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Abstract  

In this paper, we present a verification method for concurrent finite-state systems that attempts to 
avoid the part of the combinatorial explosion due to the modeling of concurrency by interleavings. The 
behavior of a system is described in terms of partial orders (more precisely in terms of Maznrkiewicz's 
traces) rather than in terms of intedeavings. We introduce the notion of Utrace automaton ° which 
generates only one lineafization per partial order. Then we show how to use trace automata to prove 
program correctness. 

1 I n t r o d u c t i o n  

Finite-state methods are quite widely used for concurrent program verification. Indeed, they have several 
advantages: they are simple and easy to understand and they can be fully automated. Unfortunately, 
these methods also have some serious drawbacks. They are not always applicable and, when they are 
applicable, they are often limited by combinatorial explosion. 

The frustrating fact is that a lot of this combinatorial explosion is unnecessary: it is due to the mod- 
eling of concurrency by interleavings. For example, the concurrent composition of two n-state processes 
having completely independent activities is represented by an n2-state process. 

Of course, it has been recognized for some time that concurrency and nondeterminism are not the 
same thing. This observation has inspired a fairly large body of work on "partial order" models of 
concurrency [Lam78] [Maz86] ~ra86] [Win86]. With very few exceptions, work in this area is limited to 
rather abstract semantical models. 

In this paper, we take a very pragmatic point of view towards partial order models. Our goal is to 
develop verification methods for concurrent finlte-state systems that avoid the part of the combinatorial 
explosion due to the modeling of concurrency by interleaving. We present a framework in which this can 
be done successfully. 

To define a verification method, four elements are necessary: a representation of programs, a rep- 
resentation of properties, a semantics according to which we compare programs and properties, and an 
algorithm for doing this comparison [Wo189]. 

For representing programs and properties, we chose one-safe place/transition-nets (P/T-nets) [Rei85] 
[Roz86]. This is a well-known formalism and it fits very well both with the interleaving and the partial 
order approaches. As semantic model, we use Mazurkiewicz's traces [Maz86]. However, we use this 
model in such a way that the results of our verification are identical to what one would obtain with 
an interleaving model of concurrency. Precisely, we verify that the language of firing sequences of the 

*This research is supported by the European Community ESPRIT BRA project SPEC (3096). 
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one-safe P / T - n e t  NI representing the implementation is included in the language of firing sequences of 
the net  Ns representing the  specification. 

Our verification method works in several steps. First, we build an automaton from the net  representing 
the  implementat ion.  However, this au tomaton  does not  represent all interleavings. I t  only represents one 
interleaving for each Mazurkiewicz trace in the  semantics of the implementation.  This  automaton can be 
very much smaller than  the  one representing all interleavings. We then compare this  automaton to the 
ne t  for the  specification taking into account the dependency relation of the Mazurkiewicz trace semantics. 

2 One-safe P / T - n e t s  

D e f i n i t i o n  2.1 A one-safe place/transition-net (P/T-net), is a quadruple N = ( S,T,  F, Mo) where S and 
T are finite, disjoint, nonempty sets of respectively places (local s ta tes)  and t ransi t ions;  F _C S x TUT× S 
is a flow relation such that dora(F) U cod(F) = S U T (no isolated elements); and Mo C S is the initial 
marking. 

P /T-ne t s  are represented graphically using boxes (or straight lines) to represent transitions, circles to 
represent places, and arrows to represent the flow relation. In such a representation, circles corresponding 
to places in the initial marking are marked with dots (tokens). 

For each z E S U T ,  the sets 'x = {y : (y ,z)  E F},  z" = {y : (z ,y)  E F}, and ' z  = "z U z '  are called 
respectively the preset, the postset and the proximity of z. 

A marking M (or global state) of such a net N is a subset of S. 

D e f i n i t i o n  2.2 Let M be a marking of N. A transitiont E T is M-firable 1 iff ('t C M ) A ( t ' N ( M \ ' t )  = 0). 

Thus  each place of each marking will contain at  most one token. An M-firable transition t E T may fire 
and yield a successor marking M' of M which is such that  M I = (M \ "~) U t ' .  

If t fires from M to M ~ we write M [ t > M '. A reachable marking of N is a marking M such tha t  
Btl . . . . .  t .  E T: M0 [ t l  > M1 [ t2 > M2 [ . . .  [ tn > M .  = M. The set of all reachable markings of N 
will be denoted by mark(N).  

