nikon CF IC Epi Plan DI.

94



5.4. EXPERIMENTAL MEASUREMENTS

A tube lens4 serves to create an image on a CCD camera5. Figure 5.6a shows a typical
image recorded with our setup in which we illuminate the sample with a high power LED
with wavelength λ = 505 nm6. The image exhibits interference fringes which are related
to the distance between the sample surface and the semi-transparent mirror inside the
objective. Specifically, a difference in distance ∆z leads to a phase shift of ∆ϕ ≈ 4π/λ∆z
which means that the resulting image shifts, say, from constructive to destructive inter-
ference for ∆z = λ/4 ≈ 126 nm. Under the assumption that there are no 2π phase jumps
between adjacent fringes (which is valid for the smooth surfaces created by laser fabrica-
tion), this allows a rough reconstruction of the sample surface profile along a 1d cut. We
first extract the position of minima and maxima in the pixel brightness along one axis in
the image, as shown in Figure 5.6b. Setting the central position to correspond to sample
heigth z = 0, we assume that z increases by ∆z = λ/4 with each successive extremum
(which corresponds to assuming a concave sample). The resulting profile is shown in
Figure 5.6c. For the present work, we are interested in the ROC close to the centre of
the fibre. We therefore determine the ROC R by fitting the parabola f(x) = 1

2Rx
2 to the

central part of the reconstructed profile. To characterise the elliptic asymmetry of the
concave structure, we determine the ROC R1, R2 along two orthogonal axes, inspecting
the interferometric image by eye to determine the orientation of the axis with the larger
ROC R1.

We have compared the results from this simple measurement method with the ones
obtained from a commercial optical profilometer7 and found that they, in general, agree
to within 15%. The described method reports systematically about 10% higher values
than the profilometer, which can be explained by the fact that we sample the profile not
in its centre but further out where the local ROC is higher than in the centre (compare
Figure 5.2b).

Measuring the frequency splitting

To measure the polarisation mode splitting in Fabry-Perot cavities made of two microma-
chined fibres, we use the setup shown in Figure 5.7. The general idea is to measure the
resonator transmission while scanning the cavity length L over the two resonances cor-
responding to the two polarisation modes. We use frequency-locked laser light at about
780 nm that is phase-modulated by an EOM to create sidebands at known frequency
to serve as a frequency markers. The light polarisation ε2 incident onto the cavity can
be controlled with one half- and one quarter waveplate before the input fibre (which is
single-mode in our experiments). The input fibre is fixed on a 3-axes micro-positioning
stage8 that allows us to scan the cavity length by means of a piezo actuator. The out-

4Nikon f=200 mm tube lens, Edmund Optics Stock No. #58-520.
5IDS Ueye UI-2230SE.
6Thorlabs M505L3.
7Fogale Micromap 3D in the group of D. Chateney at the Laboratoire de Physique Statistique (LPS
ENS). The specified resolution is 0.1 nm, the effective resolution is limited by vibrations to several
tens of nm.

8Thorlabs NanoMax.
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Figure 5.6: Determination of ROC using an interferometric measurement. (a): Interfer-
ometric microscope image of a microfabricated fibre facet (�125µm). The white circle
limits the region for the subsequent reconstruction. (b): Intensity cut of the image
along axis 1. (c): Reconstructed profile cuts along the two axes. Parabola fits give
R1 = 250µm and R2 = 210µm.

coupling fibre is placed into a precision rotation mount9 that can be adjusted manually
to change the roll angle ϑ between the fibres. Fibre alignment can be observed along two
axes with two video microscopes10 (resolution about 5 µm). We usually use multimode
fibres on the outcoupling side which means that the polarisation of the transmitted light
is scrambled. We therefore detect it non-polarisation resolved with a single photodiode
(PD1).

