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Abstract

In this paper, we present a Bayesian framework for the
fully automatic tracking of a variable number of interact-
ing targets using a fixed camera. This framework uses
a joint multi-object state-space formulation and a trans-
dimensional Markov Chain Monte Carlo (MCMC) parti-
cle filter to recursively estimate the multi-object configu-
ration and efficiently search the state-space. We also de-
fine a global observation model comprised of color and bi-
nary measurements capable of discriminating between dif-
ferent numbers of objects in the scene. We present results
which show that our method is capable of tracking varying
numbers of people through several challenging real-world
tracking situations such as full/partial occlusion and enter-
ing/leaving the scene.

1. Introduction

Tracking a fixed number of independent, hand-initialized
objects is a well studied problem. However, the automatic
detection and tracking of a variable number of interacting
objects is still difficult, implying three challenging tasks:
(1) reliably estimating the number of objects in the scene,
(2) keeping the algorithm computationally tractable when
multiple objects appear simultaneously, and (3) modeling
interactions between varying numbers of objects.

To address the first problem, we propose an observa-
tion model which uses binary information taken from back-
ground subtraction, along with foreground and background
color information, to predict the number of objects in the
scene. The works in [14, 5] highlight the need for a global
observation model to track multi-object configurations of
varying size. The work in [14] used binary observations
derived from background subtraction, but in a substantially
different way than we present here. In [5], a grid-based
global appearance observation likelihood combining ideas
from background modeling and Bayesian correlation was
used.
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To keep the algorithm computationally tractable, we use
a Bayesian approach and propose a robust and efficient par-
ticle filter (PF) capable of automatically tracking a variable
number of interacting objects. In this framework, a trans-
dimensional (reversible jump) MCMC algorithm is used to
sample from the distribution of states given observations
[3]. The benefits of our formulation include: efficient sam-
pling, a state vector of variable dimension (to handle vary-
ing numbers of objects), an explicit model for proximity-
based interactions, and the ability to handle multi-modality
in a multi-object observation model.

There is an abundance of literature devoted to the PF ap-
proach to multi-object tracking (MOT) [9, 14, 5, 10, 15].
Methods using a single-object state-space model are usu-
ally computationally inexpensive [10]. Such methods are
often equivalent to multiple single-object trackers in paral-
lel. A shortcoming of this approach is that identities and
interactions between objects can not be easily modeled in
formal (and algorithmic) terms. For these reasons, many
adopt a rigorous formulation of the MOT problem using a
joint state space [9, 14, 5, 6, 16, 15], where object interac-
tions can be properly defined. However, sampling from a
joint state space can quickly become inefficient as the di-
mension of the space increases.

Recently, finding an efficient MOT sampling method has
become a topic of much research. A joint state-space model
was proposed to efficiently track a fixed number of inter-
acting objects using a sampling method that combines a PF
formulation with MCMC sampling in [6]. This approach
addressed the problem of interaction as well, by defining a
pairwise Markov Random Field (MRF) prior in the dynam-
ical model, which is more computationally tractable than
other methods [9]. The work in [16] proposed a similar
formulation with MCMC sampling. Our work generalizes
the approach of [6] to handle a variable number of inter-
acting objects using a global observation model (instead of
the template-based model used in [6]). Specific differences
between our work and [6, 16] are detailed in later sections.

This paper is organized as follows: after presenting our
approach in Section 2, we evaluate the algorithm in Section
3, and provide some concluding remarks in Section 4.
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2. Our approach
2.1. Bayesian multi-object tracking with PFs
The Bayesian formulation of the tracking problem is well
known. Given a Markov state-space model, with hidden
states Xt representing the joint multi-object configuration,
and observations Yt extracted from a scene, the filtering dis-
tribution p(Xt|Y1:t) of Xt given all observations Y1:t =
(Y1, ..., Yt) up to time t is recursively computed by

p(Xt|Y1:t) = Z−1p(Yt|Xt) · (1)∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1,

where p(Xt|Xt−1) is the dynamical model defining the
(predictive) temporal evolution of the multi-object configu-
rations, p(Yt|Xt) denotes the observation likelihood (which
measures how well the observations fit the predictions), and
Z is a normalization constant.

