
Using Partial Orders to Improve Automatic
Verification Methods
(Extended Abstract)*

Patrice Godefroid
Universit~ de Liege, Institut Montefiore, B28

4000 Liege Saxt-Tilman, Belgium
Email: go defroid@montefiore.ulg.ac.be

Abstract

In this paper, we present a verification method for concurrent finite-state systems that attempts to
avoid the part of the combinatorial explosion due to the modeling of concurrency by interleavings. The
behavior of a system is described in terms of partial orders (more precisely in terms of Maznrkiewicz's
traces) rather than in terms of intedeavings. We introduce the notion of Utrace automaton ° which
generates only one lineafization per partial order. Then we show how to use trace automata to prove
program correctness.

1 I n t r o d u c t i o n

Finite-state methods are quite widely used for concurrent program verification. Indeed, they have several
advantages: they are simple and easy to understand and they can be fully automated. Unfortunately,
these methods also have some serious drawbacks. They are not always applicable and, when they are
applicable, they are often limited by combinatorial explosion.

The frustrating fact is that a lot of this combinatorial explosion is unnecessary: it is due to the mod-
eling of concurrency by interleavings. For example, the concurrent composition of two n-state processes
having completely independent activities is represented by an n2-state process.

Of course, it has been recognized for some time that concurrency and nondeterminism are not the
same thing. This observation has inspired a fairly large body of work on "partial order" models of
concurrency [Lam78] [Maz86] ~ra86] [Win86]. With very few exceptions, work in this area is limited to
rather abstract semantical models.

In this paper, we take a very pragmatic point of view towards partial order models. Our goal is to
develop verification methods for concurrent finlte-state systems that avoid the part of the combinatorial
explosion due to the modeling of concurrency by interleaving. We present a framework in which this can
be done successfully.

To define a verification method, four elements are necessary: a representation of programs, a rep-
resentation of properties, a semantics according to which we compare programs and properties, and an
algorithm for doing this comparison [Wo189].

For representing programs and properties, we chose one-safe place/transition-nets (P/T-nets) [Rei85]
[Roz86]. This is a well-known formalism and it fits very well both with the interleaving and the partial
order approaches. As semantic model, we use Mazurkiewicz's traces [Maz86]. However, we use this
model in such a way that the results of our verification are identical to what one would obtain with
an interleaving model of concurrency. Precisely, we verify that the language of firing sequences of the

*This research is supported by the European Community ESPRIT BRA project SPEC (3096).

177

one-safe P / T - n e t NI representing the implementation is included in the language of firing sequences of
the net Ns representing the specification.

Our verification method works in several steps. First, we build an automaton from the net representing
the implementat ion. However, this au tomaton does not represent all interleavings. I t only represents one
interleaving for each Mazurkiewicz trace in the semantics of the implementation. This automaton can be
very much smaller than the one representing all interleavings. We then compare this automaton to the
ne t for the specification taking into account the dependency relation of the Mazurkiewicz trace semantics.

2 One-safe P / T - n e t s

D e f i n i t i o n 2.1 A one-safe place/transition-net (P/T-net), is a quadruple N = (S,T, F, Mo) where S and
T are finite, disjoint, nonempty sets of respectively places (local s ta tes) and t ransi t ions; F _C S x TUT× S
is a flow relation such that dora(F) U cod(F) = S U T (no isolated elements); and Mo C S is the initial
marking.

P /T-ne t s are represented graphically using boxes (or straight lines) to represent transitions, circles to
represent places, and arrows to represent the flow relation. In such a representation, circles corresponding
to places in the initial marking are marked with dots (tokens).

For each z E S U T , the sets 'x = {y : (y ,z) E F}, z" = {y : (z ,y) E F}, and ' z = "z U z ' are called
respectively the preset, the postset and the proximity of z.

A marking M (or global state) of such a net N is a subset of S.

D e f i n i t i o n 2.2 Let M be a marking of N. A transitiont E T is M-firable 1 iff ('t C M) A (t ' N (M \ ' t) = 0).

Thus each place of each marking will contain at most one token. An M-firable transition t E T may fire
and yield a successor marking M' of M which is such that M I = (M \ "~) U t ' .

