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Abstract. This paper describes a new technique for solv-
ing multiclasslearning problems by combining Freund and
Schapire's boosting algorithm with the main idess of Diet-
terich and Bakiri’smethod of error-correcting output codes
(ECOC). Boostingisageneral method of improving the ac-
curacy of agivenbaseor “weak” learning algorithm. ECOC
isarobust method of solving multiclass |earning problems
by reducing to a sequence of two-class problems. We show
that our new hybrid method has advantages of both: Like
ECOC, our method only requires that the base learning al-
gorithm work on binary-labeled data. Like boosting, we
prove that the method comes with strong theoretical guar-
antees on the training and generaization error of the fina
combined hypothesis assuming only that the base learning
algorithm perform dlightly better than random guessing.
Although previous methodswere known for boosting multi-
class problems, the new method may be significantly faster
and require less programming effort in creating the base
learning agorithm. We also compare the new agorithm
experimentally to other voting methods.

1 INTRODUCTION

Boostingisageneral method for improving the accuracy of
alearning algorithm. By definition, aboosting algorithmis
onewhich can provably convert any baseor “weak” learning
algorithm with accuracy just slightly better than random
guessing into one with arbitrarily high accuracy. Boosting
algorithmswork by repeatedly reweighting theexamplesin
the training set and rerunning the weak learning algorithm
on these reweighted examples. Boosting effectively forces
the weak learning algorithm to concentrate on the hardest
examples. Typically, the fina combined hypothesis is a
weighted vote of the weak hypotheses.

Thefirst boosting algorithmswere discovered by Scha
pire [17] and Freund [6]. Freund and Schapire's most re-
cent boosting algorithm [8], called ADABOOST, has been
shown to be very effective in experiments conducted by
Drucker and Cortes [5], Jackson and Craven [13], Freund
and Schapire[7], Quinlan[15], Breiman [2] and others.

*AT&T Labsis planning to move from Murray Hill. The new
addresswill be: 180 Park Avenue, Florham Park, NJ 07932-0971.

Initssimplest form, ADABOOST requiresthat the accu-
racy of each weak hypothesis (or classification rul€) pro-
duced by the weak learner must exceed 1/2. For binary
classification problems (in which each example is labeled
by avauein {0, 1}), thisreguirement is about as minimal
as can be hoped for since random guessing will achieve
accuracy 1/2. However, for multiclass problems in which
k > 2labesarepossible, accuracy 1/2 may bemuch harder
to achieve than the random-guessing accuracy rate of 1/k.

For fairly powerful wesk learners, such asdecision-tree
algorithms, this does not seem to be a problem. Experi-
mentally, C4.5 and CART seem to be capable of producing
hypotheses with accuracy 1/2, even on the difficult distri-
butions of examples produced by boosting [2, 5, 7, 15].
However, the accuracy 1/2 reguirement can often be a dif-
ficulty for less powerful weak learners, such as the smple
attribute-val uetests studied by Holte[12], and used by Jack-
son and Craven [13] and Freund and Schapire [7] in their
boosting experiments. Although overall error rate is often
better when more powerful wesk learners are used, these
less expressive wesk learners have the advantage that the
final combined hypothesisis usually less complicated, and
computation time may be more reasonable, especially for
very large datasets.

Freund and Schapire [8] provide one solution to this
problem by modifying the form of the weak hypotheses
and refining the goal of the weak learner. In this approach,
rather than predicting a single class for each example, the
weak learner chooses a set of “plausible’ labels for each
example. For instance, in a character recognition task, the
weak hypothesis may predict that a particular example is
either a“6,” “8” or “9,” rather than choosing just asingle
label. Such a weak hypothesisis then evaluated using a
“pseudoloss’ measure which, for a given example, penal-
izestheweak hypothesisfor (1) failingtoincludethecorrect
label in the predicted plausible labdl set, and (2) for each
incorrect label which isincluded in the plausible set. The
final combined hypothesis, for agiven example, choosesthe
single label which occurs most frequently in the plausible
label sets chosen by the weak hypotheses (possibly giving
more or less weight to some of the weak hypotheses).



