
Machine Learning: Proceedings of the Fourteenth International Conference, 1997.

Using output codes to boost multiclass learning problems

Robert E. Schapire
AT&T Labs�

600 Mountain Avenue, Room 2A-424
Murray Hill, NJ 07974

schapire@research.att.com

Abstract. This paper describes a new technique for solv-
ing multiclass learning problems by combining Freund and
Schapire’s boosting algorithm with the main ideas of Diet-
terich and Bakiri’s method of error-correcting output codes
(ECOC). Boosting is a general method of improving the ac-
curacy of a given base or “weak” learning algorithm. ECOC
is a robust method of solving multiclass learning problems
by reducing to a sequence of two-class problems. We show
that our new hybrid method has advantages of both: Like
ECOC, our method only requires that the base learning al-
gorithm work on binary-labeled data. Like boosting, we
prove that the method comes with strong theoretical guar-
antees on the training and generalization error of the final
combined hypothesis assuming only that the base learning
algorithm perform slightly better than random guessing.
Althoughprevious methods were known for boostingmulti-
class problems, the new method may be significantly faster
and require less programming effort in creating the base
learning algorithm. We also compare the new algorithm
experimentally to other voting methods.

1 INTRODUCTION
Boosting is a general method for improving the accuracy of
a learning algorithm. By definition, a boosting algorithm is
one which can provably convert any base or “weak” learning
algorithm with accuracy just slightly better than random
guessing into one with arbitrarily high accuracy. Boosting
algorithms work by repeatedly reweighting the examples in
the training set and rerunning the weak learning algorithm
on these reweighted examples. Boosting effectively forces
the weak learning algorithm to concentrate on the hardest
examples. Typically, the final combined hypothesis is a
weighted vote of the weak hypotheses.

The first boosting algorithms were discovered by Scha-
pire [17] and Freund [6]. Freund and Schapire’s most re-
cent boosting algorithm [8], called ADABOOST, has been
shown to be very effective in experiments conducted by
Drucker and Cortes [5], Jackson and Craven [13], Freund
and Schapire [7], Quinlan [15], Breiman [2] and others.

�AT&T Labs is planning to move from Murray Hill. The new
address will be: 180 Park Avenue, Florham Park, NJ 07932-0971.

In its simplest form, ADABOOST requires that the accu-
racy of each weak hypothesis (or classification rule) pro-
duced by the weak learner must exceed 1=2. For binary
classification problems (in which each example is labeled
by a value in f0; 1g), this requirement is about as minimal
as can be hoped for since random guessing will achieve
accuracy 1=2. However, for multiclass problems in which
k > 2 labels are possible, accuracy 1=2 may be much harder
to achieve than the random-guessing accuracy rate of 1=k.

For fairly powerful weak learners, such as decision-tree
algorithms, this does not seem to be a problem. Experi-
mentally, C4.5 and CART seem to be capable of producing
hypotheses with accuracy 1=2, even on the difficult distri-
butions of examples produced by boosting [2, 5, 7, 15].
However, the accuracy 1=2 requirement can often be a dif-
ficulty for less powerful weak learners, such as the simple
attribute-value tests studied by Holte [12], and used by Jack-
son and Craven [13] and Freund and Schapire [7] in their
boosting experiments. Although overall error rate is often
better when more powerful weak learners are used, these
less expressive weak learners have the advantage that the
final combined hypothesis is usually less complicated, and
computation time may be more reasonable, especially for
very large datasets.

Freund and Schapire [8] provide one solution to this
problem by modifying the form of the weak hypotheses
and refining the goal of the weak learner. In this approach,
rather than predicting a single class for each example, the
weak learner chooses a set of “plausible” labels for each
example. For instance, in a character recognition task, the
weak hypothesis may predict that a particular example is
either a “6,” “8” or “9,” rather than choosing just a single
label. Such a weak hypothesis is then evaluated using a
“pseudoloss” measure which, for a given example, penal-
izes the weak hypothesis for (1) failing to include the correct
label in the predicted plausible label set, and (2) for each
incorrect label which is included in the plausible set. The
final combined hypothesis, for a given example, chooses the
single label which occurs most frequently in the plausible
label sets chosen by the weak hypotheses (possibly giving
more or less weight to some of the weak hypotheses).

Given: (x1; y1); : : : ; (xm; ym) where x
i

2 X , y
i

2 Y

For t = 1; : : : ; T :

� Compute distribution D
t

over f1; : : : ; mg.
� Compute coloring �

t

: Y ! f0; 1g.
� Train weak learner on examples

(x1; �t(y1)); : : : ; (xm; �t(ym)) weighted according to D
t

.
� Get weak hypothesis h

t

: X ! f0; 1g.