If t fires from M to M ~ we write M [t > M '. A reachable marking of N is a marking M such tha t
Btl t . E T: M0 [t l > M1 [t2 > M2 [. . . [tn > M . = M. The set of all reachable markings of N
will be denoted by mark(N).

The sequence t l , t 2 , - - - , t . is called a firing sequence of N. The set of all firing sequences of N will be
called the firing sequence language of N. This language is prefix closed.

D e f i n i t i o n 2.3 A one-safe P/T-net N is called contact-free iff for all M E mark(N) and for all ~ E T:
('f C M) ~ (t" n (M \ .t) = $).

3 Automata

A finite-state deterministic automaton is a quadruple (S, ~,¢~,s0) where S is a finite set of states; ~ is an
alphabet; 5 : S x ~ --, S is a deterministic transition function; and so is the s tar t ing state.

The language generated by such an automaton is the set of words w = ala2. . , a, such tha t there
exist sl = 5 (s i_ l , a l) , for all i : 1 < i < n. An automaton can be represented by a directed graph. The
nodes of this graph represent the s tates of S while the edges represent the transit ion function and are
labeled with elements of ~.

I t is easy to define an automaton that generates the firing sequence language of a given one-safe
P / T - n e t N: S = mark(N); ~ = T, the set of transitions of N; 5 (M, t) = M' iff M, M' E mark(N) and
M [t > M ' ; and So = M0, the initial marking of N. Clearly, the states of this automaton correspond to
the reachable markings of N.

The language L accepted by such an a~tomaton will be referred to as the sequential behavior of N.
The words (sequences) of this language can be viewed as sequential observations of the behavior of N,

SNote that a C/F_,-syatem [Rei85] (or a~a Elementary Net system [Ftoz86]) is more restrictive tlum a one-safe P/T-net
since the requirements for the firing of a transition t in a C/E-system are ('t _C M) A (t" f3 M = $).

178

i.e. observations made by observers able to see only a single event occurrence at a time. The ordering of
symbols in these words reflects not only the (objective) causal ordering of event occurrences (transitions
of the net), but also a (subjective) observational ordering resulting from a specific view of concurrent
actions: whenever there are concurrent transitions in the net N, the corresponding automaton introduces
an "artificial" nondeterminism whose nondeterministic choices correspond to the possible interleavings
of these concurrent transitions. Therefore, the structure of such an automaton alone does not make i t
possible to decide whether the difference in ordering is caused by a conflict resolution (a nondeterministie
decision), or by different observations of concurrency (interleavings). In order to extract the causal
ordering of event occurrences, we will use the notion of trace [Maz86].

4 T r a c e s

First, we define the notion of concnrrent alphabet.

Def in i t i on 4.1 A concurren~ alphabet is a pair ~ = (A, D) where A is a finite set of actions, called the
alphabet of E, and D is a binary, symmetrical and reflexive, relation in A, called the dependency in •.

D(A) = (A, A ~) stands for the concurrent alphabet of total dependency on A, and Iz = A 2 \ D stands
for the independency in E.

Def in i t ion 4.2 Let E be a concurrent alphabet; A* represents the set of all finite sequences (words) of
symbols in A, • stands for the concatenation operation, and the empty word is noted e. We define the
relation - z as the least congruence in the monoid [,4*;-,~] such that (a,b) E I~ =~ ab --z ha.

The relation ---~ is referred to as the trace equiealence over E.

Def in i t i on 4.3 Equivalence classes o f - z are called traces over E.

A trace characterized by a word to and a concurrent alphabet E is denoted by [to]z.
Thus a trace over a concurrent alphabet E = (A, D) represents a set of words defined over A only

differing by the order of adjacent symbols which are independent according to D. For instance, if a and
b are two symbols of A which are independent according to D, the trace [ab]~ represents the two words
ab and ha. A trace is an equivalence class of words. A trace language is a set of traces over a given
concurrent alphabet.