Given: (z1,y1),. .., (Tm,ym) Wherez; € X, y; € Y
Fort=1,...,T:

¢ Computedistribution D, over {1,..., m}.
e Computecoloring u; : Y — {0, 1}.
e Train weak learner on examples
(x1, e (y1)), - - -, (xm, e (ym)) weighted according to D,.
o Get weak hypothesish, : X — {0, 1}.

Compute coefficientsay, . .
Output the final hypothesis:

a7 € R.
T

Hiira () = arg ggz aihi(z) = pe(0)]
t=1

Figure 1: A generic algorithm combining boosting and ECOC.

The exact form of the pseudoloss is under the control
of the boosting algorithm, and the weak |earning algorithm
must therefore be designed to handle changesin theform of
the loss measure. This design gives the boosting algorithm
the freedom to focus the weak learner not only on the hard
to predict examples, but a so onthelabel swhich are hardest
to distinguish from the correct label.

This approach works well experimentally [7], but suf-
fers certain drawbacks. Firdt, it requires the design of a
weak |learner which isresponsive to the pseudol oss defined
by the boosting algorithm and whose hypotheses generate
predictionsin theform of plausibility sets. Since most “ off-
the-shelf” learning algorithmsare error-based, thismay de-
mand extra effort and creativity on the part of the program-
mer (and may be completely impossibleif the source code
for the weak learning algorithmis unavail able).

The second drawback of the pseudoloss approach is
that it can be fairly dow. Typically, the running time of
the weak learner is O (k) times slower than that of an error-
based agorithm for a k-class problem.

In this paper, we describe an aternative method for
boosting multiclasslearning a gorithms. Our method com-
bines boosting with Dietterich and Bakiri's [4] approach
based on error-correcting output codes (ECOC), which is
designed to handle multiclass problems using only abinary
learning a gorithm.

Briefly, their approach works as follows: As in boost-
ing, a given “weak” learning agorithm (which need only
be designed for two-class problems) is rerun repeatedly.
However, unlikeboosting, the examples are not reweighted.
Instead, on each round, the label sassigned to each example
are modified so asto create anew binary labeling of thedata
which isinduced by asimple mapping from the set of |abels
to {0, 1}. The sequence of bit assignments for each of the
k labels can then be viewed as a “code word.” A given
test example isthen classified by choosing the label whose
associated code word is closest in Hamming distanceto the
sequence of predictions generated by the weak hypothe-
ses. This coding-theoretic interpretation led Dietterich and

Given: (131~7 Y1)y .-, (Tm, ym) Wherez; € X, y; € Y
Initialize D1(3, £) = [€ # yi]l/(m(k — 1))

/* uniform over all incorrect labels*/
Fort=1,...,T:

¢ Trainweak |learner using pseudolossdefined by D..
o Get weak hypothesish; : X — 2¥.
o Let

=1 LEY
e Leta; = %In (1g€t)
e Update '
Dt+1(l;7 Z) = . .
Di(i,0) - exp (e ([ys & he(we)] + [€ € he(2i)]))

Z

where Z, isanormalization factor (chosen so that Dt+1 will
sumto 1).

Output the final hypothesis:

T
Hiina () = arg Z@a}(Z; a [t € hu(x)].
t=

Figure 2:
BoosT.M2.

The pseudoloss-based boosting algorithm ADA-

Bakiri to the beautiful idea of choosing code words with
strong error-correcting properties.

The algorithm presented in this paper is a hybrid of
the boosting and ECOC approaches. As in boosting, on
each round of rerunning the weak |earner, the examples are
reweighted in a manner focusing on the hardest examples.
Then, as in ECOC, the labels are modified to create a bi-
nary classification problem. The result is an algorithm that
combines the benefits of both approaches. Asin ECOC,
the weak learning agorithm need only be able to handle
binary problems, and with respect to ordinary error rather
than the more complicated and time-consuming pseudol oss.
Likeboosting, thea gorithm comeswith astrongtheoretical
guarantee, namely, that if theweak learner can consistently
generate weak hypotheses that are slightly better than ran-
dom guessing (with respect to the distribution and binary
example labeling on which it was trained), then the error
of the fina combined hypothesis can be made arbitrarily
small. Thisisthe main theoretical result of this paper.