Compute coefficients�1; : : : ; �T 2R.
Output the final hypothesis:

Hfinal(x) = arg max
`2Y

T

X

t=1

�

t

[[h

t

(x) = �

t

(`)]]:

Figure 1: A generic algorithm combining boosting and ECOC.

The exact form of the pseudoloss is under the control
of the boosting algorithm, and the weak learning algorithm
must therefore be designed to handle changes in the form of
the loss measure. This design gives the boosting algorithm
the freedom to focus the weak learner not only on the hard
to predict examples, but also on the labels which are hardest
to distinguish from the correct label.

This approach works well experimentally [7], but suf-
fers certain drawbacks. First, it requires the design of a
weak learner which is responsive to the pseudoloss defined
by the boosting algorithm and whose hypotheses generate
predictions in the form of plausibility sets. Since most “off-
the-shelf” learning algorithms are error-based, this may de-
mand extra effort and creativity on the part of the program-
mer (and may be completely impossible if the source code
for the weak learning algorithm is unavailable).

The second drawback of the pseudoloss approach is
that it can be fairly slow. Typically, the running time of
the weak learner is O(k) times slower than that of an error-
based algorithm for a k-class problem.

In this paper, we describe an alternative method for
boosting multiclass learning algorithms. Our method com-
bines boosting with Dietterich and Bakiri’s [4] approach
based on error-correcting output codes (ECOC), which is
designed to handle multiclass problems using only a binary
learning algorithm.

Briefly, their approach works as follows: As in boost-
ing, a given “weak” learning algorithm (which need only
be designed for two-class problems) is rerun repeatedly.
However, unlike boosting, the examples are not reweighted.
Instead, on each round, the labels assigned to each example
are modified so as to create a new binary labeling of the data
which is induced by a simple mapping from the set of labels
to f0; 1g. The sequence of bit assignments for each of the
k labels can then be viewed as a “code word.” A given
test example is then classified by choosing the label whose
associated code word is closest in Hamming distance to the
sequence of predictions generated by the weak hypothe-
ses. This coding-theoretic interpretation led Dietterich and

Given: (x1; y1); : : : ; (xm; ym) where x
i

2 X , y
i

2 Y

Initialize D̃1(i; `) = [[` 6= y

i

]]=(m(k� 1))
/* uniform over all incorrect labels */

For t = 1; : : : ; T :

� Train weak learner using pseudoloss defined by D̃
t

.
� Get weak hypothesis h̃

t

: X ! 2Y .
� Let

�̃

t

=

1
2

m

X

i=1

X

`2Y

D̃

t

(i; `) �

�

[[y

i

62 h̃

t

(x

i

)]] + [[` 2 h̃

t

(x

i

)]]

�

� Let �
t

=

1
2 ln
�

1 � �̃

t

�̃

t

�

.

� Update

D̃

t+1(i; `) =

D̃

t

(i; `) � exp
�

�

t

�

[[y

i

62 h̃

t

(x

i

)]] + [[` 2 h̃

t

(x

i

)]]

��

Z

t

whereZ
t

is a normalization factor (chosen so that D̃
t+1 will

sum to 1).

Output the final hypothesis:

Hfinal(x) = arg max
`2Y

T

X

t=1

�

t

[[` 2 h̃

t

(x)]]:

Figure 2: The pseudoloss-based boosting algorithm ADA-
BOOST.M2.

Bakiri to the beautiful idea of choosing code words with
strong error-correcting properties.

The algorithm presented in this paper is a hybrid of
the boosting and ECOC approaches. As in boosting, on
each round of rerunning the weak learner, the examples are
reweighted in a manner focusing on the hardest examples.
Then, as in ECOC, the labels are modified to create a bi-
nary classification problem. The result is an algorithm that
combines the benefits of both approaches: As in ECOC,
the weak learning algorithm need only be able to handle
binary problems, and with respect to ordinary error rather
than the more complicated and time-consuming pseudoloss.
Like boosting, the algorithmcomes with a strong theoretical
guarantee, namely, that if the weak learner can consistently
generate weak hypotheses that are slightly better than ran-
dom guessing (with respect to the distribution and binary
example labeling on which it was trained), then the error
of the final combined hypothesis can be made arbitrarily
small. This is the main theoretical result of this paper.

In the rest of the paper, we describe the new algorithm
in detail and prove a strong theoretical bound on the error of
the final hypothesis. We then describe the results of several
experiments comparing the new algorithm to a number of
other voting methods (including ECOC and pseudoloss-
based boosting).

2

Given: (x1; y1); : : : ; (xm; ym) where x
i

2 X , y
i

2 Y .
Initialize D̃1(i; `) as in Figure 2.
For t = 1; : : : ; T :

� Compute coloring �
t

: Y ! f0; 1g.
� Let U

t

=

P

m

i=1

P

`2Y

D̃

t

(i; `)[[�

t

(y

i

) 6= �

t

(`)]].

