

 University of Groningen

Using patterns to capture architectural decisions
Harrison, Neil B.; Avgeriou, Paris; Zdun, Uwe

Published in:
Ieee software

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Harrison, N. B., Avgeriou, P., & Zdun, U. (2007). Using patterns to capture architectural decisions. Ieee
software, 24(4), 38-+.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 24-08-2022

https://research.rug.nl/en/publications/264d832c-02bd-4bc9-8fca-109b2be684df

3 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

can significantly disrupt the system when deci-

sions made later, during subsequent develop-

ment iterations, conflict with the original archi-

tectural decisions.

Researchers are investigating various meth-

ods and tools to help software architects effec-

tively document their decisions. However, such

tools’ utility has yet to be fully validated. Doc-

umenting architectural decisions thus remains

difficult and we continue to lose important

information.

Architecture patterns address these docu-

mentation challenges by capturing structural

and behavioral information and encouraging

architects to reflect on decisions in a way that

doesn’t interfere with the natural architectural

design process. Architecture patterns are easy

to use, giving developers a rich set of infor-

mation about rationale, consequences, and re-

lated decisions. Essentially, they offer reusable

knowledge for the architect’s toolkit. Here, we

discuss the relation between patterns and deci-

sion making and describe how architects can

use patterns to capture certain architectural de-

cisions in practice.

Problem overview
Most software architecture documentation

describes the system’s structure from different

views.1 Ideally, this documentation also records

decisions that architects made while designing

the system. Recording only the decision does lit-

tle good, however; for the documentation to be

truly useful, architects must also capture the al-

ternatives considered, their expected conse-

quences, and the rationale—that is, the reasons

for selecting a particular alternative. Our discus-

sion of decision documentation here refers not

just to the decision but rather to all of its as-

pects. Unfortunately, when architects document

their decisions, this wider definition is what they

most neglect.

focus
Using Patterns to Capture
Architectural Decisions

T
hroughout the software design process, developers must make de-

cisions and reify them in code. The decisions made during software

architecting are particularly significant in that they have system-

wide implications, especially on the quality attributes. However,

architects often fail to adequately document their decisions because they don’t

appreciate the benefits, don’t know how to document decisions, or don’t rec-

ognize that they’re making decisions. This lack of thorough documentation

software patterns

Neil B. Harrison, Utah Valley State College

Paris Avgeriou, University of Groningen

Uwe Zdun, Vienna University of Technology

By providing
information about
a decision’s
rationale and
consequences,
architecture
patterns can help
architects better
understand
and more easily
record their
decisions.

Current research trends in software archi-

tecture focus on architectural decisions2 as

first-class entities and capture their explicit

representation in the architectural documenta-

tion. Such documentation extends the typical

views of a software system’s architecture—

such as the interacting components and con-

nectors—with explicit representations of the

architectural decisions that convey the ration-

ale underlying a particular design.3

Knowledge vaporization

The ultimate goal of documenting architec-

tural decisions is to alleviate a major problem in

the field: architectural knowledge vaporization.4

This knowledge vaporizes because architects fail

to record their decisions, so significant informa-

tion about a software system’s architecture is un-

available during the development and evolution

cycles. These decisions can’t be explicitly derived

from the architectural models. And, because they

exist merely as tacit knowledge in the heads of

architects or other stakeholders, they inevitably

dissipate. As the well-known saying in software

architecture goes, “If something is not written

down, it does not exist.”

Knowledge vaporization has consequences

across the software industry, including expensive

system evolution, lack of stakeholder communi-

cation, limited reusability of architectural assets,

and poor traceability between the requirements,

the architecture, and the implementation.

Documentation challenges

If recording architectural decisions is to be-

come standard practice, then documenting de-

cisions must be easy and somewhat automatic.

To this end, researchers are investigating con-

ceptual models, methods, processes, and tools

for documenting decisions.5�7 However, in

practice, architects still fail to document their

decisions for many reasons. The most signifi-

cant include the following:

■ The substantial effort required to docu-

ment and maintain architectural decisions

seems greater than the perceived benefit.

■ Architects sometimes make decisions with-

out realizing it or without reflecting explic-

itly upon them, so they don’t know what to

document.

■ Rather than disrupt the creative flow of

design, architects defer decision documen-

tation until the architecture is essentially

complete; at that point, they’ve often for-

gotten many decisions and the rationale

behind them.