PFs approximate Eq. 1 for non-linear, non-Gaussian
problems like visual tracking. From the various avail-
able formulations to derive the basic PF, we use the
one described in [4]. The filtering distribution is rep-
resented by a set of particles (weighted configurations)
{(X(n)

t , w
(n)
t ), n = 1, ..., N}, where X

(n)
t and w

(n)
t denote

the n-th sample and its associated weight at each time-step.
Eq. 1 is recursively approximated by

p(Xt|Y1:t) ≈ Z−1p(Yt|Xt)
∑

n

w
(n)
t−1p(Xt|X(n)

t−1) (2)

using importance sampling. Given the particle set from the
previous time {(X(n)

t−1, w
(n)
t−1)}, configurations at the cur-

rent time-step X
(n)
t are drawn from a proposal distribution

q(Xt) =
∑

r w
(r)
t−1p(Xt|X(r)

t−1). The weights are then com-

puted as w
(n)
t ∝ p(Yt|X(n)

t ).

2.2. State-space definition
A state at time t is a multi-object configuration defined
by Xt = {Xi,t, i ∈ It}, where It is the set of object
indexes and mt = |It| denotes the number of objects,
(mt ∈ M = {0, ..., M}, where M is the maximum allowed
number of objects, and | · | indicates set cardinality). Xi,t

denotes a single-object configuration and Xt = ∅ denotes a
zero object configuration. This definition allows the num-
ber of objects to vary instead of remain fixed, as in [6]. In
this work, Xi,t is a continuous vector in a space of transfor-
mations �Nx , where �Nx is a four-dimensional subspace of
the affine transformations, including horizontal and vertical
translation and scaling, Xi,t = (Xtx

i,t, X
ty
i,t, X

sx
i,t , X

sy
i,t).

2.3. PF for interacting objects
The simplest multi-object dynamical model assumes a fac-
tored representation [14, 5]. However, this assumption does

not model any form of interaction. Recently, the work in [6]
proposed the introduction of a pairwise Markov Random
Field (MRF) prior in the dynamical model [7]. The MRF
is defined on an undirected graph, with objects defining the
nodes of the graph, and links created at each time-step be-
tween pairs of proximate objects. The MRF prior places
constraints on each object’s state based on the states of its
neighbors (Fig. 2). For a fixed set of objects over time, the
dynamical model is expressed as

p(Xt|Xt−1) ∝
∏
i∈It

p(Xi,t|Xi,t−1)p0(Xt), (3)

where p(Xi,t|Xi,t−1) denotes the dynamics of the i-th
object, and the prior p0(Xt) =

∏
ij∈C φ(Xi,t, Xj,t) is

expressed as a product of pairwise interaction potentials
φ(Xi,t, Xj,t) over C, the set of cliques (i.e., pairs of con-
nected nodes) in the graph. The inclusion of p0 allows us to
model interaction between objects, unlike [16].

2.4. Dynamics for varying number of objects
Our dynamic model pV is defined for a variable number of
objects,

p(Xt|Xt−1)
def
= pV (Xt|Xt−1)p0(Xt) (4)

where pV (Xt|Xt−1) =
∏

i∈It
p(Xi,t|Xt−1) if Xt �= ∅ and

pV (Xt|Xt−1) = k if X = ∅ (and k is a constant). For the
zero object case, p0(Xt) is a constant as well. We define
p(Xi,t|Xt−1) = p(Xi,t|Xi,t−1) if object i existed in the
previous frame (i ∈ It−1) and p(Xi,t|Xt−1) = p(Xi,t)
if object i did not exist in the previous frame. With this
definition, the Monte Carlo approximation of the filtering
distribution in Eq. 2 becomes

p(Xt|Y1:t) ≈ Z−1p(Yt|Xt)
∏
ij∈C

φ(Xi,t, Xj,t) ·
∑

n

w
(n)
t−1pV (Xt|X(n)

t−1). (5)

It is important to note that the interaction term can be moved
out of the mixture model defined over all particles [6].

2.5. Trans-dimensional MCMC-based PF
Inference on the model described by Eq. 5 with a basic PF
is computationally infeasible when tracking several objects
due to the inefficiency of importance sampling in high di-
mensions. Generating particles with good predictions for
each object is not feasible with a standard PF for more than
two or three objects [4]. Schemes like partitioned sampling
[9] improve efficiency, but also face limitations [12].