The sequence t l , t 2 , - - - ,  t .  is called a firing sequence of N. The set of all firing sequences of N will be 
called the firing sequence language of N. This language is prefix closed. 

D e f i n i t i o n  2.3 A one-safe P/T-net N is called contact-free iff for all M E mark(N) and for all ~ E T: 
('f C M) ~ (t" n (M \ .t) = $). 

3 Automata  

A finite-state deterministic automaton is a quadruple (S, ~,¢~,s0) where S is a finite set  of states; ~ is an 
alphabet;  5 : S x ~ --, S is a deterministic transition function; and so is the s tar t ing state. 

The  language generated by such an automaton is the set of words w = ala2. . ,  a, such tha t  there 
exist sl = 5 ( s i_ l , a l ) ,  for all i : 1 < i < n. An automaton can be represented by a directed graph. The 
nodes of this graph represent the s tates  of S while the edges represent the transit ion function and are 
labeled with elements of ~.  

I t  is easy to define an automaton that  generates the firing sequence language of a given one-safe 
P / T - n e t  N: S = mark(N); ~ = T, the set of transitions of N;  5 (M, t )  = M' iff M, M' E mark(N) and 
M [ t > M ' ;  and So = M0, the initial marking of N. Clearly, the states of this automaton correspond to 
the reachable markings of N. 

The  language L accepted by such an a~tomaton will be referred to as the  sequential behavior of N.  
The words (sequences) of this language can be viewed as sequential observations of the behavior of N, 

SNote that a C/F_,-syatem [Rei85] (or a~a Elementary Net system [Ftoz86]) is more restrictive tlum a one-safe P/T-net 
since the requirements for the firing of a transition t in a C/E-system are ('t _C M) A (t" f3 M = $). 
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i.e. observations made by observers able to see only a single event occurrence at a time. The ordering of 
symbols in these words reflects not only the (objective) causal ordering of event occurrences (transitions 
of the net), but  also a (subjective) observational ordering resulting from a specific view of concurrent 
actions: whenever there are concurrent transitions in the net N,  the corresponding automaton introduces 
an "artificial" nondeterminism whose nondeterministic choices correspond to the possible interleavings 
of  these concurrent transitions. Therefore, the structure of such an automaton alone does not make i t  
possible to decide whether the difference in ordering is caused by a conflict resolution (a nondeterministie 
decision), or by different observations of concurrency (interleavings). In order to extract the causal 
ordering of event occurrences, we will use the notion of trace [Maz86]. 

4 T r a c e s  

First, we define the notion of concnrrent alphabet. 

Def in i t i on  4.1 A concurren~ alphabet is a pair ~ = (A, D) where A is a finite set of  actions, called the 
alphabet of E, and D is a binary, symmetrical and reflexive, relation in A, called the dependency in •. 

D(A) = (A, A ~) stands for the concurrent alphabet of total dependency on A, and Iz  = A 2 \  D stands 
for the independency in E. 

Def in i t ion  4.2 Let E be a concurrent alphabet; A* represents the set of all finite sequences (words) of 
symbols in A, • stands for the concatenation operation, and the empty word is noted e. We define the 
relation - z  as the least congruence in the monoid [,4*;-,~] such that (a,b) E I~ =~ ab --z ha. 

The relation ---~ is referred to as the trace equiealence over E. 

Def in i t i on  4.3 Equivalence classes o f - z  are called traces over E. 

A trace characterized by a word to and a concurrent alphabet E is denoted by [to]z. 
Thus  a trace over a concurrent alphabet E = (A, D) represents a set of words defined over A only 

differing by the order of adjacent symbols which are independent according to D. For instance, if a and 
b are two symbols of A which are independent according to D, the trace [ab]~ represents the two words 
ab and ha. A trace is an equivalence class of words. A trace language is a set of traces over a given 
concurrent alphabet. 

Let us return to the one-safe P/T-net  N. We define the dependency in N as the relation DN C T × T 
such that: 

( t l , tz)  E DN ¢~ "ti rl 't~ ~ 0. (1) 

The complement of DN is called the independency in N. If two independent actions occur next to each 
other in a firing sequence, the order of their occurrences is irrelevant (since they occur concurrently in 
this execution). Let EN = (T, DN) be the concurrent alphabet associated with N and let L be the firing 
sequence language of N.  We define the trace behaviorof N as the set of equivalence classes of L defined by 
the relation ---_~:s. These equivalence classes are called firing tracesof N. Such a class (trace) corresponds 
to a partial order (i.e. a set of causality relations) and represents all its linearizations (words). 