In the rest of the paper, we describe the new agorithm
indetail and prove astrong theoretical bound ontheerror of
thefina hypothesis. We then describe the results of several
experiments comparing the new algorithm to a number of
other voting methods (including ECOC and pseudol oss-
based boosting).



Given: (131~7 Y1)y .-, (Tm, ym) Wherez; € X, y; € Y.
Initialize D1(¢, £) asin Figure 2.
Fort=1,...,T:

e Computecoloring i, : ¥ — {0, 1}.
o Letl; = Zzl Zzey Dt(ivz)[[“t(yi) # “t(z)]]'
Dy(i,¢ ; £
o LetDi(i) = 2 ey Dl )[[[Jut(y ) # (O]
e Trainweak learner on @@mple%
(x1, e (Y1), - - -, (xm, e (ym)) weighted according to D,
Get weak hypothesish, : X — {0, 1}.
Lethe(z) ={ €Y : h(z) = ne(0)}.
Leté; and o beasin Figure 2.
Compute D, 41(z, £) asin Figure 2.

Output the final hypothesis:

Hiira () = &g rggz_;at[[ht(x) = we(O)].

Figure 3: The algorithm AbDAB0OST.OC combining boosting and
output coding.

2 THE NEW ALGORITHM

Both boosting and ECOC work iteratively in rounds
by rerunning the weak learning algorithm many times. In
boosting, the wesak learner is trained on each round on a
new distribution or weighting of the training examples. In
ECOC, the weak learner is trained on a new partition of
the class labels which induces a new binary |abeling of the
data

The key idea of the agorithm proposed in this paper
is to combine both approaches, i.e., on each round, both
to reweight and relabel the data. Genericaly, then, our
algorithm looks likethe onein Figure 1.

In thefigure, and later in the paper, we use the notation
[=] which we define to be 1 if proposition = holds and 0
otherwise.

Thealgorithmisgiven m training examples of theform
(z;,y;) where x; is chosen from some space X, and the
associated class label y; is chosen from a set Y of finite
cardinality k. On each round ¢, the algorithm computes a
distribution D, over the training examples, and a function
1, which werefer to as acoloring and which partitionsthe
label set Y into two parts. The datais then relabeled ac-
cordingto y, and theweak learner trained on thisrelabeled
data weighted according to D, .

The resulting weak hypothesisis denoted h;. The goa
of the weak learning agorithm is to minimize its training
error with respect to therelabeled and reweighted data, that
is, to minimize

e = Y Di()[helwi) # pe ()]

i=1
= Priup, [he(:) # pe(wi)] - (1)

# examples # # attributes  |missing
name train | test |classes| disc. | cont. |values
soybean-small a7 - 4 35
iris 150 - 3 - 4
glass 214 - 7 - 9 -
audiology 226 - 24 69 - X
soybean-large 307 376 19 35 - X
vehicle 846 - 4 - 18 -
vowel 528 462 11 - 10
segmentation 2310 - 7 - 19
splice 3190 - 3 60 -
satimage 4435 2000 6 - 36
letter 16000 4000 26 - 16

Table 1: The benchmark machine learning problems used in the
experiments.

Finally, the combined hypothesis Hing iS computed.
This hypothesis can be viewed as a kind of weighted vote
of the weak hypotheses. Given an example x, we interpret
the binary classification s, (x) of weak hypothesis h; as a
votefor al of the labels ¢ for which k. (z) = p:(£), i.e, all
of the labels with the “color” selected by h;. Thisvoteis
weighted by somereal number «,. Thelabel £ receiving the
most weighted votesisthen chosen as Hiing's classification
of z. (Tiesare broken arbitrarily, and, in our anaysis, are
counted as errors.)