Let us return to the one-safe P/T-net N. We define the dependency in N as the relation DN C T × T
such that:

(t l , tz) E DN ¢~ "ti rl 't~ ~ 0. (1)

The complement of DN is called the independency in N. If two independent actions occur next to each
other in a firing sequence, the order of their occurrences is irrelevant (since they occur concurrently in
this execution). Let EN = (T, DN) be the concurrent alphabet associated with N and let L be the firing
sequence language of N. We define the trace behaviorof N as the set of equivalence classes of L defined by
the relation ---_~:s. These equivalence classes are called firing tracesof N. Such a class (trace) corresponds
to a partial order (i.e. a set of causality relations) and represents all its linearizations (words).

To describe the behavior of a one-safe P /T-ne t by means of traces rather than sequences, we will
need the dependency DN of N (which can he deduced from the statical structure of N as defined by (1))
and only one linearization for each trace. Consider a language L' representing one arbitrary linearization
(word) for each possible trace of the net. Let L ~ be such that

L = U Pref(l in([w%~))
w,EL,

where lin([w]~.N) denotes the set of linearizations (words) of the trace (equivalence class) [w]r.N and
Pref (w) denotes the prefixes of w. Clearly, L l is a regular language. So, the behavior of a one-safe

179

P/T-net is fully characterized by the dependency D~ and an automaton which generates exactly L:. Let
us call this automaton a trace automaton for N.

To construct such an automaton, we do not need to compute all the reachable markings of N: whenever
several independent transitions are flrable, we fire only one of these transitions in order to generate only
one interleaving (linearization) of these transitions.

In the next section, we present an algorithm to construct a trace automaton for a given contact-free
one-safe P /T -ne t N.

5 Cons t ruc t ing the Trace A u t o m a t o n

The algorithm presented in Figure 1 is a classical depth-first search of the reachable markings of the
net N with some important modifications.

The algorithm use~ a Stack to hold the configurations that remain to be examined. Each configuration
is composed by a marking M and two additional information: a "Sleep set" and a "NDin fo ~'. A Sleep
set is a subset of M-firable transitions. A "sleeping" transition will never be fired in the remainder of the
search starting from the current marking M. Thus Sleep denotes a set of transitions which are firable but
which will not be fired. A N D i n f o is an information which identifies the nondeterministic branch of the
current marking M. Different possibilities for solving a nondeterminism lead to different nondeterministic
branches. The root of all nondeterministic branches is the initial marking. A (hash) table H is also used
to store the states of the automaton that have been explored. As usual, these states will correspond to
reachable markings of the net N. A Sleep set, a N D i n f o and a "sued' set are associated to each state.
The succ set contains the transitions leaving that state in the trace automaton. The states reachable
from a given state of the trace automaton are obtained by firing, in the net, the transitions of the succ
set associated with that state.

Since we suppose that N is contact-free, we do not have to check the requirement t" N (M \ "t) = 0
before firing a transition t from a marking M. Dealing with contact-free one-safe P/T-nets is not a
restriction. Indeed for every one-safe P /T-ne t there exists an equivalent contact-free one-safe P/T-net
(i.e. a net that has the same firing sequence language) [Rei85]. Transitions t l , t 2 , . . . , t , are referred to as
being in conflict iff (' t l N't2 N . . . N-tn) ~ 0 (their occurrences are mutually exclusive and lead to different
nondeterministic branches). A transition t that is not in conflict with another transition is conflicl-free.

The first modification w.r.t, the classical algorithm is that we do not systematically fire all firable
transitions from a given marking: we only choose some of them since we want to construct an automaton
that generates only one interleaving whenever several independent transitions are firable. Our choices
are motivated by the following two principles: we want to minimize the number of states of the trace
automaton; we have to consider all possible behaviors of the net: each firing sequence of the net must be
represented by some trace generated by the trace automaton.

Remember that each word w generated by the trace automaton defines a trace [w]~-. H. This means
that all the linearizations of this trace and all the prefixes of these linearizations are firing sequences of
the net N.

In order to minimize the number of states to he constructed, we define a priority scheme to choose
amongst the firable transitions those that are to be fired. The highest priority (priority I) is given to
conflict-free transitions (tbese transitions will be fired one by one successively). Next, we give priority
(priority 2) to transitions that are in conflict exclusively with firable transitions. When we fire such a
transition, we also fire (from the current marking) the transitions that are in conflict with it in order to
explore all possible nondeterministic cases (it corresponds to a branching in the trace automaton). All
these possible cases lead to different nondeterministic branches (therefore, the NDin fo of the markings
obtained after firing these transitions are distinct). Finally, priority 3 is given to firable transitions that
are in conflict with at least one nonfirable transition (this is a situation of confusion [Rei85]).