Figure 5.8 shows a typical transmission measurement made with this setup. The EOM
was operated at 2 GHz and the waveplates were aligned to excite both polarisation modes
equally. By fitting a compound of six Lorentzians to the measured transmission trace,

we can extract the linewidths 11 ∆ν
(1)
F W HM and ∆ν

(2)
F W HM and the frequency splitting

∆ν. This measurement is affected by noise from mechanic vibrations that change the
cavity length, we therefore average the results over 20 scans. The analysis method
described so far fails if the frequency splitting ∆ν is on the order of or smaller than the
linewidth ∆νF W HM because then two transmission peaks merge into a single broad peak
which the fitting routine cannot resolve. Keeping the same method of measuring the
cavity transmission, we use a modified analysis to determine small frequency splittings
by assessing the width of the broadened peak. This scheme is described in detail in
Appendix E.

We have determined the free spectral range FSR by simultaneously sending in light at
a second wavelength (about 830 nm) and comparing the frequency difference between
the resonances of successive longitudinal modes. We then calculate the round-trip phase
shift δ according to Equation 5.7 as

9Thorlabs HFR-007.
10Veeho VMS-004D.
11For averaged results, we find that ∆ν

(1)
F W HM ≈ ∆ν

(2)
F W HM , from shot to shot, however, the linewidths

can vary due to noise.
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Figure 5.7: Schematic of the experimental setup to characterise mode splitting. The part
within the dashed line is used to verify the polarisation angle ε2 of the light incident on
the cavity as described in Appendix E.

δ = 2π
∆ν

FSR
. (5.11)

5.4.2 Results

Controlling the polarisation mode splitting by fibre rotation

We have used the methods described in the previous section to measure the frequency
splitting of polarisation modes in fibre-fibre cavities when varying the roll angle ϑ
between the fibres. Figure 5.9 shows two typical results together with fitted curves
derived from the model presented in Section 5.3.1, specifically Equation 5.3 describing
the round trip phase shift δ(ϑ). The two data sets correspond to two different fibre-fibre
cavities. In both cases, we observe that the measured δ shows, as expected, a maximum
and a minimum when ϑ is varied by about 90°.

For the cavity made from fibres A and B (upper panel in Figure 5.9), the round trip
phase shift can be controlled within 140µrad > δ > 180µrad. The measured dependence
δ(ϑ) is well reproduced by Equation 5.3 with the fitting parameters φ1 = 158(15)µrad
and φ2 = 22(6)µrad.

For the cavity made from fibres G and J (lower panel in Figure 5.9), the measured
dependence δ(ϑ) is well fit with the differential phase shifts φ1 = 126(13)µrad and φ2 =
122(13)µrad. As φ1 and φ2 are closely matched, we observe in particular a cancellation
of the resulting polarisation mode splitting at ϑ ≈ 90° (we measure ∆ν/∆νF W HM ≈
0.3+0.05

−0.15).
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Figure 5.8: Measuring the frequency splitting of the polarisation modes in an FFP
cavity. Transmission (black line) is measured while the cavity length is scanned over
both resonances. Modulating the probing light with an EOM produces sidebands that
serve as frequency calibration. A fit (green lines) is used to extract the linewidths

∆ν
(1)
F W HM ,∆ν

(2)
F W HM of the two resonances and the splitting ∆ν.

Dependence of phase shift on mirror geometry

We have investigated how the differential phase shift φ of a microfabricated fibre depends
on the geometry of the concave structure. To characterise the geometry, we describe it as
an elliptic paraboloid with radius of curvature R1 along a major axis and ROC R2 < R1

along a minor axis, measuring R1, R2 as described in Section 5.4.1.

As demonstrated by the experiment described above, measuring δ(ϑ) for a fibre-fibre
cavity can be used to determine the differential phase shifts φ1, φ2 of the fibres. However,
from one such measurement we do not know which fibre causes which phase shift. To
unambiguously assign each fibre its intrinsic phase shift φ, we have formed cavities from
permutations of a set of fibres with different φ, each time measuring δ(ϑ) in the resulting
cavity.