To compl etethe description of thealgorithm, we need to
deriveareasonabl e choicefor thedistribution D;, thecolor-
ing p; and the coefficients «;. To do this, we will reduceto
the pseudol oss method used by Freund and Schapire [8] in
the development of ADABOOST.M2, one of the multiclass
versions of their boosting algorithm. This reduction will
also lead to an analysis of the resulting algorithm.

21 REVIEW OF ADABOOST.M2

We begin with areview of Freund and Schapire's[8] pseu-
doloss method and of the boosting algorithm ADA-
Boost.M2, shownin Figure2. On each round, theboosting
algorithm computesadistribution D; over {1,... m} x Y
such that D, (¢, y;) = Ofor al i. In other words, D, can be
viewed asadistribution over pairsof examplesand incorrect
labels. Theideaisto enable the boosting algorithmto con-
centrate theweak |earner not only on the hard examples, but
also on theincorrect label swhich are hardest to distinguish
from the correct labdl.

Given this distribution, the week learner computes a
“soft” hypothesis' h; : X — 2¥ where 2" is the power
set of Y. As explained in the introduction, we interpret
he(x) as a set of “plausible’ labels for a given example
z. Intuitively, it is easier for the weak learner to identify
a set of labels which may plausibly be correct, rather than
selecting asingle label.

Freund and Schapire[8] allow soft hypothesesto take amore
general form as functions mapping X x Y into [0, 1]. The soft
hypotheseswe consider are equivalent to restricting theirs to have
range {0, 1}. Sincethissimplifying restriction is a special case of
theirs, there is no problem applying their results.
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Figure 4: Comparison of several learning methods using FINDATTRTEST as the weak learner.

The goa of the weak learner isto minimize the pseu-
doloss:

G=3>> Di(i,0) ([yi & he(xi)]+[€ € he(xi)])-
i=1L€Y

Thisloss measure penalizes theweak hypothesisfor failing
to includethe correct label y; inthe plausible set associated
withexample z; (sothat y; & h:(x;)), and further penalizes
eachincorrect label £ # y; whichisincludedintheplausible
set (so that £ € hy(x;)). (Recdl that D;(i,y;) = 0 s0
correct labels contribute nothing to the sum.) Notethat the
pseudolossis awaysin [0, 1] and that pseudoloss 1/2 can
be obtained trivially by setting . (x) = @ for al .

Freund and Schapire's [8] ADABOOST.M2 agorithm
works by increasing, on each round, the weight placed on
examples x; and incorrect labels £ which contribute most to
the pseudoloss. The combined hypothesisthen chooses the
singlelabel which occursin thelargest number of plausible
label sets chosen by the weak hypotheses, where the votes
of some weak hypotheses count for more than others.

Leté, = 1/2—4;. Freund and Schapire[8, Theorem 11]
show that the training error of the combined hypothesis
Hiina Of ADABOOST.M2 is bounded by

(k—l)H\/l—%Zs(k—l)ap(—Znyf) (2)

Thus, if the4,’s are bounded awvay from 1/2, then training
error goesto zero exponentialy fast. Notethat, althoughthe

weak hypotheses are eval uated with respect to pseudol oss,
the final hypothesis Hing is analyzed with respect to the
usual error measure.

Freund and Schapire also give a method of bounding
the generaization error of the combined hypothesis, but,
more recently, Schapire et al. [18] have come up with a
better analysis of voting methods such as ADABOOST.M2.
Their analysis yields bounds on the generalization error in
terms of the 4;’s, the number of training examples, and a
measure of the complexity of the weak hypothesis space
(and independent of the number of rounds of boosting).