When there remain only firable transitions of priority 3, we proceed as follows. Let t be one of these
flrable transitions. We know that t is in conflict with at least one transition z that is not firable from

180

1. Initialize: Stack is empty; H is empty;
enter (A/o, ~, 0) in H;
push (M0, ~, 0) into Stack

2. Loop: while Stack ~ ~ do
begin

pop (M, Sleep, N Din f o) from Stack;
F T := CHOOSE-AMONGST({t! ~ Sleep : "f! C_ M}, Sleep, N Din f o)
for all t / E FT: add t / t o succ(M) in H
for all t / E F T do

begin
neztM :-~ M - "ty "1" t'S;
NDinfo :---- ty->NDinyo; Sleep := ty->Sleep;
if neztM is already in H

there' NDinfo-old := NDinfo associated with neztM in H;
if Same-ND-Branch(N Din f o-old,N Din f o)

then Sleep := Sleep U sncc(neztM);
push (neztM, Sleep, IV Din f o) into Stack

else Sleep-old := Sleep associated with neztM in H
if Sleep-old ~ Sleep

then enter (neztM, Sleep n Sleep-old,
NDinfo) in H;

push (neztM, Sleep, N Din f o) into Stack
else enter (neztM, Sleep, NDinfo) in H;

push (neztM, Sleep, N Din f o) into Stack
end

end

Figure 1: Algorithm

the current marking. But it is possible that z will become firable because of the evolution of some other
tokens not in "t. In that case, the firing of t could be replaced by the firing of z. In order not to miss this
possibility, we consider several cases: we fire t from the current marking M, we fire the firable transitions
i t , . - - , tn in conflict with t from M, if any, and then we "give the hand" to other tokens to see if they can
make z firable (all these cases correspond to different nondeterministic branches). In the last case, since
we have already considered the firing of t and t l , --- , tn and since we axe only interested by the "potential"
firing of z, we do not consider t, t l , . . . , t~ any longer and we put them in the Sleep set associated with the
current configuration. If there still remain firable transitions of priority 3, we proceed again as described
above with the new Sleep set, etc. In summary, when there remain only firable transitions of priority 3,
all these transitions axe fired from the current marking but with different NDin fo and Sleep sets. An
example of such a situation is shown in Figure 2.a: from the current marking all the firable transitions
have priority 3. The corresponding trace automaton is given below the net (the value of Sleep and
NDin fo during the construction of the trace automaton is given between parentheses).

The function CHOOSE-AMONGST returns the next transition(s) to be fired according to the priority
scheme. Moreover, this function associates two additional information to each chosen transition t! to
be fired: ts->Sleep and t y ->NDinfo representing respectively the Sleep set and the NDinfo to be
associated with the new marking obtained after firing ty.

Another modification w.r.t, the classical depth-first search is that, if the current marking has already
been reached, the search does not stop automatically. Indeed, suppose the current marking is M. The

181

)
(Sleep~ [a }, N'Dtnfo=2) (Sleep~ { a }. NDIn fo--,2)

(S l e e p = l ~ ~ (Sleep=[a], NDlnfo.--0)

~iA,t~J~L..,. - (steel,=~,~o=O) (s~,p--.~.l, mlnfo=0)

(Sieep---~. NDin fo..-~) " ~

(S leep...---~, NDin fo= 1) (Sleep~, NDinfo=l) (S lee~, NDiafo---0)

(a) (b)