As an alternative, [6] recently proposed to sample from
Eq. 5 with MCMC techniques for the case of a fixed num-
ber of objects using a Metropolis-Hastings (MH) sampler
at each time-step. MCMC methods work by generating a



sequence of samples from a Markov chain whose station-
ary distribution corresponds to the target distribution (in our
case, the filtering distribution in Eq. 5) after a sufficiently
long run of the sampler, and the discarding of the initial
samples generated by the process (the so-called “burn-in”
period) [8]. The MH algorithm draws samples from a pro-
posal distribution q(X∗|X), where X and X∗ denote the
current and proposed configurations, respectively, and ac-
cepts the latter with probability (a.k.a. acceptance ratio)

α = min
(

1,
p(X∗)q(X |X∗)
p(X)q(X∗|X)

)
. (6)

To sample for fixed number of objects, [6] defined a pro-
posal distribution where at each step in the chain, an object
is chosen randomly and its configuration is sampled from
its single-object dynamic model. The states of all other
objects are fixed. By accepting better single-object candi-
dates at each step without discarding good candidates al-
ready accepted for other objects, the MH sampler improves
the multi-object configuration. Note that, due to the use of
MCMC sampling, at each time-step we have a fair set of
samples from the filtering distribution, and so all particle
weights are equal to 1

N [8].
We generalize this approach to handle a variable number

of objects by using trans-dimensional MCMC techniques
[3]. This family of algorithms allows for the generation of
a Monte Carlo approximation of a distribution defined on a
space of variable dimension. The reversible-jump MCMC
sampler can be implemented by a MH algorithm, in which a
countable set of moves Υ (indexed by υ), and its prior {pυ}
are first defined, and candidate configurations are sampled
from a set of move-specific proposal distributions {qυ(·)}.
The moves involve reversible jumps across subspaces of dif-
ferent dimension or within the same subspace. We follow
the dimension-matching strategy described in [3]. We as-
sume that the move-specific proposal distributions are func-
tions of an auxiliary variable U . At each step of the algo-
rithm, a new move υ∗ is chosen with probability pυ∗ , and a
new state X∗ is defined by a deterministic function of the
current state and a new sample of the auxiliary variable U∗,
drawn from qυ∗(U∗), X∗ = h(X, U∗). The reverse move υ
from X∗ to X is then computed by sampling U from qυ(U),
with X = h′(X∗, U). The proposed configuration X∗ is
accepted with probability

α = min
(

1,
p(X∗)
p(X)

pυ

pυ∗

qυ(U)
qυ∗(U∗)

∣∣∣∣∂(X∗, U)
∂(X, U∗)

∣∣∣∣
)

, (7)

which includes the Jacobian of the diffeomorphism from
(X, U∗) to (X∗, U). In our case, we define X∗ =
h(X, U∗) = U∗, and X = h′(X∗, U) = U , so the Jacobian
is unity [2]. Though [16] defines a similar acceptance ratio,
α, the importance of dimension-matching is not mentioned.

We define four types of moves in this work. Two imply
jumps across dimensions, and two of fixed dimension:

1. Birth (b) of a new object, implying a dimension
change from mt to mt + 1.

2. Death (d) of an existing object, implying a dimension
change from mt to mt − 1.

3. Swap (s) of the identifiers between two existing ob-
jects, remaining in the dimension mt.

4. Update (u) of the parameters of the existing objects,
remaining in the dimension mt.

Once a prior distribution over the moves has been de-
fined ({pb, pd, ps, pu}), the RJ-MCMC PF can be summa-
rized by the algorithm in Fig. 1. In the following subsec-
tion, we specify the proposal distribution for each move,
and show that the computation of the acceptance ratio can
be simplified in each case.

GenerateN samples {X(n)
t , w

(n)
t } from {X(n)

t−1, w
(n)
t−1}.

• Initialize the MH sampler, by randomly choosing a
particle from the subset that shares the same object configu-
ration as XMAP

t−1 , and sampling X from the predictive distri-
bution

P
n w

(n)
t−1pv(Xt|X(n)

t−1).

• MH sampling. Draw B + N samples, where B is the
desired burn-in fraction to be discarded. For each sample,

– Choose move. Sample µ ∼ U [0, 1].

∗ if 0 ≤ µ < pb, υ∗ = b.

∗ else if pb ≤ µ < pb + pd, υ∗ = d.

∗ else if pb + pd ≤ µ < pb + pd + ps, υ∗ = s.

∗ else υ∗ = u.

– Sample X∗ from the move-specific proposal qυ∗ .

– Compute acceptance ratio α.

– Accept the move with probability α.

– Add accepted (X∗) or rejected (X) sample to the set
{X(n)

t , w
(n)
t }, w

(n)
t = 1/N .

