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Abstract 

The Marian Watershed Stewardship Program (MWSP), a community-driven aquatic ecosystem 
monitoring program, was developed by the Tłıc̨hǫ Government to address concerns regarding the 
cumulative impacts of multiple potential stressors. In particular, the MWSP aims to develop methods 

that will be effective for detecting potential pollution from the proposed cobalt-gold-copper-bismuth 

NICO mine within Tłıc̨hǫ Lands. In collaboration with the MWSP, paleolimnological methods and 
geochemical normalization are used to establish pre-mine baselines of lake sediment metals 

concentrations in the Marian River watershed prior to mine development. This baseline framework can 

be used to assess for pollution from surficial sediment once the mine becomes operational. Stratigraphic 

sediment metal concentration results from four lakes are normalized to lithogenic and biogenic 

elements (Al, Ti, OM, Corg). The application of normalizing techniques to metals within the stratigraphic 

record aims to account for natural variation as a result of biogeochemical and physical processes that 

may affect sediment metals concentrations. Application of this method results in a set of lake- and 

metal-specific baselines established for four lakes. Results show metal concentrations are substantially 

higher in lakes on or adjacent to the ore body compared to lakes located in the surrounding granitic 

bedrock terrane. Temporal variations in the concentrations of many metals of concern are small, which 

provide values that can effectively serve as baselines for ongoing monitoring. An exception is arsenic, a 

metalloid of major concern, which increases variably in the latter half of the 20
th

 century. There are 

multiple possible explanations for this trend, including far-field atmospheric emissions, increase in 

erosion of arsenic-bearing sources in the lake catchments, and/or post-depositional diagenetic 

mobilization in the lake sediment profile. Notably, increases in arsenic concentrations also occur in the 

early part of the past millennium likely indicating the potential for variation in the catchment-derived 

supply of arsenic to these lakes. Additional studies are required to further characterize processes that 

cause arsenic variations in these lake sediment records. Variation in sediment metals concentrations on 

both temporal and spatial scales in this region demonstrate the need for lake-specific baselines for 

accurate interpretation of contemporary sediment monitoring data. This paleolimnological approach 

may be may be expanded to other lakes in the region for additional monitoring. This unique opportunity 

allowed for the development of a well-informed and robust monitoring program, which applies a 

scientific approach to meet the needs of a northern community initiative. 
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Chapter 1: Introduction and Research Context 

The historic development of extractive industries in the Northwest Territories (NT), Canada, has 

led to substantial pollution of the terrestrial and aquatic environment (Hocking et al. 1978; Jamieson, 

2014, 2017; Thienpont et al. 2016). The term legacy is now commonly used to describe the history of 

pollution from dozens of historic mining operations located throughout the NT, which began in the mid-

20
th

 century, and have resulted in environmental problems. These include major land disturbance, on-

site contamination from fuels and processing chemicals, and most significantly, extensive metals 

contamination of the terrestrial and aquatic environment, all of which remain a major concern today. 

Environmental damage in the NT is best exemplified by the deep and wide-reaching footprint of arsenic 

(As) contamination from the former Giant and Con gold mines. Located just outside of the City of 

Yellowknife, these operations generated ~237,000 tonnes of toxic As2O3 (INAC, 2010), releasing ~21,000 

tonnes through aerial emissions to the surrounding landscape. The vast majority of this As2O3 is now 

stored in derelict mine shafts beneath the former mine site, subsequently requiring hundreds of millions 

of dollars (CAD) in remediation costs from the federal government (INAC, 2010). Because mining and 

resource extraction remain the economic lifeblood of the NT today and into the future, and in response 

to the environmental, social and economic impacts of mining pollution, present Federal, Territorial, and 

regional governments have implemented strict policy in regards to mitigating the environmental impacts 

from mining operations and resource development.  

Traditional land users are highly aware of the cumulative impacts of both industrial pollution 

from mining activities and the broad scale impacts of climate change on their traditional Lands. First 
Nations groups, such as the Tłıc̨hǫ Community located to the northwest of Yellowknife, are acutely 
sensitive to these stressors that have impacted their traditional livelihoods and culture identity, which 

are tied to the land and water. In the past twenty years, environmental policy and legislation inclusive of 

Traditional Knowledge has been prioritized, and consultation and social and cultural impact assessments 

are required prior to resource development. Importantly, as the NT moves towards finalizing Devolution 

(Northwest Territories Land and Resources Devolution Agreement, 2013), the process of gaining 

governmental independence from the federal government, major land claims and self-governance 
treaties, such as the Tłıc̨hǫ Agreement (2003), are being signed and negotiated between the federal and 
provincial governments and First Nations groups. The Tłıc̨hǫ Agreement, signed in 2003 and ratified in 
2005, is a precedent-setting land claim and self-governance treaty between the Federal / Territorial and 
Tłıc̨hǫ leadership which gives legal ownership of 39,000 km

2 of surface and subsurface lands, self-
governance, and expansive rights within Tłıc̨hǫ Traditional Lands. Exempt from the lands claim are small 

areas of pre-existing mineral rights leases, such as the NICO deposit, and several highly contaminated 

sites from former mining operations including the infamous Ray Rock uranium mine and Colomac mine, 

which fall under federal jurisdiction with a legal obligation of environmental restoration by the federal 

government (INAC, 2010)  

Commencing with the signing of the Tłıc̨hǫ Agreement and self-governance, under an ethos of 
environmental protectionism, the Tłıc̨hǫ Government formed the Department of Lands and Cultural 
Protection. Of primary concern were the impacts of resource development and climate change on the 
wildlife, land and water the Tłıc̨hǫ culture and livelihoods depend on. During the past decade, several 
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monitoring programs have been initiated by the Tłıc̨hǫ aimed at assessing and protecting caribou, fish, 
and aquatic ecosystems. In 2013, the Marian Watershed Stewardship Program (MWSP) was established. 

The MWSP was formed in response to community concerns regarding the observed impacts of climate 

change on the watershed and, to a larger degree, the potential impacts of the development of the 

Fortune Minerals NICO mine, a sizable sulfide ore deposit with economically significant cobalt, bismuth, 

gold and copper reserves. Located in the south-central Marian River watershed, a large and culturally 
important area of Tłıc̨hǫ Lands, the development of the NICO deposit poses major concern over issues 
of metals contamination, particularly As, to the aquatic and terrestrial environment as well as the 

impacts of lands disturbance. The MWSP aims to establish natural baseline conditions of the aquatic 

environment through the sampling of fish, water and sediment prior to mine development. These 

baseline data can then be used to assess for pollution and pollution-related impacts once the mine 

becomes operational. Here, a northern community initiative has incorporated a scientific approach to 

meet their monitoring needs, understanding the value of data from a western scientific and legal 

framework. The inclusion of science into a northern community led program demonstrates the strengths 
of combining two knowledge types, traditional Tłıc̨hǫ knowledge and science, and demonstrates a 
progressive working paradigm for science in a northern community.  

In addition to those initiated independently by communities such as the Tłıc̨hǫ, the application 

of aquatic monitoring programs has become standard legal operating procedure required as part of the 

initial environmental assessment prior to resource development as well as for continuing operations 

(Roach & Walker, 2016). In the wake of major historic contamination, all three levels of government 

have legislation and policy aimed to prevent the large-scale contamination of previous industrial 

development such as the Federal Fisheries Act (1985) and Canadian Environmental Assessment Act 

(2012) and the NT Waters Act (2012). In addition, the Mackenzie Valley Land and Water Board, which 

oversees resource development applications and operations to mining and industry, employs 

regulations aimed at ensuring both environmental science and Traditional Knowledge are applied to 

assess cumulative impacts and environmental monitoring efforts in the NT. From Part 6 of the 

Mackenzie Valley Resource Management Act (1998): 

146. The responsible authority shall, subject to the regulations, analyze data 

collected by it, scientific data, traditional knowledge and other pertinent 

information for the purpose of monitoring the cumulative impact on the 

environment of concurrent and sequential uses of land and water and deposits of 

waste in the Mackenzie Valley. 

With the intention of creating an inclusionary process, respectful of the environmental and cultural 

integrity of aquatic and terrestrial ecosystems, environmental monitoring programs are continuing to be 

developed and improved to assess for the cumulative impacts of multiple stressors such as mining and 

climate change from traditional knowledge and scientific perspectives. 

Within this multidisciplinary and multiple knowledge-based approach to monitoring, scientific 

research, which informs an understanding of natural processes and conditions, has a unique opportunity 

to undertake valuable initiatives that meet the goals of researchers and the needs of northerners. 
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Aquatic monitoring programs, such as the MWSP, require an informed knowledge of the aquatic 

environment, including biological, geochemical, and physical conditions in order to adequately design 

and implement a sampling program which is sufficiently capable of identifying potential changes due to 

industrial and climate change impacts (Reuthers, 2009; Dowdeswell et al. 2010). Monitoring 

practitioners need a thorough understanding of the current research and theory of (bio)geophysical  

processes to inform the design and implementation of effective monitoring programs. Monitoring, as a 

systematic process-based practice, is not directly research but requires research initiatives to establish 

best practices. In the setting of the MWSP, and elsewhere in the NT, collaboration between northern 

communities and scientific researchers provides a leading-edge approach that is mutually beneficial as 

both parties seek to understand the function and processes of the natural environment and provide 

informed solutions through knowledge generation and continued monitoring.  

The development of aquatic monitoring programs that utilize a variety of techniques and 

methodologies is critical to understanding the effects of industrial development and climate change 

(Smol, 1992, 2008; Reuther, 2009; Dowdeswell et al. 2010; Wiklund et al. 2014). In addition to water 

sampling for various parameters, sediment quality assessment is an integral component required to 

understand complex aquatic systems (Reuther, 2009). As sediment is a complex matrix of inorganic and 

organic, and biotic and abiotic material transported and accumulated from the atmosphere, terrestrial, 

and aquatic environments, it plays a key role in understanding a breadth of processes and conditions on 

a landscape scale (Smol, 1992, 2008; Reuther, 2009; Schindler, 2009). In order to accurately assess for 

environmental change due to human impacts, there must be an adequate knowledge of baseline 

conditions representative of the range of natural variation (Ford, 1989; Smol, 1992; Kersten & Smedes, 

2002; Dowdeswell et al. 2010). However, most monitoring programs which incorporate sediment 

sampling, particularly those in the NT, typically operate on very short time frames and are thus unable 

to ascertain natural variation in sediment conditions from short-term and often sporadic sediment 

sampling programs. This paucity of long-term data can be resolved by incorporating paleolimnological 

approaches to establish baselines of sediment conditions. Sediment cores taken from lakes are natural 

archives of materials, which reflect landscape processes and changes, allochthonous matter, as well as 

internal processes, accumulating over time. As such, sediment cores can be used to assess natural 

variation and identify historic contaminant pollution, including metals (Cooke et al. 2007; Wiklund et al. 

2014; Boyle et al. 2015). Below, the application of paleolimnology to assess contamination is briefly 

reviewed and the behaviour of select metals within the sediment record is highlighted.  

  

Literature Review: Relevant Previous Research 

Metals within the Lake Sediment Record 

  Metals and metalloids are ubiquitous within the environment. Lake sediment metals 

concentrations will be reflective of weathering of the parent material, potential biogeochemical 

interactions in soils and lakes (Reuther, 2009; Borch et al. 2010; Boyle et al. 2015). The addition of 

anthropogenic-derived metals to a landscape and subsequent lake sediment, defined as contamination, 
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adds an additional complexity as these contaminants become constituents within the sediment strata 

either remaining stable since deposition or being enacted upon and incorporated into sediment 

biogeochemical processes (Couture et al. 2010; Jamieson, 2014; Outridge & Wang, 2015; Galloway et al. 

2015, 2018). Sediment may act as both a sink and source of metals to the aquatic environment 

dependent on the solubility, redox conditions, affiliation with organic matter (OM), and speciation of the 

metal (Canavan et al. 2007; Boyle et al. 2015). Metals will preferentially bind to the fine sediment 

fraction, organic matter, and Fe-Mn oxides/oxyhydroxides and organic complexes bound to clay 

particles (Loring, 1991; Loring & Rantala, 1992; Sanei & Goodarzi, 2006; Canavan et al. 2007; Borch et al. 

2010; Couture et al. 2010; Boës et al. 2011; Outridge & Wang, 2015). Although it has been established 

that Fe-Mn (hydrox)oxide coating on sediment will bind many metals under various redox conditions, 

which often remain stable through the sediment record, recent studies are now elucidating the complex 

interactions between metal(oid)s and OM as both a contributor to diagenetic redox processes and 

accumulators of metal(oids). Recent findings suggest that it is not necessarily the quantity of OM 

available to the sediment, but rather the type and origin of OM that may contribute to mobility within 

the sediment record (Sanei & Goodarzi, 2006; Eiche et al. 2017; Galloway et al. 2018).  

Paleolimnological Approaches 

Paleolimnological studies have been widely used to identify periods of resource extraction 

through human history, from the multi-millennial reconstruction of Andean metallurgical activity by 

Cooke et al. (2007, 2008), which develops a regional perspective on atmospheric metals pollution from 

lake sediment cores of mountain lakes, to the now immense body of work surrounding global 

atmospheric Pb emissions which has led researchers to understand atmospheric pathways and sources 

of global contaminant transport (Shirahata et al. 1980; Perez-Rodriguez et al. 2018). Although these 

studies are crucial to understanding anthropogenic impacts on large scales and magnitudes, researchers 

and monitoring practitioners require additional site-specific knowledge and baseline frameworks to 

assess for pollution and environmental change. In order to effectively assess contemporary sediment for 

pollution, an understanding of baseline conditions, defined here as the pre-industrial natural range of 

variation, must be developed. Paleolimnological approaches offer an effective solution for the 

assessment of historic environmental contamination when long-term records are unavailable (Smol, 

1992, 2008). 

Distinguishing anthropogenic and natural variation of metals concentrations is essential for 

contemporary monitoring of sediment (Loring, 1991; Kersten & Smedes, 2002; Dowdeswell et al. 2010).  