Figure 2: Nets and their corresponding trace automaton

search continues and after the firing of some transitions, the current marking becomes M again. In
other words some of the tokens of M moved from their place and then returned back to their respective
place. But it is possible that other tokens of M have not yet had the possibility of moving. In order to
consider all possible behaviors, we have to "give the hand" to these tokens to see which other concurrent
transitions could be fired (it is a kind of 'Tairness requirement" on the choices amongst independent
firable transitions). This situation is illustrated in Figure 2.b: from the initial marking {A, C}, assume
that we fire a and that next we fire b and go back to {A, C}; then we ha~e to fire c although the marking
{A, C} has already been reached. This kind of situation can arise only with markings that can appear
several times in the same nondeterministic branch of the trace automaton. Now, what happens if the
next marking has already been reached in another nondeterministic branch ? The search from this
next marking may stop if the Sleep set "Sleep-old" associated with this marking in the already reached
marking table is included in the current Sleep set "Sleep'. If this requirement is not satisfied, i.e. if there
exists some transition t in Sleep-old (t is firable) such that t is not in Sleep, the search has to continue.
Indeed, since t is not in Sleep, t (which is firable) has to be fired eventually and, since t is in Sleep-old,
we know that t does sot occur in the remainder of the search previously made starting from the next
marking with Sleep-old as Sleep set.

Of course, there are many possible trace automata corresponding to a given contact-free one-safe
P /T-ne t N. The algorithm described above constructs one of these possible automata. The order of the
time complexity for our algorithm is given by the number of constructed transitions times the maximum
number of simultaneous firable transitions. We do not claim that the trace automaton constructed by our
algorithm is Mways the minimal one: it is often possible to further reduce the size of the trace automaton
but at the cost of an increased time complexity.

E x a m p l e 5.1 Let us consider the well-known dining philosophers problem. Figure 3 shows a net dp2
that represents two philosophers and their adjacent forks. The "classical" automaton, i.e. the one whose
states correspond to all the reachable markings, and the trace automaton constructed by our algorithm
that correspond to dp2 are presented in figure 4. The dotted part is not part of the trace automaton. II

The net dp2 is susceptible to deadlock: there is no firable transition from the marking {A3, B3}. Note

182

B

^

Figure 3

N E T Classical Au tomaton Trace Autonmton
Total]tun States Trans. Deadlock Total Run States Trans. Deadlock
Time (sec) Time (sec)

dp2 0.76
dp3 3.64
dp4 43.52
dp5 692.4

21 34 13 0.7 13 14 13
99 240 25 1.1 25 28 20
465 1508 173 1.98 43 49 27
2163 8770 525 3.6 72 83 34

Table 1: Classical automaton versus trace automaton

that the state corresponding to the marking {An, Bs} is a state of the trace automaton. Indeed, remember
the main idea behind our algorithm is to choose some of the firable transitions to be fired whenever there
are independent firable transitions. Thus, if there is no firable transition, we detect it (the de~ilock-
preserving property of partial order semantics was already pointed out in [Gai88], [Val88] among others).

Table 1 compares the performance of a depth-first search algorithm against the algorithm presented
in thissection for the nets dp2 to dp5 (five dining philosophers). The combinatorial explosion both in
the number of states and transitions is clearly avoided by using trace automata. We also compare the
run time needed to construct these automata (these results were obtained with a LISP prototype): our
algorithm can be much faster than the classical one. Moreover, the deadlock is detected sooner: for dp5,
the deadlock corresponds to the 34th reached state by our algorithm instead of the 525th one with a
classical depth-first search.

Our method for modeling net behaviors has the potential of being much more efficient, both in lime
and memory, than the classical one. In the next sections, we show how to use trace automata to prove
program correctness.

183

p

J

~ - - A:

i ~T~ ~

I I

~2 T~ A2B3 T~ A ~ A2B~ n ~ A2B,

Figure 4: Classical automaton and trace automaton for dp2

6 V e r i f i c a t i o n

Consider a set of processes P and a relation < on this set such that I < S iff I refines S (i.e., I is less
nondeterministic than S). Let P be the set of all one-safe P/T-nets and < the inclusion relation defined
on the languages generated by these nets.

To verify that the implementation Nt effectively meets the specification Ns, the classical method
consists in comparing the automata 1 and S respectively generating the firing sequence language of
the nets N! and Ns. If these automata are deterministic, verifying the language inclusion reduces to
"simulating" I by S, i.e. checking that all that I can do can also be done by S. The cost of checking
the existence of this simulation increases with the size of the automaton I, i.e. with the total number
of reachable markings of the net Nt. Our claim is that this verification can be done at a lower cost, by
using a trace automaton for NI.