� Let D
t

(i) =

P

`2Y

D̃

t

(i; `)[[�

t

(y

i

) 6= �

t

(`)]]

U

t

.

� Train weak learner on examples
(x1; �t(y1)); : : : ; (xm; �t(ym)) weighted according to D

t

.
� Get weak hypothesis h

t

: X ! f0; 1g.
� Let h̃

t

(x) = f` 2 Y : h
t

(x) = �

t

(`)g.
� Let �̃

t

and �
t

be as in Figure 2.
� Compute D̃

t+1(i; `) as in Figure 2.

Output the final hypothesis:

Hfinal(x) = arg max
`2Y

T

X

t=1

�

t

[[h

t

(x) = �

t

(`)]]:

Figure 3: The algorithm ADABOOST.OC combining boosting and
output coding.

2 THE NEW ALGORITHM

Both boosting and ECOC work iteratively in rounds
by rerunning the weak learning algorithm many times. In
boosting, the weak learner is trained on each round on a
new distribution or weighting of the training examples. In
ECOC, the weak learner is trained on a new partition of
the class labels which induces a new binary labeling of the
data.

The key idea of the algorithm proposed in this paper
is to combine both approaches, i.e., on each round, both
to reweight and relabel the data. Generically, then, our
algorithm looks like the one in Figure 1.

In the figure, and later in the paper, we use the notation
[[�]] which we define to be 1 if proposition � holds and 0
otherwise.

The algorithm is given m training examples of the form
(x

i

; y

i

) where x

i

is chosen from some space X, and the
associated class label y

i

is chosen from a set Y of finite
cardinality k. On each round t, the algorithm computes a
distribution D

t

over the training examples, and a function
�

t

, which we refer to as a coloring and which partitions the
label set Y into two parts. The data is then relabeled ac-
cording to�

t

, and the weak learner trained on this relabeled
data weighted according to D

t

.
The resulting weak hypothesis is denoted h

t

. The goal
of the weak learning algorithm is to minimize its training
error with respect to the relabeled and reweighted data, that
is, to minimize

�

t

=

m

X

i=1

D

t

(i)[[h

t

(x

i

) 6= �

t

(y

i

)]]

= Pr

i�D

t

�

h

t

(x

i

) 6= �

t

(y

i

)

�

: (1)

examples # # attributes missing
name train test classes disc. cont. values
soybean-small 47 - 4 35 - -
iris 150 - 3 - 4 -
glass 214 - 7 - 9 -
audiology 226 - 24 69 - �

soybean-large 307 376 19 35 - �

vehicle 846 - 4 - 18 -
vowel 528 462 11 - 10 -
segmentation 2310 - 7 - 19 -
splice 3190 - 3 60 - -
satimage 4435 2000 6 - 36 -
letter 16000 4000 26 - 16 -

Table 1: The benchmark machine learning problems used in the
experiments.

Finally, the combined hypothesis Hfinal is computed.
This hypothesis can be viewed as a kind of weighted vote
of the weak hypotheses. Given an example x, we interpret
the binary classification h

t

(x) of weak hypothesis h
t

as a
vote for all of the labels ` for which h

t

(x) = �

t

(`), i.e., all
of the labels with the “color” selected by h

t

. This vote is
weighted by some real number �

t

. The label ` receiving the
most weighted votes is then chosen as Hfinal’s classification
of x. (Ties are broken arbitrarily, and, in our analysis, are
counted as errors.)

To complete the description of the algorithm, we need to
derive a reasonable choice for the distributionD

t

, the color-
ing �

t

and the coefficients �
t

. To do this, we will reduce to
the pseudoloss method used by Freund and Schapire [8] in
the development of ADABOOST.M2, one of the multiclass
versions of their boosting algorithm. This reduction will
also lead to an analysis of the resulting algorithm.

2.1 REVIEW OF ADABOOST.M2

We begin with a review of Freund and Schapire’s [8] pseu-
doloss method and of the boosting algorithm ADA-
BOOST.M2, shown in Figure 2. On each round, the boosting
algorithm computes a distribution D̃

t

over f1; : : : ;mg�Y

such that D̃
t

(i; y

i

) = 0 for all i. In other words, D̃
t

can be
viewed as a distribution over pairs of examples and incorrect
labels. The idea is to enable the boosting algorithm to con-
centrate the weak learner not only on the hard examples, but
also on the incorrect labels which are hardest to distinguish
from the correct label.

Given this distribution, the weak learner computes a
“soft” hypothesis1

h̃

t

: X ! 2Y where 2Y is the power
set of Y . As explained in the introduction, we interpret
h̃

t

(x) as a set of “plausible” labels for a given example
x. Intuitively, it is easier for the weak learner to identify
a set of labels which may plausibly be correct, rather than
selecting a single label.