To describe the behavior of a one-safe P /T-ne t  by means of traces rather than sequences, we will 
need the dependency DN of N (which can he deduced from the statical structure of N as defined by (1)) 
and only one linearization for each trace. Consider a language L' representing one arbitrary linearization 
(word) for each possible trace of the net. Let L ~ be such that 

L =  U Pref( l in([w%~))  
w,EL, 

where lin([w]~.N) denotes the set of linearizations (words) of the trace (equivalence class) [w]r.N and 
Pref (w)  denotes the prefixes of w. Clearly, L l is a regular language. So, the behavior of a one-safe 
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P/T-net is fully characterized by the dependency D~ and an automaton which generates exactly L:. Let 
us call this automaton a trace automaton for N. 

To construct such an automaton, we do not need to compute all the reachable markings of N:  whenever 
several independent transitions are flrable, we fire only one of these transitions in order to generate only 
one interleaving (linearization) of these transitions. 

In the next section, we present an algorithm to construct a trace automaton for a given contact-free 
one-safe P /T -ne t  N.  

5 Cons t ruc t ing  the  Trace A u t o m a t o n  

The algorithm presented in Figure 1 is a classical depth-first search of the reachable markings of the 
net N with some important modifications. 

The algorithm use~ a Stack to hold the configurations that remain to be examined. Each configuration 
is composed by a marking M and two additional information: a "Sleep set" and a "NDin fo  ~'. A Sleep 
set is a subset of M-firable transitions. A "sleeping" transition will never be fired in the remainder of the 
search starting from the current marking M. Thus Sleep denotes a set of transitions which are firable but 
which will not be fired. A N D i n f o  is an information which identifies the nondeterministic branch of the 
current marking M.  Different possibilities for solving a nondeterminism lead to different nondeterministic 
branches. The root of all nondeterministic branches is the initial marking. A (hash) table H is also used 
to store the states of the automaton that have been explored. As usual, these states will correspond to 
reachable markings of the net N.  A Sleep set, a N D i n f o  and a "sued' set are associated to each state. 
The succ set contains the transitions leaving that  state in the trace automaton. The states reachable 
from a given state of the trace automaton are obtained by firing, in the net, the transitions of the succ 
set associated with that  state. 

Since we suppose that N is contact-free, we do not have to check the requirement t" N (M \ "t) = 0 
before firing a transition t from a marking M. Dealing with contact-free one-safe P/T-nets  is not a 
restriction. Indeed for every one-safe P /T-ne t  there exists an equivalent contact-free one-safe P/T-net  
(i.e. a net that  has the same firing sequence language) [Rei85]. Transitions t l , t 2 , . . .  , t ,  are referred to as 
being in conflict iff ( ' t l  N't2 N . . .  N-tn) ~ 0 (their occurrences are mutually exclusive and lead to different 
nondeterministic branches). A transition t that is not in conflict with another transition is conflicl-free. 

The first modification w.r.t, the classical algorithm is that we do not systematically fire all firable 
transitions from a given marking: we only choose some of them since we want to construct an automaton 
that generates only one interleaving whenever several independent transitions are firable. Our choices 
are motivated by the following two principles: we want to minimize the number of states of the trace 
automaton; we have to consider all possible behaviors of the net: each firing sequence of the net must be 
represented by some trace generated by the trace automaton. 

Remember that each word w generated by the trace automaton defines a trace [w]~-. H. This means 
that  all the linearizations of this trace and all the prefixes of these linearizations are firing sequences of 
the net N.  

In order to minimize the number of states to he constructed, we define a priority scheme to choose 
amongst the firable transitions those that are to be fired. The highest priority (priority I) is given to 
conflict-free transitions (tbese transitions will be fired one by one successively). Next, we give priority 
(priority 2) to transitions that are in conflict exclusively with firable transitions. When we fire such a 
transition, we also fire (from the current marking) the transitions that are in conflict with it in order to 
explore all possible nondeterministic cases (it corresponds to a branching in the trace automaton). All 
these possible cases lead to different nondeterministic branches (therefore, the NDin fo  of the markings 
obtained after firing these transitions are distinct). Finally, priority 3 is given to firable transitions that 
are in conflict with at least one nonfirable transition (this is a situation of confusion [Rei85]). 