■ Architects don’t know how to document

their decisions.

Clearly, such difficulties make the process of

documenting architectural decisions problem-

atic, leading to loss of valuable architectural

knowledge.

The patterns solution

Architecture patterns are solutions to general

architectural problems that developers have

verified through multiple uses and then docu-

mented. They thus offer an effective way to cap-

ture some of the most significant design de-

cisions and provide appropriate alternative

solutions for various design challenges. Pattern

documentation includes the pattern’s usage con-

text—that is, a recurring design problem solved

by a recurring solution that resolves both the

problem’s general challenges and the solution’s

consequences.

Patterns help mitigate the four primary doc-

umentation challenges as follows:

■ Architecture patterns include general struc-

tural and behavioral information, making

it easier and faster to document architec-

tural decisions.

■ In applying architecture patterns, architects

make decisions that encourage them to

both reflect on those decisions and consider

related issues.

■ Pattern selection is indispensable to the ar-

chitecting process, so architects can record

related decisions with little effort. Pattern

usage thus fits within the natural flow of

the architecture design process.

■ Patterns follow an easily understood form,

which is highly compatible with proposed

description templates for architectural

decisions.

Patterns and decisions:
A comparison

As the following descriptions and compar-

isons show, architecture patterns and architec-

tural decisions have much in common.

Patterns: Coupling structure

and consequences

Patterns are solutions to recurring problems.

J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 3 9

Ideally,
architecture

documentation
records

decisions
that architects

made while
designing the

system.

A pattern describes a problem, its context, and a

generic solution. Many developers use patterns

to document solutions to software problems.

The best-known software patterns describe solu-

tions to object-oriented design problems,8 but

patterns have also been used in many aspects of

software design, coding, and development.

Architecture patterns are similar to OO de-

sign patterns in that both provide a problem’s

solution in context. Rather than directly pro-

ducing code, however, architecture patterns

work at the architectural design level, describ-

ing an abstract, high-level system structure and

its associated behavior. Architecture patterns

often dictate a particular high-level, modular

system decomposition.

One of architectural patterns’ key benefits is

that they capture the system’s general architec-

tural structure—which is typically well known

and easily recognized—and couple it with conse-

quences that are often not as readily recognized.

This is particularly useful when attempting to re-

construct architectural decisions: the system’s

structure indicates the (explicit or implicit) archi-

tecture pattern. The pattern description, in turn,

indicates consequences of the architectural de-

cision (especially with respect to quality attri-

butes). These consequences are, in effect, less ap-

parent decisions derived from the primary

decisions. Developers can use this valuable

knowledge to evaluate an architecture, although

they can more precisely measure a pattern’s ac-

tual impact on quality attributes through thor-

ough analysis, such as quantitative performance

analysis. The particular pattern variant used also

indicates whether alternative variants or related

patterns might be applied.

Common architecture patterns include

■ Layers, which decomposes the system into

a hierarchy of partitions, each of which ex-

changes services with adjacent partitions;

■ Pipes and Filters, which encapsulates data-

stream processing steps into filter compo-

nents; and

■ Blackboard, which centralizes the data from

independent computation processes.9

Paris Avgeriou and Uwe Zdun offer a compre-

hensive overview of currently identified archi-

tecture patterns.10 Another way to describe a sys-

tem’s architectural structure is through its

architectural style,11 which Mary Shaw first de-

scribed in 1988.12 Most agree that architectural

styles and patterns are essentially the same con-

cept.1,10,13 Here, we refer to both as “patterns.”

Decisions: Capturing key information

An architectural decision is a decision that

affects the system architecture. Jan Bosch pro-

posed that a decision consists of requirements

and a solution, and that each design decision

addresses some system requirements while leav-

ing others unresolved.4

According to Bosch, design decisions might

■ add components to the architecture,

■ impose functionality on existing components,

■ add requirements on components’ expected

behavior, or

■ add constraints or rules on part or all of

the software architecture.

He goes on to state that an architectural deci-

sion can represent many solution structures,

including an architectural style or pattern.

A crucial consideration of design decision

documentation is which information to collect.