• Compute MAP estimateXMAP
t .

Figure 1: Trans-dimensional MCMC PF.

2.6. Move-specific proposal distributions
The proposal distributions should be defined in such a way
that they simplify the computation of the acceptance ratio.
Otherwise, its direct computation would involve the evalu-
ation of Eq. 5, implying a sum over all particles (at great
computational cost, not discussed in [16]). We propose to
use the predictive term in Eq. 5 in a mixture model formu-
lation, to choose one object (in the case of the birth, death,
and update), or an object pair (in the case of swap), to at-
tempt a move. In the first three cases (υ ∈ {b, d, u}) we
define the proposal as a mixture,

qυ(X∗
t ) =

∑
i

qυ(i)qυ(X∗
t |i), (8)



over all the appropriate objects i. To choose a candidate
configuration X∗

t from the current configuration Xt, an in-
dex i∗ is chosen with probability qυ(i∗). A move is at-
tempted on i∗, while the rest of the multi-object configu-
ration is fixed. The mixture components are defined so that

qυ(X∗
t |i) =

{
1
N

∑
n pV (X∗

t |X(n)
t−1) i = i∗

0 i �= i∗.
(9)

The above general expression can be obtained for each
of the moves. Defining the proposal in this manner cancels
out all factors involving summations over the particles in the
acceptance ratio, and keeps the algorithm computationally
efficient.

Birth move. Adding an object i∗ implies that I∗
t = It ∪

{i∗}. In Eq. 8, the mixture components are defined by

qb(X∗
t |i) =

1
N

∑
n

p(X∗
i,t|X(n)

t−1)
∏
l∈It

p(Xl,t|X(n)
t−1)δXl,t

(X∗
l,t),

where δXl,t
(X∗

l,t) = δ(X∗
l,t−Xl,t). When i∗ is the index

of the new object, chosen from the available objects and
using a randomly chosen particle n∗ from the previous time,
it can be shown that the acceptance ratio for X∗

t is given by

αb = min
(

1,
p(Yt|X∗

t )
∏

j∈Ci∗
φ(X∗

i∗,t, X
∗
j,t)

p(Yt|Xt)
pd

pb

qd(i∗)
qb(i∗)

)
.

(10)
Note that the interaction model for the new object plays

an important role in discouraging new births that overlap
with an existing object (Fig. 2(b)).

For the new-object pdf p(X∗
i∗,t|X(n∗)

t−1 ), there are two

cases. If i∗ ∈ I(n∗)
t−1 , X∗

i,t is sampled from its dynamics.
Otherwise, X∗

i,t is sampled from its prior distribution, de-
fined by a R-component Gaussian mixture model (GMM).
The parameters of the first R − 1 components are defined
to draw samples from the entrance-exit regions in the scene.
The last component is set to draw samples from a random
configuration.

Death move. This is the reverse move to birth. An ob-
ject index i∗ is chosen with probability qd(i∗), and object
removal is attempted, keeping all the other object configu-
rations unchanged. The mixture components are

qd(X∗
t |i) =

1
N

∑
n

∏
l∈It,l �=i

p(Xl,t|X(n)
t−1)δXl,t

(X∗
l,t),

The acceptance probability can be simplified to

αd = min

(
1,

p(Yt|X∗
t )

p(Yt|Xt)
∏

j∈Ci∗
φ(Xi∗,t, Xj,t)

pb

pd

qb(i∗)
qd(i∗)

)
.

(11)
Update move. The update move applies dynamics with-

out changing dimension. For a candidate X∗
t , an existing

object index i∗ is first randomly chosen, and its configura-
tion is sampled from p(X∗

i∗,t|X(n∗)
t−1 ), keeping all other con-

figurations unchanged. The acceptance probability is sim-
plified to

αu = min

(
1,

p(Yt|X∗
t )
∏

j∈Ci∗
φ(X∗

i∗,t, X
∗
j,t)

p(Yt|Xt)
∏

j∈Ci∗
φ(Xi∗,t, Xj,t)

)
. (12)

Swap move. This move involves a pair of objects with-
out changing dimension. The proposal is defined as a mix-
ture model over all object pairs,

qs(X∗
t ) =

∑
i,j

qs(i, j)qs(X∗
t |i, j),

with components qs(X∗
t |i, j) which swap the configura-

tions of objects i and j, leaving everything else in the multi-
object configuration unchanged. A candidate X∗

t is cho-
sen by selecting a pair of existing object indexes i∗, j∗ with
probability qs(i∗, j∗) and swapping their configuration. In
this case, the acceptance probability term can be reduced to

αs = min
(

1,
p(Yt|X∗

t )
p(Yt|Xt)

)
. (13)

The definitions for qb(i), qd(i), qs(i, j) and qu(i) are
given in Section 3.3.