Geochemical normalizing agents are commonly applied to account for differences in sediment 

characteristics such as grain size and the related effects of transport, erosional variation, and 

heterogeneous sedimentary environments. Because metals will preferentially bind to the fine sediment 

fraction, typically defined as <63 um,  lithogenic normalizing agents, also referred to as passive 

normalizers, are used to account for changes in grain size and the subsequent processes of transport 

and erosional variation. This technique is described by Loring (1991), who recommends the use of either 

aluminum (Al) or lithium (Li) as lithogenic normalizing agents. The rationale is that Al or Li is 

incorporated into the sediment particle matrix in silicates and fine particles at the same ratio as the 

metal of interest bound either to (hydrox)oxide coatings on fine grains or within the mineral itself. The 
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use of geochemical normalization is further developed by Kersten & Smedes (2002), who describe the 

use of linear regression models, or two-component linear mixing models, between metals and 

normalizing agents, or co-factors. Kersten and Smedes (2002) also identify the correlation between 

organic matter and metals, highlighting that although OM may be a reactive constituent, it is advocated 

that OM be used as a normalizer where applicable in monitoring initiatives. Importantly, Kersten & 

Smedes (2002) advocate for the development of site-specific baselines as opposed to comparison to 

crustal compositions, using multiple normalizing agents, in the interpretation of temporal data in 

sediment cores in order to accurately assess monitoring data. Boës et al. (2011) further explore the 

selection criteria of lithogenic normalizing agents. They assessed Ti, Zr, Al, and Rb, and concluded that a 

combination of all four be used when possible to account for changes in normalizer-metal relationships 

within the local environment. Dated sediment cores and geochemical normalization techniques allow 

for the formation of baseline data in which background sediment metal concentrations prior to 

industrial development can be assessed, establishing a range of pre-industrial conditions by which to 

compare modern sediment concentration values (Loring, 1991; Kersten & Smedes, 2002; Wiklund et al. 

2014). From linear regression relationships described by both Loring (1991) and Kersten & Smedes 

(2002), 95% prediction intervals (PI) can be applied to assess for pollution. Values above this PI may be 

considered evidence for potential pollution. In addition, the use of enrichment factors (EF), which 

calculate an enrichment value above the baseline relationship, can be used to quantify the magnitude of 

potential pollution.  

Geochemical normalization techniques, as described above, have been used in several studies to 

assess for metals pollution. Wiklund et al. (2014) evaluated pollution trends from river sediment data 

collected by a regional monitoring program using sediment cores taken from flood-prone lakes in the 

Peace-Athabasca Delta. Pre-industrial baselines from these lakes showed no influence of contamination 

from contemporary river sediment when compared to the pre-industrial baselines. MacDonald et al. 

(2016) applied geochemical normalization to the sediment record of a lake with known flood history in 

the Slave River Delta to assess for metal contaminants arising from oil sands development in northern 

Alberta. Although no evidence of oil sands related pollution was found, an acute atmospheric As 

pollution signal from was detected and linked to corresponding Giant Mine operations. Lintern et al. 

(2016a, b) effectively identify historic sources and pathways of metal(oid) contamination from storm 

and floodwater to an Australian wetland using geochemical normalizing approaches. In addition to 

identifying the mechanisms and history of contamination, Lintern et al. (2016b) also use 

paleolimnological records to establish site-specific remediation targets based on established pre-

industrial baselines. These studies demonstrate the ability of paleolimnological approaches to inform 

resource management and monitoring.   

In the NT, the majority of paleolimnological research has focussed on quantifying the impacts of 

intensive As pollution from Giant and Con mines with studies aimed to understand the range and fate of 

As2O3 and the toxicological impacts on aquatic ecosystems. Because of the extent and magnitude of As 

pollution in the area surrounding Yellowknife, the body of research surrounding the impacts of As on the 

aquatic environment is enormous. Thienpont et al. (2016) report a multi-trophic level response to As 

contamination within Pocket Lake upon the onset of Giant mine operations. The collapse of algal, 
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zooplankton, and macroinvertebrates is due to high levels of As within the sediment and water. 

Although sediment concentrations of As have returned to background conditions, As concentrations 

within the water remain highly elevated due to the solubility of As2O3 and dissolution from the 

sediment. As such, no indication of ecological recovery has occurred. The persistence of As pollution to 

surface sediment and waters 65 years after Giant mine emissions began have major implications to 

contemporary aquatic ecosystem health (Galloway et al. 2015; Thienpont et al. 2016; Galloway et al. 

2017). The recent study by Schuh et al. (2019) exemplifies the range of complex interactions which 

influence sediment As concentrations in Long Lake, a site that received substantial As from aerial 

emissions. Sediment cores taken from multiple locations of various depths demonstrated a range of As 

profiles determined by redox conditions and sediment quality. Sediment As concentrations were highest 

within the deepest point of the lake due to focussing of fine grained As2O3 particulate. Substantial 

spatial heterogeneity in As concentrations within a lake illustrate important considerations in the 

selection of appropriate monitoring locations. 

Because As contamination from the development of the NICO mine is a major concern, the 

MWSP requires detailed knowledge of pre-industrial As concentrations and the environmental 

conditions that influence its natural temporal and spatial variation. Seen from the brief foray into the 

literature surrounding the complexity of As contamination to the aquatic environment from Giant mine 

emissions, an understanding of the basic concepts regarding As in the aquatic environment is needed to 

inform monitoring and assessment of sediment in an area abundant in natural As.  

Controls on Arsenic Behaviour: Redox and Organic Matter 

Arsenic is a complex anionic metalloid. The most common natural source of As to the 

environment is from the erosion of arsenopyrite and other As-bearing minerals (Smedley & Kinniburgh, 

2002). Anthropogenic sources of As to the environment are often a result of mining and processing of 

refractory ores, combustion of coal, and the use of arsenic-based compounds in wood preservation 

(Smedley & Kinniburgh, 2002). In soils and sediments containing both geogenic and anthropogenic 

sources, its toxicity within the environment is dependent on concentration, speciation, and state 

(Smedley & Kinniburgh, 2002; Borch et al. 2010). Arsenic can be highly mobile within sediment, as well 

as groundwater environments, via diagenetic processes. Under oxic conditions, As will readily bind to 

Fe-Mn oxide/(oxy)hydroxides on sediment particles, concentrating in the uppermost strata of sediment 

or groundwater environments (Smedley & Kinniburgh, 2002; Borch et al. 2010). When or if conditions 

become anoxic, As will mobilize through dissolution to the surrounding pore water and upper water 

column (Martin, 2002; Smedley & Kinniburgh, 2002; Bauer & Blodau, 2005; Couture et al. 2008, 2010; 

Borch et al. 2010). Like other metal(oids)s, organic matter plays a critical secondary role in the mobility, 

cycling, and toxicity of As (Smedley & Kinniburgh, 2002; Borch et al. 2010; Eiche et al. 2017). Under 

reducing conditions, OM may be an electron donor, further enhanced by microbial reduction of OM and 

the formation of complexes with humic complexes, leading to enrichment in portions of the organic 

fraction but also leading to As dissolution from oxide/(oxy)hydroxides (Smedley & Kinniburgh, 2002; 

Bauer & Blodau, 2005; Couture et al. 2008, 2010; Borch et al. 2010; Jamieson, 2014; Lawson et al. 2016; 

Eiche et al. 2017). Thus, As may translocate through many different states within the aquatic 
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environment through dissolution and precipitation, in both solid and aqueous phases, based on redox 

conditions and OM availability.      

Despite extensive As contamination from industrial processes around the world, geogenic As 

poses a greater hazard to human health internationally due to high concentrations within groundwater 

aquifers in densely populated regions (Mukherjee et al. 2008; Alam et al. 2010; Lawson et al. 2016). The 

most notable regions of high geogenic As concentrations are within aquifers of Bangladesh and the 

Bengal Basin, Cambodia, and Vietnam, where hundreds of millions of people are affected by toxic levels 

of As in shallow groundwater aquifers. Again, the determining factors affecting the mobility and toxicity 

of As are changes in redox conditions, in this case the availability of oxygen with changing hydrological 

conditions, and the quantities and sources of OM within and to the aquifers (Mukherjee et al. 2008; 

Alam et al. 2010). Within these regions, accelerated demand for water resources from rapid population 

growth and industrial development have led to a reduction in the water table of primarily shallow 

aquifers and have impacted rates of groundwater recharge and percolation (Mukherjee et al. 2008; 

Alam et al. 2010; Lawson et al. 2016). With a reduction in water table leading to changes in aerobic 

conditions, stimulation of microbial reduction of OM at various depths can cause an increase in As to 

these sediments which may mobilize through dissolution to the water table (Alam et al. 2010; Pi et al. 

2015; Lawson et al. 2016; Eiche et al. 2017). Recent work by Eiche et al. (2017) has identified significant 

interactions between the type and source of organic matter and mobility of As within aquifers, citing 

definitive linkages between aquatically produced organic content within clays and an increase in 

microbial reduction, leading to major enrichment in this strata which may contaminate the affected 

region of the aquifer through dissolution.  

Although a vast amount of research has been done on As contamination of shallow aquifers, 

many of the key relationships occurring among OM, redox activity, and microbial degradation in 

groundwater can be applied to the sediment column in lakes, especially those which cycle through 

oxic/anoxic states. It can be theorized that these findings may be in line with Sanei & Goodarzi (2006) or 

Eiche et al. (2017) in which aquatic-derived OM complexes, which are more labile than terrestrially-

derived OM, can bind to clay and fine particles. This can result in increased metals concentrations, in this 

case As, in sediment and water through both the binding to organic complexes and also reduction and 

dissolution by microbial reduction of this labile organic matter and desorption. 

Experiment-based research by Bauer & Blodau (2006) demonstrated that under abiotic 

conditions, the addition of dissolved organic matter (DOM) to As contaminated sediments resulted in 

the desorption and mobilization of As bound to Fe-oxides of sediment leading to dissolution and an 

increase in dissolved As concentrations. This demonstrates the simple kinetic effect of DOM on As 

mobility. In studies by Martin & Pedersen (2002, 2004), an increase in aquatic productivity, inferred 

from an increase in planktonic diatom species due to increased nutrient supply and improvements in 

post-mining water quality, led to an increase in As concentrations to the surface sediment and aqueous 

solution. This trend continued over time as aquatic productivity increased, so too have sediment As 

concentrations. This increase in As is attributed to enhanced mobility within the sediment accelerated 

by the increase in microbial reduction of autochthonous organic material in the upper strata. Recent 

work by Galloway et al. (2018) further ties the previous research together in the NT, identifying the role 
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of autochthonous labile organic matter in mediating the persistence of elevated As through the 

influence of microbial reduction and the binding and formation of complexes to OM substrate. With 

climate warming predicted to increase carbon flux to the aquatic environment and increase aquatic 

productivity in the NT (Thienpont et al. 2013; Vonk et al. 2013; Abbot et al. 2018), the increase of labile 

organic matter associated with this autochthonous production may further enhance and mediate As 

mobility, from both anthropogenic and geogenic sources.    

Moving Forward: Applying Research Theory to Monitoring 

 From this brief literature review, the complexities of metals geochemistry in the aquatic 

environment are evident, particularly concerning As geochemistry within lake sediment. An applied 

monitoring approach must be well informed of the theoretical research required to understand these 

complexities and challenges. The application of geochemical normalization requires site-specific 

knowledge (Kersten & Smedes, 2002) and a thorough understanding of the pre-existing biogeochemical 

and physical conditions and processes. This knowledge base will help inform both the monitoring 

approach and the interpretation of data from sampling initiatives. Monitoring programs such as the 

MWSP require a strong knowledge foundation in order to effectively assess for mining-related pollution. 

Due to the posed risk of As contamination, as well as other metals, to the surrounding watershed, a 

thorough understanding of the pre-industrial biogeochemical and physical conditions that influence 

metals concentrations in monitoring locations is essential for baseline formation and continued 

monitoring.   

Objectives 

 The MWSP is a unique community-led initiative that incorporates scientific monitoring 

approaches with Tłıc̨hǫ knowledge of the Marian River watershed. The collection of surface sediment is 

currently an integral part of the sampling design. However, as the development of the NICO mine draws 

closer, the few years of sampling data at various locations are not sufficient to constitute an effective 

baseline. As invited researchers into this collaborative initiative, the objective of this research is to 

strengthen this monitoring program by establishing baseline sediment metals concentrations using 

sediment cores collected from lakes throughout the Marian River watershed to develop a robust dataset 

to inform future assessment of sediment quality. The use of paleolimnological methods, including 

geochemical normalization, is employed to develop lake-specific metals baselines prior to mine 

development that represent the range of natural variation in sediment metal(oid) concentrations. 

Baselines are developed using multiple normalizing agents to establish lake- and metal-specific 

relationships representing specific geological and biogeochemical conditions. This framework can then 

be used by the MWSP to assess for pollution through continued surface sediment sampling at these 

locations. 
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Introduction 

Industrial resource extraction in the Canadian North has typically been developed prior to or in 

absence of adequate environmental monitoring programs, which are needed to assess pollution. 

Consequently, a decades-old legacy of mining operations in the Northwest Territories (NT) exists, which 

has driven economic and social development, but which has also had significant and often catastrophic 

impacts on the aquatic environment due to land disturbance and intensive metals pollution from aerial 

emissions, tailings, and effluent discharge (Hocking et al. 1978; Jamieson, 2014; Thienpont et al. 2016; 

Gavel et al. 2018). The extraction of metal ores at former mining operations has led to extensive on-site 

and point source metal(oid)s contamination at many locations throughout the NT including Rayrock 

(uranium), Tundra (arsenic), Colomac (arsenic/cyanide), Discovery (arsenic/cyanide/mercury) and most 

notoriously, Giant and Con gold mines (arsenic/cyanide/sulphur/mercury) (INAC, 2010). Giant mine, 

located a few kilometers north of Yellowknife, was in operation from 1936-1999 and generated 237,000 

tonnes of arsenic trioxide (As2O3), the most soluble and toxic form of arsenic, through extraction and 

processing of gold ore from arsenopyrite (INAC 2007; Plumee & Morman, 2011; Galloway et al. 2015). A 

total of ~21,000 tonnes of As2O3 were emitted to the surrounding landscape and the remainder was 

stored in derelict mine shafts beneath the former site and tailing ponds (INAC, 2007; Galloway et al. 

2015). These operations have left not only substantial environmental pollution, but also burdened the 

Canadian Federal government with billions of dollars in clean-up and remediation costs (AANDSI 2018; 

Jamieson, 2014), and created an atmosphere of distrust with local and First Nations residents. 

Continuing issues and concerns surrounding the extent and severity of Giant Mine pollution (INAC, 2018; 

Palmer et al. 2016; Galloway et al. 2016) as well as contemporary Alberta Oilsands operations for 

example (Dowdeswell et al. 2010; Schindler, 2010; Kurek et al. 2013; Wiklund et al. 2014), exemplify the 

major difficulties in attempting to assess pollution post-development. 

