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We propose an efficient method for the prediction of protein folding rate constants and mechanisms.
We use molecular dynamics simulation data to build Markovian state models~MSMs!, discrete
representations of the pathways sampled. Using these MSMs, we can quickly calculate the folding
probability (Pfold) and mean first passage time of all the sampled points. In addition, we provide
techniques for evaluating these values under perturbed conditions without expensive
recomputations. To demonstrate this method on a challenging system, we apply these techniques to
a two-dimensional model energy landscape and the folding of a tryptophan zipper beta hairpin.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1738647#

I. INTRODUCTION

While experiments can yield a wealth of insight into
protein folding, it is difficult for experiments to describe the
process of folding in atomic detail. Typically, experiments
primarily yield quantitative information on the rate of fold-
ing. Ideally, one could use simulation to predict both rate and
mechanism of protein folding. The comparison of the rate
prediction with experiment could be used as a test of the
methodology, and with a validated method, the prediction of
the mechanism of folding can yield insight into how proteins
fold. Indeed, the direct simulation of protein folding has been
a ‘‘grand challenge’’ of computational biology for several
decades.1 Simulating protein folding is particularly challeng-
ing due to the long time scales involved. While the fastest
proteins fold on the microsecond to millisecond time scale,
atomistic molecular dynamics simulations are typically con-
strained to the nanosecond time scale. In order to overcome
this fundamental computational barrier, several new compu-
tational methods have been proposed.

One such approach to study protein folding events is
transition path sampling.2 Given an initial trajectory between
the unfolded and folded regions, this method generates an
ensemble of different pathways that join the unfolded and
folded regions. From these path ensembles, Bolhuis and co-
workers determined the formation order of hydrogen bonds
and the hydrophobic core in ab-hairpin.3 Using the
fluctuation–dissipation theorem,4 it is possible to calculate
folding rates from these ensembles.2 More recently, a new
method called transition interface sampling5 introduced an
alternate method to calculate transition rates. One drawback
of these methods is that they do not utilize all the simulation
results. To ensure that trajectories are decorrelated, only ev-
ery fifth or tenth pathway generated is added to the path
ensemble. Also, these methods require many individual path
sampling simulations corresponding to different boundary
conditions in order to calculate rates. Since path sampling
methods are very computationally demanding, it is interest-

ing to consider whether one can construct an algorithm
which can more efficiently utilize simulation data~e.g., fold-
ing trajectories! in order to predict folding rates and mecha-
nisms.

There are also techniques that analyze the nature and
kinetics of the folding process by representing possible path-
ways in a graph, or ‘‘roadmap.’’ These methods sample con-
figuration space and connect nearby points with weights ac-
cording to their Monte Carlo probabilities. From these
graphs, it is possible to calculate such properties as the short-
est path, most probable path, andPfold values,6 as well as
analyze the order in which secondary structures form.7 The
primary challenge of these techniques is the methods used to
sample conformational states in order to construct the path-
way graph. The graph representation of protein folding path-
ways does not solve the sampling problem, but recasts it, and
sampling any continuous, high dimensional space is still a
difficult challenge. Previous graph-based methods have
sampled configuration space uniformly~i.e., choosing con-
formations at random! or used sampling methods biased to-
wards the native state. Clearly, as the protein size increases,
it becomes exponentially difficult to sample the biologically
important conformations with random sampling. In addition,
while probabilistic roadmap methods can predictPfold

values6 and suggest structure formation order,7 they have not
included the time involved in the transitions. Because of this,
one cannot predict time dependent properties such as folding
rates, and thus it is difficult to assess the experimental valid-
ity of these methods.

In this paper, we propose a novel combination of the
techniques above. We propose transforming the simulation
data gathered from transition path sampling algorithms into a
probabilistic roadmap that includes transition time data. As
opposed to traditional transition path sampling analysis, this
method would incorporate all of the simulated data into the
results, therefore potentially yielding an increase in effi-
ciency. We call our model a Markovian state model, or
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MSM, as it assumes Markovian transitions between states.
From this MSM we can quickly and simultaneously calculate
such properties as thePfold for all configurations sampled
and the mean first passage time~MFPT! from the unfolded
state to the folded state from a single transition path sam-
pling simulation. In addition, this method would provide a
compact representation of the possible pathways in the sys-
tem, which may be useful for understanding the mechanisms
involved in folding. We suggest that our method would im-
prove on the current roadmap techniques by sampling points
using molecular dynamics, thereby greatly increasing the
probability that the configurations that are included are ki-
netically relevant. In addition, the simulation time between
points would inherently capture transition times, making the
calculation of folding rates possible.