1Freund and Schapire [8] allow soft hypotheses to take a more
general form as functions mapping X � Y into [0; 1]. The soft
hypotheses we consider are equivalent to restricting theirs to have
range f0; 1g. Since this simplifying restriction is a special case of
theirs, there is no problem applying their results.

3

5 10. 50. 100. 500.

soybean-small

0

10

20

30

40

50

5 10. 50. 100. 500.

iris

0

10

20

30

40

5 10. 50. 100. 500.

glass

0
10
20
30
40
50
60
70

5 10. 50. 100. 500.

audiology

0

20

40

60

80

5 10. 50. 100. 500.

soybean-large

0

20

40

60

80

5 10. 50. 100. 500.

vehicle

0

10

20

30

40

50

60

5 10. 50. 100. 500.

vowel

0

20

40

60

80

5 10. 50. 100. 500.

segmentation

0
10
20
30
40
50
60
70

5 10. 50. 100. 500.

splice

0

10

20

30

40

5 10. 50. 100. 500.

satimage

0
10
20
30
40
50
60
70

5 10. 50. 100. 500.

letter

0

20

40

60

80 AdaBoost.OC

AdaBoost.M2

ECOC

Bagging

Arc-x4

Figure 4: Comparison of several learning methods using FINDATTRTEST as the weak learner.

The goal of the weak learner is to minimize the pseu-
doloss:

�̃

t

=

1
2

m

X

i=1

X

`2Y

D̃

t

(i; `) �

�

[[y

i

62 h̃

t

(x

i

)]] + [[` 2 h̃

t

(x

i

)]]

�

:

This loss measure penalizes the weak hypothesis for failing
to include the correct label y

i

in the plausible set associated
with example x

i

(so that y
i

62 h̃

t

(x

i

)), and further penalizes
each incorrect label ` 6= y

i

which is included in the plausible
set (so that ` 2 h̃

t

(x

i

)). (Recall that D̃
t

(i; y

i

) = 0 so
correct labels contribute nothing to the sum.) Note that the
pseudoloss is always in [0; 1] and that pseudoloss 1=2 can
be obtained trivially by setting h̃

t

(x) = ; for all x.
Freund and Schapire’s [8] ADABOOST.M2 algorithm

works by increasing, on each round, the weight placed on
examples x

i

and incorrect labels ` which contribute most to
the pseudoloss. The combined hypothesis then chooses the
single label which occurs in the largest number of plausible
label sets chosen by the weak hypotheses, where the votes
of some weak hypotheses count for more than others.

Let �̃
t

= 1=2�
̃
t

. Freund and Schapire [8, Theorem 11]
show that the training error of the combined hypothesis
Hfinal of ADABOOST.M2 is bounded by

(k � 1)
T

Y

t=1

q

1 � 4
̃2
t

� (k � 1) exp

�2
T

X

t=1

̃

2
t

!

(2)

Thus, if the
̃
t

’s are bounded away from 1=2, then training
error goes to zero exponentially fast. Note that, although the

weak hypotheses are evaluated with respect to pseudoloss,
the final hypothesis Hfinal is analyzed with respect to the
usual error measure.

Freund and Schapire also give a method of bounding
the generalization error of the combined hypothesis, but,
more recently, Schapire et al. [18] have come up with a
better analysis of voting methods such as ADABOOST.M2.
Their analysis yields bounds on the generalization error in
terms of the
̃

t

’s, the number of training examples, and a
measure of the complexity of the weak hypothesis space
(and independent of the number of rounds of boosting).

2.2 OUTPUT CODING AND PSEUDOLOSS

We are now ready to describe the new hybrid algorithm.
Returning to Figure 1, suppose that a weak hypothesis
h

t

: X ! f0; 1g has been computed with respect to some
coloring�

t

: Y ! f0; 1g. As mentioned earlier, the binary
classification of h

t

on an example x can be viewed as a vote
for the labels ` for whichh

t

(x) = �

t

(`), or, said differently,
these labels are identified as “plausible” by h

t

. Therefore,
in reducing to the pseudoloss setting, it is natural to identify
h

t

with the soft hypothesis h̃
t

defined by:

h̃

t

(x) = �

�1
t

(h

t

(x)) = f` 2 Y : h
t

(x) = �

t

(`)g:

Given this choice of soft hypothesis, the update of the
distribution D̃

t

is defined for us already by ADABOOST.M2.
We will see that D

t

and �

t

can in turn be defined sensibly
in terms of D̃

t

.