When there remain only firable transitions of priority 3, we proceed as follows. Let t be one of these 
flrable transitions. We know that t is in conflict with at least one transition z that is not firable from 
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1. Initialize: Stack is empty; H is empty; 
enter (A/o, ~, 0) in H; 
push (M0, ~, 0) into Stack 

2. Loop: while Stack ~ ~ do 
begin 

pop ( M, Sleep, N Din f o) from Stack; 
F T  := CHOOSE-AMONGST({t! ~ Sleep : "f! C_ M}, Sleep, N Din f o) 
for all t / E  FT: add t / t o  succ(M) in H 
for all t /  E F T  do 

begin 
neztM :-~ M - "ty "1" t'S; 
NDinfo :---- ty->NDinyo; Sleep := ty->Sleep; 
if neztM is already in H 

there' NDinfo-old := NDinfo associated with neztM in H; 
if Same-ND-Branch( N Din f o-old,N Din f o) 

then Sleep := Sleep U sncc(neztM); 
push (neztM, Sleep, IV Din f o) into Stack 

else Sleep-old := Sleep associated with neztM in H 
if Sleep-old ~ Sleep 

then enter (neztM, Sleep n Sleep-old, 
NDinfo) in H; 

push (neztM, Sleep, N Din f o) into Stack 
else enter (neztM, Sleep, NDinfo) in H; 

push (neztM, Sleep, N Din f o) into Stack 
end 

end 

Figure 1: Algorithm 

the current marking. But it is possible that z will become firable because of the evolution of some other 
tokens not in "t. In that  case, the firing of t could be replaced by the firing of z. In order not to miss this 
possibility, we consider several cases: we fire t from the current marking M,  we fire the firable transitions 
i t , . - - ,  tn in conflict with t from M, if any, and then we "give the hand" to other tokens to see if they can 
make z firable (all these cases correspond to different nondeterministic branches). In the last case, since 
we have already considered the firing of t and t l ,  --- ,  tn and since we axe only interested by the "potential" 
firing of z, we do not consider t, t l , . . . ,  t~ any longer and we put them in the Sleep set associated with the 
current configuration. If there still remain firable transitions of priority 3, we proceed again as described 
above with the new Sleep set, etc. In summary, when there remain only firable transitions of priority 3, 
all these transitions axe fired from the current marking but with different NDin fo  and Sleep sets. An 
example of such a situation is shown in Figure 2.a: from the current marking all the firable transitions 
have priority 3. The corresponding trace automaton is given below the net (the value of Sleep and 
NDin fo  during the construction of the trace automaton is given between parentheses). 

The function CHOOSE-AMONGST returns the next transition(s) to be fired according to the priority 
scheme. Moreover, this function associates two additional information to each chosen transition t!  to 
be fired: ts->Sleep and t y ->NDinfo  representing respectively the Sleep set and the NDinfo  to be 
associated with the new marking obtained after firing ty. 

Another modification w.r.t, the classical depth-first search is that, if the current marking has already 
been reached, the search does not stop automatically. Indeed, suppose the current marking is M. The 
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) 
(Sleep~ [a }, N'Dtnfo=2) (Sleep~ { a }. NDIn fo--,2) 

( S l e e p = l ~ ~  (Sleep=[a], NDlnfo.--0) 

~iA,t~J~L..,. - (steel,=~,~o=O) (s~,p--.~.l, mlnfo=0) 

(Sieep---~. NDin fo..-~) " ~  

(S leep...---~, NDin fo= 1 ) (Sleep~, NDinfo=l) (S lee~,  NDiafo---0) 

(a) (b) 

