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ABSTRACT

One of the pitfalls encountered when using
confidence interval estimators for the mean
of a stationary stochastic process is that

the mean and variance estimators (i and V)

may be correlated. We derive Corr(X,V) for
various variance estimators and stochastic
processes, and we examine the effects of
this correlation upon confidence interval
estimator performance. Among the variance
estimators under consideration are those
arising from the methods of batched means
and standardized time series. Both small
sample and asymptotic results are reported.

1. INTRODUCTION

An active area of simulation output
analysis research involves estimation of
confidence intervals for the mean of a
stationary stochastic process,

X{sXps+0+sX . Approximate 100(1-«)%

confidence interval estimators {(c.i.e.’s)
for the underlying process mean u are
typically given by:

Jv o,

HoE in * ti-xa <1_1)

ZXi/n, V is an estimator for

where Xn =

Var(in), and t

quantile

1-%q 18 the appropriate

of a t—distribution.

The purpose of this paper is to investigate
properties of Corr(in,v) for various

variance estimators and stochastic
processes of interest (Section 3). HWe also
examine the effects of this correlation
upon c.i.e. performance (Section 4).

2. BACKGROUND

2.1 Confidence Intervals

In order for the c.i.e.’s given by {1-1) to
be {asymptotically) valid, three
requirements must hold:
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(1) in = Nor(u,o2/n)
{2) in and V are approximately independent

(3)

vV oz ozxz(d)/d, where

2

6® = 1lim__ nvar(X_) and d is the
n-w n

appropriate degrees of freedom.

These requirements guarantee that (in—u)/JV

has a t-distribution. Thus, any violation
of the requirements can affect the validity
of the c.i.e. Eq.{1-1).

Example 1: Violation of the normality
assumption in terms of skewness results

in the skeuwness of (in-u)/JV {Jdohnson

(1978)]; so this statistic no longer
has the t—distribution.

Nonzero correlation between

Example 2:

in and V results in asymmetric

confidence interval coverage (which will
be discussed in more detail later). For
example, suppose we wish to estimate the
expected customer waiting time for an
M/M/1 queueing model with p = 0.8. (The
theoretical expected waiting time is

3.2). Assume that we obtain two
estimates, 3.0 and 3.4. If Corr(in,v)
> 0, then a confidence interval based on

the 3.4 point estimate will have
greater chance of covering the true
parameter, 3.2, than will a confidence
interval based on the 3.0 estimate.

Example 3: If the variance estimator V
is not distributed as a chi—squared
random variable (times the appropriate

constant), then (in—u)/JV no longer has
the t—distribution.

There are a number of problems associated
with the estimation of the mean of a
stationary simulation process. The most
serious pitfall is related to the fact
that, in many simulations, the Xi’s are

serially correlated [Law (1977)]. This
serial correlation can result in violations
of requirements (2) and {3). Requirement



Keebom Kang and David Goldsman

{1) does not pose a major problem in

confidence interval estimation since, by a
central limit theorem, the sample mean of
the Xi’s becomes approximately normal as n

becomes large.

Over the last two decades, a number of
confidence interval estimation
methodologies have been proposed and
studied: batched means, independent
replications, ARMA time series modeling,
spectral representation, regeneration,
standardized time series [Schruben (1983)],
and overlapping batched means [Meketon and
Schmeiser (1984)]. Details concerning the
first five methodologies can be found in,
e.g., Bratley, Fox, and Schrage (1983).
this paper, we concentrate primarily on
variance estimators arising from the
methods of batched means, independent
replications, and standardized time
series.,

In

2.2 Batched Means

Suppose that we divide the stationary
stochastic process Xi,...,Xn into b > 1

contiguous, nonoverlapping batches. For
ease of exposition, assume that each batch
is of length m {so that n = bm). Denote

— -1t om
Xi,m = m zj=1 X(i—i)m+j

as the i—th batched mearn, i=1,...,b.