In the following sections we describe the algorithms nec-
essary to transform molecular trajectories into a MSM with
the correct transition probabilities and times. We also provide
methods that allow for data gathered at one set of param-
eters, such as temperature, to be analyzed easily at other
parameter values without the need for additional simulations.
We then describe analysis techniques to quickly calculate
such values asPfold and MFPT. We first give results on a
model energy landscape, and find that they are in good
agreement with results from direct simulations. Finally, we
apply these methods to the analysis of existing simulation
data of the folding of a small protein: the tryptophan zipper
beta hairpin.8

II. METHODS AND THEORY

A. Direct rate calculations

The purpose of this paper is to develop a method for
simulating kinetics when one cannot easily directly simulate
transitions from one state to another~e.g., for slow transi-
tions from the unfolded state to the folded state!. However,
to validate the new methods for calculating kinetic proper-
ties, it is important to test the methods on systems in which
the direct kinetics simulations can be performed. In this case,
one can calculate the mean first passage time~in terms of
number of Monte Carlo steps for MC simulations and simu-
lated time for Langevin simulations! directly from many in-
dependent simulations, even if these simulations are each
shorter than the mean folding time.

If one assumes first order kinetics, the probability that a
particle has reached the final state at some timet is given by

Pf~ t !512e2kt,

wheret is the time,k is the rate, andPf(t) is the probability
of having reached a final state by timet. By running many
independent simulations shorter than 1/k, one can estimate
the cumulative distributionPf(t), and hence fit the value for
the rate,k. The mean first passage time is the average time
when a particle will first reach the final state, given that it is
in an initial state att50,

MFPT5E
t50

` S d

dt
Pf~ t ! D t dt5E

t50

`

kte2kt dt.

Integrating by parts yields the solution

MFPT5
1

k
.

One could also find the MFPT by directly calculating the
average time when each simulation first reached a final state.
However, if some simulations are stopped before the final
state is reached because of simulation time constraints, the
MFPT calculated will be too low. By first fitting the rate to
Pf(t) data~which can be calculated accurately even if some
simulations do not finish!, one gets a much more accurate
MFPT value. For simple systems~such as the two-
dimensional energy landscape presented below!, one can
simply directly simulate kinetics on long timescales.

B. Sampling of paths

For systems where the probability of reaching the final
state is very low, the above direct method would require a
large number of simulations to get a reasonable estimate of
the rate of folding and the mean first passage time. The
method that we describe below is a modified version of the
shooting algorithm9 that has been shown to efficiently gen-
erate a sample of uncorrelated transition paths leading from
the initial region to the final region.

First, we must obtain some initial path between the ini-
tial and final regions. This can be obtained from previous
data, high temperature unfolding simulations, direct MC or
Langevin simulations as above, or some other means. We
keep points on this path such that successive points are sepa-
rated by some time interval,t int . We can label the points
along this path as$p0 ,p1 ,...,pn%, wheren is the length of
the path. We generate new paths by picking a random point
along the current path,pi , and ‘‘shooting’’ a new path from
it by starting a new simulation from this point. Points are
recorded along this path everyt int and are labeled
$np0 ,np1 ,...,npm%. If neither the initial nor final state is
reached within some simulation time cutoff, we reject this
path and the current path remains the same for the next it-
eration. Otherwise, if either of these states is reached, we
stop the simulation at that time point and define our new
current path as the combination of the previous current path
and the newly generated path as follows. If the new path
reached the initial state, then the new current path is
$npm ,npm21 ,...,np0 ,pi ,pi 11 ,...,pn%. If the new path
reached the final state, then the new current path is
$p0 ,p1 ,...,pi ,np0 ,np1 ,...,npm% ~Fig. 1!. We repeat this
shooting step for some set number of trials.

This sampling strategy will capture paths between the
boundaries of the initial and final regions. If we are to cal-
culate the MFPT between the initial and final regions, we
must also simulate the time a particle can spend within the
initial region. To do this, we start many simulations from
within the initial region and stop the simulations once the
boundary of that region has been crossed.

C. MSM generation

Here, we describe how to generate the MSM of confor-
mational states, including the probability and time to traverse
from node to node in the MSM. Each point in the paths

416 J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 Singhal, Snow, and Pande

Downloaded 12 Oct 2004 to 171.67.89.204. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



accepted while sampling paths is represented by a node in
the MSM, nodei , for some unique indexi. Successive points
in each accepted path segment are represented by edges in
the MSM, edgei j , representing an edge between nodei and
nodej . Each edge has associated with it the simulation time
taken to traverse that edge, timei j . Each edge also has asso-
ciated with it the probability of taking that edge,Pi j , which
we initialize to one and renormalize in the post-processing
step. It is interesting to note that this step may be performed
on data generated by the transition path sampling shooting
algorithm as above, or on any existing simulation data, so
long as the time between points in a simulation is known. It
also allows for simulations of different time resolutions to be
included in one MSM.

The MSM is designed to embody the possible pathways
that the molecule may take while traversing the conforma-
tion space. Different paths generated by our simulation meth-
ods may pass through very similar conformations, but since
the conformation space is continuous, these points will never
be exactly the same. However, we wish to capture the fact
that these paths reach essentially the same point. We can do
this by clustering nearby points in conformation space ac-
cording to some metric. We define some cutoff value that
represents how close two points need to be in order for us to
consider them to be the same point. Then, we combine points
that are within this distance from one another according to
some clustering algorithm. We may choose different cutoffs
for the different regions of conformation space, the initial
region, the final region, and the transition region. To combine
two points, we remove all the incoming and outgoing edges
from one of the points and connect them to the other point.
If there are now multiple edges between two nodes, we
combine them into a single edge with the following values
~Fig. 2!:

Pi j
new5Pi j

1 1Pi j
2 ,

timei j
new5

Pi j
1 timei j

1 1Pi j
2 timei j

2

Pi j
1 1Pi j

2
.