In response to previous mining pollution, and to address ongoing mining activities and required 

restoration standards, the implementation of aquatic monitoring programs has become a legally 

required process to assess aquatic environments for industrial-related impacts (Mackenzie Valley 

Resource Management Act, 1998; Roach & Walker, 2016). Additionally, pressure from local First Nations 

and Inuit groups have resulted in a growing number of inclusionary environmental policies and 

legislation that mandate the application of monitoring programs aimed to address the cultural, 

economic and ecological issues stemming from past environmental degradation in the NT (Mackenzie 
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Valley Resource Management Act, 1998; GNWT Waters Act, 2014; Canadian Environmental Assessment 

Act, 2012; Fisheries Act [MMER, Part 2, section 7] 2018). 

The assessment of lake and river sediment quality is an integral part of aquatic contaminant 

monitoring programs (Reuther, 2009). The composition of deposited sediment material is a reflection of 

both autochthonous processes and allochthonous sources. Allochthonous constituents, both natural and 

contaminants, are transported from catchment erosion, and fluvial and atmospheric pathways, with 

deposition of these materials into the sediment reflecting the energy within the system (Kersten & 

Smedes, 2002; Outridge & Wang 2015; Blais et al. 2017). Contaminants within sediment may be 

transported from both regional and global sources, especially through atmospheric deposition. 

Sediments, particularly the fine grained and organic fractions may have a high binding capacity to 

metal(oid)s and compounds making them effective sinks for both natural constituents and 

anthropogenic contaminants (Kersten & Smedes, 2002; Kurek et al. 2013; Cooke & Bindler 2015; 

Galloway et al. 2015; Outridge & Wang, 2015). In addition, the sampling of sediment is simple and 

multiple samples may be taken within a location to quickly develop an understanding of spatial variation 

and transport mechanism of metal(oid)s and contaminants. Because of these reasons, the analysis of 

sediment is very useful to monitoring programs aiming to assess pollution. 

Unfortunately, because monitoring programs are often initiated after the development of industrial 

projects or as part of a mandated short-term prior assessment, natural pre-development baseline 

conditions representing the range of natural variability often remain unknown, inhibiting the ability to 

accurately identify industrial pollution (Kersten & Smedes, 2002; Bowman & Somers 2005; Hawkins et al. 

2010; Wiklund et al. 2014). In addition to this paucity of data identifying temporal variability, data that 

are available may also be inadequate for baselines as the natural processes which deliver and mediate 

metals to the aquatic environment are being rapidly altered by climate change. Particularly in the NT, 

this includes increasing trends in slumping, permafrost thaw and nutrient release, forest fires, increases 

chemical weathering, and increases and changes to aquatic productivity (van Griethuysen et al. 2005; 

Kokelj et al. 2013; Abraham et al. 2017; Abbot et al. 2018; Galloway et al. 2018; Gibson et al. 2018; 

Lehnherr et al. 2018; St. Pierre et al. 2018; Wauthy et al. 2018; Zolkos et al. 2018). These changes may 

accelerate the delivery and cycling of metals to the sediment as well as re-mobilize historically deposited 

contaminants from the catchment landscape, further complicating our ability to comprehend and 

interpret short-term monitoring data (Johansen et al 2003; Blais et al. 2004; van Griethuysen et al. 2005; 

Abraham et al. 2017; Lehnherr et al. 2018). 
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The application of paleolimnological approaches allows for the establishment of baseline pre-

industrial sediment metal concentrations, which enables anthropogenic pollution to be distinguished 

from natural variation. Sediment cores are stratigraphic archives of deposition history incorporating 

natural and anthropogenic material including metals and contaminants (Smol, 1992, 2008; Kersten & 

Smedes, 2002). The use of geochemical normalization techniques applied to the stratigraphic record of 

lake sediment cores can be used to establish baseline metals concentrations representative of the range 

of natural variation (Kersten & Smedes, 2002; Loring, 1991). Metal concentrations that exceed the 

baseline range of natural variation, either within the sediment record or from future surface sediment 

sampling, may be assessed for potential anthropogenic pollution. Normalizing sediment metals 

concentrations to lithogenic elements such as Al, Ti, or Li can account for the effect of grain size on 

these trace metal concentrations as well as geologic heterogeneity within a landscape ( Loring, 1991; 

Loring & Rantala, 1992; Kersten & Smedes, 2002; Boës et al. 2011; Wang et al. 2015). Additionally, 

organic matter (OM) and organic carbon (Corg) may be alternately used as a normalizers to account for 

those metal(oid) concentrations strongly associated to the organic fraction through the formation of 

complexes and biological processes within the sediment column (Loring & Rantala, 1992; Kersten & 

Smedes, 2002; Wang et al. 2015). Without the use of normalization and detailed paleolimnological 

assessment of the stratigraphic record, increases in future sediment metal concentrations may be falsely 

interpreted. The use of geochemical normalization to assess for anthropogenic pollution in northern 

aquatic environments has been successfully applied by Wiklund et al. (2014, 2017) to assess for 

contaminants in river sediment transported over a floodplain landscape and to assess and quantify 

aerial deposition of pollutants from industrial point sources. The application of geochemical 

normalization by MacDonald et al. (2016) allowed for the identification of potential Giant mine arsenic 

pollution from a lake sediment record in the Slave River Delta. Lintern et al. (2016) successfully used 

geochemical normalization in conjunction with hydrological records to identify historic sources and 

pathways of pollution to inform storm water management strategies. These previous studies have 

focussed primarily on identifying pollution from single study sites after mining operations have initiated. 

With the continuing development of natural resources in the NT, particularly mining, there is much 

opportunity to develop and incorporate paleolimnological baselines into aquatic monitoring programs 

prior to future extraction operations.  

Tłıc̨hǫ Lands occupy 39,000 km
2
 in the central NT (Figure 1). With the signing of the Tłıc̨hǫ 

Agreement, a precedent-setting land settlement and self-governance treaty in 2005, the Tłıc̨hǫ 

government has full legal surface and subsurface ownership of Tłıc̨hǫ Lands. Directed by an ethos of 
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environmental protection and in response to community concerns about mining development and 

climate warming impacts, the Tłıc̨hǫ Government established the Marian Watershed Stewardship 

Program (MWSP), which aims to monitor the aquatic ecosystem through fish, water, and sediment 

sampling. Having experienced the long-lasting implications of uranium contamination from the historic 

Ray Rock mine within the Marian River watershed (INAC, 2010), the Tłıc̨hǫ community are particularly 

concerned with the future development of the NICO project, a proposed Co-Au-Cu-Bi mining operation 

located in the south-central region of Tłıc̨hǫ Lands within the Marian River watershed (Figure 2). 

Conducted in full collaboration with the Tłıc̨hǫ Government, this research applies paleolimnological 

methods to establish and provide sediment metal baselines for multiple lakes for use by the MWSP prior 

to the NICO mine development. Continued monitoring of surface sediment at these locations can then 

be used to assess and identify potential pollution using these baselines once the mine becomes 

operational. This unique opportunity allows for the development of a well-informed and robust 

monitoring program, which applies a scientific approach to meet the needs of a northern community 

initiative. To this author’s knowledge, this research may be the first to provide and incorporate critical 

paleolimnological baselines into an aquatic monitoring program prior to industrial development. 

 

Study Area 

The Marian River watershed is located entirely within Tłıc̨hǫ Lands between Great Bear and 

Great Slave lakes (Figure 1). The Marian River, fed by the Emile and Le Martre rivers, flows south 

draining a watershed of 23,608 km
2
 into Marian Lake (GNWT ENR, 2015), a sub-basin of the North Arm 

of Great Slave Lake. The climate of the region is typical of the continental sub-arctic with long, cold 

winters and short, warm summers.  

The Marian River watershed contains two distinct physiographic regions including the Taiga 

Shield to the east and northeast and the Taiga Plains to the west and southwest with the Marian River 

delineating the two. The Taiga Shield in this region is characterized by granitic bedrock with sparse 

vegetation in the form of mostly black spruce alder and shallow soils in low-lying depression areas 

underlain by discontinuous permafrost (GNWT ENR, 2008). The Taiga Plains are of low relief and 

characterized as boreal wetland of sedge and black spruce consisting primarily of peatlands underlain by 

discontinuous to continuous permafrost (GNWT ENR, 2008; Wolfe et al. 2017). The surficial geology is 
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characterized by fine clay-rich glaciolacustrine sediment, a remnant of Glacial Lake McConnell (Wolfe et 

al. 2017). 

The four study lakes (Grid, Nico, Peanut, and MW01) are located in the south-central region of 

the Marian River watershed, ~175 km northwest of Yellowknife and ~85 km north of the Tłıc̨hǫ 

community of Behchokǫ̀ (Figure 1). The study area is located in the Great Bear Magmatic Zone (GBMZ) 

geologic region. Grid, Nico, and Peanut lakes are located on and adjacent to the NICO deposit, while 

MW01 is located ~2 km northeast of the deposit (Figure 2, 3). The NICO deposit, hosted within the 

Treasure Lake Group (TLG), is a unique mineralized formation with major economic metals including Co, 

Au, Bi and Cu. It is enriched in these metals compared to the surrounding TLG due to latter stage re-

mineralization processes (Acosta-Gangora et al. 2015). Economically viable minerals in ore exist in 

graded strata in multiple lenses, bound to pyrite and arsenopyrite as well as cobaltite and chalcopyrite 

(Golder Fortune Report, 2011; Acosta-Gangora et al. 2015). As a result, this sulfide mineral ore body is 

naturally enriched in many metal(oid)s. 

Catchment areas of the four study lakes were calculated using ArcGIS 10.3 software with vector 

data retrieved from the Polar Geospatial Centre ArcticDEM Project (Porter et al. 2018) in 2 m resolution. 

Grid Lake (63.553191°N, 116.740344°W, 240 m.a.s.l.) is a small lake, with an area of ~3.2 ha, located at 

the northern edge of the NICO deposit within a small catchment (~0.65 km
2
). Grid Lake is ~2.5 m deep 

and drains to the south to Nico Lake through wetlands. Nico Lake (63.546420°N, 116.704036°W, 201 

m.a.s.l.), located adjacent to the NICO deposit, is larger with an area of ~53 ha, and a catchment area of 

~5.6 km
2
. Nico Lake is 8 m deep and flows into Peanut Lake through a small stream. Peanut Lake 

(63.537653°N, 116.710884°W, 193 m.a.s.l.), located at the southern portion of the NICO deposit, has an 

area of 22 ha and a catchment of 18 km
2
. Peanut Lake is 6 m deep and flows into Burke Lake, which then 

flows out through Burke Creek into the Marian River. Lake MW01 (63.569409°N, 116.690188°W, 213 

m.a.s.l.), located ~2 km northeast of the NICO deposit, has an area of ~38 ha and a catchment of 19.15 

km
2
, which includes low relief wetlands. MW01 is 7 m deep.  

Methods 

Sediment Core Collection  

Sediment cores were collected from MW01 (38.0-cm long) from an inflatable canoe in September 

2015 and from Grid (43.0-cm long), Nico (58.5-cm long) and Peanut (58.0-cm long) lakes from the ice 

surface in April 2016 with the use of a Glew hammer corer. Cores were obtained from the maximum 
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depth of each lake ascertained from bathymetric maps provided by a previous environmental 

assessment (Golder Fortune Report, 2010). Cores were sectioned at 0.5-cm intervals using a vertical 

extruder (Glew, 1988) and placed into Whirlpak bags. Samples were kept at 4°C and shipped back to the 

University of Waterloo for storage prior to further analysis. 

 

Laboratory Analysis 

Loss-on-Ignition  

 Subsamples (~0.5 g) of wet sediment were analysed by Loss-on-Ignition to determine water 

content, organic matter (OM) content, and mineral matter content (MM). Subsamples were heated at 

90°C for 24 hours, 550°C for 2 hours, and 950°C for 2 hours, respectively, following the methods 

outlined by Heiri et al. (2001). Values are reported as percent sample mass. 

 

Radiometric Dating 

 Radiometric dating was performed at the University of Waterloo using an Ortec Coaxial HPGe 

Digital Gamma Ray Spectrometer. Pre-weighed sediment subsamples at selected 0.5 cm intervals were 

freeze dried and packed into STARRSTEDT tubes to a known volume, sealed with a silicon cap and epoxy, 

and allowed to equilibrate for 21 days allowing for 
222

Rn to decay to equilibrium with 
226

Ra prior to 
210

Pb 

activity measurement. 
226

Ra was calculated based on a weighted mean value of 
214

Bi and 
214

Pb activity.  

Lake MW01 subsamples were measured at 0.5-cm intervals for the following depths: 0.0-0.5, 0.5-1.0, 

1.0-1.5, and every second 0.5-cm interval to 20.5 cm. For Peanut Lake, 0.5-cm subsample intervals were 

measured for the following sample depths: 0.0-0.5, 0.5-1.0, 1.0-1.5, and every second 0.5-cm interval to 

11.5 cm. For Nico Lake, 0.5-cm subsamples were measured from the following depth intervals: 0.0-0.5, 

every second 0.5-cm interval to 21.5 cm, and 21.5-22.0, 22.0-22.5, 22.5-23.0, 24.0-24.5, 25.0-25.5, 25.5-

26.0, and 30.0-30.5 cm. For Grid Lake, 0.5-cm subsamples were measured from the following depth 

intervals: 0.0-0.5, 0.5-1.0, 1.0-1.5, 2.0-2.5, 2.5-3.0, 3.0-3.5, and every second 0.5-cm interval to 12.5 cm. 

The Constant Rate of Supply (CRS; Appleby 2001) model was used to determine ages for the 

interval in which unsupported 
210

Pb was present. A linear extrapolation was applied to depths below the 

presence of unsupported 
210

Pb. Measurements of 
137

Cs are included to support 
210

Pb CRS dates where 
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applicable. The CRS model is also used to calculate dry mass sedimentation rates for the interval in 

which unsupported 
210

Pb is present. The CRS model is well suited for this environment because of its 

ability to incorporate varying sedimentation rates within the lake sediment records (Appleby, 2001).  

 

Organic Carbon and Nitrogen Elemental and Isotope Analysis 

 Subsamples of wet sediment were prepared for organic carbon and nitrogen elemental and 

isotope analysis using standard methods (Wolfe et al. 2001). Subsamples from every 0.5-cm interval 

were treated with 10% HCl at 60°C for 2 hours to remove carbonate content and then rinsed repeatedly 

with deionized water until a neutral pH was achieved. Samples were then freeze dried to remove all 

moisture content and passed through a 500-um sieve to remove coarse material. The fine fraction was 

then further sub-sampled and sent to University of Waterloo Environmental Isotope Laboratory for 

analysis using a 4010 Elemental Analyzer (Costech Instruments) coupled to a Delta Plus XL (Thermo-

Finnigan) continuous flow isotope ratio mass spectrometer. Results utilized here are reported as %Corg 

by dry weight. Percent nitrogen and carbon and nitrogen isotope values are reported in the Appendix. 