The result is presented in Figure 5.10, which shows the differential phase shift φ as
a function of ǫ = (R1 − R2)/(R1R2). Fibres A-D were fabricated in our lab for the
group of A. Kuhn, they have a dielectric mirror coating with a centre wavelength of
λ = 780 nm, transmission T ≈ 8 ppm, losses L ≈ 24 ppm (corresponding to a finesse of
F ≈ 100000). All other fibres were fabricated by the group of D. Hunger, the mirror
coatings have a centre wavelength of λ = 780 nm, transmission T ≈ 10 ppm, losses
L ≈ 12 ppm (F ≈ 130000).

We see clearly that the phase shift increases monotonically with increasing ǫ corres-
ponding to stronger asymmetry. Comparing the experimental data with the prediction
of Equation 5.10, we find reasonable agreement within the experimental uncertainties.
The data lie systematically slightly above the predicted function φ(ǫ). This can be ex-
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Figure 5.9: Frequency splitting ∆ν and round trip phase shift δ as functions of roll
angle ϑ. Upper panel: Cavity formed by two fibres with differing phase shifts φ1 ≈
145µrad, φ2 ≈ 25µrad. The cavity parameters are L ≈ 32µm,∆νF W HM ≈ 48 MHz, F ≈
100000. Lower panel: Cavity formed by two fibres with closely matched differential phase
shifts φ1 ≈ 125µrad, φ2 ≈ 120µrad. The cavity parameters are L ≈ 39µm,∆νF W HM ≈
30 MHz, F ≈ 130000.
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the prediction of Equation 5.10.
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CHAPTER 5. SPLITTING OF POLARISATION MODES IN FIBRE FABRY-PEROT CAVITIES

plained by the fact that our way of determining R1 and R2 systematically overestimates
the radii of curvature encountered by the cavity light mode, as explained in Section 5.4.1.

We conclude that the observed differential phase shifts arise mostly from the geometry
of the microfabricated fibre. The influence of eventual asymmetries or stresses in the
dielectric mirror coating seem to be of minor importance.

Discussion

The experimental results confirm that the frequency splitting of the polarisation modes
in an FFP cavity depends on two factors whose influence can be accurately modelled.
The first factor are the differential phase shifts of the fibres which depend on their
geometry according to Equation 5.10. For practical purposes, this aspect is determined
by the fibre fabrication process. Given two fibres with certain differential phase shifts,
the resulting splitting in the cavity can be varied as function of the orientation of the
fibres as described by Equation 5.7. In practice, this can be controlled when mechanically
mounting the FFP resonator.

Certain experimental target specifications for ∆ν therefore translate into requirements
on the processes of fibre fabrication and resonator construction. Given our experimental
results, we want to discuss briefly in how far typical experimental requirements are feas-
ible to realise in terms of fibre fabrication and cavity construction. Let us therefore
consider a cavity with parameters similar to the current FFP1 (L = 40µm, F = 40000,
r1 = 150µm, r2 = 450µm(SM), κ/(2π) = 50 MHz) with the target of degenerate polar-
isation modes.

A basic requirement for most cQED experiments is then that the splitting should be
smaller than the cavity linewidth ∆ν < ∆νF W HM/2. According to Equation 5.9, this
requires δ < π

F ≈ 80µrad. We have seen that an ellipticity of 10% is not difficult
to achieve which would result in differential phase shifts of φ1 = 80µrad and φ2 =
30µrad. The deviation of the roll angle from the optimum should then be (Equation 5.4)
∆ϑ < 26°. Experimentally, we should be able to construct a cavity with accuracy
∆ϑ < 2°, so this poses no problem. Assuming a state of the art dielectric coating with
F = 200000, the overall splitting needs to be δ < 16µrad. With φ1 = φ2 = 80µrad,
we find ∆ϑ < 6°. The limit of technical feasibility for the cavity mounting would be
something like φ1 = 120µrad, φ2 = 130µrad which would require ∆ϑ < 3◦.