In the next section, we show how to express a criterion equivalent to language inclusion in terms of
traces.

7 A V e r i f i c a t i o n C r i t e r i o n b a s e d o n T r a c e s

Let LI (Ls) be the firing sequence language of a given one-safe P /T-ne t NI = (SI,TI, I;'I, M0,) (Ns).
Let 1:)1 (Ds) be the dependency in Nt (Ns) as defined previously and ~I = (TI, Dr) (Es = (Ts, Ds))
the concurrent alphabet associated with NI (Ns). We define PO([w]r,) as the transitive closure of the
relation {(ai,aj) : (ai,ai) E D with 1 < i < j < n} if w = ala2.. .an and D is the dependency of E.
PO([to]~:) represents the set of causality relations corresponding to [w]~ (PO([w]~) is a partial order).

Let I ' denote a trace automaton corresponding to Art and let Lx, be the language generated by I t.

T h e o r e m 7.1 iin([w]~,) C lin([w]~s) ¢~ PO([w]%) 3- PO([w]~s).

This theorem leads us directly to the following consideration: to verify that the linearizatians of a
trace [w"]~ x are included in the firing sequence language of a given one.safe P/T-net Ns, one needs to

check i/the word w' is a firing sequence of Ns and to verify that PO([w~]~r) 3_ PO([w~]~s).

Def in i t ion 7.1 A one-safe PIT-nut is called "restricted" if the following requirement is satisfied:

w , y • T : (.~ n .y) # ¢ ~ ((.~ n "y) ~ (y n ~.)). (2)

184

)

N$

Figure 5: Specification for dp2

NET ClassicaI Simulat ion Verification with P.O.
Total Run Time (sec) Total Run Time (sec)

dp2 0.96
dp3 5.08
dp4 60.1
dp5 940.4

0.74
1.18
2.36
4.58

Classical verification versus verification with P.O.

T h e o r e m 7.2 Let NI be a one-safe P/T-net and Ms a arestricted" one-safe P/T-net We have:

(Li, C_ Ls
LI C_ Ls ¢~ Vw' G L,, : PO([w']~:,) _D PO([u/]zs)

Proof : Presented in the full paper. •
This theorem is of great interest because in most cases verifying the two inclusions of the second

member can be done more efficiently than verifying the inclusion between all the linearizations. Indeed,
the size of I ' can be much smaller than the size o f / , if NI is a concurrent system.

8 The Verification Algori thm

We check that Lx, C Ls as usual (see Section 6) by exploring the reachable states of/~ x S. A transition
executed by I ' must be simulated by S except if this transition is hidden, i.e. if this transition is not in
the set Ts of transitions of the net Ns. Verifying the inclusion relation between the causality relations is
done during the checking of the simulation of I ' by S.

A l g o r i t h m : Presented in the full paper.

E x a m p l e 8.1 Figure 5 shows a specification Ns for the two dining philosophers dp2 of figure 3. |

The table of figure 5 compares the run time needed to verify that dp2 is an implementation of Ns w.r.t.
our criterion (theses results were obtained with a LISP prototype). In a similar way, this problem has been
extended up to five philosophers and the corresponding results are presented in table 5: our algorithm
can be much faster than the classical one. Moreover, from dp3 and beyond, the memory required to store
the states and the transitions due to the combinatorial explosion in the classical case is larger than the
additional memory required to check inclusion between causality relations in our method.

9 Conclusions

Most of the work on partial orders deals with semantic problems or with algebraic properties and remains
in a theoretical framework. There are only a few papers related to concurrent system verification using
partial order models [Gai88][KP86][KP88][Pen90][PL89][PPg0][PW84][Va189]. Our method has the ad-
vantages of being simple, fully algorithmic, and of extending directly conventional verification techniques.
Moreover, this method has the potential of being much more efficient, both in time and memory, than the
classical one. The dining philosophers example emphasizes clearly the power of our method: we avoid the
part of the combinatorial explosion due to the modeling of concurrency by interleavings. The verification
framework presented in this paper is restricted to nonlabeled P/T-nets and safety properties. Interesting
future work would be to broaden the scope of our method to cope with labeled P/T-nets and liveness
properties.