That is, what critical information about a deci-

sion should you convey to other architects and

developers? Key information includes the issue

being designed, the decision made, the alterna-

tives considered, and the reasoning behind the

decision. Anton Jansen and Jan Bosch charac-

terize this information as a problem, motiva-

tion, cause, context, potential solutions, and de-

cision.3 Jeff Tyree and his colleagues describe

this and other important information about de-

cisions and give a sample template for recording

them.14

A second important consideration is to de-

termine what kinds of information comprise

architectural decisions. Philippe Kruchten2 de-

scribes several types of design decisions:

■ Existence decisions relate to the behavior

or structure in the system’s design or im-

plementation.

■ Non-existence decisions describe behavior

that is excluded from the system.

■ Property decisions state an enduring, over-

arching system trait or quality, which might

include design guidelines or constraints.

■ Executive decisions are those driven by ex-

ternal forces, such as financial imperatives.

Another consideration here is the important

distinction between two knowledge types:15

4 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Architecture
patterns

often dictate
a particular
high-level,

modular system
decomposition.

■ Application-generic knowledge is an archi-

tect’s implicit knowledge, gained through

previous experiences in one or more do-

mains (such as architectural patterns, tac-

tics, or reference architectures).

■ Application-specific knowledge involves

all the decisions made during a particular

system’s architecting process, as well as the

architectural solutions that implemented

the decisions.

These two knowledge types are related in that

application-generic knowledge is used to make

decisions for a single application, and thus con-

structs application-specific knowledge.

As we noted earlier, a key difficulty with ar-

chitectural decisions is in getting people to

record the critical information surrounding a

decision, rather than just recording the deci-

sion itself. To this end, researchers are devel-

oping tools to make the recording process as

easy and unobtrusive as possible.6,7 In addition

to tools that explicitly document architectural

decisions, model-driven software development

researchers have developed tools for defining

architectural metamodels with constraints and

model-checking features. We can easily extend

MDSD tools to metamodels for architectural

decisions (for example, following the templates

described in the next section) and use them to

define and automatically check formalizable

constraints that result from an architectural de-

cision. This hypothesis, however, remains to be

tested in practice; we’re not yet aware of any

MDSD tools that can effectively record archi-

tectural decisions.

The pattern�decision relationship

Architecture patterns and architectural deci-

sions are complementary concepts. Using a pat-

tern in system design is, in fact, selecting one of

the alternative solutions and thus making the

decisions associated with the pattern in the tar-

get system’s specific context. For example, an ar-

chitect designing a user interface structure might

consider two alternative patterns: Model-View-

Controller and Presentation-Abstraction-Con-

trol. The MVC pattern divides the application

into components that contain the core function-

ality and data (the model), the views presented

to the user, and the user-input controller. The

PAC pattern creates a hierarchy of cooperating

agents, each of which manages its own data dis-

play. The PAC pattern is extensible but less effi-

cient than MVC. So, in deciding which pattern

to use, the architect must consider the target sys-

tem’s performance and extensibility needs.

The major difference between architecture

patterns and architectural decisions is in the

scope of information each contains. Each ar-

chitectural decision document describes an in-

dividual decision about the target system. In

contrast, patterns describe solutions that have

proven successful in multiple applications. Thus,

architectural decisions are specific, but tenta-

tive; patterns are proven, but general. When de-

signing systems, architects consider patterns as

alternative solutions. In relation to the two

knowledge types described earlier, architectural

decisions comprise application-specific knowl-

edge, whereas architecture patterns comprise

application-generic knowledge.

Although patterns and decisions have differ-

ent origins, we can investigate their relation by

comparing how they’re documented. Architec-

tural decisions include the issue to be decided,

the alternative solutions, the decision made, and

the reasons for the decision. Similarly, a pattern

describes the issue (in a problem section) and the

decision (in a solution section). Alternative solu-

tions are motivated by forces (different variants

of the solution) and justified in a rationale sec-

tion. Table 1 shows the typical sections in pat-

terns documentation (Frank Buschmann and

colleagues offer examples in their book9), archi-

tectural decision documentation,15 and their

correspondence.

As table 1 shows, patterns and architec-

tural decisions also differ in their documenta-

tion format. Although they have many of the

same sections, pattern descriptions focus on

timeless, generic knowledge (and hence have a

name, examples, and known uses), whereas

decision templates focus on concrete knowl-

edge relating to a specific situation (and hence

contain elements such as status and notes).