For experiments with 87Rb atoms, the splitting should furthermore be small compared to
the width of the D2 line Γ = 3 MHz (HWHM). The allowable round trip phase shift δ then
depends on the cavity length (Equation 5.7) and for L = 40µm, we require δ < 5µrad.
Wee see from the experimental results that this is a rather stringent requirement. In
terms of absolute values we have observed (in accordance with [124]) a lower limit of
20µrad > φ. For radii of curvature larger than 150 µm, we estimate reliably achievable
values around φ ≈ 80µrad. Reaching the target δ will therefore require two fibres with
well matched phases shifts so that δ ≈ |φ1 −φ2|. With φ1 = φ2 = 80µrad, the allowable
deviation of the roll angle would be ∆ϑ < 2◦ still within the limit of construction
feasibility. We conclude that for the investigated parameter regime, from the point of

100



5.5. OUTLOOK

view of the technical realisation, especially the reproducibility of the fibre fabrication is
important.

5.5 Outlook

We have seen in the preceding sections how the polarisation mode splitting in fibre
Fabry-Perot cavities arises and how it can be controlled. Building on these insights, we
have performed preliminary work to realise FFP cavities with controlled mode splitting
for actual experimental use. One necessary step is to develop a method to control the
roll angle between the fibres while mounting an FFP cavity in a compact way that allows
integration with an atom chip. Another direction of development is to improve the CO2

laser fabrication for better control over the geometry of the fabricated fibres.

To improve the fibre fabrication process, we have started work towards a new microfab-
rication apparatus which, in the meantime, has been set up successfully by colleagues in
our group. The new setup was planned with the following design goals:

• Precision control over the symmetry of the the microfabricated structures. We have
seen in this chapter that this is the key parameter determining the polarisation
spliting which is a crucial phenomenon that can limit cQED experiments with FFP
cavities.

• Precision control over the positioning of the microfabricated structures. The con-
cave structures created with the old setup have not always been well centred on
the core of the fibre. This asymmetry makes it more complicated to align the
resonator in a way that optimises coupling between the fibre light mode and the
TEM00 mode in the cavity.

• Quick and reliable production process. The old setup needed careful and time-
consuming alignment of the beam shaping optics, with the observation and cal-
ibration by means of the dichroic mirror introducing a limit on the reliability of
the fibre positioning. To analyse fabricated structures, it was necessary to take
the sample from the fabrication to an additional profilometer setup. This step was
cumbersome as it required additional manual adjustment.

The key idea to achieve these aims is to place the machining target on a high-precision
motorised sample holder as shown in Figure 5.11. The holder is placed on three trans-
lation stages, first a horizontal linear motor stage with 150 mm travel 12 which carries
a vertical linear motor stage with 30 mm travel13. Both stages feature a linear encoder
with 50 nm resolution and a specified bidirectional repeatability of 0.2 µm. The vertical
stage carries a slip-stick piezo stage 14 with 1 nm resolution, 50 nm bidirectional repeat-
ability and 30 mm total travel. The sample holder is fixed to this nanopositioning stage.

12Newport GTS150.
13Newport GTS30V.
14Attocube ECS5050/NUM.
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CO2 laser beam

Mirau objective

focussing lens

horizontal stage

vertical stage

nanopositioning stage

sample holder

Figure 5.11: Schematic of the new CO2 laser microfabrication setup.

The setup integrates the interferometry apparatus described in Section 5.4.1 which is
mounted on an axis parallel to the optical axis of the CO2 laser fabrication beam. Due
to the large horizontal travel, a sample can be machined with the laser beam, then dis-
placed to perform interferometric analysis “in situ”, without any repeated handling and
manual alignment. The nanopositioner makes it possible to perform scanning length
profilometry to obtain the full reconstruction of the sample surface profile.