185

Acknowledgements
I would like to thank Professor Pierre Woiper for his enthousiast ic supervision, for fruitful discussions

and thought fu l hints. I a m grateful to Jean-Yves Pirnay and Philippe Simar for helpful comments and

contr ibut ing to the typeset t ing of this paper . My thanks are also addressed to Marianne Bandinet ,

Froduald Kabanza, Francois Schumacker and Dr. Wojciech Penczek for reading drafts of this paper .

References

[Gal88] H. Galfman. Modeling c o n v e y by partial oMers artd nonlinear transition systems. In Linear Tim e, Branching
Time and Partial Order in Logics and Models for Concurrency, LNCS 354, pages 467-488, 1988.

[God89] P. Godefroid. Lee modHes ordre partlel du paran~llsme (partial order models for concurrency). Undergraduate
thesis, Service d'Informatique, Unlversitd de Liege, June 1989.

[JKgO] R. Janlckl and M. Koutny. On some implementation of optimal simulations. To appear in Prec. Compnter-A idcd
Verification Workshop, Rutgers, 1990.

[KP86] Y. Kornatzky and S. S. PinCer." A model checker for partial order temporal logic. EE PUB 597, Department of
Electrical Enginerlng, Technlon-Israel Institute of Technology, 1980.

[KP88] S. Katz and D. Pried. An efficient verLqcation method for parallel and distributed programs. In Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, LNCS 354, pages 489-507, 1988.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed oyste~n. Communications of the A CM,
21(7):558--564, 1978.

[Maz86] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to Other Models of Concurrency,
A deanccs in Petri Nets 1986, Part II; Proceedings of an Advanced Course, LNCS 255, pages 279-324, 1986.

[Maz88] A. Mazurklewicz. Basic notions of trace theory. In Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, LNCS 354, pages 285-363, 1988.

[Peng0] W. Penczek. Proving partial order properties using CCTL. Submitted to Prec. Concerrencg and Compositionalitp
Workshop, San Miniato, Italy, 1990.

[PL89] D.K. Prohst and H. F. Li. Abstract specification, composition and proof of correctness of delay-insensitive
circuits and systems. Department of Computer Science, Concordia University, Montreal, Quebec Canada, 1989.

[Pra86] V. Pratt. Modelling concurrency with partial orders. International Journal of Parallel Programming, 15(1):33-
71, 1986.

[PPg0] D. Peled and A. Pnueli. Proving Partial Order Liveness Properties. ICALP, 1990.

[PW84] S.S. PinCer and P. Wolper. A temporal logic for reasoning about partially ordered computations. In Prec. 8rd
A CM S~/mposinm on Principles of Distribntcd Compnting, pages 28-37. Vancouver, 1984.

[Rei85] W. Reislg. Petri nets: an introduction. EATCS Monographs on Theoretical Computer Science, Springer-Verlag,
1985.

[Ro~6] G. Rozenberg. Behavlour of elementary net systems. In Petri Nets: Applications and Relationships to Other
Models of Concnrrcncp, Adeanccs in Petri Nets 1986, Part II; Proceedings of an Adeanced Coltrsc, LNCS 254,
pages 60--94, 1986.

[Val88] A. Valmarl. Error detection by reduced reachability graph detection. In Prec. 9th [ntcrnational Conference on
Application and Theory of Petri Nets, pages 95-112, Venice, 1988.

[Val89] A. Valmari. Stubborn sets for reduced state space generation. In Prec. lOth International Conference on
Application and Theory of Petri Nets, vol. 2, pages 1-22, Bonn, 1989.

[Win86] G. Winskel. Event structures. In Petri Nets: Applications and Relationships to Other Models of Concnrrenelt,
Adeanccs in Petri Nets 1986, Part [I; Proceedings of an Advanced Co~rse, LNCS 255, pages 325-392, 1986.

[Wo189] P. Wolper. On the relation of programs and computations to models of temporal logic. In B. Banieqbal,
H. Barringer, and A. Pnueli, editors, Prec. Temporal Logic in Specification, LNCS 398, pages 75-123, 1989.

[ZieS0] W. Zielonka. Proving assertions about parallel programs by means of traces. ICS PAS Report 424, Institute of

Computer Science, Polish Academy of Sciences, 1980.