 

Sediment Metals Analysis 

 Sediment metals analysis was conducted on subsamples at 1 cm intervals for the upper 50 cm of 

cores and subsequently at 2 cm intervals below 50 cm core depth. Subsamples (~1 g) were freeze dried, 

ground and homogenized, and then analysed using the EPA 200.2/6020A method at ALS Environmental 

in Waterloo, ON. Though a partial digestion, this method aims to liberate labile metals bound to 

sediment that may be environmentally available.  

A suite of metals and elements of interest (MEI) were selected for this study based on those 

identified in the Canadian Council of Ministers of the Environment (CCME 2014) guidelines. CCME 

sediment quality guidelines prescribe two threshold values for quality assessment including Interim 

Sediment Quality Guidelines (ISQG) and the higher Probable Effects Level (PEL). In cases where sediment 

quality guidelines were unavailable, the CCME Soil Quality Guideline (SQGE) is used. Selected MEI 

include arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), uranium (U), and 

zinc (Zn). In addition to CCME identified elements, cobalt (Co), iron (Fe), sulphur (S), antimony (Sb), and 

selenium (Se) were included because they may exist in concentrations exceeding toxicity limits (Co, Se), 
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they may be utilized as proxies for geochemical change (Fe, S), and they may serve as potential 

indicators of transport of deposit-derived sediment once the mine becomes operational (Co, S, Se).   

 

Numerical and Statistical Analysis  

 Because many metals bind preferentially to fine grained (<63 um) particles (Loring, 1991; Foster 

& Charlesworth, 1996; Kersten & Smedes, 2002; Boës et al. 2011) to which Al and Ti will have a strong 

association in the sediment particle matrix, this makes them effective lithogenic normalizing agents (NA) 

to assess for metals pollution in the sediment stratigraphic record (Kersten & Smedes, 2002; García-Alix 

et al. 2013; Wiklund et al. 2014; Lintern et al. 2016; Pérez-Rodríguez et al. 2018). Many metals, including 

As, C, Cu, S, Fe, S, Se, Sb, and Zn, may preferentially bind to or have strong affinity to organic material 

which may vary in abundance in lacustrine records due to biological processes such as aquatic 

productivity and microbial reduction (Krumgalz et al. 1992; Meyers & Ishiwatari, 1993; Bauer & Blodau 

2006; Chen et al. 2007; Marchand et al. 2011; Campbell & Nordstrum, 2014; Galloway et al. 2015,  

2018). In addition, many MEI including As, Cu, Sb, and Zn may have a high affinity for the organic 

fraction of sediment containing humic material and form organic complexes within the sediment matrix 

(Tessier et al. 1992; El Bilai et al. 2001; Smedley & Kinniburgh, 2002; Galloway et al. 2015, 2018). The use 

of organic matter (OM) and elemental organic carbon (Corg) as a potential NA is additionally 

recommended by Kersten & Smedes (2002) and Loring & Rantala (1992) to complement lithogenic NA. 

For these reasons, percent organic matter (OM) and percent organic carbon (Corg) were also identified as 

potential biogenic NA to MEI.  

 Regression analysis was completed between the four NAs (Al, Ti, OM, Corg) and the above 

identified MEI for each sediment core to determine the most appropriate lake- and MEI-specific NA for 

further statistical analysis. Relationships that resulted in values with a positive slope coefficient (m-

coefficient) and were deemed statistically significant (p-value < 0.05) were selected as appropriate 

normalizing agents. In cases of multiple potential NA, the NA with the highest R
2
 values was used. MEIs 

with no significant correlation to NAs are reported but not further evaluated. Linear relations were 

calculated using the entire stratigraphic record to establish baseline MEI-NA relationships. 95% 

prediction intervals (PI) were calculated to define the natural range of expected variability for the entire 

sediment record of each core, as recommended and applied elsewhere (Loring, 1991; Soto-Jiménez & 

Páez-Osuna, 2001; Wiklund et al. 2014).  
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The use of standard linear regression analysis offers several strengths when evaluating MEI 

values as potential contaminants. The baselines calculated here, based on the linear relationships, 

function well for identifying statistical outliers within the MEI data and for future evaluation of 

contemporary surface sediment. However, because of the nature of the sediment data from sediment 

cores, the data fail to meet some assumptions associated with conventional linear regression. Given that 

sediment cores are contiguous records, the data are temporally autocorrelated and include dependence 

among observations, resulting in increased variance of the coefficient estimates and an underestimation 

of standard errors. Additionally, while Corg and OM are likely colinear, they were tested separately. While 

these violations are acknowledged, the application of these linear models does not depend on their 

predictive power, and as such, allows for variance in error estimation while maintaining utility for 

monitoring purpose.  

Because the purpose of this study is to establish pre-NICO mine baselines, which will be used to 

assess for potential pollution once the mine is operational, and not a pre-industrial baseline, the 

complete stratigraphic record was used in baseline calculations. Operationally, this assumes the lake 

records represent pristine conditions up to and including the present. However, sample points within 

the linear regressions plots are categorized into three chronological intervals to assess and interpret for 

temporal trends relating to past hydroclimatic conditions and in recognition of the possibility of the 

lakes recording far-field anthropogenic pollution. These intervals include: 1) pre-1700, 2) ~1700-1936, 

representing the period that includes the Little Ice Age (LIA: 1600-1900 as identified in northern Alberta; 

Wolfe et al. 2008) and early post-LIA 20
th

 century and prior to mining in NWT, and 3) post-1936, 

representing the onset of industrial-scale mining in NWT and other modern industrial development.  

Residual metal concentrations were calculated for the ~1700-2016 period using the entire 

stratigraphic record following methods outlined in Wiklund et al. (2014). This identified time period is 

selected as a climatically-relevant and includes the Little Ice Age (Wolfe et al. 2008) to recent warming. 

As in Wiklund et al. (2014), an upper 95% PI was calculated for each normalizer-MEI relation to the 

residual 1700-2016 record using the x-max value of the selected NA. This provides a conservative 

estimate of the upper limit of natural variation. 

 

Results 

Radiometric Dating 
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Radiometric profiles for all lakes display a classic pattern of exponential decline in 
210

Pb values 

with depth (Figure 4). Background 
226

Ra values are reached at different depths for the four lakes, 

reflecting the varying sedimentation rates among the four lakes. 

At Lake MW01 (Figure 4a), 
210

Pb activity declines from 0.544 Bq g
-1

 at the top of the sediment 

record and reaches background concentrations (i.e., 
226

Ra) of 0.069 Bq g
-1

 at 18.75 cm. Extrapolation 

using the CRS model indicates that the bottom of the core is ~1647 CE. Lake MW01 displays a relatively 

constant total sedimentation rate since ~1880 (0.014–0.019 g cm
-2 

yr
-1

) with the exception of an abrupt 

and high-magnitude sedimentation event at ~1920 (0.155 g cm
-2 

yr
-1

). 

210
Pb activity in the Peanut Lake core (Figure 4b) declines from 0.426 Bq g

-1
 at the top of the core 

to 0.091 Bq g
-1

 at 9 cm where it reaches background 
226

Ra concentrations. Using the CRS dating model, 

dates were extrapolated to ~632 CE at the bottom of the core. Peanut Lake calculated total 

sedimentation rates from ~1918-1960 fluctuate between ~0.024 g cm
-2 

yr
-1

 and ~0.012 g cm
-2 

yr
-1

  and 

are mainly between 0.010 and 0.015 g cm
-2 

yr
-1

 from ~1960 to the present. 

The 
210

Pb activity in the Nico Lake (Figure 4c) core declines from 0.682 Bq g
1
 at the top of the 

core to 0.082 Bq g
1
 at 12-cm core depth where it reaches background 

226
Ra concentrations. Using the 

CRS dating method and extrapolation, the base of the Nico Lake sediment core is ~1139 CE. Calculated 

total sedimentation rates peak at ~1895 and ~1935 (0.014 g cm
-2 

yr
-1

) and otherwise narrowly range 

between 0.008 and 0.012 g cm
-2 

yr
-1

. 

Grid Lake (Figure 4d) 
210

Pb activity declines from 0.881 Bq g
-1

 at the top of the core reaching 

226
Ra background concentration of 0.115 Bq g

-1 
at 5 cm depth. Using the CRS dating method and 

extrapolation, the base of the sediment core is ~679 BC. 
137

Cs measurements from Grid Lake (Figure 4d) 

show a peak of 0.065 Bq g
-1 

at 2.25-cm depth. This 
137

Cs peak corresponds to ~1971 of the 
210

Pb 

generated CRS dates, suggesting reasonable agreement between the two radiometric methods. 

Although the alignment between the two radiometric timelines may be somewhat coarse, this is likely 

attributed to the very slow sedimentation rate between sample section intervals and post-depositional 

mobility of 
137

Cs in organic matter. Sedimentation rates at Grid Lake are very slow, ranging between 

0.0027-0.0042 g cm
-2 

yr
-1

. 
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Regression and Correlation Analysis of Metal Concentrations 

 The identified effective relationships between MEI and NA, bolded within Table 1, are those that 

have a positive m-coefficient and significant p-value (<0.05). R
2
 values were also considered in the 

selection of the NA. This results in selection of a NA specific to each MEI, which also varies among the 

lakes. These identified MEI:NA relationships are used in baseline calculations.  

For Lake MW01, effective NA:MEI relations are established for the following eleven MEI: 1) Al 

was selected as a NA for Cr, Co, Cu, Ni, and U; 2) Ti was selected as a NA for Fe and Pb; 3) OM was 

selected as a NA for As and Sb; and 4) Corg is selected as a NA for S. For Peanut Lake, twelve effective 

NA:MEI relationships are established: 1) Al is selected as a NA for Cd, Co, Cr, Fe, Ni, Pb, U and Zn; 2) Ti is 

selected as a NA for As and Cu; and 3) OM is selected as a NA for Sb and Se. For Nico Lake, nine effective 

NA:MEI relations are established: 1) Al is selected as a NA for Cr, Fe, and Pb; 2) Ti is selected for As and 

U; 3) OM is selected for Co and Zn; and 4) Corg is selected as a NA for Cu and Se. For Grid Lake, nine 

effective NA:MEI relations are established: 1) Al is selected as a NA for Cd, Ni, Se, U and Zn; 2) Ti is 

selected as a NA for As, Cr and Pb; 3) and OM is used as a NA for Co.  

 

Establishing Baselines for MEI Concentrations 

Lake MW01 

Lake MW01 MEI:NA relations demonstrate that with the exception of a few values above and 

below the 95% PI, MEI cluster fairly tightly around linearly regressed baselines (Figure 5). To further 

contextualize the MEI concentrations, CCME guidelines have been added to the plots. Single data points 

for Co, S, and U that plot above the 95% PI are from sediments deposited prior to 1936 indicating 

natural variance. As, Fe, and Sb, each display single values above the 95% PI values that occur during the 

post-1936 period. MEI normalized to Al and OM (As, Co, Cr, Cu, Ni, U) cluster into two distinct groups 

that align with the stratigraphic time interval designations. As and Sb values are higher during the post-

1936 interval, whereas Co, Cu, Ni, and U are lower during the post-1936 interval. The entire stratigraphic 

record of Cr is above the CCME value of 35.9 μg g−1
 (ISQG) and several of the post-1936 values of As are 

just above the CCME value of 5.9 μg g−1
 (ISQG). 

Temporal trends in MW01 residual sediment metal concentrations allow for assessment of the 

variation of MEI in a chronological context (Figure 6). As with the crossplots in Figure 5, MEI mainly plot 
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within the range of natural variation from the period of 1700-2015. As, Fe, and Sb experience increase in 

concentrations during the post-1936 interval beginning at ~1950. Residual Pb concentrations show a 

narrow range of values during the 1700-1936 interval. However, starting at ~1936, there is a steady 

increase in residual Pb concentration values peaking in ~1978, approaching the 95% PI. Residual Pb 

decreases after ~1978.  

Peanut Lake 

Peanut Lake regression results demonstrate that the majority of MEI concentrations plot within 

natural variation around their respective baselines with a few exceptions (Figure 7). A small number of 

pre-1700 As, Ni, and Se values plot clearly above the 95% PI. Sb is the only MEI that displays post-1936 

values above the 95% PI. The MEI concentrations of Peanut Lake are considerably higher than those of 

MW01, most of which are highest in the pre-1700 period. The entire As record plots well above the 

CCME PEL of 17 μg g−1
 and many of the Cr values exceed the PEL of 90 μg g−1

. Residual MEI 

concentrations show that Cd, Cu, Pb, and Sb display increasing trends post-1936 followed by more 

recent declines (Figure 8).  

Nico Lake 

 Nico Lake regression results establish MEI baselines which indicate a minor degree of natural 

variation (Figure 9). All MEI possess sample points above the 95% PI although the majority of these are 

in the pre-1936 periods. As observed in Peanut Lake, As has several points well above the 95% PI from 

the pre-1700 period. Fe and Pb possess sample points elevated above the 95% PI during the post-1936 

period although these concentrations do not exceed CCME guidelines. Several MEI concentrations 

records are elevated compared to the previous Lake MW01 and Peanut Lake values although they 

remain in the range of natural variation. The complete stratigraphic record of As, Cr, Cu, and the 

majority of Zn sample points are elevated above CCME guidelines. Residual concentrations plotted for 

1700 to 2016 further demonstrate the natural range of MEI (Figure 10). Residual Pb concentrations 

closely resemble those of Peanut Lake with an increasing trend initiating at ~1945, peaking at ~2000, 

and then declining slightly in recent years. 

Grid Lake 

 Grid Lake regression results establish baselines that demonstrate a narrow range of variability 

for most MEI (Figure 11). MEI concentrations are substantially higher than those of the previous lakes 



26 

 

due to the position of Grid Lake on the NICO deposit. CCME guidelines are exceeded for the majority of 

samples from the As, Cd, CO, Se, U, and Zn records. Few data points from Cd, Co, Ni, and Se are above 

the 95% PI from the pre-1936 periods. Arsenic concentrations in Grid Lake are extremely high reaching 

upwards of 2950 μg g−1
 in the pre-1700 time period. With the exception of Pb, recent post-1936 MEI 

concentrations are lowest within the stratigraphic record. Three of the four post-1936 Pb sample points 

exceed the 95% PI. Of those MEI normalized to Al and Ti, sample points cluster into two distinct groups 

delineated by a gap in NA concentrations. Most residual MEI concentrations decline during the latter 

part of the 20
th

 century, with the exception of residual Pb concentrations which rises (Figure 12).  