This setup is already operational and has been used to produce new fibres suitable for
FFP cavities. Preliminary results are promising and show that the system indeed realises
sub-micrometer position accuracy and the possibility to control fibre mirror symmetry
to a high degree.

5.6 Conclusion

In this chapter, we have discussed the problem of polarisation mode splitting in fibre
Fabry-Perot cavities. We have shown that this phenomenon arises from geometric asym-
metry of the concave microfabricated structures which is due to imperfections in the CO2

laser fabrication process. We have experimentally investigated the relationship between
fibre geometry and frequency splitting in a cavity as well as the possibility to control
the splitting by rotating one fibre around the cavity axis. The results confirm that the
frequency splitting can be minimised by using symmetrically fabricated structures and
controlled by adjusting the roll angle between the fibres. We expect that it is feasible
in practice to mount a cavity with degenerate polarisation modes. These insights have
led to preliminary work towards an improved fabrication setup that achieves greatly
enhanced control over the geometry of the microfabricated structures.
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Conclusion and Outlook

Multiparticle quantum entanglement and its generation are two important concepts cur-
rently studied in quantum physics, not least because they are fundamental resources
for advanced quantum technology applications. In the first part of this thesis, we have
shown experimentally, to our knowledge for the first time, how multiparticle entangle-
ment can be deterministically generated by means of quantum Zeno dynamics (QZD).
Our scheme exploits a non-destructive measurement to induce QZD in an ensemble of
ultracold atoms strongly coupled to an optical micro-cavity.

The presented experiments give a time-resolved account of how the dynamics of the
collective atomic state can be modified by a cavity-based measurement to produce multi-
atom entangled quantum states. We have shown how the QZD can be engineered to
generate different types of non-classical states that provide an advantage in quantum
metrology applications. In an ensemble of 36 qubit atoms, we have created, despite all
experimental imperfections, states with at least 3-11 entangled atoms and fidelity of up
to 0.37 with respect to a W state of 36 atoms, with the preparation itself taking less
than 5 µs.

So far, the generation of multiparticle entanglement by QZD is only starting to be
explored. Reference [39] shows for the case of photons how, in principle, a large variety
of entangled states could be produced by means of phase space tweezers based on QZD.
Most other theoretical proposals focus on two-qubit systems [132, 133, 134, 135, 136].
Our results highlight that QZD can also be an experimentally feasible tool for quantum
engineering of multiparticle systems. Further investigation along these lines could help
to extend the scheme studied here. One possible direction would be to implement the
QND measurement in a way that it does not address the pole of the Bloch sphere, but
another subspace. In this way, higher order Dicke states could be produced. Similarly,
combining driven Rabi oscillations with a non-demolition measurement on the equator
of the Bloch sphere [137, 138] could lead to highly entangled states in the vicinity of the
measurement boundary. A crucial factor to be considered will be the amount of atomic
scattering due to spontaneous emission caused by the measurement.

Spontaneous emission is also the major factor limiting fidelity and purity of the created
entangled states in the present experiments. This effect is exacerbated by the presence
of a second polarisation mode caused by imperfections of the mirrors in the current fibre
cavity setup.
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Consequently, a second part of this thesis was devoted to controlling the frequency
splitting of the transversal fundamental mode in fibre Fabry-Perot cavities. We have
shown experimentally that the frequency splitting is determined by the symmetry of the
microfabricated fibres and that it can be controlled by controlling the relative orientation
of the two fibres forming a cavity.

These insights indicate several directions for future work. On the one hand, the current
FFP setup could be upgraded by fitting the same atom chip with a new fibre cavity. We
have performed preliminary work showing that it should be feasible to mount a cavity
similar to the current one but with cancelled frequency splitting. Additionally, a state-
of-the-art dielectric coating could increase the cavity finesse by a factor of four. For the
QZD experiments we have performed, such an improved cavity would allow much higher
state fidelity. We estimate a fidelity of up to 0.8 for the W state, before being limited
by atomic scattering.