X 4

17° m+1""’X2m""’x(b—i)m+1”' n
L 11 } |
batch 1 batfh 2 batTh m

i

..,Xm,X

Xy m X cen X m

Assuming that the batched means are
approximately i.i.d. normal random
variables with unknown mean pu and variance

czlm,

then a 100{1—x)% c.i.e. for u is
given by
Me X =t (v, )% {2-1)
n b-1,1-%a" 0,b ’
where t is the upper ¥ quantile of a t-

d,»
distribution with d degrees of freedom and

S = 12 .
Vo,b = ™ 554l Xjm = X, ]%/(b-1) is the
2

classical batched means estimator for o°,

In the method of independent replications,
we conduct b independent runs of the
simulation, each of length m. The
replicate means are computed, and Eq.{2—1)
is used to calculate confidence intervals
for u.
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replication 1: Xi,Xz,...,Xm - X1 m
H
replication 2: xm+1’xm+2”f"x2m - x2,m
replication b: X(b-i)m+1""’xbm - is m
£

As m - », the methods of batched means and
independent replications effectively are
equivalent.

2,3 Standardized Time Series

The method of standardized time series
(STS) uses a process central limit theorem
to (asymptotically) transform the
stochastic process of interest into a
so—~called Brownian bridge. Properties of

Brownian bridges are then used to estimate
confidence intervals for the mean.

Consider a stationary process Xi”"’xn

[satisfying other mild assumptions from
Schruben (1983)], which is divided into b
batches of size m. Denote the j—th
cumulative mean from batch i as:

=1
Xi;J ] zk=1 X(i-i)m+k
()'('i m 18 the i-th batched mean). For all
E
i and j, let
S, . =X, - X, .
21 X\,m X]’J and
Imtis,
Ti m(t) = l,Hth’
? o/m
where II.il is the greatest integer function
and T, m(t) is the standardized time series
’
from the i—th batch. Schruben shows that

¢}
as m =+ m, Ti,m(t) B, te [0,1], where B,

is a standard Brownian bridge (i.e.,
Brownian motion which starts and stops at
zero).

Finally, define for all batches,

T~ om .
A= 2geg 38, g

1,

J

s

Z argmax {jSi and
3 >

J

~ ~
S, K.S
i i

o .
i,K,
T

2

Then the following are estimators for o:

(0) Classical batched means estimator:

Vo,b from Eq.(2-1).
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(1

Area estimator:

12 b 2 ozxz(b)/b,

v = 12 ¢b 32 . b>1.
1,b (m3—m)b i=1 1
{(2) Maximum estimator:
2
v _m_ zb 53 02x2(3b) b>1
= P~ ~ > 21
3,6 % 3B Li=t T TE .

To construct confidence intervals based on
the area and maximum estimators, uwe simply
use Eq.{2~1) with the appropriate variance
estimator and degrees of freedom. Goldsman
and Schruben (1984) show that the STS
c.i.e.’s {area and maximum) possess certain
advantages over the classical batched means
estimator.

2.4 Some Time Series Processes of Interest

We call a process {Xt: tez } an

autoregressive moving average process of
orders p and q [ARMA(p,q)] if it is
implicitly defined by:
P = v9
Yizo ®i%e-i = Xjeo ®5Feoyo

where wo, ¢ _, O and eq and

p’ o’
the st’s are uncorrelated random variables

are nonzero,

the
ARMA

with mean 0 and variance ci. Usually,
st’s are assumed to be i.i.d.
models have been found to adequately
approximate many processes encountered in
practice [cf. Box and Jenkins (1978)]. A
moving average process of order q [MA(q)]
is an ARMA(O,q) process, and an
autoregressive process of order p [AR(p)]
is an ARMA(p,0) process.

normal.