4

5 10. 50. 100. 500.

soybean-small

0

10

20

30

40

50

5 10. 50. 100. 500.

iris

0
5

10
15
20
25
30
35

5 10. 50. 100. 500.

glass

0

20

40

60

80

5 10. 50. 100. 500.

audiology

0

20

40

60

80

5 10. 50. 100. 500.

soybean-large

0

20

40

60

80

5 10. 50. 100. 500.

vehicle

0

10

20

30

40

50

60

5 10. 50. 100. 500.

vowel

0

20

40

60

80

5 10. 50. 100. 500.

segmentation

0
10
20
30
40
50
60
70

5 10. 50. 100. 500.

splice

0

10

20

30

40

5 10. 50. 100. 500.

satimage

0

10

20

30

40

50

60

70

5 10. 50. 100. 500.

letter

0

20

40

60

80 AdaBoost.OC

AdaBoost.M2

ECOC

Bagging

Arc-x4

Figure 5: Comparison of several learning methods using FINDDECRULE as the weak learner.

It will be important below to relate the pseudoloss of h̃
t

to the error of h
t

. The pseudoloss of h̃
t

can be computed
using the following calculation:

1
2

�

[[y

i

62 h̃

t

(x

i

)]] + [[` 2 h̃

t

(x

i

)]]

�

=

1
2

�

[[h

t

(x

i

) 6= �

t

(y

i

)]] + [[h

t

(x

i

) = �

t

(`)]]

�

=

(1
2 if �

t

(y

i

) = �

t

(`)

1 if �
t

(y

i

) 6= h

t

(x

i

) = �

t

(`)

0 if �
t

(y

i

) = h

t

(x

i

) 6= �

t

(`)

=

1
2 (1 �E

t

(i; `)) + �

t

(i)E

t

(i; `) (3)

where E
t

(i; `) = [[�

t

(y

i

) 6= �

t

(`)]] indicates if the coloring
of ` differs from that of the correct label y

i

, and �

t

(i) =

[[h

t

(x

i

) 6= �

t

(y

i

)]] indicates if h
t

is incorrect on the ith
relabeled example.

A convenient choice forD
t

turns out to be the following:

D

t

(i) =

P

`2Y

D̃

t

(i; `)E

t

(i; `)

P

m

i=1

P

`2Y

D̃

t

(i; `)E

t

(i; `)

:

Let U
t

=

P

m

i=1

P

`2Y

D̃

t

(i; `)E

t

(i; `), and recall that �
t

=

P

m

i=1 Dt

(i)�

t

(i) is the training error of h
t

. Then, from
Eq. (3), h̃

t

’s pseudoloss is

�̃

t

=

1
2

m

X

i=1

X

`2Y

D̃

t

(i; `)(1 �E

t

(i; `))

+

m

X

i=1

�

t

(i)

X

`2Y

D̃

t

(i; `)E

t

(i; `)

=

1
2(1 � U

t

) + �

t

U

t

(4)

by definition of U
t

, �
t

and D

t

. Thus, with this definition
of D

t

, the pseudoloss �̃
t

of h̃
t

can be expressed simply in
terms of the error �

t

of h
t

. Setting �
t

= 1=2 �

t

, Eq. (4)
becomes

�̃

t

=

1
2 �

t

U

t

:

So, ifh
t

has error �
t

slightly better than the random guessing
error rate of 1=2, then the pseudoloss of h̃

t

also will be
slightly better than 1=2, provided that U

t

> 0.
The resulting algorithm,called ADABOOST.OC, is shown

in Figure 3. By our method of derivation, this algorithm is
in fact a special case of ADABOOST.M2 in which the weak
soft hypothesis h̃

t

has a particular form. Therefore, we can
immediately apply the results of Freund and Schapire [8] to
obtain the following theorem, which is the main theoretical
result of this paper:

Theorem 1 Let �1; : : : ; �T be any sequence of colorings
and let h1; : : : ; hT be any sequence of weak hypotheses
returned by the weak learner. Let �

t

= 1=2 �

t

be the
error of h

t

with respect to the relabeled and reweighted
data on which it was trained (as in Eq. (1)). Let U

t

be as
in Figure 3. Then the training error of the final hypothesis
Hfinal of algorithm ADABOOST.OC is bounded by

(k�1)
T

Y

t=1

p

1 � 4(

t

U

t

)

2
� (k�1) exp

�2
T

X

t=1

(

t

U

t

)

2

!

:

5

5 10. 50. 100. 500.

soybean-small

0

1

2

3

4

5

5 10. 50. 100. 500.

iris

0

2

4

6

8

10

5 10. 50. 100. 500.

glass

0

10

20

30

40

5 10. 50. 100. 500.

audiology

0

10

20

30

5 10. 50. 100. 500.

soybean-large

0

5

10

15

5 10. 50. 100. 500.

vehicle

0

10

20

30

40

5 10. 50. 100. 500.

vowel

0

20

40

60

80

5 10. 50. 100. 500.

segmentation

0

1

2

3

5 10. 50. 100. 500.

splice

0

2

4

6

8

10

5 10. 50. 100. 500.

satimage

0

5

10

15

5 10. 50. 100. 500.

letter

0

2

4

6

8 AdaBoost.OC

AdaBoost.M1

ECOC

Bagging

Arc-x4

Figure 6: Comparison of several learning methods using C4.5 as the weak learner.