Another direct continuation of this work is the construction of an improved microfab-
rication setup for producing cavity fibres. This setup will enable us to reliably produce
concave structures with well defined symmetry. This facilitates the construction of FFP
resonators with degenerate polarisation modes, which does not only improve perform-
ance in cQED experiments but also opens up new prospects, for example coupling atomic
states to the polarisation of single photons [139]. Additionally, the new setup can pro-
duce large concave structures which should allow to make high finesse, low loss FFP
cavities that are one order of magnitude longer than what was previously possible. This
is especially interesting for cQED experiments with trapped ions, where longer cavities
reduce the detrimental effects of having dielectric surfaces close to the ions [123, 140].

Making use of these new possibilities, our group is currently building up a new ex-
periment centred around a next-generation FFP resonator. This resonator will benefit
from a state-of-the-art dielectric mirror coating which is doubly resonant at 780 nm and
1560 nm. Light at 1560 nm will create a one-dimensional intra-cavity optical lattice,
where the lattice spacing is the atomic transition wavelength of 780 nm. In this way, all
lattice sites are equally and maximally coupled to the resonant probe field. The lattice
sites are loaded with single atoms by operating the dipole trap in the collisional blockade
regime [141]. The FFP cavity will be rather long (∼ 100µm) to give ample optical access
for transverse laser beams for advanced atom cooling schemes and it will be engineered
to have a large frequency splitting between the polarisation eigenmodes. These features
will make it a versatile tool to investigate not only QZD and entanglement generation,
but also to implement the cavity-based effective Dicke model proposed in [142] and study
the predicted entanglement close to the quantum phase transition of the Dicke system
[143].
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Appendix A

Rubidium 87 hyperfine structure
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Figure A.1: Rubidium 87 D2 transition hyperfine structure. Source: [144].
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Appendix B

Probe-Main laser beat lock

The error signal between probe and main laser is generated with the components shown
in Figure B.1. The scheme is similar to the ones discussed in [145, 146].

VCO
ZOS-535

splitter ZFM-3S+

mixer
ZFM-2000

VCO
ZOS-1205

low-pass
LP DC-700 MHz

mixer
ZFM-3S+

low pass
LP DC-98 MHz

amplifier
ZFL-5000N

L1

R2

out L R outI

RI

S

L

Vc

GoodTime CH67

Vc

GoodTime CH60

PD in

error signal out

I

Figure B.1: Schematic of the RF electronics to generate the error signal between main
and probe laser.
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Appendix C

Probe and repump power control

The full schematic of the probe power control explained in Section 2.7.2 is shown in
Figure C.1. The sample-and-hold (S&H) circuit controlled by the TTL “ZenoSH” is to
work around the limitation that “aomvoltage” is the only analogue output available on
the real-time micro-controller. The power buffer is necessary to drive the attenuator
which needs up to 30 mA input current. The additional switches in the right side of
the schematic are necessary because in the experiment, the repumper AOM on the main
table and the probe AOM on the locking table are driven with the same RF. This was
done to use the “detection” variable attenuator controlled by “aomvoltage” for both
repumper and probe (more AdWin analogue outputs would simplify things). During
MOT loading, the repumper is controlled via the GoodTime “Repumper TTL”, with
the “ZenoTTL” being set so that the switch before the amplifier lets the signal pass.
Before the control is given to the micro-controller for the science phase of the experiment,
the switch controlled by “Repumper TTL” is set to pass and “Zeno TTL” is set so that
the “MW pulse” TTL controls the last switch to produce the light pulse.
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Figure C.1: Full schematic of the RF electronics to regulate the probe intensity during
the QZD. Thick outlines indicate components from Minicircuits, thin outlines are elec-
tronic ICs. Yellow (green) diamonds indicate input from the real-time micro-controller
(experiment control software).
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Appendix D