It is useful to specifically define the
following ARMA-type processes:

(1) MA(1): X, =&, + as, _,, where
gy~ i.ild. Nor{0,1).
(2) AR(1): X; = aX;_, + &;, where
g, ~ i.i.d. Nor(O,Tz(i-az)), 72 = Var(Xi).
. axi_l Ww.p, &
(3) EAR(i): X, = s
«Xi_i * By W.p. 1-a

where &, ~ i.i.d. Exp{(A) and 0 < o < 1.

The correlation structure of the EAR(1)
process is the same as that of the
AR(1).

If «=0, then X;~ i.i.d. Exp{r).
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3. SOME RESULTS CONCERNING Corr(X ,V)

He study the correlation between the sample
mean and various estimators of the process

variance 02. Analytical
results for several
presented.

and empirical
simple processses are

Theorem 3-1:

Xi,...,Xn

Consider any i.i.d. process
wi th E[Xi] = 0 and E[X?] < w.
Define $° = 2, (% - 8 )%/(n-1). Then
Cov(in,sz) = E[X?]/n. {Hence, the

covariance is dependent on the skewness of
the Xi’s.)

Proof: See Kang (1884), p. 98.
Remark: Identifying the supposedly i.i.d.

batched (or replicated) means with the Xi’s
in the above theorem, we see that the
covari X i

riance between Xn and Vo,b is dependent

on the skewness of the batched means.

Theorem 3-2: For any mean Q0 covariance
stationary ARMA{p,q) process with i.i.d.

symmatric about 0 noise, Corr(X ,V Yy = o.
n’"0,b

Proof: See Kang (1984), p. g97.
Theorem 3-3: Under the same conditions as

in Theorem 3-2, Corr(in,vl’b) = 0,

Proof: See Goldsman (1984), p. 1086.
Remarks: (i) In particular,
Corr(Xn,VO’b) = CorP(Xn,Vi,b) = 0 for the

MA{1) and AR{1) processes.

{ii) Although the AR(1) and EAR(1)}
processes have the same correlation
structure, the above results do not apply
for the EAR(1) process; analytical results
for this process are somewhat tedious and
are deferred to Kang and Goldsman (1985).

Empirical Results:

1 corr(X_,V. (i=0,1,3) is nonzero for
n’i,b
the EAR(1) process.

Vi,i’
batch.

For example, consider
the area estimator based on one

Table 3.1 gives estimated values of

Corr()=(n,v1 1) for various n and a«. We see
£

that the correlation is significantly
greater than zero for small sample size n.
As sample size increases, the correlation
decreases. It also appears that the
correlation increases as « approaches 1.
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Similar results can be obtained for V

and Vg o [ef. Kang and Goldsman (1985?1?
«_= 0.0 0.1 0.5 0.9

n
i0 .338 .353 . 452 .425
50 .213 .241 .285 +441
200 .123 . 100 -122 .300
500 .075 .083 . 085 .170
1000 .139
2500 .097

Table 3.1

Estimated Corr()=(n,v1 1) for the EAR(1)
3

process for various n and
based on 1000 independent
(All standard errors were

«. Each entry is
simulation runs.
less than 0.035,)

(2)
COPP(Xn,Vg,b
Nevertheless,
Corr(xn,vg,i)

AR(1) case. |[The same is true for the
MA{1) process.]

Analytical expressions for
) are not generally tractable.
as can be seen in Table 3.2,

is very close to zero for the

x = -0.9 -0.5 0.0 -0.5 -0.9
n
ig} -.037 -.010 ~-.036 -.035 -.049
50 .009 -.045 -~.025 .023 . 040
200 -.052 ~.008 -.060 -.028 .042
Table 3.2

Estimated Corr(in,v3 ) for the AR(1)

process for various n and «. Each entry is
based on 1000 independent simulation runs.
{All standard errors were less than 0.037.)