The coordinates of clustered points are represented as the
weighted average of all points belonging to the cluster.

D. Post-processing of MSM

We need to ensure that every node in the MSM is able to
reach a final state. Otherwise, since these nodes will have an
infinite mean first passage time, calculations done on the
MSM will fail. We identify the nodes that can reach a final
state by performing a depth first search from the final states
over the incoming edges, and marking all nodes that are
reachable.

We propose two different methods for removing the
nodes that were not marked. In the first, we simply delete
those nodes, thus ensuring that all nodes in the MSM can
reach a node in the final state. If there are not many such
nodes, this should not bias the results very much. However,
if there are many unmarked nodes, deleting these nodes
could distort the results. Alternatively, nodes that cannot
reach the final state are merged into the closest nodes until
all nodes can reach the final state~Fig. 3!. This nearest
neighbor provides the best guess to the future dynamics of
the unmarked node with respect to reaching the final state.

In addition, we normalize the probabilities on all the
edges so that on each node, the sum of the probabilities for
all outgoing edges is one,

Pi j
new5

Pi j

(edgek
Pik

.

The probability on each edge equals the number of times that
transition was made divided by the total number of transi-
tions from that node. Given sufficient sampling, these prob-
abilities will converge towards the actual probabilities in the
continuous case of each transition from that node.

E. Transition probabilities

The probability of moving between nodes depends on
the nature of the dynamics used. Indeed, different transition
probabilities can be used to simulate different forms of ki-
netics from node to node. For example, consider simulations
performed using the Metropolis Monte Carlo algorithm to

FIG. 1. The shooting algorithm for sampling paths. The solid path shows
an original path between the initial and final regions. The dotted paths
represent two possible new path segments, corresponding to the new
path reaching either the initial or final regions. In the case of the path
reaching the initial state, the new path would be$np2 ,np1 ,np0 ,p4 ,p5 ,p6%.
In the case of the path reaching the final state, the new path would be
$p0 ,p1 ,p2 ,p3 ,np0 ,np1 ,np2%.

FIG. 2. Clustering of MSM points. If two nodes are
closer than a cutoff for some metric, we cluster together
these points by replacing them with a new point con-
taining all of their edges. The left picture shows the
nodes before clustering, with the dotted circle indicat-
ing the nodes that will be merged. The right picture
shows the nodes after this clustering step.
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generate moves. Given a current point,x, a new pointx8 is
chosen from a distributionh(x,x8). This move is accepted
according to the Metropolis criteria,

Pacc5H 1 E~x8!<E~x!

e2@E~x8!2E~x!#/kT E~x8!.E~x!J ,

where E(x) is the energy at pointx and T is the
temperature.10

Langevin dynamics is likely more representative of dy-
namical properties than Metropolis Monte Carlo, especially
since the kinetic interpretation of Monte Carlo relies on the
physical nature of the Monte Carlo moves chosen. In Lange-
vin simulations, one performs simulations using the Lange-
vin equation of motion

Fext2mg
dx

dt
1R50,

^R~ t !R~0!&52mgkBTd~ t !,

to move particles, whereFext are the external forces acting
on the particle,m is the mass,g is the friction coefficient,
and R is a random force, and is assumed to be a Gaussian
random variable with the above properties. Rewriting this
equation, we can find the change in position with respect to
the forces,

Dx5
RDt

mg
1

FextDt

mg
,

PS RDt

mg D5
1

sA2p
e2@~RDt/mg!2/2s2#, s25

2kTDt

mg
,

whereT is the temperature and the random displacement is
distributed according to a normal distribution with standard
deviation as above.11

We stress that if a Langevin probability is to be used for
node transition probabilities, it is imperative that successive
nodes be highly related conformationally. Otherwise, if one
tries to take large steps~i.e., largeDt), the constant external
force approximation will not hold and the transition prob-
abilities become irrelevant. This is the result of over extend-
ing the Langevin integrator and it is unclear whether the
resulting MSM probabilities will have the desired physical
interpretation.

F. Reweighting of edges

The MSM now represents a discrete sampling of the
conformation space, and the edges represent the transitions
between these states, weighted with the correct probabilities.
If some parameters of the system were to change, one could
simply adjust the edge weights by the relative probabilities at
each value of the parameters to generate a MSM at the new
parameters. This assumes that the states and transitions that
would be sampled at the new parameters are the same as
those sampled at the original parameters. For example, it is
common to examine folding at a series of temperatures~T!;
instead of rerunning the calculation for each temperature, it
would be ideal if one could reweight an existing MSM for
different temperatures.