Figure 2: Nets and their corresponding trace automaton 

search continues and after the firing of some transitions, the current marking becomes M again. In 
other words some of the tokens of M moved from their place and then returned back to their respective 
place. But it is possible that other tokens of M have not yet had the possibility of moving. In order to 
consider all possible behaviors, we have to "give the hand" to these tokens to see which other concurrent 
transitions could be fired (it is a kind of 'Tairness requirement" on the choices amongst independent 
firable transitions). This situation is illustrated in Figure 2.b: from the initial marking {A, C}, assume 
that we fire a and that next we fire b and go back to {A, C}; then we ha~e to fire c although the marking 
{A, C} has already been reached. This kind of situation can arise only with markings that can appear 
several times in the same nondeterministic branch of the trace automaton. Now, what happens if the 
next marking has already been reached in another nondeterministic branch ? The search from this 
next marking may stop if the Sleep set "Sleep-old" associated with this marking in the already reached 
marking table is included in the current Sleep set "Sleep'. If this requirement is not satisfied, i.e. if there 
exists some transition t in Sleep-old (t is firable) such that t is not in Sleep, the search has to continue. 
Indeed, since t is not in Sleep, t (which is firable) has to be fired eventually and, since t is in Sleep-old, 
we know that  t does sot occur in the remainder of the search previously made starting from the next 
marking with Sleep-old as Sleep set. 

Of course, there are many possible trace automata corresponding to a given contact-free one-safe 
P /T-ne t  N.  The algorithm described above constructs one of these possible automata. The order of the 
time complexity for our algorithm is given by the number of constructed transitions times the maximum 
number of simultaneous firable transitions. We do not claim that the trace automaton constructed by our 
algorithm is Mways the minimal one: it is often possible to further reduce the size of the trace automaton 
but at the cost of an increased time complexity. 

E x a m p l e  5.1 Let us consider the well-known dining philosophers problem. Figure 3 shows a net dp2 
that represents two philosophers and their adjacent forks. The "classical" automaton, i.e. the one whose 
states correspond to all the reachable markings, and the trace automaton constructed by our algorithm 
that correspond to dp2 are presented in figure 4. The dotted part is not part of the trace automaton. II 

The net dp2 is susceptible to deadlock: there is no firable transition from the marking {A3, B3}. Note 
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B 

^ 

Figure 3 

N E T  Classical Au tomaton  Trace Autonmton  
Total ]tun States Trans. Deadlock Total Run States Trans. Deadlock 
Time (sec) Time (sec) 

dp2 0.76 
dp3 3.64 
dp4 43.52 
dp5 692.4 

21 34 13 0.7 13 14 13 
99 240 25 1.1 25 28 20 
465 1508 173 1.98 43 49 27 
2163 8770 525 3.6 72 83 34 

Table 1: Classical automaton versus trace automaton 

that the state corresponding to the marking {An, Bs} is a state of the trace automaton. Indeed, remember 
the main idea behind our algorithm is to choose some of the firable transitions to be fired whenever there 
are independent firable transitions. Thus, if there is no firable transition, we detect it (the de~ilock- 
preserving property of partial order semantics was already pointed out in [Gai88], [Val88] among others). 

Table 1 compares the performance of a depth-first search algorithm against the algorithm presented 
in thissection for the nets dp2 to dp5 (five dining philosophers). The combinatorial explosion both in 
the number of states and transitions is clearly avoided by using trace automata. We also compare the 
run time needed to construct these automata (these results were obtained with a LISP prototype): our 
algorithm can be much faster than the classical one. Moreover, the deadlock is detected sooner: for dp5, 
the deadlock corresponds to the 34th reached state by our algorithm instead of the 525th one with a 
classical depth-first search. 

Our method for modeling net behaviors has the potential of being much more efficient, both in lime 
and memory, than the classical one. In the next sections, we show how to use trace automata to prove 
program correctness. 
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~ - -  A: 

i ~T~ ~ 

I I 

~2 T~ A2B3 T~  A ~  A2B~ n ~  A2B, 

Figure 4: Classical automaton and trace automaton for dp2 

6 V e r i f i c a t i o n  

Consider a set of processes P and a relation < on this set such that I < S iff I refines S (i.e., I is less 
nondeterministic than S). Let P be the set of all one-safe P/T-nets  and < the inclusion relation defined 
on the languages generated by these nets. 

To verify that the implementation Nt effectively meets the specification Ns, the classical method 
consists in comparing the automata 1 and S respectively generating the firing sequence language of 
the nets N! and Ns. If these automata are deterministic, verifying the language inclusion reduces to 
"simulating" I by S,  i.e. checking that all that I can do can also be done by S. The cost of checking 
the existence of this simulation increases with the size of the automaton I,  i.e. with the total number 
of reachable markings of the net Nt. Our claim is that this verification can be done at a lower cost, by 
using a trace automaton for NI. 