A reasonable conjecture is that asymmetry
in the underlying distribution of the

stochastic process causes Corr()=(n,vi b) to
2

be nonzero. Further, the correlation
approaches zero as the sample size
increases (this being obvious for the
classical batched means case by a central
limit theorem).
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4. IMPLICATIONS OF Corr(X ,V) ON CONFIDENCE
INTERVAL PERFORMANCE

Suppose we are working with one of the
aforementioned c.i.e.’s. Denocte the
endpoints of the c.i.e. by [La’uu]’ where

1 -~ « is the nominal probability of
coverage; i.e., we desire PP{LQ < u < Uq}
=1 - .

Note that La and Uu are random

variables. Also, define:
E{x) = IPr{La Smgult - (-,
E](a) = Pr{La > u} - a/2, and

e%(a) = Priu, < u} - as2.

E{x) is called the coverage error

function; it is the difference between the
actual coverage and the nominal coverage of
the parameter p. A c.i.e. is said to be

symmetric if El(a) = E¥%(a). Although
coverage is of primary importance as a
c.i.e. performance criterion, Glynn (1982)
comments that symmetry of coverage is also
of some import. He also argues that since

E(x) converges to zero faster than E“(«) or

E](a), asymmetric coverage can occur even
if the actual coverage is close to the
nominal value I - « ?see the results for
process {2) in Table 3.3 belouw].

Several authors [e.g., Fishman (1978)]
remark that Corr(in,v) can play an

important role in the performance of
confidence interval procedures. In the
present section, we give examples which
show that this correlation may or may not
have a significant effect on confidence
interval coverage. An example is also
given showing that this correlation can
have a significant effect on the symmetry
of the coverage.

The following three time series were
examined in order to study the

relationships betuween Corr(fn,vo b) and
?

c.i.e. coverage, and between Corr(in,vo b)
and symmetry of the coverage, ’
(1) AR(i?: X, = 0.95*X, ., + £, where

e, ~ i.i.d. Nor(0,1),.
(2) X, ~i.i.d. Exp(a).
(3) customer waiting times in queue for an

M/M/1 model with p = 0.8.

[These three processes were chosen so as to
compare c.i.e. performance for processes
with different levels of dependency and
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c°rr(in,v In {1), the X _’s are highly

0,b7¢
dependent but Corr(in,v

t

= 0. In (2),

O,b)
the Xt’s are independent but the

correlation is positive. The Xt’s are

dependent and the correlation is positive
in case (3).]

He conducted 1000 runs of the three time
series. From each of the three groups of
1000 runs, we calculated 1000 confidence
intervals for the appropriate process

mean. HWe were then able to estimate actual

coverage of the mean, E“(0.1), El(O.i), and
Corr(X _,v ) for the three time series.
n’"0,b

These results are summarized in Table 3.3.

Experiment (1) (2) (3)
02;2”;g§n°f 0.162 0.892 0.837
EY(a) 0.861 -0.033 -0.032
£l («) 0.377 0.045 0.085
Corr -0.003 0.729 0.585
Table 3.3

Coverage, EY(«), E](a), and Corr(X _,Vv )
n’'0,b

for the three experiments described in
Section 4 {a = 0.10).

The entries in Table 3.3 show that poor

coverage can be obtained when Corr(in,vo’b)

is nearly zero [process (1)], and good
coverage (i.e, actual coverage close to the
nominal coverage) can be obtained when this
correlation is quite positive [process

(2)]. Thus, Corr(ih,v) may or may not have

a significant effect on the coverage when
the point estimator of u is unbiased.
However, Glynn {(1982) points out that

nonzero Corr(in,v) can be very detrimental
{(in terms of coverage) when the point

estimator of u is biased (as in the case of
the regenerative confidence interval
method).

As is illustrated in Table 3.3 by the
results for processes (2) and (3) [and as
is argued in Example 2 of Section 1],

nonzero Corr(in,v) appears to cause

asymmetric coverage.
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5. SUMMARY

In this paper, we analytically and
empirically studied Corr(in,v) for various

variance estimators and stochastic
processes. We examined the effects of this
correlation upon confidence interval
estimator coverage and symmetry of
coverage. From limited Monte Carlo work,
small sample and “"asymptotic” results were
reported.
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