Another interesting aspect is how the two fa-

cilitate solution selection. In the patterns realm,

architects can derive alternative solutions in

two ways. First, as table 1 shows, an individ-

ual pattern can provide alternative solutions

by resolving the forces in different ways using

different variants. The Pipes and Filters pat-

tern, for example, might appear in different

variants such as purely sequential, forks/joins,

feedback loops, and so on. Second, two or more

patterns can be complementary in a specific

decision topic. For example, when deciding

J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 4 1

on interacting components’ distributed com-

munication, you might choose the Client-

Server, Peer-to-Peer, or Publish-Subscribe pat-

tern or combine two or all three.

As table 1 shows, patterns can support tradi-

tional architectural documentation. The patterns

provide application-general knowledge in the ar-

eas of assumptions, constraints, positions, impli-

cations, and related decisions. The architect

might wish to augment this information with

application-specific knowledge; in this case, the

pattern serves as a reminder of issues to consider.

In some cases, a pattern contains nearly all the

desired decision documentation (albeit at a gen-

eral level). In such cases, the architect must doc-

ument little beyond the decision itself. So, using

patterns in decision documentation can mini-

mize the efforts necessary to document extra in-

formation, such as design considerations, con-

sequences, and so on.

When using pattern-oriented knowledge, it’s

important to understand the consequences of

applying the pattern on functional and (espe-

cially) nonfunctional system aspects. When you

decide to use a pattern, you decide to accept its

consequences. The Layers pattern, for example,

partitions software in a way that often results in

many function calls, which might decrease per-

formance. In deciding to use this pattern, you

must consider its performance impact. How-

ever, because the Layers pattern supports secu-

rity levels in the application, you might use it if

4 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 1

Pattern and architectural decision documentation

Pattern section Decision section Comments

Name Patterns represent generic knowledge, so pattern names give the pattern a recognizable, reusable
name to facilitate communication. Because decisions are knowledge-specific to the current situation,
they’re not intended to serve as a “language” among the architects/developers.

Problem Issue The pattern’s problem statement roughly corresponds to the issue requiring a decision. In both cases,
it expresses a stakeholder’s concern that must be addressed.

Category Group Some pattern authors categorize their patterns in some scheme; correspondingly, decisions are
grouped. The decision groups are usually rather clear because they’re rooted in a concrete decision
process, whereas pattern categories are often rather abstract.

Status Status information, such as pending, decided, or approved, refers to concrete realization of a
decision. As generic knowledge, a pattern doesn’t need such a section.

Context Assumptions, A pattern’s context and a decision’s assumptions and constraints both set the scene and characterize
constraints the situation in which the pattern can be used or the decision is applied.

Solution variants Positions A decision’s positions are the alternatives that have been considered to tackle the issue. This roughly
according to forces corresponds to two parts of the pattern text: the forces describe various concerns that can lead to

different solutions; the variants of the solution represent alternatives in solving the problem by
balancing the concerns in a different way.

Solution Decision A pattern’s solution describes the generic solution to the recurring design problem covered by the
pattern. This corresponds to the concrete decision that resolves the issue of a decision.

Rationale Argument A pattern describes the generic rationale of applying the pattern’s solution in relation to the forces.
Similarly, a decision’s argument section explains why the decision was made.

Resulting context/ Implications A pattern’s resulting context section describes the context that is created by applying the pattern.
consequences A pattern’s consequences section describes the consequences of its application. These sections

correspond to a decision’s implications.

Example, known uses Known uses are the sources from which the pattern has been mined; examples show how to apply
the pattern’s generic solution in a specific way. Because decisions are concrete knowledge, neither
known uses (there’s only one) nor examples are needed.

Related patterns Related decisions, A pattern’s solution often leads to a context in which other related patterns can be applied. This
requirements, artifacts, corresponds directly to the related decisions, requirements, artifacts, or principles of a decision.
or principles

Notes In decision templates, notes can be taken during the decision process as part of the communication
between stakeholders. Even though a lot of communication usually occurs when patterns are written,
notes aren’t explicitly recorded but informally captured in other sections of the pattern template or in
the verbose text in the other pattern sections.

you want to adopt a particular security model

and implementation. This brings up an impor-

tant advantage of using patterns with respect to

decision-making: A decision’s consequences are

rarely fully understood or even anticipated. Be-

cause patterns are based on extensive prior ex-

perience, the consequences are generally well

understood and described in the pattern docu-

mentation. Thus, pattern usage can help you un-

derstand the consequences beforehand and doc-

ument them for future reference.