This reweighting scheme is loosely analogous to thermo-
dynamic reweighting schemes.12 While our methodology is
for kinetic properties, both methods share the idea of re-
weighting an ensemble generated at one temperature to yield
information at another, and thus both rest on the assumption
that the ensemble generated would be useful under the per-
turbed conditions. Accordingly, one would not expect rea-
sonable results for perturbations that are too large~i.e., tem-
peratures far from the original sampling!.

Monte Carlo:The transition between two states as defined by the Metropolis Monte Carlo algorithm is

Pi j 5h~nodei ,nodej !H 1, E~nodej !<E~nodei !

e2@E~nodej !2E~nodei !#/kT, E~nodej !.E~nodei !
J ,

whereh(nodei ,nodej ) is the probability of making a move from nodei to nodej . To reweight the edges at a new temperature,
we need the relative probability of each transition at the two temperatures. Dividing the above equation at the two tempera-
tures, we get

FIG. 3. Clustering of nodes to guarantee that all nodes can reach the final state. In the left picture, the dotted nodes and edges are not able to reach a final state.
The dotted circle indicates which two nodes will be merged. The right picture shows the MSM after this step. All nodes can now reach the final state.
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Pi j ~T1!

Pi j ~T2!
5

h~nodei ,nodej ,T1!

h~nodei ,nodej ,T2! H 1, E~nodej !<E~nodei !

e2@E~nodej ,T1!2E~nodei ,T1!#/kT1

e2@E~nodej ,T2!2E~nodei ,T2!#/kT2
, E~nodej !.E~nodei !J .

Assuming thath(nodei ,nodej ) andE(nodei) are independent of temperature, we get the following equation for the transition
probability at the new temperature:

Pi j ~T2!5H Pi j ~T1! E~nodej !<E~nodei !

e2DE@~1/kT2!2~1/kT1!#Pi j ~T1! E~nodej !.E~nodei !
J .

Langevin:The equation of motion for Langevin dynam-
ics is

xn115xn1DxR1
FDt

mg
,

whereDt is the time taken to get between the points andDxR

is distributed according to a normal distribution with mean
zero and standard deviation sigma, where

s5A2kTDt

mg
.

We can now define the transition probability between two
nodes as the probability of the random displacement needed,

DxR5x~nodej !2x~nodei !2
F~x~nodei !!Dt

mg
,

Pi j 5)
a

1

sA2p
e@2~DxR

a
!2/2s2#,

wherea represents the dimension of the system. We again
wish to compute the relative probabilities at two tempera-
tures, so we divide the above equation at the two tempera-
tures,

Pi j ~T1!

Pi j ~T2!
5

)
a

1

s~T1!A2p
e@2~DxR

a
~T1!!2/2s~T1!2#

)
a

1

s~T2!A2p
e@2~DxR

a
~T2!!2/2s~T2!2#

.

Assuming that the forces, mass, and friction coefficient are
independent of temperature, and substituting fors(T), we
get the following equation:

Pi j ~T1!

Pi j ~T2!
5)

a
AT2

T1
e2@~DxR

a
!2mg/4Dt#@~1/kT1!2~1/kT2!#.

Since we know the transition probability at the first tem-
perature from the current MSM, we can calculate the new
probability easily at the new temperature using the above
equations. We again normalize all edge probabilities so that
for each node, the sum of the outgoing probabilities is one.
In this way, we generate a MSM at a different temperature
without additional simulations.

This analysis can be done on any parameter where it is
possible to define the relative transition probabilities in terms
of the two parameter values.

G. Mean first passage time and Pfold calculation

The MSM consists of a set of nodes and a set of transi-
tions or edges between these nodes. Each edge has a prob-
ability associated with it as well as the time taken to traverse
this edge. One can define thePfold of a node as the probabil-
ity that a particle started at that node would reach the final
state before reaching the initial state.13 Pfold values have been
shown to be useful in understanding the nature of the folding
pathway in simplified13,14 and atomistic15–17 models. Typi-
cally, one calculatesPfold values by running multiple simu-
lations ~differing by random number seeds or initial veloci-
ties! and recording the fraction that fold before they unfold.
While this is computationally tractable~compared with a full
folding simulation starting from the unfolded state! and natu-
rally parallelizable on massively parallel or grid-computing
architectures, it can still be a demanding computational task,
especially if thePfold values for many conformations are
sought.

Following Apaydinet al.,6 we will use the MSM to cal-
culate Pfold values. ThePfold can be defined conditionally
based on the first transition made from the node,

Pfold~nodei)

5 (
transition~ i , j !