Calculation of round trip phase
shift

The total system consisting of both birefringent mirrors is described by the Jones matrix
(Equation D.1):

M tot = R−1(−ϑ2)M2(φ2)R(ϑ2)M1(φ1) (D.1)

=




cos2(ϑ) + eiφ2sin2(ϑ) eiφ1

(

eiφ2 − 1
)

cos(ϑ)sin(ϑ)
(

eiφ2 − 1
)

cos(ϑ)sin(ϑ) eiφ1

(

eiφ2cos2(ϑ) + sin2(ϑ)
)



 . (D.2)

where R(ϑ) =

(

cos(ϑ) −sin(ϑ)
sin(ϑ) cos(ϑ)

)

.

The matrix M tot has two eigenvectors that correspond to two eigenmodes of the cavity.
The eigenvalues are

λ1/2 =
1

4

((

eiφ1 + 1
) (

eiφ2 + 1
)

+
(

eiφ1 − 1
) (

eiφ2 − 1
)

cos(2θ)
)

(D.3)

±1

4

√

−16ei(φ1+φ2) + ((eiφ1 + 1) (eiφ2 + 1) + (eiφ1 − 1) (eiφ2 − 1) cos(2θ))
2
.

In our case φ1, φ2 ≪ 1, so that we can expand the different terms in Equation D.3 up to
quadratic terms in φ:

ei(φ1+φ2) = 1 + i(φ1 + φ2) − 1

2
(φ1 + φ2)2 + O(φ3)

(

eiφ1 + 1
) (

eiφ2 + 1
)

= 4 + 2i(φ1 + φ2) − (φ2
1 + φ2

2) − φ1φ2 + O(φ3)
(

eiφ1 − 1
) (

eiφ2 − 1
)

= φ1φ2 + O(φ3) .

Equation D.3 then becomes

109



APPENDIX D. CALCULATION OF ROUND TRIP PHASE SHIFT

λ1/2 =
1

4

(

4 − (φ2
1 + φ2

2) + φ1φ2(cos(2θ) − 1)
)

+i
1

2

(

(φ1 + φ2) ±
√

φ2
1 + φ2

2 + 2φ1φ2cos(2θ)

)

.

(D.4)

The phase shift each each mode experiences during a round trip, is given by the complex
argument of Equation D.4. The differential round trip phase shift δ is thus

δ = arg(λ1) − arg(λ2) ≈
√

φ2
1 + φ2

2 + 2cos(2θ) , (D.5)

where we have used that the real part Re{λ1/2} ≈ 1 for φ1, φ2 ≪ 1.

The total system described by Equation 5.2 behaves like a waveplate with effective
retardation δ with the fast axis at an angle ϑeff with respect to the optical axis. ϑeff
can be found calculating the eigenvectors; in [130] it is shown that:

cos(2ϑeff) =

φ1

φ2
+ cos(2ϑ)

√
(

φ1

φ2
− 1

)2
+ 4φ1

φ2
cos2(ϑ)

. (D.6)
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Appendix E

Measuring small frequency
splittings

The analysis method described in Section 5.4.1 fails if the frequency splitting ∆ν is on
the order of or smaller than the linewidth κ because then the fitting routine cannot
resolve the two transmission peaks.1 Keeping the same method of measuring the cavity
transmission, we have modified the analysis to determine small frequency splittings. We
fit the compound peak formed by both resonances with a single Lorentzian and extract
the splitting from its width which will be broadened according to ∆ν. Figure E.1 shows
the calculated result obtained when fitting a single Lorentzian L(κ′, x′

c, A
′) of the form

L(κ, xc, A) =
A

1 + (x−xc

κ )2
(E.1)

to the sum L(κ, 0, A) + L(κ,∆ν,A). We observe that the splitting ∆ν can be extracted
from the total linewidth κ′ if we know κ. Determining the splitting in this way is subject
to an uncertainty arising from fluctuations of κ1/κ2 and A1/A2, which become more
important as ∆ν decreases. Given our experimental uncertainties, splittings ∆ν < κ
can only be estimated with relative error of 40% and more. For κ > ∆ν > 2κ, however,
the relative error of this simple method reduces to the order of 10%. In the present
work, we therefore use it to estimate an upper bound for ∆ν in cases where ∆ν > 2κ.