The proof of this theorem follows directly from Eq. (2)
and the argument given above on the relationship between
the error of the weak hypotheses and the pseudoloss of the
associated weak soft hypotheses.

We will show below several methods of choosing a
coloring �

t

which gives a value of U
t

� 1=2 (possibly
in expectation). Plugging U

t

= 1=2 into the bound in
Theorem 1 gives a bound of

(k � 1)
T

Y

t=1

q

1 �

2
t

� (k � 1) exp

�

1
2

T

X

t=1

2
t

!

on the training error. Note that this bound approaches zero
exponentially fast whenever

t

is bounded away from zero.
Thus, if the weak learner can perform just slightly better
than random guessing on the binary problems on which it
is trained (so that all the

t

’s are lower bounded by some

 > 0), then the training error of the final hypothesis can
quickly be made arbitrarily small.

Although, for simplicity, we have focused only on the
training error, the generalization error can also be bounded
using the methods of Schapire et al. [18]. This leads to a
bound on the generalization error of the combined hypoth-
esis of the form

(k � 1)
T

Y

t=1

(1 � 2

t

U

t

)

1=2��
(1 + 2

t

U

t

)

1=2+�

+O

1
p

m

�

log(m=d)(k+d log(m=d))

�

2 +log(1=�)

�1=2
!

which holds for all � > 0 with probability at least 1 � �.
Here, d is the VC-dimension of the weak hypothesis space
used by the weak learner.

The second term will be small when the sample size m
is sufficiently large relative to the VC-dimension. And, as
with the training error, for small values of �, the first term
drops to zero exponentially fast whenever

t

U

t

is bounded
away from zero. Details omitted for lack of space.

2.3 CHOOSING THE COLORING

It remains then only to show how to choose a coloring �
t

.
From Theorem 1, it is clear that we want to choose �

t

to
maximize

U

t

=

m

X

i=1

X

`2Y

D̃

t

(i; `)[[�

t

(y

i

) 6= �

t

(`)]]: (5)

Note that the value ofU
t

depends only on D̃
t

and �
t

and not
on the weak hypothesis. This means that we can attempt
to find �

t

maximizing U
t

prior to calling the weak learner.
Here, we propose a number of options for choosing �

t

.
The simplest option is to choose each value �

t

(`) uni-
formly and independently at random from f0; 1g for each
label ` 2 Y . Then for any ` 6= `

0, the probability that
�

t

(`) 6= �

t

(`

0

) is exactly 1=2. Therefore, the expected
value of U

t

is also exactly 1=2.
A slightly more refined method is to choose �

t

at ran-
dom but ensuring a (near) even split of the labels. That is,
we choose �

t

uniformly at random among all colorings for

6

0.15 0.2 0.3 0.5 0.7

soybean-small

0

10

20

30

40

50

0.2 0.3 0.5 0.7

iris

0
5

10
15
20
25
30
35

0.2 0.5 1 2

glass

0
10
20
30
40
50
60
70

0.5 1 5 10.

audiology

0

20

40

60

80

0.2 0.5 1 2 5 10. 20.

soybean-large

0

20

40

60

80

0.2 0.5 1 2 5

vehicle

0

10

20

30

40

50

60

0.2 0.5 1 2 5 10.

vowel

0

20

40

60

80

1 2 5 10. 20. 50.

segmentation

0
10
20
30
40
50
60
70

1 2 5 10. 20. 50.

splice

0

10

20

30

40

5 10. 20. 50. 100. 200.

satimage

0

10

20

30

40

50

60

70

10. 20. 50. 100. 200. 500.1000.

letter

0

20

40

60

80 AdaBoost.OC

AdaBoost.M2

Figure 7: Comparison of computation time versus error rate achieved by ADABOOST.OC and ADABOOST.M2 using FINDATTRTEST as
the weak learner.

which exactly bk=2c of the labels are mapped to 0. It can
be shown then that, if ` 6= `

0, then �

t

(`) 6= �

t

(`

0

) with
probability (1=2)(1 + 1=(k � 1)) so the expected value of
U

t

will also be this value, which is slightly better than 1=2.
This is the method used in the experiments in Section 3.