P~ transition~ i , j !!Pfold~nodei utransition~ i , j !),

where the sum is over all possible transitions from nodei .
The possible transitions must be mutually exclusive and the
sum of their probabilities must be one. The possible transi-
tions from nodei are simply all of the edges leading from
nodei , and the probability of each of these transitions is the
Pi j values defined previously. This satisfies the above condi-
tion. Pfold~nodei utransition(i , j )) is simply thePfold of nodej

which results in the following equations:

Pfold~nodei)5 (
edgei j

Pi j Pfold~nodej ),

Pfold~nodei)51, nodeiPF,

Pfold~nodei)50, nodeiPI ,

where I is the initial region andF is the final region. This
definition results in a series ofn equations for each of then
nodes in the system andn unknowns, thePfold~nodei). This
system of equations can be solved by iteration as follows:
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Initialize,
Pfold~nodei)

051, nodeiPF,
Pfold~nodei)

050, nodei¹F;

Iterate, Pfold~nodei)
t115 (

edgei j
Pi j Pfold~nodej )

t,

until eachPfold converges. This iteration method is known as
Jacobi iteration.18 Instead of always using thePfold values
from the previous iteration, one can use the new values from
this iteration as soon as they become available. This results
in the following iterative scheme known as Gauss–Seidel
iteration, which converges twice as fast as the Jacobi
method,18

Pfold~nodei)
t115 (

edgei j , j > i
Pi j Pfold~nodej )

t

1 (
edgei j , j , i

Pi j Pfold~nodej )
t11.

Analogously, it is also interesting to get rate information
from simulations. Indeed, rates are a primary mean of com-

parison to experiment and are thus a critically important
quantity to calculate in order to experimentally validate any
folding simulation. Rates have not been previously calcu-
lated from a roadmap-type representation of states. Below
we present a natural generalization of the method to calculate
Pfold values for the calculation of rates in an efficient and
precise manner.

One can define the mean first passage time~MFPT! of
any node as the average time taken to get from that node to
any node in the final state. The MFPT can be defined condi-
tionally based on the first transition made from the node,

MFPT~nodei)

5 (
transition~ i , j !

P~ transition~ i , j !!

3MFPT~nodei utransition~ i , j !),

where the sum is over all possible transitions from nodei .
The MFPT of nodei given that a transition to nodej was
made is the time it took to get from nodei to nodej added to
the MFPT from nodej . This leads to the equation for MFPT
of

MFPT~nodei)5 (
edgei j

Pi j 3~ timei j 1MFPT~nodej !),

where the sum is over all edges leading from nodei . In ad-
dition, we can define

MFPT~nodei)50, nodeiPF.

This system of linear equations can be iterated in the same
way as above except that the initial values for the system
should be

MFPT~nodei)5`, nodei¹F,

MFPT~nodei)50, nodeiPF.

III. RESULTS

A. Model system

We first test the methods outlined above on a simple,
two-dimensional model system. Due to their tractability,
such model systems are useful for demonstrating the benefits
of the proposed method. Our model system is defined by an
energy potential of

E~x,y!5
~4~12x22y2!212~x222!21~~x1y!221!21~~x2y!221!222!

6

and has been used previously to test transition path sampling
methods.2 The initial and final regions were defined by
circles centered at~21,0! with a radius of 0.2 and~1,0! with
a radius of 0.3, respectively. A contour graph of this energy
landscape is shown in Fig. 4.

Since this model system is computationally tractable, we
can directly compare our proposed methods to direct, brute-
force simulations of the kinetics. In particular, we will com-
pare two kinetics methods: Monte Carlo and Langevin dy-
namics.

FIG. 4. Contour graph ofE(x,y). The initial and final regions are repre-
sented by the circles labeledI and F, respectively. The energy difference
between the stable regions and the valley in between them is approximately
1 and between the stable regions and the hill in between them is approxi-
mately 2~energy in arbitrary units!.
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We performed 10 000 Monte Carlo simulations for each
temperature ranging from 0.1 to 1.0, at intervals of 0.1. The
move set was defined in each dimension as a normal distri-
bution centered on the current point,

h~xa ,xa8 !5
1

sA2p
e@2~xa82xa!2/2s2#.

The standard deviation was defined according to the distance
the particle is expected to travel because of diffusion,

s5ADDt

2
,

whereDt is the time step and was defined as 0.0001 ps and
D is the diffusion constant and equals 91.0 ps21. In addition,
we also ran 10 000 Langevin simulations for each tempera-
ture ranging from 0.2 to 1.0, at intervals of 0.1. The forces,
Fext, were defined as the gradient of the energy potential
given above, the massm was defined to be 1, and the vis-
cosity g was defined as 91.0. The time stepDt for these
simulations was 1.

For each temperature and type of simulation, five sets of
10 000 independent simulations were started from the initial
state, and the time at which they reached the final state was
recorded. The initial point in each simulation was sampled
randomly from points on the border of the initial region. The
mean first passage time for each set was calculated from
these 10 000 trials.

MSM generation:To test Monte Carlo kinetics, MSMs
were generated on the model energy landscape at tempera-
tures ranging from 0.1 to 1.0, at intervals of 0.1. The time

step,Dt, was 0.0001 and the interval at which points on the
paths were recorded,t int , was 0.005. Each shooting step was
stopped if neither the initial nor final regions were reached
after a time of 1.0. Four independent MSMs were generated
at each temperature, and each MSM consisted of 10 000 at-
tempted shooting moves. In addition, 50 paths were sampled
from the initial state for each MSM. All points in either the
initial or final regions were clustered together. For the re-
maining points, the distance metric chosen was Euclidian
distance and the clustering cutoff for each simulation was
sA5, where sigma is the standard deviation of the normal
distribution from which the moves were selected. Points
were clustered hierarchically with average-link clustering—
the distance between two clusters is equal to the average
distance from any member of one cluster to any member of
the other cluster. After clustering, any points that could not
reach the final state were deleted.