 

Discussion  

Paleolimnological-defined baselines and normalization 

As human activities continue to drive environmental change, the ongoing expansion of aquatic 

monitoring programs and research require effective and accurate assessment of sediment quality. In 

particular, effective programs require an understanding of pre-industrial conditions. Here it is 

demonstrated that paleolimnological methods are uniquely equipped to establish baseline sediment 

metal concentrations that are site-specific and represent critical temporal and spatial variation which 

are capable of differentiating between the influence of geology, natural processes, and anthropogenic 

pollution. Results clearly demonstrate that MEI concentrations within the study lakes are a reflection of 

the specific surficial geology determined by proximity to the NICO ore body and catchment 

characteristics. For instance, many MEI concentrations such as As, Co, Cu, Sb, and U increase 

dramatically with decreasing distance from the deposit. The multiple agent lake- and MEI- specific 

normalizing approach results in the establishment of site-specific baselines that are reflective of the 

specific geochemical and biogeochemical conditions within individual lakes influenced by both 

catchment and internal conditions. These paleolimnological baselines provide an essential foundation to 

ongoing monitoring efforts. 

The influence of OM and Corg on various sediment metal(oid)s has been well documented in 

many studies (Smedley & Kinniburgh, 2002; Martin & Pedersen, 2002, 2004; Bauer & Blodau, 2006; 

Sanei & Goodarzi, 2006, Galloway et al. 2018) and were evaluated as a potential NA in early exploration 

of geochemical normalization (Loring & Rantala, 1992; Kersten & Smedes, 2002). Here, OM or Corg were 

identified as the appropriate NA for several MEI including As, Co, Cu, Fe, Sb, and Zn. Several 
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biogeochemical processes may account for these strong relations. Many of these MEI will preferentially 

bind to the organic fraction, especially the autochthonous fraction, thus changes in lake productivity 

may influence MEI concentrations (Sanei & Goodarzi, 2006; Galloway et al. 2018). Organic matter may 

also be derived from the catchment and variability in this process could play a role in variability of these 

MEI concentrations. However, low C/N ratios (see Appendix) in the sediments of these lakes indicate 

that the OM is mainly autochthonous. Use of OM and Corg may also account for the effects of potential 

post-depositional mobility, which may be enhanced by reductive conditions caused by aquatic 

productivity and microbial activity in the sediment (Martin & Pedersen, 2002, 2004; Galloway et al. 

2018). Unlike the application of Al and Ti as normalizers, which reflect the catchment geology, OM and 

Corg may contribute to concentrations of these MEI in the upper sediment strata through reductive 

conditions which enhances diagenetic mobility and the formation of organic-MEI complexes (Loring & 

Rantala, 1992; Smedley & Kinniburgh, 2002; Martin & Pedersen, 2002, 2004; Sanei & Goodarzi, 2006; 

Taipa & Audry, 2012; Galloway et al. 2018). Given that climate change will continue to influence OM and 

Corg in lake sediments in this region, their continued assessment of potential use as NAs is recommended 

for future monitoring. 

Baseline conditions in this study are defined as the full length of the stratigraphic record. This 

defining period of pre-NICO mine conditions, which was specifically designed to identify post-NICO mine 

change in sediment MEI concentrations, was initially considered pristine. However, MEI values elevated 

above the 95% PI suggests that pollution from historic (and ongoing) regional and global long-range 

atmospheric sources is present in the sediment records. Increasing trends of residual Pb concentrations 

in all lakes in the mid-late 20
th

 century can likely be attributed to atmospheric Pb pollution caused by the 

rapid onset of post-war industrialization and increased consumption of leaded fuel (Renberg et al. 2002; 

Perez-Rodriguez et al. 2018) (Figure 13). This historic trend is recognized and well documented in many 

high latitude natural archives (Shotyk et al. 2005; Michelutti et al. 2009; Wiklund et al. 2014, 2017; 

Perez-Rodriguez et al. 2018). The decline in Pb concentrations at ~1980, best illustrated in the Lake 

MW01 profile, corresponds to multiple North American and global regulations phasing out Pb from 

gasoline and diesel (Renberg et al. 2002; Garcia et al. 2013; Wiklund et al. 2014). The persistence of 

elevated Pb in the Peanut, Nico, and Grid profiles may be due to continued supply from the catchment 

or ongoing global Pb emissions to high latitudes (Shotyk et al. 2005; Michelutti et al. 2009). Although Pb 

concentrations are well below the CCME ISQG (35 μg g−1
) in all of the lake sediment records, 

normalization demonstrates a level of sensitivity sufficient to identify this discrete period of historic 

pollution. Furthermore, the consistent timing of this Pb trend among the four lakes supports the 
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accuracy of the 
210

Pb-based chronologies. These results demonstrate that even at these remote 

locations, anthropogenic pollution can still be detected and is subsequently incorporated into our pre-

NICO baseline calculations for the assessment of future pollution. 

 

Arsenic: Natural Variability vs Pollution 

Arsenic contamination to the watershed from the development of the NICO mine is a primary 

concern and thus the As data generated here warrant close scrutiny. Although As is naturally enriched in 

the NICO ore body and sediment of the adjacent lakes (Grid, Nico, Peanut), a redistribution of this 

metalloid from the deposit area via fluvial and aeolian transport of mined ore material, which would 

constitute contamination, could have significant impacts in adjacent lakes that are naturally low in As 

concentrations such as MW01. Arsenic is a complex anionic metalloid; both its toxicity and mobility 

within the aquatic environment are dependent on its state and speciation (Smedley & Kinniburgh, 2002; 

Borch et al. 2010; Jamieson, 2014; Galloway et al. 2015). Influenced by pH, redox potential, and 

reductive conditions driven by microbial activity, aquatic productivity, and organic compounds, As may 

be mobile within the sediment profile (Martin & Pedersen, 2002; Smedley & Kinniburgh, 2002; Couture 

et al. 2008, 2010; Borch et al. 2010; Campbell & Nordstrom, 2014; Galloway et al. 2015. 2018). Arsenic 

may bind to Fe – Mn oxides/oxyhydroxides, the surface of clay fractions, and to organic compounds 

within the sediment, and it may then enter aqueous solution through desorption under anoxic 

conditions at the sediment-water interface (Smedley & Kinniburgh, 2002; Couture et al. 2008, 2010; 

Borch et al. 2010; Campbell & Nordstrom, 2014; Galloway et al. 2015). Given this complexity of As in the 

aquatic environment, stratigraphic interpretation of As in lake sediment core records is challenging. 

In the three lakes adjacent to the NICO deposit, elevated and broadly ranging sediment As 

concentrations (Grid Lake: 726 -2950 μg g−1
, Nico Lake: 93-318 μg g−1

, Peanut Lake: 28-101 μg g−1
; Figure 

14) are a reflection of the weathering of arsenopyrite and other As-rich minerals (Acosta-Gangora et al. 

2015). Hence, local geology exerts a first-order control on As concentrations in the lake sediment 

records. Superimposed on this are additional processes that generate stratigraphic variation in As 

concentrations. For example, Grid, Nico, and Peanut all experience substantial enrichment in sediment 

As concentrations between 760 and 1220 CE (Figure 14). While these concentrations do not exceed the 

95% PI at Grid Lake (Figure 12), concentrations exceed the 95% PIs at Peanut (Figure 8) and Nico lakes 

(Figure 10). This interval of high As concentrations corresponds to increases in organic matter content, 
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which is particularly evident at Peanut Lake (Figure 14). An increase in aquatic productivity during this 

interval may explain the increased As concentrations due to arsenic’s affinity to bind to the aquatic 

carbon fraction and influence of increased microbial reduction (Martin & Pedersen, 2002, 2004; Couture 

et al. 2010; Eiche et al. 2017; Galloway et al. 2018). This increase at depth could be additionally 

explained by sulphate reduction during this period, which could immobilize As to the sediment under 

anoxic sulfur-reducing conditions (Borch et al. 2010; Couture et al. 2010). 

Small variations in As concentration at the top of Grid, Nico and Peanut profiles (Figure 14) may 

represent some minor mobility under redox conditions. Elevated As concentrations at the sediment-

water interface at Peanut Lake is consistent with upward mobility under oxic conditions at the time of 

core collection (Tessier, 1992; Couture et al. 2008, 2010; Borch et al. 2010). Peak As concentration just 

below the sediment-water interface at Grid and Nico lakes can be attributed to downward mobility and 

sequestration to Fe-Mn (oxy)hydroxides and potential release of As into aqueous solution of the 

overlying waters resulting from anoxic conditions at the time of core collection (Couture et al. 2008, 

2010; Borch et al. 2010). Similar As variations in the upper strata of lake sediment cores have been 

observed by Couture et al. (2008, 2010) and were explained by seasonal changes in redox conditions. 

Hence, seasonality may play a major role in sediment As concentrations within these lakes.   

The As concentrations of MW01 are substantially lower than those of the other three consistent 

with its more distal location from the NICO deposit. In the upper sediment of Lake MW01, As 

concentration increases after 1950. There are at least three explanations for this trend. Similar to the 

other lakes, this increase in concentration in the upper strata may be due to redox mobility and binding 

to (oxy)hydroxides under aerobic conditions. OM increases during this interval, which may indicate the 

influence of aquatic productivity on As concentrations. Notably, Sb concentrations also increase after 

1950 (Figure 6). Sb is an additional element associated from Giant mine emissions. The additional 

increase in Sb concentrations at 1950 also suggest the potential influence of long-range aerial emissions 

from Giant mine. This potential pollution signal may only be noted at MW01 as the naturally elevated As 

concentrations of the other lakes would overwhelm this signal.  

The influence of increasing aquatic productivity on the mobility and sequestration of As to the 

organic portion of the upper sediment column may continue to increase in the sub-arctic as climate 

warming enhances aquatic productivity and carbon sources in areas impacted by industrial As 

contamination (Galloway et al. 2018).  Pi et al. (2015) and Eiche et al. (2017) identify the relationship of 

the sedimentary organic fraction to As, but additionally its role in As toxicity and mobility in 
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groundwater as dependent on the source as either terrigenous or the more labile autochthonous 

component. As climate warming is expected to increase aquatic productivity in the North, it can be 

predicted that As mobility will be influenced in this study region. The early period of As enrichment in 

the three lakes proximal to the NICO deposit may be a result of increased aquatic productivity related to 

the Medieval Climate Anomaly identified by Patterson et al. (2017) and Dalton et al. (2018) in which 

conditions would have been warmer and potentially drier, potentially increasing aquatic productivity, 

and the depth and rate of microbial reduction of OM. This trend may be analogous to the relationship 

observed in MW01 in which recent climate-driven acceleration of aquatic productivity may be 

influencing As concentration in the upper sedimentary organic fraction. Under a scenario of increased As 

deposition to the surrounding watershed lakes from mining activity and simultaneous climate warming 

increases on autochthonous productivity, As may become substantially mobilized within the aquatic 

environment to the upper sediment strata (Martin & Pedersen, 2002; Marchand et al. 2011; Galloway et 

al. 2018). A modern example of this phenomenon is outlined by Martin & Pedersen (2002, 2004). In this 

study, the remediation of a lake which had received historic As pollution, led to an increase in As 

concentrations of surface sediment and water. The increase in aquatic productivity from improved 

water quality and nutrient cycling led to an increase in OM and microbial reduction driving enhanced As 

mobility. Cumulative impacts of both contamination and climate warming confound ability to predict As 

mobility and deposition within lakes of the Marian River watershed. 

 

Considerations for Continued Sediment Monitoring 

For continued monitoring at these lakes by the MWSP, it is recommended that surface sediment 

be collected twice a year from these four lakes at the location of previous coring every two years prior 

to mine development. The first collection period should occur during the late winter months (late March 

– early April) from the ice surface. This will provide data for MEI concentrations under potentially anoxic 

conditions in some lakes, and is equivalent to the timing of the sediment core collection of Peanut, Nico, 

and Grid Lakes. The second collection should be in late summer (late-August / early September), 

representative of oxic conditions, equivalent to the time period in which the sediment core from MW01 

was obtained. These two sample periods will be useful in determining seasonal variation of sediment 

MEI concentrations and, in particular, if they differ due to redox conditions in the upper sediment strata. 

In addition to the sediment metals analysis (EPA 200.2/6020A), sediment should also be analysed for the 

other parameters undertaken in the sediment core methodologies including loss-on-ignition  and 
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measurement of elemental organic carbon. The continuation of water quality measurements, not 

discussed within this manuscript, should also be included including on-site measurements of pH, O2, 

temp and conductivity from the top and the bottom depths using a hand-held meter and the analysis of 

total and dissolved metals (EPA 200.2/6020A, filtered) and total and dissolved nutrients.  

The continued success and strength of the MWSP involves the ongoing cooperation between 

the Tłıc̨hǫ Government and the academic partner (i.e., Wilfrid Laurier University). With the successful 

training of the MWSP community monitors in the collection of surface sediment and sediment cores as 

described in the methods, collected samples may be sent to Wilfrid Laurier University for analysis and 

interpretation. Ongoing monitoring efforts can be further developed to meet the needs of the MWSP by 

consultation with the academic partner. With defined roles between the two partners regarding sample 

collection and analysis, and the opportunity for positive knowledge exchange, the MWSP can grow in 

capacity and effectiveness.  

Conclusions 

Establishing baselines using paleolimnological approaches can be an efficient and relatively low-cost 

method of generating valuable data for use in aquatic ecosystem monitoring efforts. Here, it is 

demonstrated that this approach, which utilizes four NA to establish lake- and MEI-specific baselines, 

can be applied to generate a robust dataset representing multiple centuries of sediment accumulation. 

These data can effectively compensate for the lack of long-term monitoring of sediment quality. 

Because monitoring initiatives are typically conducted on short time frames (1 to 4 years) through 

government programs, academic research endeavours, or as part of mandated operating procedures for 

resource development, employing paleolimnological approaches are an effective strategy for rapid 

assessment of pre-disturbance conditions and establishment of baseline data. 

The pre-NICO baselines demonstrate that natural sediment MEI concentrations vary throughout the 

stratigraphic records due to changes in local catchment-erosional and in-lake processes. Importantly, 

the major variation and magnitude of MEI concentrations, especially As concentrations, among the lakes 

in this relatively small area, demonstrate the need for lake- and NA-specific baselines and the potential 

sensitivities of these relationships to mining impacts. The assessment of As concentrations in the 

sediment records are difficult yet essential.  

Sediment quality analysis, aided by the paleolimnological baselines established through this 

research, is an integral element of the MWSP. Learning from the legacy of mining contamination in the 
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NT, particularly the RayRock and Con/Giant mine, the Tłıc̨hǫ Governments MWSP initiative is now well 

equipped with a thorough set of baseline data needed to detect potential MEI pollution at these four 

lakes from the NICO mine development.  