2.7. Interaction model
We adopt a simple interaction model that penalizes object
overlapping by defining an MRF prior using all the existing
objects [6]. This model reduces the likelihood of fitting two
trackers to the same object in situations like a brief crossing
or people walking in a group. Given SXi

t , S
Xj

t , the spatial
supports of Xi and Xj , respectively, the interaction poten-
tial is defined as

φ(Xi,t, Xj,t) ∝ exp
(
−λI

2
(ν(SXi

t , S
Xj

t ) + ρ(SXi
t , S

Xj

t )
)

(14)
where λI is a hyper-parameter, and ν, ρ are the precision
and recall measures, which indicate the overlap between
SXi

t and S
Xj

t (see next subsection). The argument of the
exponential is zero if the objects do not overlap, and mini-
mum when they perfectly match.

2.8. Global observation model
To fairly compare configurations of varying numbers of ob-
jects we use a global observation model. We define ob-
servations pixel-wise, Yt = (Y1,t..., Yi,t, ..., YNP ,t), for all
NP pixels in an image. Our approach differs from [16],
which defines p(Yt|Xt) over objects and non-objects using
products which may vary with the number of objects in the
scene. Assuming a fixed camera, we define our model us-
ing binary and color measurements, Yt = (Y b

t , Y c
t ). Binary



Figure 2: Interaction potentials. Left: A pair-wise MRF is built for
object pairs. Proximate objects (thicker link) influence each other stronger
than distant objects. Right: Object overlapping is penalized, reducing the
likelihood of giving birth to an object (yellow box) on a region already
occupied by another.

measurements (Y b
t ) are extracted using background subtrac-

tion. Color measurements (Y c
t ) are made in HS space.

A single pixel observation is thus Yi,t = (Y b
i,t, Y

c
i,t), with

Y b
i,t ∈ {0, 1} (0 indicates background), and Y c

i,t ∈ �
2. The

multi-object global observation is defined by Bayes’ rule as

p(Yt|Xt) = p(Y c
t |Y b

t , Xt)p(Y b
t |Xt). (15)

2.8.1. Binary observation model

In order to predict the multi-object configuration and as-
sist in the robust tracking of objects, we introduce a global
binary observation model. For an image segmented into
foreground and background pixels, the binary observations
can be expressed as Y b

t = (Y b,F
t , Y b,B

t ) where the fore-
ground and background observation variables are Y b,F

t and
Y b,B

t , respectively.
This model compares the coverage of fore-

ground/background pixels by the multi-object con-
figurations to learned values. Assuming conditional
independence between the foreground and background, we
define the binary likelihood as

p(Y b
t |Xt) = p(Y b,F

t |Xt)p(Y b,B
t |Xt). (16)

The distributions on the right hand-side are defined over fea-
tures extracted from the overlap between the support of the
binary foreground and background observations (SY,b,F

t ,
SY,b,B

t ) and the spatial support of Xt, SX
t . These features,

precision ν and recall ρ, are measures commonly used in
information retrieval. Using SX

t as reference, precision and
recall for the binary foreground pixels Y b,F

t are

νF
t =

|SX
t ∩ SY,b,F

t |
|SY,b,F

t | , ρF
t =

|SX
t ∩ SY,b,F

t |
|SX

t | . (17)

Precision is a measure of how well the foreground is cov-
ered by the estimate SX

t , and recall measures what percent-
age of the estimate consists of foreground pixels. For the
background, νB

t and ρB
t are defined in a similar manner.

The distributions p(Y b,F
t |Xt) and p(Y b,B

t |Xt) in Eq. 16
are defined as 2-D GMMs over (νF

t ,ρF
t ) and (νB

t ,ρB
t ), re-

spectively. To improve discrimination of the model w.r.t.

Figure 3: Left: Binary Observations. The image is segmented into fore-
ground and background regions. Precision and recall are computed from
the intersection of these regions with the multi-object configurations Right:
Background subtraction results with several mislabeled patches of back-
ground (eg. shadows).

the number of objects, we defined a set of switching 2-D
GMM observation likelihood functions for all possible ob-
ject counts (mt ∈ M). Note that, although in strict terms
the observations are correlated (ρB + ρF = 1), we treat the
observations as independent given the state.