2.2 OUTPUT CODING AND PSEUDOL OSS

We are now ready to describe the new hybrid agorithm.
Returning to Figure 1, suppose that a weak hypothesis
hy X — {0, 1} has been computed with respect to some
coloring i : Y — {0, 1}. Asmentioned earlier, thebinary
classification of h; on an example « can be viewed asavote
forthelabels forwhich . (z) = . (£), or, said differently,
these labels are identified as “plausible’ by h;. Therefore,
inreducing to the pseudol oss setting, itisnatural toidentify
he with the soft hypothesis i, defined by:

he(@) = p H(he(@) = {LEY T he(x) = pe(0)}.

Given this choice of soft hypothesis, the update of the
distribution D, isdefined for usaready by ADABOOST.M2.
We will see that D, and x, can in turn be defined sensibly
interms of D;.
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Figure 5: Comparison of several learning methods using FINDDECRULE as the weak |learner.

[t will beimportant bel ow to relate the pseudol oss of hy
to the error of h;. The pseudoloss of ~; can be computed
using the following calcul ation:

H([vi ¢ ho(z)] + ¢ € ]Nlt(l‘i)]])
= I([he(@i) # pe(w)] + [he(ei) = e (O)])
3 i pe (i) = me(0)

{ 1 ifpe(yi) # he(zi) = pe(0)
0 if pe(yi) = hel(mi) # pe(0)

= Y= EG,0) +n() B (i, 0) (3

where (4, £) = [ue(y:) # ()] indicatesif the coloring
of ¢ differs from that of the correct label y;, and n.(i) =
[he(xs) # pe(y:)] indicates if h, is incorrect on the éth
relabeled example.

A convenient choicefor D, turnsout to bethefollowing:

Diey Dilis OB 0
S ey DG B0

Le Ut = 2?1:1 ZZEY Dt(Z,E)Et(Z,E), and reca” that € =
S Di(4)me () is the training error of k.. Then, from
Eq. (3), h¢'spseudolossis

& o= 3> Dili,0)(1— Ei(i,0)

i=1L€Y

+Z77t(i)

Di(i) =

> Di(i, ) Eu(i, €)

Ley

= %(1_Ut)+€tUt (4)

by definition of U;, e, and D;. Thus, with this definition
of D,, the pseudoloss ¢; of h; can be expressed simply in
terms of the error ¢, of h,. Settinge; = 1/2 — ¢, Eq. (4)
becomes
& = % — Ut
So, if hy haserror e, dightly better than therandom guessing
error rate of 1/2, then the pseudoloss of A; aso will be
dlightly better than 1/2, provided that U; > 0.
Theresulting a gorithm, called ADABOOST.OC, isshown
in Figure 3. By our method of derivation, thisalgorithmis
in fact a specia case of ADABOOST.M2 in which the weak
soft hypothesis i, has a particular form. Therefore, we can
immediately apply theresults of Freund and Schapire[8] to
obtai n the following theorem, which isthe main theoretical
result of this paper:

Theorem 1 Let p, ..., pp be any sequence of colorings
and let hy, ..., hp be any sequence of weak hypotheses
returned by the weak learner. Let ¢, = 1/2 — ~; be the
error of h; with respect to the relabeled and reweighted
data on which it was trained (asin Eq. (1)). Let U; be as
in Figure 3. Then thetraining error of the final hypothesis
Hiina Of algorithm ADABOOST.OC is bounded by

(k—1) H 1—4(y:U)2 < (k-1 e(p( 22 (v U) )

t=1
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The proof of thistheorem followsdirectly from Eq. (2)
and the argument given above on the rel ationship between
the error of the weak hypotheses and the pseudol oss of the
associated weak soft hypotheses.

We will show below several methods of choosing a
coloring u; which gives a value of U; > 1/2 (possibly
in expectation). Plugging U; = 1/2 into the bound in
Theorem 1 gives a bound of

(k’—l)H\/l—%ZS(k—l)ap(—%Z%z)

on thetraining error. Note that this bound approaches zero
exponentially fast whenever v, isbounded avay from zero.
Thus, if the weak learner can perform just dightly better
than random guessing on the binary problems on which it
istrained (so that all the ~,’s are lower bounded by some
~ > 0), then the training error of the fina hypothesis can
quickly be made arbitrarily small.