As aquatic monitoring programs continue to be employed in the North in response to industrial 

development and the rapid broad scale environmental changes due to climate warming, the need for an 

understanding of natural conditions is crucial to our understanding of the direction and magnitude of 

these cumulative impacts. Under these conditions, scientific research is needed to inform best practices 

of monitoring programs. In addition, the previous northern scientific operating paradigm of community 

involvement within scientific research is transitioning into community-led research.  As social-political 

progress in the North is coincident with rapid environmental change, scientific research aimed at 

supporting community initiatives can help protect Lands and support community’s legal autonomy. This 

research demonstrates this new paradigm. Here, use of paleolimnology to establish pre-development 

baselines for the MWSP in collaboration with the Tłıc̨hǫ Government demonstrates a progressive 

narrative between science and Northern communities that should be further encouraged and cultivated.  
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Table 1. Results of regression analysis between normalizing agent and metals and elements of interest. 

Selected relationships for baseline calculations are highlighted in grey.

 

Lake

Metal/Agent

R
2

m coeff p-value 0.05 R
2

m coeff p-value 0.05 R
2

m coeff p-value 0.05 R2 m coeff p-value 0.05

Aluminum 1 1.00 1 0.687 0.016 6.61703E-12 0.796 -0.428 1.00E-15 0.760 -0.673 2.75547E-14

Antimony 0.409 -0.022 3.91E-06 0.314 0.000 9.42E-05 0.515 0.012 6.16E-08 0.457 0.018 6.44E-07

Arsenic 0.671 -0.428 1.95294E-11 0.440 -0.007 1.25414E-06 0.760 0.219 2.80E-14 0.644 0.324 9.87E-11

Cadmium 0.004 0.001 0.671201483 0.106 0.000 0.032995028 0.009 0.000 0.536778956 0.037 0.001 0.218851992

Chromium 0.867 2.084 1.38131E-19 0.858 0.040 5.73449E-19 0.807 -0.965 2.97E-16 0.820 -1.565 7.28348E-17

Cobalt 0.496 0.241 1.34377E-07 0.237 0.003 0.000919333 0.278 -0.086 0.000278055 0.241 -0.130 0.000824291

Copper 0.399 0.574 5.54179E-06 0.216 0.008 0.001705235 0.344 -0.256 3.54E-05 0.313 -0.393 9.48E-05

Iron 0.148 0.347 0.010810452 0.161 0.007 0.00765995 0.105 -0.140 0.034016664 0.034 -0.128 0.238432898

Lead 0.203 0.097 0.002437322 0.207 0.002 0.002203571 0.118 -0.035 0.024240291 0.178 -0.070 0.004834645

Nickel 0.589 0.792 1.90009E-09 0.587 0.015 2.13155E-09 0.484 -0.344 2.25E-07 0.616 -0.625 4.79E-10

Selenium 0.011 -0.003 0.507782273 0.072 0.000 0.080945126 0.059 0.003 0.116323907 0.079 0.006 0.067000689

Sulfur 0.422 -67.333 2.39524E-06 0.660 -1.625 3.76681E-11 0.618 39.072 4.11E-10 0.680 65.967 1.08E-11

Titanium 0.687 42.929 6.61703E-12 1.000 1.000 1 0.742 -21.394 1.23546E-13 0.816 -36.117 1.22E-16

Uranium 0.4484254 0.081 9.08E-07 0.098838 0.001 0.04005358 0.347 -0.034 3.29E-05 0.198 -0.042 2.76E-03

Zinc 0.082 -3.907 0.062815004 0.058 -0.064 0.119354126 0.074 1.784 0.077089363 0.224 4.987 0.001361933

Lake

Metal/Agent

R
2

m coeff p-value 0.05 R
2

m coeff p-value 0.05 R
2

m coeff p-value 0.05 R2 m coeff p-value 0.05

Aluminum 1.000 1.000 1 0.869 0.017 1.68E-25 0.268 -0.675 4.44E-05 0.333 -1.199 3.34E-05

Antimony 0.012 -0.002 0.428265085 0.028 0.000 0.221319714 0.435 0.018 3.31E-08 0.461 0.036 3.00E-07

Arsenic 0.253 2.895 7.92E-05 0.283 0.055 2.42E-05 0.012 -0.817 0.425137701 0.127 -1.945 0.016092427

Cadmium 0.586 0.006 6.31E-12 0.465 0.000 7.02E-09 0.009 -0.001 0.480304089 0.014 -0.002 0.445004267

Chromium 0.932 2.149 3.10E-33 0.827 0.037 3.40E-22 0.201 -1.301 5.38E-04 0.241 -2.326 6.26E-04

Cobalt 0.358 0.001 1.11E-06 0.234 0.011 0.000157109 0.014 -0.190 0.382906935 0.001 -0.066 0.852680112

Copper 0.358 0.734 1.11E-06 0.402 0.010 1.53E-07 0.005 -0.079 0.615630696 0.004 -0.114 0.683150326

Iron 0.685 0.824 3.78E-15 0.504 0.013 9.11E-10 0.022 -0.192 0.278515005 0.026 -0.345 0.289760768

Lead 0.614 0.209 9.09E-13 0.566 0.004 2.33E-11 0.062 -0.087 0.063588798 0.007 -0.041 0.590051099

Nickel 0.859 1.203 1.27E-24 0.722 0.020 1.20E-16 0.110 -0.563 0.012322885 0.146 -1.016 0.009592873

Selenium 0.020 0.002 0.30116834 0.000 0.000 0.898863128 0.238 0.008 0.000138526 0.192 0.011 2.60E-03

Sulfur - - - - - - - - - - - -

Titanium 0.869 51.618 1.68E-25 1.000 1.000 1 0.438 -47.854 2.76E-08 0.514 -83.869 2.96E-08

Uranium 0.373 0.201 5.80E-07 0.323 0.003 4.99E-06 0.0486 -0.095 1.02E-01 - - -

Zinc 0.430 1.972 4.10E-08 0.207 0.025 0.000427886 0.014 0.467 0.382391506 0.003 0.411 0.702711629

Lake

Metal/Agent

R
2

m coeff p-value 0.05 R
2

m coeff p-value 0.05 R
2

m coeff p-value 0.05 R2 m coeff p-value 0.05

Aluminum 1 1.0000 0 0.582 0.011 4.798E-11 0.253 -0.271 0.000167 0.285 -0.566 4.60E-05

Antimony 0.012 0.014 0.434671859 0.011 0.000 0.454986993 0.021 0.008 0.312338 0.065 0.025 0.06856

Arsenic 0.094 9.913 0.026989165 0.168 0.211 0.002569603 0.066 -5.024 0.069788227 0.002 -1.834 0.730974

Cadmium 0.001 0.002 0.869278279 0.006 0.000 0.587125 0.020 0.005 0.326665 0.000 0.000 0.956638311

Chromium 0.880 2.496 1.46599E-23 0.621 0.030 4E-12 0.286 -0.769 5.35E-05 0.374 -1.713 1.49E-06

Cobalt 0.002 0.126 0.730823179 0.062 -0.009 0.074813 0.277 0.721 7.19821E-05 0.214 1.204 0.000564

Copper 0.020 0.497 0.321907966 0.036 -0.009 0.179473797 0.179 0.800 0.001962 0.196 1.600 0.001008

Iron mg/g 0.359 0.621 3.42757E-06 0.030 0.003 0.218215 0.001 0.021 0.789248 0.037 -0.202 0.174195

Lead 0.104 0.114 0.021014511 0.011 0.001 0.465824 0.017 0.025 0.357081198 0.023 -0.055 0.280159338

Nickel 0.073 1.024 0.055703238 0.064 0.013 0.070978923 0.007 -0.167 0.567999142 0.053 -0.888 0.101474

Selenium 0.007 0.004 0.552547 0.000 0.000 0.954949 0.191 0.010 0.001186 0.318 0.025 1.32E-05

Sulfur - - - - - - - - - - - -

Titanium 0.582 52.478 4.80E-11 1.000 1.000 1 0.372 -23.258 2.05306E-06 0.280 -38.603 5.47E-05

Uranium 0.261 0.812 1.11E-04 0.387 0.014 8.43E-07 0.127 -0.309 0.009466792 0.021 -0.247 3.00E-01

Zinc 0.049 1.484 0.12042831 0.071 -0.025 0.055775712 0.154 1.423 0.004403 0.026 1.110 0.250183727

Lake

Metal/Agent

R
2

m coeff p-value 0.05 R
2

m coeff p-value 0.05 R
2

m coeff p-value 0.05 R2 m coeff p-value 0.05

Aluminum 1.000 1.000 1 0.897 0.017 2.17E-22 0.647 -0.542 4.89E-11 0.497 -0.745 9.17E-08

Antimony 0.003 0.024 0.726770263 0.007 -0.001 0.58099358 0.023 -0.046 3.27E-01 0.031 -0.084 2.52E-01

Arsenic 0.397 170.541 4.58E-06 0.453 3.219 5.60E-07 0.267 -94.338 0.000329565 0.273 -149.498 0.000275542

Cadmium 0.318 0.016 6.65E-05 0.220 0.000 1.34E-03 0.130 -0.007 0.016157877 0.135 -0.011 0.014047935

Chromium 0.940 2.826 2.65E-27 0.960 0.051 4.94E-31 0.676 -1.617 7.55E-12 0.523 -2.228 2.97E-08

Cobalt 0.224 -13.252 1.16E-03 0.395 -0.311 4.91E-06 0.149 7.281 0.009703465 0.060 7.255 0.108597236

Copper 0.009 -4.492 5.31E-01 0.000 -0.012 9.27E-01 0.012 3.457 0.474232296 0.009 4.536 0.549620299

Iron mg/g 0.089 0.530 4.96E-02 0.076 0.009 6.97E-02 0.067 -0.310 0.090334089 0.079 -0.528 0.064804515

Lead 0.782 0.413 1.77E-15 0.915 0.008 3.89E-24 0.576 -0.239 2.33E-09 0.338 -0.287 3.52E-05

Nickel 0.709 1.047 8.13E-13 0.513 0.016 4.64E-08 0.378 -0.515 9.13E-06 0.358 -0.787 1.78E-05

Selenium 0.320 0.118 6.24E-05 0.200 0.002 0.002324561 0.143 -0.053 0.011319174 0.187 -0.095 3.33E-03

Sulfur 0.023 -0.399 0.323563679 0.048 -0.010 0.15524063 0.021 0.258 0.344550574 0.001 0.091 0.832116485

Titanium 0.897 53.612 2.17E-22 1.000 1.000 1 0.684 -31.563 4.66E-12 0.494 -42.066 1.03E-07

Uranium 0.706 2.750 9.98E-13 0.634 0.046 1.03E-10 0.621 -1.739 2.23E-10 0.460 -2.348 4.16E-07

Zinc 0.175 3.582 4.75E-03 0.036 0.029 0.216804645 0.028 -0.964 0.279354165 0.063 -2.273 0.100596567

Grid Lake -679-2016, n=44

Aluminum (mg/g) Titanium %Organic Matter %Corg

Lake MW01 1647-2015, n=43

Aluminum (mg/g) Titanium %Organic Matter %Corg

Nico Lake 1139-2016, n=52

Aluminum Titanium %Organic Matter %Corg, n=45

Aluminum Titanium %Organic Matter %Corg

Peanut Lake 632-2016, n=56
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Figure 1.  Tłıc̨hǫ Lands, Northwest Territories. The red outline identifies the 39,000 km
2
 of Tłıc̨hǫ owned 

Lands claim as defined by the Tłıc̨hǫ Agreement (2005). 
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Figure 2. Geological map from the Geological Survey of Canada extracted from the Tumi Lake and Bea 

Lake sheets (NTS 85-N/7 and 85-N/10), Northwest Territories,  depicting the area surrounding the NICO 

deposit and the four study lakes. 
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Figure 3. Study area with sediment core collection locations labelled as red circles. 

 

 

 

 

 

 



37 

 

Figure 4. 
210

Pb activity, depth-age profile and sedimentation rates are shown for a) Lake MW01, b) 

Peanut Lake, c) Nico Lake, and d) Grid Lake. Radiometric profiles of 
210

Pb, 
226

Ra and 
137

Cs by depth are 

presented in the left panels with error bars indicating standard deviation. Corresponding age-depth 

profiles for ~1700 to present are presented in the middle panel with error bars indicating CRS ± years.  
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Figure 5.  Lake MW01 linear regression relationships between Metals and Elements of Interest and 

Normalizing Agents. Solid black line is calculated from the entire stratigraphic record (~1647-2015 CE). 

Black dashed lines are calculated 95% prediction intervals. Red dashed lines are CCME sediment and soil 

quality guidelines. White circles identify samples from the pre-1700 period, grey circles identify samples 

from the 1700 to 1936 period, black circles identify samples in the post-1936 period.  
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Figure 6. Lake MW01 residual metals concentrations plotted by year (~1700-2016 CE). Solid black line 

represents ~1647-2016 baseline. Dashed black line represents 95% prediction interval calculated from 

the widest normalizing agent value. Grey data points span ~1700 -~1936. Black data points span ~1936 

to 2015.  
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Figure 7. Peanut Lake linear regression relationships between Metals and Elements of Interest and 

Normalizing Agents. Solid black line is calculated from the entire stratigraphic record (~632-2015 CE). 

Black dashed lines are calculated 95% prediction intervals. Red dashed lines are CCME sediment and soil 

quality guidelines. White circles identify samples from the pre-1700 period, grey circles identify samples 

from the 1700 to 1936 period, black circles identify samples in the post-1936 period. 
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Figure 8. Peanut Lake residual metals concentrations plotted by year (~1700-2016 CE). Solid black line 

represents ~632-2016 baseline. Dashed black line represents 95% prediction interval calculated from the 

widest normalizing agent value. Grey data points span ~1700 -~1936. Black data points span ~1936 to 

2016. 
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Figure 9. Nico Lake linear regression relationships between Metals and Elements of Interest and 

Normalizing Agents. Solid black line is calculated from the entire stratigraphic record (~1139-2015 CE). 

Black dashed lines are calculated 95% prediction intervals. Red dashed lines are CCME sediment and soil 

quality guidelines. White circles identify samples from the pre-1700 period, grey circles identify samples 

from the 1700 to 1936 period, and black circles identify samples in the post-1936 period. 
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Figure 10. Nico Lake residual metals concentrations plotted by year (~1700-2016 CE). Solid black line 

represents ~1139-2016 baseline. Dashed black line represents 95% prediction interval calculated from 

the widest normalizing agent value. Grey data points span ~1700 -~1936. Black data points span ~1936 

to 2016. 
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Figure 11. Grid Lake linear regression relationships between Metals and Elements of Interest and 

Normalizing Agents. Solid black line is calculated from the entire stratigraphic record (~679 BC-2015 CE). 