The binary observation model functions as illustrated in
Fig. 3. Assume three people are present in the scene, yet
the estimated configuration is two objects. For well learned
models, the three-object likelihood will be larger than the
two-object likelihood, because νF

t for mt = 2 will not fit
the model well (due to foreground pixels not included in the
configuration). Covering this area by a third estimate (the
dotted box) fits the model better. Binary observations pre-
vent lost/empty estimates as well. If an estimate fell upon
an area devoid of foreground pixels, νB

t would not fit the
learned model. Thus, configurations with the correct num-
ber of objects are rewarded. Binary observations also assist
in improving tracking quality, favoring configurations with
good coverage.

Looking at Figure 4, we can see how the binary obser-
vation model discriminates between objects. Tracking was
performed on a dataset with two objects present (mGT

t = 2,
GT = ground truth). The system was forced to esti-
mate varying multi-object configurations over several ex-
periments (mt = 1, .., 4). Observations ( νF , ρF , νB, ρB)
for these experiments were recorded and plotted as blue,
red, green, and magenta points. Concentric circles represent
the GMMs learned for each configuration (mt = 1, .., 4).
The two-object data (mt = 2) fits the two-object GMM bet-
ter than other configurations fits their corresponding mod-
els. Thus, for this scenario, the binary observation model
attaches the highest likelihood to the multi-object configu-
ration matching the ground truth (mt = mGT

t = 2).
Background subtraction. Because the binary observation
model relies on good segmentation, background subtraction
must be robust to lighting and appearance changes. We
used a standard method [13], employing a pixel-wise model
of background appearance. A 2-D GMM color model is
learned for each pixel in HS color space using data captured
at different times of the day. Using this model, each pixel
of an image can be classified as foreground/background by
likelihood thresholding. The resulting binary image is then



Figure 4: Modeling multi-object configurations. Top: Foreground
model. Bottom: Background model. In both cases, concentric circles rep-
resent GMMs trained for mt = 1, ...,4 objects. Data points represent
observations for multi-object configurations for mt = 1 − 4, using a test
sequence that contains (mGT

t = 2) objects. See text for details.

subject to morphological filtering to remove foreground
blobs of small size. A temporal filter is used to eliminate
foreground blobs not connected to foreground blobs in the
previous frame. Typical results are shown in Fig. 3.

2.8.2. Color observation model

The binary observation model does not distinguish be-
tween objects and failed background subtraction blobs, nor
does it make use of foreground color information (i.e. ob-
ject appearance). To perform these tasks, we define a global
color observation model conditioned on the binary observa-
tions consisting of foreground and background color obser-
vations Y c

t = (Y c,F
t , Y c,B

t ). With a conditional indepen-
dence assumption, the color likelihood is defined as,

p(Y c
t |Y b

t , Xt) = p(Y c,F
t |Y b,F

t , Xt)p(Y c,B
t |Y b,B

t , Xt).
(18)

Foreground color observations. The foreground color ob-
servations are crucial for maintaining proper object identi-
ties through swapping or distraction. The foreground color
observation model is defined as a 4D histogram where two
dimensions are used to construct 2D HS color histograms
for each object [11], one dimension is used to index the
objects, and one dimension is used to index spatial com-
ponents within each object. The histogram is built using
only foreground pixels within the estimated multi-object
configuration. The color foreground likelihood is defined
as p(Y c,F

t |Y b,F
t , Xt) ∝ eλF d2

F , where λF is a hyper-
parameter and dF is the distance based on the Bhattacharya
coefficient [1] between the multi-object color observations
and an existing multi-object color model.
Adaptive foreground color model. Every frame, the color
foreground observations are compared to an adaptive color
foreground model to compute the color foreground likeli-

hood. This model consists of a set of spatial HS histograms
for each object, of which one is chosen each frame to be
the “current” model. The “current” spatial HS histogram is
chosen by a voting procedure, in which each frame, the his-
togram which best matches the observations receives a vote
(and is updated with the observation data using a running
mean), and the histogram with the most votes is chosen as
the “current” model.
Background color observations. Background pixels not
included in SX

t are used to build a 2-D HS color his-
togram. The observation process compares this histogram
to a learned model. The background color likelihood can
be described as p(Y c,B

t |Y b,B
t , Xt) ∝ eλBd2

B , where λB and
d2

B are defined as in the foreground case. The background
color model helps reject configurations with untracked ob-
jects (those not covered by an estimate).
Background color model. The background color model
is learned by computing the average histogram from back-
ground frames prior to the initial frame of the test sequence.