Analogously, Langevin dynamics was examined by gen-
erating MSMs at temperatures ranging from 0.2 to 1.0, at
intervals of 0.1. The time step was 1.0 and the interval at
which points on the paths were recorded was 10.0. Each
shooting step was stopped if neither the initial nor final re-
gions were reached after a time of 10 000. Five MSMs were
generated at each temperature, and each MSM consisted of
10 000 attempted shooting moves. In addition, 50 paths were
sampled from the initial state for each MSM. Clustering was
as above with the clustering cutoff assA1.5, where sigma is
the standard deviation of the normal distribution from which
the random component of each move was selected.

Pf old comparison:For one MC and Langevin MSM at

FIG. 5. The correlation betweenPfold

values calculated directly from many
simulations and MSM simulations on
the same model energy landscape. The
left graph shows the comparison for
Monte Carlo simulations and the right
one shows the same comparison for
Langevin simulations.

FIG. 6. The comparison between
MFPT calculated directly from many
simulations and from the MSM simu-
lations as a function of temperature.
The left graph shows the result for
Monte Carlo simulations and the right
one shows the result for Langevin
simulations.
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each temperature, thePfold values were calculated for every
node. Since it would be too time consuming to compute all
Pfold values from many direct simulations, about 25–30
nodes were chosen at random from each MSM for compari-
son. 10 000 MC or Langevin simulations were started at the
given temperature from each of these coordinates to compute
its Pfold value directly. Figure 5 shows thePfold value calcu-
lated by many direct simulations compared to those calcu-
lated from the MSMs for both simulation types.

The correlation coefficient between the direct MC values
and MSM values is 0.989 over all temperature values. For
each individual MSM at a given temperature, the correlation
coefficient ranges from 0.986 to 0.994. The correlation coef-
ficient between the direct Langevin values and MSM values
is 0.990 over all temperatures. The correlation coefficient
ranges from 0.986 to 0.999 for each MSM at a given tem-
perature. This shows excellent agreement over a wide range
of temperatures for both simulation types.

MFPT comparison:In addition to being able to calculate
Pfold values at every node, the use of simulation data allows
us to estimate the transition times between nodes, and there-
fore to estimate the MFPT from the initial state. We can
compare the MFPTs calculated from the MSMs with the
MFPTs we calculated directly from many MC or Langevin
simulations~Fig. 6!.

The MFPT calculated from the MSMs agree well with
those calculated from direct simulations, although the vari-
ance among MSM simulations is greater for all temperatures

in the MC simulations and for high temperatures in the
Langevin simulations.

MFPT from reweighting of edges:We also tested how
well our formulation for the reweighting of MSM edges
based on temperature was able to predict MFPTs at the new
temperatures. For both MC and Langevin dynamics, five ad-
ditional MSMs were generated at temperatures of 0.2, 0.6,
and 1.0. The edges on these MSMs were reweighted to give
MSMs at temperatures of 0.2 to 1.0 at an interval of 0.1. The
MFPTs calculated from these reweighted MSMs were then
compared with those from the direct simulations~Fig. 7!.

For the MC simulations, the MFPT calculated from the
reweighted MSMs generated at all three temperatures agrees
reasonably well over the entire temperature range. The
MSMs generated at a temperature of 0.2 show a systematic
overestimation of the MFPT for high temperatures. For the
Langevin simulations, the MFPT calculated from the re-
weighted MSMs generated at temperatures of 0.6 and 1.0
also agreed well over the entire temperature range. However,
the MFPT calculated from the MSMs generated at a tem-
perature of 0.2 greatly overestimated the MFPT for higher
temperatures. At the lower temperatures, we may not be sam-
pling the transitions relevant at the higher temperatures. We
examined this possibility by looking at the shortest possible
path between the initial and final regions in the MSMs gen-
erated at different temperatures. For the Monte Carlo simu-
lations, the MSMs at temperatures of 0.6 and 0.2 showed an
increase in the shortest path length of the MSM at a tempera-

FIG. 7. The comparison between the
MFPT calculated from many simula-
tions to the MFPT calculated from re-
weighted versions of a single MSM as
a function of temperature. The square,
diamond, and circle points represent
the MSMs generated at temperatures
of 0.2, 0.6, and 1.0, respectively. The
cross points are from the direct MFPT
calculations. The left graph shows the
results for Monte Carlo simulations
and the right graph shows the results
for Langevin simulations.

FIG. 8. Error analysis of direct simu-
lations and the various MSM tech-
niques. The graphs show the standard
deviation to the average direct simula-
tion value at each temperature divided
by that average value. The left graph
shows the results for Monte Carlo
simulations and the right graph shows
the results for Langevin simulations.
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ture of 1.0 of 40% and 80%, respectively. For the Langevin
simulations, the MSMs at temperatures of 0.6 and 0.2
showed an increase over the shortest path length of the MSM
at a temperature of 1.0 of 90% and 300%, respectively.
These differences may account for the low temperature
MSMs’ inability to scale, since we never sample the faster
transitions.