A last method is to attempt to use combinatorial opti-
mization methods to maximize U

t

. Eq. (5) can be rewritten

U

t

=

X

`;`

0

2Y

[[�

t

(`) 6= �

t

(`

0

)]]w

t

(`; `

0

)

where w
t

(`; `

0

) =

P

m

i=1 D̃t

(i; `)[[`

0

= y

i

]]. Written in this
form, it is straightforward to show that maximizing U

t

is a
special case of the “MAX-CUT” problem, which is known
to be NP-complete [14], but for which various, rather so-
phisticated approximationmethods are also known [10, 11].
We did not attempt to use any of these methods, and it is
plausible that one of these might improve performance.

In addition, various greedy hill-climbing methods can
also be used which guaranteeU

t

� 1=2. Experiments using
these methods were attempted, but did not give significant
improvement over those reported in Section 3 (details not
reported).

3 EXPERIMENTS

We tested our method experimentally on a collection of
eleven multiclass benchmark problems available from the

repository at University of California at Irvine. 2 Some of
the characteristics of the benchmarks used are summarized
in Table 1. If a test set was already provided, experiments
were run 20 times and the results averaged (since many of
the learning algorithms used are randomized). If no test set
was provided, then 10-fold cross validation was used and
rerun 10 times for a total of 100 runs of each algorithm.

For the weak learner, we used three algorithms of vary-
ing degrees of expressiveness. The first and simplest, called
FINDATTRTEST, outputs a hypothesis that makes its predic-
tion based on the result of a single test comparing one of
the attributes to one of its possible values. For discrete
attributes, equality is tested; for continuous attributes, a
threshold value is compared. The best hypothesis of this
form which minimizes error or pseudoloss can be found by
a direct and efficient search method. These weak learners
are similar in spirit to those studied by Holte [12].

The second weak learner, called FINDDECRULE, outputs
a hypothesis which tests on a conjunction of attribute-value
comparisons. Such a rule is built up using an entropic
potential as in C4.5 and then pruned back using held-out
data. This method is based loosely on the rule-formation
part of Cohen’s RIPPER algorithm [3] and Fürnkranz and
Widmer’s IREP algorithm [9].

The algorithms FINDATTRTEST and FINDDECRULE are
described in more detail by Freund and Schapire [7]. Note

2URL: http://www.ics.uci.edu/�mlearn/MLRepository.html

7

0.1 0.2 0.5 1 2

soybean-small

0

10

20

30

40

50

0.1 0.2 0.5 1 2

iris

0

5

10

15

20

25

30

35

0.1 0.5 1 5 10. 50.100.

glass

0

20

40

60

80

0.1 0.5 1 5 10. 50.100.

audiology

0

20

40

60

80

0.5 1 5 10. 50.100.

soybean-large

0

20

40

60

80

1 10. 100.

vehicle

0

10

20

30

40

50

60

1 10. 100. 1000.

vowel

0

20

40

60

80

1 10. 100. 1000.

segmentation

0

10

20

30

40

50

60

70

1 2 5 10. 20. 50. 100.200.

splice

0

10

20

30

40

10. 100. 1000.

satimage

0

10

20

30

40

50

60

70

10. 100. 1000. 10000.

letter

0

20

40

60

80 AdaBoost.OC

AdaBoost.M2

Figure 8: Comparison of computation time versus error rate achieved by ADABOOST.OC and ADABOOST.M2 using FINDDECRULE as the
weak learner.

that both algorithms find a single rule for the entire problem,
as opposed to learning one rule per class.

The last weak learner tested is Quinlan’s C4.5 decision-
tree algorithm [16], with all default options and pruning
turned on. Also, rather than modify C4.5 to handle weighted
examples, on each round t of boosting, we reran C4.5 on
(unweighted) examples which were randomly resampled
according to D

t

.
We first compared ADABOOST.OC to boosting (with-

out ECOC), i.e., to ADABOOST.M2 for FINDATTRTEST and
FINDDECRULE, and, for C4.5, to the error-based multiclass
version of ADABOOST called ADABOOST.M1. Since our
purpose was to derive an algorithm as effective as boost-
ing but one that only requires an error-based (rather than
pseudoloss-based) weak learner, we then compared our al-
gorithm to various other methods which combine error-
based weak hypotheses. These were:

� Dietterich and Bakiri’s ECOC method [4]. However,
rather than searching for an error-correcting code, we
chose the “output code” at random by selecting each
�

t

to be a random (nearly) even split (as described
in Section 2.3). Such a random code is highly likely
to have error-correcting properties, but it is certainly
plausible that a more carefully designed code would
perform better than the results reported here.

� Breiman’s [1] “bagging” algorithm, which reruns the
weak learner on randomly chosen bootstrap samples.

� Breiman’s [2] “Arc-x4” algorithm, which, like AD-
ABOOST, adaptively reweights the data, but using a
different rule for computing the distribution over ex-
amples in a manner that does not require weak hy-
potheses with error less than 1=2. This algorithm was
shown by Breiman to mimic the performance of AD-
ABOOST when combined with CART, but its theoretical
properties are unknown.