The transmission measurement itself requires a bit more care for small frequency split-
ting. We need to determine both the individual linewidth κ and the broadened total
linewidth κ′. One possible way to do this is to have linear polarisation with angle ε2

incident on the cavity. Scanning ε2 by 90°, we will successively excite, say, only the first
polarisation eigenmode, then both eigenmodes and then only the second one. The width
of the transmission peak κtot will then change accordingly from κ to κ′ and back to κ.

Controlling ε2 is slightly complicated by the fact that the incoming SM fibre shows vari-
able birefringence which changes due to unavoidable external mechanical stresses. The
waveplates before the input fibre can be used to compensate this unknown birefringence,
and in the case of large ∆ν, ε2 can be scanned simply by adjusting the waveplates ac-
cording to the observed transmission signal. If we cannot resolve ∆ν, the polarisation

1In this appendix, we define κ ≡ ∆νF W HM /2 as opposed to the rest of the thesis where κ/(2π) ≡
∆νF W HM /2 .
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∆

1

Figure E.1: Total width κ′/κ1 of a single Lorentzian L(κ′, x′
c, A

′) that fits the sum
L(κ1, 0, A) + L(κ2,∆ν,A). Given an experimentally measured value for κ′/κ1, we can
find the frequency splitting ∆ν. The uncertainty of κ2/κ1 translates into an uncertainty
on the determined ∆ν indicated by the green shaded bounds.

angle ε2 is inaccessible to us. However, we can gain additional information from the
light that is reflected from the cavity, passing forth and back through the birefringent
piece of input fibre. This situation can be understood in terms of the optical reversib-
ility theorems presented in [147] that describe how to determine the polarisation at a
remote position (in our case ε2) by measuring the polarisation angle ε1 of the light sent
towards the element of unknown birefringence (the input fibre) and the angle ε3 of the
light retro-reflected behind this element. We want the polarisation ε2 to be linear which,
according to Theorem I in [147] is the case if and only if ε1 is linear and parallel to ε3.

Experimentally, we ensure that this condition is met by means of the optical setup shown
within dashed lines in Figure 5.7. The non-polarising beamsplitting cube can be replaced
by a mirror to alternatively analyse the polarisation ε1 or ε3 with the setup consisting
of a half wave plate, a polarising beamsplitter and the photodiodes PD2 and PD3. The
waveplates after the NPBC are adjusted to ensure ε3 is linearly orthogonally polarised
with respect to ε1. Once this is the case, the half wave plate before the NPBS can be
rotated to perform the transmission measurement while scanning the angle of ε2.

The result of such a measurement is shown in Figure E.2. As expected, changing ε2

by 45° allows us to excite either one or both polarisation modes to measure κ and
κ′. For the displayed measurement, we extract a maximal/minimal linewidth of κtot ≈
20 MHz/18 MHz from which we calculate a splitting of κ′/κ ≈ 20/18 ≈ 1.1. Comparing
with Figure E.1, we estimate the frequency splitting ∆ν ≈ (0.65+0.1

−0.2)κ. We note that
one such scan determines ∆ν at one specific roll angle ϑ between the two fibres, changing
ϑ also changes the mechanical stress on the input fibre change, so that the waveplates
have to be readjusted as described above.
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Figure E.2: Measurement of the total linewidth κtot for frequency splitting ∆ν < κ. The
data are averaged over 20 repetitions, vertical bars show the statistical error.
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