2.9. Computing the MAP estimate
The MAP estimate, XMAP

t , is computed by first determin-
ing the best multi-object configuration (whichever is repre-
sented most in the Markov Chain), and then computing the
mean state vector over samples with that configuration.

3. Results and discussion

3.1 Data

We tested our model on outdoor surveillance data collected
over a span of six hours under varying environmental condi-
tions. Several sequences from this raw data were organized
into four test sequences: seq1, seq2, seq3, and seq4. Each
of these sequences consists of one or more people walking
alone or together across the scene, passing each other, or
meeting at the center of the scene. Details are given in Ta-
ble 1. Each sequence contains segments collected at differ-
ent times of day to test robustness to environmental changes
(moving shadows and objects in background) and lighting
conditions (ranging from bright sunlight to overcast). Im-
age size is 375×300.

max people per frame total # people frames
seq1 1 5 908
seq2 2 8 1015
seq3 3 9 1178
seq4 4 8 714

Table 1: Data sets used for evaluation.

3.2 Learning

The background subtraction model was trained on back-
ground images (7421 frames taken throughout the raw data
set) as described in 2.8.1 using five mixture components.



Typical background subtraction results can be found in Fig.
3. We trained our binary observation model to discriminate
between up to four objects in a scene (mt = 0, ..., 4) using
GMMs defined over (νF

t ,ρF
t ) (1 mixture component) and

(νB
t ,ρB

t ) (3 mixture components) for each multi-object con-
figuration. Learning was done using results from an SMC
color-based tracker [11] on training sets of different con-
figurations: m = 1 (962 frames), m = 2 (1223 frames),
m = 3 (934 frames), m = 4 (689 frames). The result-
ing model, which is robust to imperfections in background
subtraction such as those in Fig. 3, can be seen in Fig. 4.

3.3 Implementation Details

We define a time-varying prior distribution over the MCMC
moves depending on the previous state Xt−1. The priors for
birth (pb = [.05, .02]) and death (pd = [.005, .0002]) moves
increase when an object is in an exit region, and the prior
for swapping is increased when two objects are within a
thresholded distance ds of each other (.03, .001 otherwise).

Given a death move, an object is selected to be removed
as a function of its inverse cubic distance to the nearest exit

dei qd(i) =
1/d3

eiP
i∈Xt

1/d3
ei

. When a swap move is chosen,

the probability that a pair of objects (i, j) will be chosen
to swap, qs(i, j) is a function of the distance between the

objects, d(i, j) qs(i, j) = 1/d(i,j)3P
i∈Xt

1/d(i,j)3 . When an update

move is chosen, qu(i) is sampled from a uniform distribu-
tion over all objects mt. The motion model for each object
uses an AR2 process with standard deviation in translation
σtx = σty = 3 and scale σsx = σsy = 0.008. The color
foreground models use HS color histograms with three ver-
tical spatial components roughly corresponding to the head,
torso, and legs. For our experiments λB = λF = 40. The
MCMC filter discards the first 25% of the samples as the
burn-in. In all experiments, we use N = 300 particles.

3.4 Performance measures

Often times, works in the field of tracking are criticized for
not providing an objective evaluation of performance. We
have defined a set of performance measures to objectively
evaluate experimental results using a hand-labeled ground
truth. Here, successful tracking is defined as occurring
when an estimated object area SX

i has a non-null intersec-
tion with a ground truth area SGT

i . This concept can be used
to define the following performance measures:
•Track state (Ti): a binary variable that indicates the status
of the tracking for an object at each frame, defined as one if
SX

i ∩ SGT
i �= ∅ and zero otherwise.

•Configuration error (ηt): a binary value indicating an error
in the estimated multi-object configuration. The configura-
tion error measures the trackers ability to correctly predict
the number of objects present in the scene while remaining

Figure 5: Tracking results from seq4. (top) Object 2 temporarily loses
tracking (frames 201-206). (bottom) Objects 2 and 3 mistakenly swap
identities at frame 185.

indifferent to the tracking quality. For a single frame, ηt is
defined as one if

∑
i BGT

i,t ⊕ BX
i,t ≥ 1, and zero otherwise

where B is a set of binary values indicating the presence
of an object and ⊕ is the XOR operation. For example, if
two of three objects from the sequence are present at time t,
BGT

t = (BGT
i,t ) = (1, 1, 0), and only one object is predicted

by the estimate, BX
t = (BX

i,t) = (0, 1, 0), a configuration
error occurs (ηt = 1).
•Tracking success rate (τi) : the ratio of correctly tracked
frames to total frames an object exists τi =

P
t TiP

t �(S
GT
i,t �=∅) .