To estimate the error in the reweighted MSMs compared
to the direct simulations and to MSMs generated individually
at each temperature, we compare the MFPT standard devia-
tions at different temperatures for the various methods~Fig.
8!. Specifically, we examine the standard deviation relative
to the average MFPT at each temperature calculated from the
five direct simulations, from the four MSMs generated indi-
vidually at that temperature, and from the five reweighted
MSMs generated at temperatures of 0.2, 0.6, and 1.0 and
reweighted to that temperature.

For both the MC and Langevin simulations, the re-
weighted MSMs have essentially the same error as the
MSMs generated individually at each temperature except for
the Langevin MSM generated at a temperature of 0.2. At low
temperatures, the MFPT calculated directly from simulations
has a percent standard deviation which is approximately half
that of the MSMs. However, at higher temperatures, the error
between the MFPT calculated directly from simulations and
that from MSMs is only slightly lower for MC simulations
and higher for Langevin simulations.

B. TrpZip kinetics

In addition to the model energy landscape, we applied
our methods above to a small protein, the 12-residue tryp-
tophan zipper beta hairpin, TZ2.19 TZ2 has previously been
simulated on Folding@Home.20 Our goal here is to use these
trajectories from Folding@Home to build a MSM to further
study the folding of TZ2. This should be a much more chal-
lenging test of our methods than the simple two-dimensional
example above. If successful, we propose that MSM-based
methods would allow one to extend the Folding@Home dis-
tributed computing methods to examine the folding of slower
and more complex proteins. Indeed, MSM methods com-
bined with Folding@Home-based sampling may also be able
to tackle some fundamental issues in the simulation of pro-
tein folding, especially that of proteins with non-single-
exponential folding kinetics.21 The results for TZ2 presented
here are intended as a ‘‘proof of concept’’ application of our
methods to fully atomistic simulation.

Using Folding@Home,20 TZ2 folding has been simu-
lated using the OPLSaa all atom parameter set22 and the
generalized Born/surface area implicit solvent model23 at a
temperature of 296 K. Trajectories were started from an ex-
tended conformation and ranged in length from 10 to 450
nanoseconds. To define the initial and final regions, we used
a combination of alpha carbon root mean square distance
~rmsd! to the native state~pdb code 1LE119! and hydrogen
bond and trp–trp distances. In particular, we track the fol-
lowing set of interatom distances where the number indicates
the residue,n indicates the backbone amide nitrogen,o indi-
cates the backbone carbonyl, andw indicates the CD2 side
chain atom:d15n3 –o101o3 –n101n5 –o81o5 –n81w2

–w111w2 –w91w9 –w4 and d25d11n1 –o121o1
–n12. The initial region was defined as any configuration
that had ~rmsd>2.5 or rmsd10.125d1>7.75) and (rmsd
10.125d1>9.5). The final region was defined as any con-
figuration that had rmsd,2.5 and rmsd10.125d1,7.75 and
d2,45. These cutoffs follow Snowet al., except for the de-
pendence ond2 , which was added to discriminate between
native states and a set of frayed nativelike states. For more
on the simulation details, see Snowet al.8

To generate the MSM, we chose a tenth of this data set at
random, resulting in 1750 independent trajectories. Of these
trajectories, 14 reached the final folded state. Frames from
the nonfolding trajectories were selected every 10 ns and
frames from the folding trajectories were selected every 250
ps. This was done so that there would be more representative
conformations in the transition and final states, while still
allowing the number of nodes to stay manageable. As dis-
cussed in the MSM generation section, because the edges
contain the time taken to traverse them, multiresolution data
can be accommodated. This selection of data resulted in a
total of approximately 22 400 nodes.

The distance metric for clustering was defined as the
root mean square deviation of the inter-heavy-atom distance
matrix for two conformations. The clustering was performed
hierarchically using the average-link distance as the distance
between two clusters. After clustering, nodes which could
not reach the final state were merged into their nearest
neighbor.

The usefulness of a MSM depends upon the type of en-
semble used for its construction~similar to the concept of a
basis set!. Here, the underlying ensemble is fairly one sided,
has relatively few transitions, and is not at equilibrium. Spe-
cifically, very few trajectories reached the final state and
even fewer unfolded after having folded, so the set of tran-
sitions to the initial state was not very well sampled. Accord-
ingly, any Pfold values calculated would have been biased
since thePfold measures the percentage of trajectories that
reach the final state before reaching the initial state. On the
other hand, a good estimate of the MFPT was possible since
it measures the average time taken for a particle to reach the
final state having started in the initial state, which is exactly
what our data set represents.

We examined a wide range of clustering cutoffs for both
the initial and transitional regions to get an estimate for the
MFPT. To compare the effects of clustering cutoff, we also
performed a similar experiment on the model energy land-
scape. We ran 500 MC simulations started from the initial
state at a temperature of 0.6 with a time step of 0.0001, total
time of 0.1, and recording points every 0.005. Of these tra-
jectories, 135 reached the final state. Again, we varied the
clustering cutoffs in the initial and transitional regions.