Black dashed lines are calculated 95% prediction intervals. Red dashed lines are CCME sediment and soil 

quality guidelines. White circles identify samples from the pre-1700 period, grey circles identify samples 

from the 1700 to 1936 period, and black circles identify samples in the post-1936 period. 
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Figure 12. Grid Lake residual metals concentrations plotted by year (~1700-2016). Solid black line 

represents ~679 BC-2016 baseline. Dashed black line represents 95% prediction interval calculated from 

the widest normalizing agent value. Grey data points span ~1700 -~1936. Black data points span ~1936 

to 2016. 
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Figure 13. Residual Pb concentrations from the four study lakes from ~1900 to present.  
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Figure 14. Raw and residual As concentrations (μg g−1
) and percent organic matter content (OM%) from 

the four study lakes.  
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Chapter 3. Conclusions 

Key Findings and Relevance 

 This study demonstrates the successful mergence between paleolimnological research and 

environmental monitoring. The establishment of site-specific baselines using multiple normalizing 

agents has produced an invaluable dataset to be used by the Marian Watershed Stewardship Program. 

The framework established here will provide pre-NICO mine reference conditions of sediment 

concentrations that can be used to assess for pollution of surface sediment once the NICO mine 

becomes operational. Here, the use of paleolimnological methods has filled a knowledge gap and 

identified the range of natural variation of MEI concentrations to effectively inform monitoring efforts.   

The major differences in magnitude of metal(oid) concentrations among the four study lakes is 

substantial particularly for arsenic. This demonstrates the importance of determining site-specific 

baselines that are representative of lake-specific catchment characteristics such as geology and physical 

processes and lake biogeochemical processes. The inclusion of biogenic normalizing agents (OM, Corg) is 

an initial effort to account for the bio-mediated influence of potentially mobile elements within the 

individual lakes. As this environment continues to change due to the influence of climate change or from 

the development of the NICO mine, these baseline relationships inclusive of bio-mediated responses can 

offer major insight as hydrological and biogeochemical conditions are altered. 

The complexity of arsenic biogeochemistry and the natural magnitude and range of variation of 

concentrations creates a challenge for interpreting arsenic within the sediment record. Substantial 

enrichment of arsenic in the early sediment record in Peanut, Nico, and Grid lake cores indicate a 

natural process, which exerted major influence on arsenic concentrations. Further studies are required 

to develop an understanding of metal mobility in the sub-arctic, particularly in regards to arsenic. 

Although the theme and objective of this research has focussed on developing a baseline dataset, a 

product to be applied to monitoring, the exploration and interpretation of the metals data has revealed 

the complexity of the biogeochemical processes responsible for variation and has stimulated this 

researcher to further study and evaluate these processes. 

As equally important as the generation of a statistically strong dataset, is the collaborative 

relationship between researchers and the Tłıc̨hǫ community during this study. This research study 

exemplifies the positive direction that northern research is evolving towards. The Tłıc̨hǫ community are 

leaders in the North. By identifying the need for science in community-led initiatives such as the MWSP, 

this is setting an example for collaborations between other northern communities and scientists. The 

inclusionary approach of the MWSP, which combines traditional Tłıc̨hǫ knowledge and western science 

knowledge, gives strength to the MWSP and generates mutual respect for both knowledge forms. 

Recommendations for Future Research  

To complement the knowledge developed from sediment core analysis, the collection of additional 

surface samples within study lakes, collected coincident to the resampling at coring location, should be 

implemented to develop an understanding of natural in-lake spatial variation of MEI. This can provide 
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valuable understanding of intra-lake differences associated with differences in physical catchment and 

geochemical conditions at various depths, such as differences in grain size due to various transport 

conditions, sedimentation rates, and varying redox environments (Birch et al. 2001; Pientz & Vincent, 

2012; Engstrom & Rose, 2013; Blais et al. 2014; Schuh et al. 2019). Concentrations of redox-sensitive 

MEI may experience substantial spatial variation within a lake due to differing physical and geochemical 

environments (Sharif et al. 2008; Schuh et al. 2018). Schuh et al. (2018) identified the temporal and 

spatial variation of arsenic associated with seasonality, redox conditions, and grain size at multiple 

depths in a single lake, demonstrating the need for additional site sampling locations to complement the 

maximum depth location for a complete understanding of spatial variability. The addition of multiple 

surface sediments may enhance the ability to accurately interpret MEI concentrations in monitoring as 

mine impacts may be spatially heterogeneous within a given lake and the transport and deposition of 

potential mining derived material to the maximum depth sample location may occur more slowly than 

near-shore locations. 

Using the methods developed by Couture et al. (2008), additional study could be undertaken to 

reconstruct the original depositional history of arsenic within the sediment profiles of these lakes 

through pore water collection and diagenetic modelling. In conjunction with biological proxies such as 

diatoms and cellulose oxygen isotope composition, this may help to elucidate the paleohydrological and 

paleoproductivity conditions in which arsenic concentrations were elevated in the past. In addition, this 

method may also help to determine the possibility of very far-field arsenic delivery to Lake MW01 from 

historic Giant mine emissions. 

Lastly, to enhance future monitoring initiatives, sediment MEI baselines should be established from 

additional surrounding lakes which have been previously cored as well as from lakes which could be 

collected prior to the NICO operations. Sediment cores from Lou and Burke lakes (Sept. 2015) and Hislop 

Lake (Sept. 2017) should be analysed and interpreted to establish additional MEI baselines for continued 

use in MWSP sediment monitoring. These lakes are both culturally important to the Tłıc̨hǫ community 

and are relatively accessible compared to those four lakes from this study. Additional lakes could also be 

considered for future core collection with a focus on ascertaining a representative reference condition 

lake similar in surficial geological and hydrological characteristics such as the lake identified by Golder 

Associates (2010). This Reference Lake, located 1.5 km south of the deposit, could be cored for 

comparable data to initial industry-led contemporary baseline studies (Figure 15). From Figure 15, the 

initial inclusion of Tumi and Rabbit Lake as sediment locations would appear ideal. However, these lakes 

both have considerable surface area, are quite shallow (3 m) and experience significant mixing according 

to local Tłıc̨hǫ land-users, making them less favourable for paleolimnological analysis. With continued 

consultation with Tłıc̨hǫ traditional land-users, additional sediment cores should be collected from 

culturally relevant, scientifically important, and easily accessible locations.  

Reflections on the North  

Since the arrival of European settlers, the Canadian economy has been driven by the extraction 

of natural resources. In modern times, rapid post-war industrialization and access to expanding 

domestic and foreign markets has led to the major expansion of large-scale mining operations in the oil 
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and gas and metal-mineral sectors. Although the development of this natural wealth has led to 

significant economic and social prosperity, these activities have unfortunately resulted in extensive 

environmental damage from major land disturbance and pollution. The Canadian North has historically 

been wealthy in extractable natural resources. The Northwest Territories (NT) remains abundant in 

extractable metal-mineral resources and may best encapsulate Canada’s mining history with major past, 

current, and future mining operations, shaping its identity today.  

Operating under the perception of remoteness and neglect, historic mine operations were 

oblivious to the immense environmental damage caused by pollution primarily from metals 

contamination. This same ethos of ignorance also prevailed to marginalize and degrade the lives and 

identity of First Nations people who were culturally akin to their Lands that were now so readily 

exploited. Canada’s historic attitude of cultural environmental denigration for the sake of resource 

extraction has created a legacy of major pollution and cultural oppression especially in the North, a 

blemish which Canada is finally attempting to reconcile as our society’s political conscience is catching 
up to it on an international stage. Again the Northwest Territories may best exemplify this recent shift in 

environmental and cultural ethical framework. As Canada’s governments are aggressively working 

towards reconciliation with First Nations, so too are Treaties, environmental policies, and programs 

being developed around resource extraction that are inclusive of the those culturally tied to the Land in 

the NT.      

Mining and resource extraction will continue to play a key role in the Canadian and Northern 

economy and identity. Our modern lives depend on these commodities for employment and material 

goods. Through inclusionary policy and reconciliation and basic cognisance of the value of the 

environment, especially water resources, resource extraction can proceed to be developed in a manner 

that is equitable to all parties and environmental degradation is limited through strict guidelines 

supported by environmental monitoring, Traditional Knowledge, and western science research. 

The North, as a term that could once be considered a broad and vague colloquialism invoking a 

scene of uninhabited barren wilderness, has now come to encompass a unique Canadian place where 

the natural environment and culture have developed a resilient and celebrated identity. For this 

researcher, the term now invokes the faces of those northerners now friends, and the place they call 

home that has given this research purpose and meaning. 
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Figure 15. Coring locations of four study lakes, Grid, Nico, Peanut, and Lake MW01 identified by red 

circle, Lou, Burke and Hislop Lakes as black circles, and the potential future coring location of Reference 

Lake, grey circle. 
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Appendices 

Appendix 1. Coring locations and YSI water measurements at time of collection. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lake Nico Lake Peanut Lake Grid Lake MW01

Sample Date Apr. 2, 2016 Apr. 2, 2016 Apr. 2, 2016 Sept. 2, 2015

Latitude 63.546420°N 63.537653°N 63.553191°N 63.569409°N

Longitude 116.704036°W 116.710884°W 116.740344°W  116.690188°W

Elevation (MASL) 201 193 240 213

Core Length (cm) 58.5 58 43 38

Depth (m) 8 6 3 7

Temperature C, at 3.5m 4.6 2.2 2.7 9

Cond Sp. at 3.5m 138 111 369 66

pH 8.2 7.9 7.47 7.24

DO % at 3.5m 8 36 5.5 -

DO mg/L at 3.5m 0.78 4.5 0.75 -
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Appendix 2, Measured radioisotope values of 
210

Pb, 
137

Cs, 
226

Ra (dpm/g) and CRS chronology of Study 

Lakes. 

MW01 

 

 

 

 

 

 

 

 

 

 

Core Mid-

Depth 

(cm)

CRS Year CRS error +/-2 

Sigma

Total 

Measured 
210

Pb (dpm/g)

210Pb 

error, 1 

std. dev. 

(dpm/g)

226
 Ra 

dpm/g

226 Ra 

error, 1 

std. dev. 

(dpm/g)0.5 2014.67 0.2231 32.6589 1.8687 2.7139 0.5503

1 2012.75 0.3530 33.6307 1.8417 2.5240 0.5763

1.5 2010.67 0.5042 29.4558 1.8717 3.9391 0.6099

2.5 2004.05 1.0148 25.1005 1.4438 2.6692 0.5012

3.5 1997.72 1.3510 24.5305 1.3383 3.0736 0.4179

4.5 1991.35 1.7276 17.8878 1.0952 3.4210 0.4249

5.5 1985.26 2.1360 15.8330 0.9769 3.0939 0.4154

6.5 1978.15 2.6954 14.2717 0.8406 3.5235 0.3826

7.5 1971.16 3.3361 10.8019 0.7833 3.0280 0.3788

8.5 1964.78 4.0092 9.2383 0.6902 3.5696 0.3681

9.5 1958.38 4.8164 8.3893 0.6413 3.2205 0.3780

10.5 1952.54 5.5983 6.8577 0.5070 3.8357 0.3792

11.5 1945.57 6.7433 7.0275 0.5534 3.5034 0.3587

12.5 1938.60 8.0368 5.4684 0.4712 3.2190 0.3370

13.5 1930.73 9.7299 5.4318 0.4945 3.2512 0.3409

14.5 1922.14 12.1279 5.0276 0.4459 3.0822 0.3209

15.5 1919.90 12.1809 3.6298 0.3564 3.5055 0.2906

16.5 1911.32 13.8592 5.2973 0.4588 3.7061 0.3336

17.5 1901.15 16.3472 4.3982 0.3813 3.5889 0.2977

18.5 1891.26 17.2491 4.1908 0.3631 3.6409 0.2852

20.5 1856.63 3.8242 0.3524 3.6864 0.3044
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Peanut Lake 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Core Top-

Depth 

(cm)

CRS Year CRS error +/-2 

Sigma

Total 

Measured 
210

Pb (dpm/g)

210Pb 

error, 1 

std. dev. 

(dpm/g)

226
 Ra 

dpm/g

226 Ra 

error, 1 

std. dev. 

(dpm/g)0.0 2013.70 0.38 25.5872 1.1921 5.3708 0.5002

0.5 2010.50 0.78 21.6269 1.3609 5.6315 0.5354

1.0 2005.75 1.28 25.1817 1.5010 5.9295 0.6083

2.0 1995.88 2.34 19.3437 1.1712 5.5388 0.5918

3.0 1983.02 3.90 16.5987 1.0000 5.3773 0.4838

4.0 1968.02 6.43 12.5550 0.7908 4.7672 0.3939

5.0 1957.41 7.78 8.4993 0.6332 5.9766 0.5439

6.0 1943.46 10.32 8.0490 0.5855 4.8383 0.3610

7.0 1931.76 11.50 6.4638 0.5543 5.3042 0.3909

8.0 1917.24 10.39 6.4623 0.4843 5.2265 0.3823

9.0 1908.91 5.5085 0.4330 5.3655 0.3409

10.0 1899.16 5.7867 0.4130 5.6132 0.3826

11.0 1890.02 5.7739 0.4473 5.526063 0.366288

18.0 1721.40 5.2220 0.3885 4.79255 0.322927
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Nico Lake 

 

 

 

 

 

 

Core Top-

Depth 

(cm)

CRS Year CRS error +/-2 

Sigma

Total 

Measured 
210

Pb (dpm/g)

210Pb 

error, 1 

std. dev. 

(dpm/g)

226
 Ra 

dpm/g

226 Ra 

error, 1 

std. dev. 