Indicates lost tracking or mis-identified objects.
•Precision (νi): νi = SX

i ∩ SGT
i /SX

i . Measures tracking
quality.
•Recall (ρi): ρi = SX

i ∩ SGT
i /SGT

i . Measures tracking
quality.

3.5 Results

The MCMC PF was applied over ten runs for each se-
quence seq1, seq2, seq3, and seq4 (videos provided at
http://www.idiap.ch/∼smith). Visually, the experimental
results were accurate (Fig. 6). The performance measures
confirm that our method works effectively. The MCMC PF
accurately predicted the multi-object configuration and cor-
rectly tracked the objects simultaneously with good quality
tracking. The main error sources were: improper swapping
(switched identities), delay between the entrance of an ob-
ject and birth (typically below 5 frames), and the rare ac-
cidental birth or premature death. Some of these errors are
shown in Fig. 5. In the top figure, object 2 temporarily
loses tracking (frames 201-206) when occluded by object
4. In the bottom figure, the identities of objects 2 and 3
were swapped in frame 185, though they were still tracked
correctly.



Figure 6: Frames 1,78,155,168,211,295 from an experimental run of
seq4. Estimated configurations are shown as colored boxes where color
corresponds to object ID, and the ground truths as shaded areas.

The results in Table 2, show the power of the binary ob-
servation model to discriminate between different numbers
of objects in the scene. Most of the errors in predicting
the multi-object configuration (η) can be attributed to the
entrance/exit delay, and indeed for seq1 a mere 0.56% er-
ror was caused by other sources. An independent experi-
ment run on seq4 using only binary observations (see web-
site) shows that even without color information, the object
configuration is correct and tracking quality is very good
(though identities are lost), as expected.

For seq1 - seq4, the tracking was generally good (τ
ranges between [.69, .99] with a median of .88, see Table 3).
Results for the first two sequences of seq2 and the last two
of seq3 suffered slightly due to erroneous swaps caused by
objects of similar appearance. The quality of tracking was
also high, as precision and recall ranged between [.75,.92]
and [.64,.85] with means of .88 and .76 respectively. Most
of the errors of these experiments can be attributed to er-
roneous swapping. This suggests that the color model and
its adaptation scheme could be refined. Also, how the like-
lihood is affected by comparing Bhattachayra distances of
different dimension in the color model should be further
studied.

seq1 seq2 seq3 seq4

η 3.56% 9.98% 13.78% 15.73%
delay error 3% 6% 9% 12%

Table 2: Configuration error rate η and typical error attributed to en-
trance/exit delays computed over 10 runs for each sequence.

Object Number
seq 1 2 3 4 5 6 7 8 9

ν .78 .86 .85 .91 .90
1 ρ .88 .85 .72 .74 .79

τ .97 .95 .97 .98 .98
ν .85 .88 .88 .76 .77 .90 .90 .89

2 ρ .79 .76 .75 .64 .77 .66 .75 .73
τ .87 .79 .72 .88 .91 .92 .83 .83
ν .90 .85 .85 .84 .88 .79 .78 .82 .75

3 ρ .75 .82 .79 .79 .68 .79 .68 .66 .75
τ .96 .93 .93 .80 .86 .69 .82 .81 .78
ν .79 .78 .85 .86 .85 .92 .92 .90

4 ρ .81 .76 .77 .70 .77 .73 .77 .84
τ .95 .84 .88 .94 .87 .93 .86 .99

Table 3: Experimental results for seq1, seq2, seq3, seq4 averaged over
10 runs of the MCMC PF.

4. Conclusion
In this paper we have presented a Bayesian framework for
the fully automatic tracking of a variable number of inter-
acting objects using an trans-dimensional MCMC PF. Re-
sults from our implementation of this framework show that
it reliably tracks varying numbers of people through a num-
ber of real situations. Tracking failures caused by weak-
nesses in our color model suggest future work could explore
methods for improvement. Additional future work could
explore other interaction models or examine the handling
of more objects within this framework.
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