Holding the transitional region cutoff constant, increas-
ing the initial clustering cutoff causes no change in the
MFPT in the model system~Fig. 9!. For the TrpZip data,
increasing the initial region clustering cutoff causes the
MFPT to increase until a cutoff of 2 Å and then plateau. One
reason why the TrpZip data shows an initial increase in
MFPT that is not seen in the model system data is because
the TrpZip conformations are in a much higher dimensional
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space. If we sample equally in these two spaces, we expect
the points in the higher dimensional space to be farther apart.
After clustering the two dimensional data to 0.0005, there are
87% fewer nodes. In comparison, after clustering the initial
region of the TrpZip data to 2 Å, there are only 76% fewer
nodes. There is an increase in the model system data, but
only when the transitional cutoff is zero. Holding the initial
region cutoff constant and increasing the transitional region
cutoff causes the MFPT to decrease in both systems and for
all values of the initial cutoff. In the transitional region, we
expect that the molecule will go through a series of sequen-
tial points on the way to the final state.

The rationale behind clustering is that we can merge
together points which are similar by some metric, thus as-
suming that transitions into or from one of the points is
equally likely to go to or come from the other point. This
does not apply for points which are sequential along a path-
way. Therefore, merging these points causes the MFPT to
decrease since we are essentially shortening the length of the
path. Because we do not expect any sequential patterns
within states in the initial region, increasing the clustering
cutoff within this area does not have the same decreasing
MFPT as the transitional region.

Over reasonable ranges of cutoffs for the initial~.2 Å!
and transitional~1–2.5 Å! regions, we can estimate the
MFPT as between 2–9 microseconds. This estimate agrees
well with experimental results of 1.860.01ms from fluores-
cence and 2.4760.05 ms from IR8 and with analysis of this
simulation data fitting the rate directly of 8ms for the full
data set and 4.5ms for the random tenth sample used in the
MSM analysis.

IV. DISCUSSION AND CONCLUSIONS

We have introduced new computational tools for effi-
ciently analyzing the data collected from Monte Carlo or
molecular dynamics simulations. These methods capture the
probabilistic and time-dependent nature of the kinetics in a
compact Markovian state model representation which can
easily be analyzed for properties such as thePfold and MFPT
of every node.

The Pfold values calculated over a wide range of tem-
peratures and both Monte Carlo and Langevin simulation
types show excellent agreement with those calculated by
brute force. One area of improvement for this method is that
while the MSM values give the same average MFPT as the

MFPT calculated from direct simulations, the variance is
much higher. This is probably because the MSM simulations
are somewhat dependent on the initial path chosen. The only
way in which edges can lead from the initial state is either
from the initial path or from the sampling of the initial state.
Edges resulting from the shooting algorithm all lead into the
initial state. One could fix this problem by having many ini-
tial paths. However, in a protein example, folding trajectories
may be very difficult to generate beforehand. Another way to
fix this problem and achieve more precise results would be to
include shooting paths which move backwards in time, thus
allowing for more edges leading from the initial state. Monte
Carlo and Langevin dynamics cannot be run backward in
time because the velocity is not maintained between steps. If
one were to use some other molecular dynamics simulation
system that maintained velocity, then the trajectories may be
run backwards in time and this problem could be averted.

In addition to the algorithms necessary to create the
MSM from simulation data, we have also described methods
for reweighting the edges of the MSM to analyze the system
at different parameter values. In particular, we provided
transformations for the edge weights at different tempera-
tures, given that the simulations were from either MC or
Langevin dynamics. These methods show promise since we
can analyze the system at many different parameter values
without the need for any additional simulations. The re-
weighting of the MSMs seemed to work well in general and
give results with similar errors as MSMs generated individu-
ally at each temperature. The one exception was the Lange-
vin MSMs generated at a temperature of 0.2. These MSMs
did not give accurate results when rescaled for temperatures
greater than 0.3. One reason for this may be that at the low
temperature, the system did not have enough samples in the
relevant transitions to scale to higher temperatures. It may be
necessary to generate composite MSMs consisting of data
from many different temperatures in order to properly rescale
to a wider range of temperatures.

This method was then applied to existing folding simu-
lation data from a smallb-hairpin protein. We were able to
calculate folding rates which were in reasonable agreement
with experimental data and previous analysis of the simula-
tion data. The majority of time in these calculations is spent
in the clustering step. Currently, we compute the fulln2 dis-
tance matrix between all nodes in the MSM, a very expen-

FIG. 9. The effect of clustering cutoff
on the calculated MFPT. One axis
shows the cutoff in the initial region
and the other shows the cutoff in the
transitional region. The vertical axis
shows the MFPT at each point. The
graph on the left is from the model en-
ergy landscape and the graph on the
right is for the TrpZip protein.
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sive calculation. Better clustering algorithms can reduce this
computation time.

Future work involves additional analysis of how this
procedure can be applied to real protein systems. In particu-
lar, we plan to analyze the error in MFPT estimation by
looking at different subsets of the entire data set, further
explore the effects of the clustering cutoffs, and to character-
ize folding pathways and mechanisms from the generated
MSMs.
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