Although, for simplicity, we have focused only on the
training error, the generalization error can aso be bounded
using the methods of Schapire et a. [18]. Thisleadsto a
bound on the generalization error of the combined hypoth-
esis of theform

T
(k= 1) TT(2 = 29 U0) 2 (1 4 29,17 M/ 2F
t=1

+0 (i (Iog(m/d)(k—l—d log(mn/d)) +|Og(1/6)) 1/2)

Jm 02

which holds for al # > 0 with probability at least 1 — 4.
Here, d isthe VC-dimension of the weak hypothesis space
used by theweak |earner.

The second term will be small when the sample size m
is sufficiently large relative to the VC-dimension. And, as
with the training error, for small values of 4, the first term
dropsto zero exponentially fast whenever ~. U, is bounded
away from zero. Details omitted for lack of space.

2.3 CHOOSING THE COLORING

It remains then only to show how to choose a coloring ;.
From Theorem 1, it is clear that we want to choose p; to
maximize

U= Dii, Om(w) # m(0]. (5

i=1L€Y

Notethat thevaueof U, dependsonly on D, and ¢ and not
on the weak hypothesis. This means that we can attempt
to find p» maximizing U, prior to calling the weak |earner.
Here, we propose a number of optionsfor choosing ;.

The simplest option isto choose each value y; (£) uni-
formly and independently a random from {0, 1} for each
label ¢ € Y. Then for any ¢ # ¢, the probability that
ue(f) # pue(¢) is exactly 1/2. Therefore, the expected
value of U; isaso exactly 1/2.

A dlightly more refined method is to choose p; a ran-
dom but ensuring a (near) even split of the labels. That is,
we choose i, uniformly at random among all coloringsfor
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which exactly | k/2] of the labels are mapped to O. It can
be shown then that, if £ # ¢, then u(£) # p:(¢) with
probability (1/2)(1+ 1/(k — 1)) so the expected value of
U will dso bethisvalue, which isdlightly better than 1/2.
Thisisthe method used in the experimentsin Section 3.

A last method is to attempt to use combinatoria opti-
mization methods to maximize U;. Eq. (5) can be rewritten

Ur= > Dne(0) # pel)uwe (€, 0)

L0EY

where w.(¢,¢) = Y27, Di(i, 0)[¢' = y;]. Writtenin this
form, it is straightforward to show that maximizing U; isa
special case of the*MAX-CUT” problem, which isknown
to be NP-complete [14], but for which various, rather so-
phi sticated approximationmethodsare also known [ 10, 11].
We did not attempt to use any of these methods, and it is
plausible that one of these might improve performance.

In addition, various greedy hill-climbing methods can
a so beused which guarantee U; > 1/2. Experimentsusing
these methods were attempted, but did not give significant
improvement over those reported in Section 3 (details not
reported).

3 EXPERIMENTS

We tested our method experimentally on a collection of
eleven multiclass benchmark problems available from the

repository at University of Caiforniaat Irvine. > Some of
the characteristics of the benchmarks used are summarized
inTable 1. If atest set was already provided, experiments
were run 20 times and the results averaged (since many of
the learning algorithmsused are randomized). If no test set
was provided, then 10-fold cross validation was used and
rerun 10 times for atotal of 100 runs of each agorithm.

For the weak |earner, we used three algorithms of vary-
ing degrees of expressiveness. Thefirst and simplest, called
FINDATTRTEST, outputsa hypothesisthat makes its predic-
tion based on the result of a single test comparing one of
the attributes to one of its possible values. For discrete
attributes, equality is tested; for continuous attributes, a
threshold value is compared. The best hypothesis of this
form which minimizes error or pseudol oss can be found by
adirect and efficient search method. These weak |earners
are similar in spirit to those studied by Holte[12].