Each algorithm was run for 500 rounds. The results
are shown in Figures 4, 5 and 6. The x-axis shows the
number of rounds, and the y-axis shows the test error of
each algorithm (in percent). Note the log scale used in all
figures.

For C4.5, there does not seem to be any advantage to us-
ing ADABOOST.OC over ADABOOST.M1,and in some cases,
such as “audiology,” the performance is actually worse for
ADABOOST.OC. We also do not expect time savings in this
case since we are comparing to ADABOOST.M1 which is
already error-based.

For the other, less expressive, weak learners, we see that
across all datasets, both ADABOOST.OC and ADABOOST.M2
quickly match the performance of the other three error-
based methods, and are usually clearly superior in perfor-
mance.

Round for round,ADABOOST.OC is often unable to keep
up with ADABOOST.M2. However, the savings in compu-
tation time can be very significant since error-based algo-
rithms are usually faster than pseudoloss-based algorithms.

8

Figures 7 and 8 show a plot of computation time (in sec-
onds) versus test error rate for these two algorithms. (The
time figures used include both training time and evaluation
on test data.) These plots show that, when computation
time is limited, the performance of ADABOOST.OC can of-
ten surpass that of ADABOOST.M2.

4 CONCLUSION

In conclusion, we have described a new method for training
combinations of classifiers that comes with the theoreti-
cal guarantees of a boosting algorithm, but, like an output
coding algorithm, only requires that the weak learner be
capable of handling binary classification problems.

Except for highly expressive weak learners (such as
C4.5), the experiments show that this method is a compro-
mise: The test error performance can often, but not always,
keep up with pseudoloss-based boosting. On the other hand,
the time savings and relative ease of programming the weak
learning algorithm can be significant.

ACKNOWLEDGMENTS

Thanks to all those who contributed to the datasets used in
this paper.

REFERENCES

[1] Leo Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[2] Leo Breiman. Bias, variance, and arcing classifiers.
Technical Report 460, Statistics Department, Univer-
sity of California at Berkeley, 1996.

[3] William Cohen. Fast effective rule induction. In Pro-
ceedings of the Twelfth International Conference on
Machine Learning, pages 115–123, 1995.

[4] Thomas G. Dietterich and Ghulum Bakiri. Solving
multiclass learning problems via error-correcting out-
put codes. Journal of Artificial Intelligence Research,
2:263–286, January 1995.

[5] Harris Drucker and Corinna Cortes. Boostingdecision
trees. In Advances in Neural Information Processing
Systems 8, pages 479–485, 1996.

[6] Yoav Freund. Boosting a weak learning algorithm by
majority. Information and Computation, 121(2):256–
285, 1995.

[7] Yoav Freund and Robert E. Schapire. Experiments
with a new boosting algorithm. In Machine Learning:
Proceedings of the Thirteenth International Confer-
ence, pages 148–156, 1996.

[8] Yoav Freund and Robert E. Schapire. A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting. Journal of Computer and System
Sciences, To appear. An extended abstract appeared
in EuroCOLT’95.

[9] Johannes Fürnkranz and Gerhard Widmer. Incremen-
tal reduced error pruning. In Machine Learning: Pro-

ceedings of the Eleventh International Conference,
pages 70–77, 1994.

[10] Michel X. Goemans and David P. Williamson. Im-
proved approximation algorithms for maximum cut
and satisfiability problems using semidefinite pro-
gramming. Journal of the Association for Computing
Machinery, 42(6):1115–1145, November 1995.

[11] Oded Goldreich, Shafi Goldwasser, and Dana Ron.
Property testing and its connection to learning and
approximation. In 37th Annual Symposium on Foun-
dations of Computer Science, pages 339–348, 1996.

[12] Robert C. Holte. Very simple classification rules per-
form well on most commonly used datasets. Machine
Learning, 11(1):63–91, 1993.

[13] Jeffrey C. Jackson and Mark W. Craven. Learning
sparse perceptrons. In Advances in Neural Informa-
tion Processing Systems 8, pages 654–660, 1996.

[14] R. M. Karp. Reducibility among combinatorial prob-
lems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–
103. Plenum Press, 1972.

[15] J. R. Quinlan. Bagging, boosting, and C4.5. In Pro-
ceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 725–730, 1996.

[16] J. Ross Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, 1993.

[17] Robert E. Schapire. The strength of weak learnability.
Machine Learning, 5(2):197–227, 1990.

[18] Robert E. Schapire, Yoav Freund, Peter Bartlett, and
Wee Sun Lee. Boosting the margin: A new expla-
nation for the effectiveness of voting methods. In
Machine Learning: Proceedings of the Fourteenth In-
ternational Conference, 1997.

9