(dpm/g)0 2011.91 0.29 40.9662 0.8007 4.3289 0.4634

1 2004.78 0.72 31.7625 1.3378 4.2368 0.5568

2 1996.25 1.26 28.3304 1.0489 4.1045 0.5201

3 1988.02 1.85 21.1454 1.0520 4.6274 0.5281

4 1979.75 2.52 18.1419 0.8621 4.9701 0.6515

5 1971.09 3.36 13.7180 0.8385 4.0225 0.4721

6 1961.54 4.49 11.9568 0.6722 4.4985 0.4967

7 1951.17 6.06 10.5524 0.7739 4.2705 0.4635

8 1939.44 8.07 8.3825 0.7041 4.4315 0.4770

9 1930.87 9.39 6.4727 0.6734 4.2645 0.5078

10 1919.10 11.64 6.7999 0.6106 4.2349 0.4535

11 1902.57 15.36 6.1199 0.5440 4.3368 0.4304

12 1890.86 15.34 4.9772 0.5142 4.3224 0.3195

13 1879.39 4.9359 0.4812 4.3081 0.4512

14 1866.13 4.9194 0.5828 4.8588 0.5319

15 1852.78 5.2684 0.6052 4.0085 0.4299

16 1840.15 4.7013 0.4826 4.1721 0.4240

17 1825.81 5.2463 0.6153 4.2139 0.5129

18 1813.81 5.4489 0.5748 4.3400 0.5623

19 1801.21 4.1075 0.4786 2.2932 0.3242

20 1787.40 5.4696 0.5444 4.3421 0.4507

21 1773.83 4.9473 0.5372 4.4047 0.4938

21.5 1761.19 5.1722 0.4794

22 1746.59 3.6770 0.5387

22.5 1754.08 5.0830 0.5334

24 1733.91 4.2854 0.5028 3.9421 0.4766

25 1720.32 5.4041 0.5239

25.5 1714.21 5.7051 0.5874

30 1648.71 4.3773 0.4211 4.5826 0.3698
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Grid Lake 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Core Top-

Depth 

(cm)

CRS Year CRS error +/-2 

Sigma

Total 

Measured 
210

Pb (dpm/g)

210Pb 

error, 1 

std. dev. 

(dpm/g)

226
 Ra 

dpm/g

226 Ra 

error, 1 

std. dev. 

(dpm/g)

137Cs Activity 

(dpm/g)

137Cs 

error, 1 

std. dev. 

(dpm/g)0.0 2013.48 0.42 52.8639 3.0012 6.9332 1.0680 2.7458 0.3669

0.5 2006.72 1.00 48.8168 2.3335 5.6492 0.6545 2.5533 0.2247

1.0 1995.60 1.89 50.5583 2.1990 5.6656 0.5422 2.7393 0.1822

2.0 1962.98 5.54 26.8315 1.4496 5.0569 0.4725 3.9035 0.1958

2.5 1942.28 10.67 20.9972 1.1767 3.8569 0.4642 3.5161 0.1800

3.0 1916.98 22.83 15.0753 0.8039 5.6436 0.4547 2.7168 0.1161

4.0 1874.84 63.00 5.8783 0.7006 4.9059 0.5025 0.9636 0.1320

5.0 1838.84 6.9181 0.5656 7.3739 0.4711 0.7354 0.0981

6.0 1794.84 5.4018 0.4454 4.8308 0.3536 0.4419 0.0770

7.0 1747.46 5.3587 0.4381 5.7117 0.3649 0.5696 0.0760

8.0 1697.59 5.4115 0.4795 5.3100 0.3635 0.4833 0.0801

9.0 1643.76 4.7025 0.3876 5.2755 0.3352 0.4419 0.0675

10.0 1595.18 4.9754 0.3769 5.5229 0.3528 0.3753 0.0629

11.0 1545.79 5.1932 0.3990 5.6183 0.3488 0.3468 0.0656

12.0 1498.08 4.7947 0.4190 5.7832 0.3851 0.2405 0.0694

20.0 1011.70 7.3620 0.5793 7.8183 0.4534 -0.0570 0.1189

24.0 724.41 6.9553 0.5230 7.6299 0.4155 -0.0025 0.0087
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Appendix 3. Total dry mass sedimentation rates calculated from CRS. 
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Appendix 4. Loss-on-Ignition, organic carbon and nitrogen elemental and isotope composition (including 

calculated C/N values).
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Lake MW01 continued 
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Peanut Lake 
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Peanut continued 
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Nico Lake 
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Nico continued. 
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Grid Lake 

 

 

 

Grid Lake

Depth Year CE %H2O %OM %MM LOI 1000 %CaCO3 %C %N δ13C δ15N C/N

0.0 2015.0 97.41 45.80 47.71 6.49 14.75 28.38 2.52 -30.41 1.81 11.25

0.5 2013.48 94.11 46.89 47.20 5.90 13.41 27.19 2.55 -30.45 2.09 10.66

1.0 2006.72 93.38 45.78 46.69 7.53 17.11 26.85 2.50 -30.48 2.21 10.75

1.5 1995.60 92.72 43.63 50.97 5.40 12.27 26.33 2.35 -30.44 2.10 11.18

2.0 1981.08 92.69 42.60 51.02 6.38 14.49 27.14 2.52 -30.07 2.00 10.76

2.5 1962.98 93.16 42.98 52.34 4.68 10.64 27.14 2.48 -30.05 1.55 10.95

3.0 1942.28 93.27 38.71 50.15 11.14 25.33 23.99 2.02 -30.30 1.97 11.89

3.5 1916.98 91.65 41.56 51.59 6.85 15.56 25.05 2.13 -30.58 2.45 11.78

4.0 1888.88 91.82 40.00 54.39 5.61 12.75 23.51 1.96 -30.76 2.71 12.02

4.5 1874.84 90.68 38.12 56.32 5.57 12.65 24.29 1.98 -30.77 3.04 12.27

5.0 1854.84 90.85 39.19 55.25 5.57 12.65 22.43 1.83 -30.75 2.57 12.26

5.5 1838.84 89.70 38.89 56.13 4.98 11.32 22.22 1.82 -30.72 2.73 12.23

6.0 1816.27 89.86 37.67 57.36 4.97 11.30 20.71 1.66 -30.41 2.43 12.46

6.5 1794.84 89.93 37.16 57.09 5.75 13.06 22.33 1.75 -30.28 2.49 12.76

7.0 1773.73 88.56 37.97 57.97 4.07 9.24 21.06 1.65 -30.24 2.29 12.74

7.5 1747.46 88.66 36.49 58.07 5.44 12.36 19.60 1.51 -30.19 2.13 12.95

8.0 1720.62 88.51 37.46 57.80 4.75 10.79 20.94 1.60 -30.20 2.14 13.06

8.5 1697.59 88.44 37.79 56.69 5.52 12.54 18.25 1.38 -30.08 1.77 13.25

9.0 1669.85 88.45 39.21 55.79 5.01 11.38 21.97 1.68 -30.08 1.94 13.07

9.5 1643.76 88.30 38.83 56.83 4.33 9.85 22.73 1.73 -29.94 1.44 13.14

10.0 1619.52 88.62 38.07 56.14 5.79 13.16 25.53 1.97 -30.02 1.71 12.97

10.5 1595.18 88.81 40.35 54.34 5.31 12.07 23.21 1.81 -30.11 1.65 12.80

11.0 1571.79 88.57 40.17 55.52 4.31 9.80 22.68 1.76 -30.03 1.93 12.88

11.5 1545.79 87.63 40.82 54.75 4.43 10.07 23.59 1.84 -30.08 1.75 12.80

12.0 1518.59 90.04 43.17 51.88 4.95 11.25 24.01 1.90 -30.16 1.73 12.66

12.5 1498.08 89.00 42.60 51.81 5.60 12.72 25.19 1.99 -29.91 1.55 12.69

13.0 1474.47 89.69 41.32 52.59 6.09 13.84 24.88 1.96 -29.75 1.55 12.70

13.5 1452.56 88.56 41.17 53.69 5.15 11.69 23.31 1.81 -29.59 1.05 12.88

14.0 1427.68 88.26 42.46 52.79 4.75 10.80 25.25 1.96 -29.54 1.04 12.86

14.5 1400.93 90.00 43.50 52.76 3.74 8.50 23.80 1.84 -29.49 0.93 12.95

15.0 1377.16 88.40 41.37 52.60 6.03 13.70 25.11 1.93 -29.61 1.21 12.98

15.5 1351.33 87.66 43.13 52.92 3.95 8.98 25.73 1.97 -29.55 1.17 13.04

16.0 1326.20 86.92 40.70 54.57 4.73 10.74 24.86 1.89 -29.59 0.96 13.18

16.5 1299.86 85.06 36.01 59.30 4.69 10.65 25.81 1.98 -29.43 0.96 13.06

17.0 1262.37 85.41 41.08 54.86 4.05 9.21 24.64 1.87 -29.65 1.10 13.17

17.5 1224.66 85.79 40.44 55.30 4.26 9.69 24.89 1.87 -29.68 0.96 13.34

18.0 1195.27 85.13 41.00 55.19 3.81 8.66 23.53 1.71 -29.84 0.92 13.77

18.5 1161.50 85.44 40.76 55.62 3.61 8.22 23.77 1.70 -30.04 1.24 13.96

19.0 1127.71 82.22 36.56 59.00 4.44 10.10 23.34 1.65 -30.10 1.14 14.12

19.5 1085.12 83.35 37.63 58.66 3.70 8.42 23.67 1.67 -30.10 1.33 14.17

20.0 1047.50 84.27 39.35 57.16 3.49 7.92 23.95 1.69 -30.09 1.34 14.15

20.5 1011.70 83.98 37.16 59.05 3.79 8.61 23.11 1.57 -30.17 0.97 14.74

21.0 977.67 82.92 36.46 60.23 3.31 7.53 22.71 1.55 -30.14 1.39 14.61

21.5 939.45 82.95 36.01 60.21 3.78 8.60 22.16 1.49 -30.15 1.16 14.92

22 906.47 85.40 37.55 58.64 3.81 8.66 22.34 1.50 -30.12 1.38 14.92

22.5 874.61 84.27 35.80 60.34 3.86 8.77 21.35 1.40 -29.98 1.01 15.22

23.0 834.66 83.59 36.31 59.59 4.10 9.32 21.96 1.48 -30.14 1.56 14.86

23.5 794.94 84.87 37.32 58.69 3.99 9.06 22.24 1.47 -30.07 1.21 15.12

24.0 761.22 82.90 37.99 58.31 3.70 8.40 21.98 1.47 -30.15 1.10 14.99

24.5 724.41 83.58 38.17 57.68 4.15 9.42 22.96 1.58 -30.23 2.51 14.56

25.0 686.69 85.29 37.97 58.02 4.01 9.12 22.39 1.52 -30.14 1.26 14.75
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Grid Lake continued 

 

 

 

 

 

 

 

 

25.5 656.26 81.61 35.95 59.53 4.52 10.27 22.21 1.48 -30.11 1.29 15.01

26.0 616.24 83.10 36.38 59.10 4.52 10.27 21.25 1.41 -30.16 1.11 15.09

26.5 580.71 82.19 35.56 60.61 3.83 8.70 21.98 1.45 -30.07 1.24 15.14

27.0 541.60 82.00 35.05 60.02 4.93 11.20 21.78 1.45 -30.11 1.48 15.04

27.5 500.32 82.39 36.32 59.30 4.37 9.94 21.71 1.44 -30.22 1.32 15.07

28.0 455.26 82.47 34.58 60.35 5.07 11.51 21.47 1.40 -30.02 1.00 15.36

28.5 409.94 83.10 36.01 60.57 3.42 7.78 21.34 1.38 -30.09 1.15 15.46

29.0 375.22 82.74 35.62 60.73 3.65 8.29 21.74 1.42 -30.10 1.27 15.33

29.5 333.76 81.64 35.36 60.28 4.37 9.92 19.82 1.28 -29.99 1.11 15.47

30.0 292.85 83.46 36.43 58.26 5.31 12.06 21.70 1.43 -30.14 1.39 15.14

30.5 258.21 84.43 36.62 59.47 3.91 8.90 21.69 1.42 -30.21 1.17 15.32

31.0 220.60 83.71 36.84 59.85 3.30 7.51 21.50 1.41 -30.20 1.18 15.22

31.5 185.73 83.53 35.96 59.74 4.30 9.78 21.79 1.43 -30.23 1.65 15.21

32.0 146.97 84.30 36.05 59.57 4.38 9.96 21.55 1.40 -30.19 1.33 15.37

32.5 108.61 84.75 35.40 59.43 5.17 11.75 21.86 1.43 -30.26 1.29 15.32

33.0 72.10 83.55 37.30 58.97 3.73 8.48 22.30 1.45 -30.24 1.32 15.41

33.5 38.76 83.40 34.29 60.81 4.90 11.13 21.42 1.37 -30.09 1.43 15.67

34.0 1.47 81.36 35.51 60.27 4.21 9.58 21.55 1.38 -30.23 1.39 15.65

34.5 -39.74 81.46 33.79 61.74 4.46 10.14 20.52 1.29 -30.10 1.36 15.91

35.0 -85.20 80.60 34.01 62.73 3.26 7.41 19.99 1.25 -30.08 1.18 15.94

35.5 -129.06 80.29 34.06 61.71 4.23 9.62 20.06 1.26 -30.11 1.53 15.98

36.0 -175.47 81.00 34.33 61.94 3.72 8.46 19.57 1.22 -30.09 1.12 16.05

36.5 -219.35 81.65 33.30 63.38 3.32 7.54 20.46 1.27 -30.09 1.28 16.10

37.0 -259.81 81.14 34.85 62.14 3.01 6.84 20.48 1.28 -30.20 1.62 15.95

37.5 -300.81 81.04 34.02 62.89 3.09 7.03 20.10 1.25 -30.17 1.39 16.09

38.0 -344.35 79.83 32.25 64.03 3.72 8.46 20.14 1.25 -30.33 1.68 16.16

38.5 -386.89 81.83 33.63 62.87 3.50 7.97 20.79 1.29 -30.19 1.68 16.06

39.0 -426.95 82.03 33.89 61.89 4.22 9.60 20.21 1.27 -30.17 1.52 15.88

39.5 -468.50 81.72 32.90 62.76 4.34 9.87 21.22 1.33 -30.44 1.42 15.97

40.0 -510.91 82.03 33.15 62.58 4.27 9.70 21.62 1.37 -30.40 1.43 15.83

40.5 -551.55 82.86 33.48 62.42 4.10 9.33 20.20 1.29 -30.38 1.32 15.70

41.0 -592.76 81.09 32.82 63.60 3.58 8.13 20.72 1.32 -30.44 1.88 15.75

41.5 -637.74 81.64 32.70 63.63 3.67 8.34 20.14 1.26 -30.43 1.37 15.95

42.0 -679.44 79.79 32.41 63.86 3.73 8.47 19.70 1.26 -30.47 1.67 15.63

42.5 -723.35 80.43 33.71 63.03 3.26 7.41 20.30 1.27 -30.41 1.52 15.96

43.0 -768.94 80.84 33.33 62.44 4.23 9.61 20.02 1.25 -30.44 1.34 15.98
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Appendix 5. Sediment metals concentrations (μg g−1
 ) by depth (cm) and Year CE with MEI plotted by 

date. 
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Lake MW01 continued 
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Peanut Lake continued 
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Nico Lake 
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Nico Lake continued 
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Grid Lake continued 
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