Thesecond weak |earner, called FINDDECRULE, outputs
ahypothesi swhich tests on aconjunction of attribute-value
comparisons. Such a rule is built up using an entropic
potentia as in C4.5 and then pruned back using held-out
data. This method is based loosely on the rule-formation
part of Cohen’s RIPPER agorithm [3] and Furnkranz and
Widmer’'s IREP algorithm [9].

The agorithms FINDATTRTEST and FINDDECRULE are
described in more detail by Freund and Schapire[7]. Note

2URL: http://www.ics.uci.edu/~mlearn/M L Repository.html
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that both al gorithmsfind asinglerulefor theentire problem,
as opposed to learning one rule per class.

Thelast weak learner tested is Quinlan’sC4.5 decision-
tree algorithm [16], with all default options and pruning
turned on. Also, rather than modify C4.5to handleweighted
examples, on each round ¢ of boosting, we reran C4.5 on
(unweighted) examples which were randomly resampled
according to D;.

We first compared ADAB0OOST.OC to boosting (with-
out ECOC), i.e., to ADABOOST.M2 for FINDATTRTEST and
FINDDECRULE, and, for C4.5, to the error-based multiclass
version of ADABOOST called ADABOOST.M1. Since our
purpose was to derive an algorithm as effective as boost-
ing but one that only requires an error-based (rather than
pseudol oss-based) weak |earner, we then compared our al-
gorithm to various other methods which combine error-
based weak hypotheses. These were:

o Dietterich and Bakiri’s ECOC method [4]. However,
rather than searching for an error-correcting code, we
chose the “output code” at random by selecting each
1 to be a random (nearly) even split (as described
in Section 2.3). Such arandom code is highly likely
to have error-correcting properties, but it is certainly
plausible that a more carefully designed code would
perform better than the results reported here.

e Breiman's[1] “bagging” agorithm, which reruns the
weak learner on randomly chosen bootstrap samples.

e Breiman's [2] “Arc-x4" agorithm, which, like AD-
ABoOOSsT, adaptively reweights the data, but using a
different rule for computing the distribution over ex-
amples in a manner that does not require weak hy-
potheses with error less than 1/2. Thisagorithmwas
shown by Breiman to mimic the performance of Ab-
ABoosT when combined with CART, but itstheoretical
properties are unknown.

Each algorithm was run for 500 rounds. The results
are shown in Figures 4, 5 and 6. The z-axis shows the
number of rounds, and the y-axis shows the test error of
each algorithm (in percent). Note the log scale used in all
figures.

For C4.5, there does not seem to be any advantageto us-
ing ADABOOST.OC over ADABOOST.M1, and in somecases,
such as “audiology,” the performance is actually worse for
ADABOOST.OC. We a so do not expect time savings in this
case since we are comparing to ADABOOST.M1 which is
already error-based.

For theother, less expressive, weak |earners, we see that
acrossall datasets, both ADAB0OOST.OC and ADABOOST.M2
quickly match the performance of the other three error-
based methods, and are usually clearly superior in perfor-
mance.

Round for round, ADAB0OST.OC isoften unableto keep
up with AbABoOoST.M2. However, the savingsin compu-
tation time can be very significant since error-based algo-
rithmsare usualy faster than pseudol oss-based a gorithms.



Figures 7 and 8 show a plot of computation time (in sec-
onds) versus test error rate for these two agorithms. (The
time figures used include both training time and eval uation
on test data) These plots show that, when computation
timeislimited, the performance of ADAB0OST.OC can of-
ten surpassthat of ADABOOST.M2.

4 CONCLUSION

In conclusion, we have described a new method for training
combinations of classifiers that comes with the theoreti-
cal guarantees of a boosting algorithm, but, like an output
coding algorithm, only requires that the weak learner be
capable of handling binary classification problems.

Except for highly expressive weak learners (such as
C4.5), the experiments show that this method is a compro-
mise: Thetest error performance can often, but not always,
keep up with pseudol oss-based boosting. On the other hand,
thetime savingsand rel ative ease of programming the weak
learning a gorithm can be significant.
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