In the next section, we show how to express a criterion equivalent to language inclusion in terms of 
traces. 

7 A V e r i f i c a t i o n  C r i t e r i o n  b a s e d  o n  T r a c e s  

Let LI (Ls) be the firing sequence language of a given one-safe P /T-ne t  NI = (SI,TI, I;'I, M0,) (Ns). 
Let 1:)1 (Ds) be the dependency in Nt (Ns) as defined previously and ~I  = (TI, Dr) (Es = (Ts, Ds)) 
the concurrent alphabet associated with NI (Ns). We define PO([w]r,) as the transitive closure of the 
relation {(ai,aj) : (ai,ai) E D with 1 < i < j < n} if w = ala2.. .an and D is the dependency of E. 
PO([to]~:) represents the set of causality relations corresponding to [w]~ (PO([w]~) is a partial order). 

Let I '  denote a trace automaton corresponding to Art and let Lx, be the language generated by I t. 

T h e o r e m  7.1 iin([w]~,) C lin([w]~s) ¢~ PO([w]%) 3- PO([w]~s). 

This theorem leads us directly to the following consideration: to verify that the linearizatians of a 
trace [w"]~ x are included in the firing sequence language of a given one.safe P/T-net Ns, one needs to 

check i/the word w' is a firing sequence of Ns and to verify that PO([w~]~r) 3_ PO([w~]~s). 

Def in i t ion  7.1 A one-safe PIT-nut is called "restricted" if the following requirement is satisfied: 

w , y  • T :  (.~ n .y) # ¢ ~ ((.~ n "y) ~ (y n ~.)). (2) 
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) 

N$ 

Figure 5: Specification for dp2 

NET ClassicaI Simulat ion Verification with  P.O. 
Total Run Time (sec) Total Run Time (sec) 

dp2 0.96 
dp3 5.08 
dp4 60.1 
dp5 940.4 

0.74 
1.18 
2.36 
4.58 

Classical verification versus verification with P.O. 

T h e o r e m  7.2 Let NI be a one-safe P/T-net and Ms a arestricted" one-safe P/T-net We have: 

( Li, C_ Ls 
LI C_ Ls ¢~ Vw' G L,, : PO([w']~:,) _D PO([u/]zs) 

Proof :  Presented in the full paper. • 
This theorem is of great interest because in most cases verifying the two inclusions of the second 

member can be done more efficiently than verifying the inclusion between all the linearizations. Indeed, 
the size of I '  can be much smaller than the size o f / ,  if NI is a concurrent system. 

8 The Verification Algori thm 

We check that Lx, C Ls as usual (see Section 6) by exploring the reachable states of/~ x S. A transition 
executed by I '  must be simulated by S except if this transition is hidden, i.e. if this transition is not in 
the set Ts of transitions of the net Ns. Verifying the inclusion relation between the causality relations is 
done during the checking of the simulation of I '  by S. 

A l g o r i t h m :  Presented in the full paper. 

E x a m p l e  8.1 Figure 5 shows a specification Ns for the two dining philosophers dp2 of figure 3. | 

The table of figure 5 compares the run time needed to verify that dp2 is an implementation of Ns w.r.t. 
our criterion (theses results were obtained with a LISP prototype). In  a similar way, this problem has been 
extended up to five philosophers and the corresponding results are presented in table 5: our algorithm 
can be much faster than the classical one. Moreover, from dp3 and beyond, the memory required to store 
the states and the transitions due to the combinatorial explosion in the classical case is larger than the 
additional memory required to check inclusion between causality relations in our method. 

9 Conclusions 

Most of the work on partial orders deals with semantic problems or with algebraic properties and remains 
in a theoretical framework. There are only a few papers related to concurrent system verification using 
partial order models [Gai88][KP86][KP88][Pen90][PL89][PPg0][PW84][Va189]. Our method has the ad- 
vantages of being simple, fully algorithmic, and of extending directly conventional verification techniques. 
Moreover, this method has the potential of being much more efficient, both in time and memory, than the 
classical one. The dining philosophers example emphasizes clearly the power of our method: we avoid the 
part of the combinatorial explosion due to the modeling of concurrency by interleavings. The verification 
framework presented in this paper is restricted to nonlabeled P/T-nets  and safety properties. Interesting 
future work would be to broaden the scope of our method to cope with labeled P/T-nets  and liveness 
properties. 
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