Using patterns:
Practical considerations

Architectural design is an especially challeng-

ing decision-making process because it involves

frequent trade-offs: A given structure often satis-

fies a few requirements at others’ expense. Fur-

thermore, a decision’s consequences might intro-

duce new requirements, so you might have to

trade off a solution’s benefits with the additional

system burdens it entails. Trade-offs are particu-

larly rich and complex among a system’s non-

functional attributes. For example, deciding to

implement a certain security approach might im-

pact the system’s performance and usability. Be-

cause of the interaction complexities among per-

formance, usability, and security, architects might

be particularly unaware of their decisions’ conse-

quences on such nonfunctional system aspects.

The architecting process is highly intuitive. To

develop an architecture, architects use their own

past experiences, others’ experiences, and what-

ever application-generic architectural knowledge

is available. Using a proven and systematic ap-

proach to architecting is highly desirable—you

get no style points for originality in software

architecture!

During architecting, architects periodically

consider one or more of the key architectural

drivers—that is, the most important system-af-

fecting requirements. They consider alternative

structural approaches, decide on one or more,

and repeat the process. Ideally, they should

record these decisions as they happen. However,

as we noted earlier, they generally document the

decisions later, if at all.

Patterns play an important role in this deci-

sion-making process. For certain decision top-

ics, architects might select one or more patterns

or a single pattern’s variants as alternative ap-

proaches. When they select the pattern, its us-

age documents an architectural decision. This

has several key benefits. First, the solution has

been proven to work. Second, because the liter-

ature describes patterns in detail, documenta-

tion of pattern-associated decisions already ex-

ists. Third, many architecture patterns include

documentation of their consequences and sys-

tem impact, including on nonfunctional require-

ments. Thus, architects can easily learn which

further trade-offs they must consider.

As we now describe, there are several advan-

tages and limitations to using patterns as a pri-

mary method of architectural documentation.

Benefits of patterns use

Perhaps the biggest challenge of architectural

documentation is capturing the critical informa-

tion surrounding the decision itself. Doing this

takes time, effort, and attention; consequently,

developers tend to avoid interrupting the design

flow to document their work. However, post-

poning documentation increases the risk that

they’ll forget critical issues or forgo documenta-

tion all together. This is precisely where patterns

shine: Their use is easily noted (without inter-

rupting design), and at the very least, the addi-

tional information reminds architects what is-

sues to document later. The application-generic

knowledge of rationale, forces, and conse-

quences is an important first step. Patterns ad-

dress the principal difficulties of recording deci-

sions as follows:

■ The substantial effort required to document

and maintain architectural decisions seems

greater than the perceived benefit. Because

patterns include a description that matches

architectural decisions’ required descrip-

tion, using the pattern is a starting point for

documenting that decision. Even if develop-

ers expend no additional documentation ef-

fort, the pattern name itself refers to the

generic pattern description and thus offers

at least minimum documentation.

■ Architects sometimes make decisions with-

out realizing it or without reflecting explic-

itly upon them, so they don’t know what to

document. Applying patterns per se signifies

that some of the most significant architec-

tural decisions have been made. Further-

more, patterns explicitly state the conse-

quences of the system quality attributes, and

this helps architects recognize their decisions

and implications. Patterns also contain refer-

ences to related patterns, which help archi-

tects think about alternative solutions and

J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 4 3

eventually select one based on a rationale.

■ Rather than disrupt the creative flow of de-

sign, architects defer decision documenta-

tion until the architecture is essentially com-

plete; at that point, they’ve often forgotten

many decisions and the rationale behind

them. Patterns fit well within several well-

established architecture design methods.

They also emerge naturally through the de-

sign process without disrupting the creative

flow. Nonetheless, developers can easily

document decisions related to the pattern’s

usage afterwards by simply reusing the pat-

tern description information. Finally, archi-

tecture patterns fit well into the tools that

support architecting methods, and we ex-

pect such tools to become more mature and

more widely used.

■ Architects don’t know how to document

their decisions. Patterns contain much of

their own documentation. They’re also com-

patible with emerging decision documenta-

tion formats and tools. Patterns also remind

architects of issues to consider.

Limitations and further research

Architecture patterns don’t relieve the archi-

tect of all responsibility for documenting deci-

sions. First, the architect must still document ap-

plication-specific decisions. Second, not all

decisions have appropriate patterns. While addi-

tional architecture patterns have been and will

continue to be written,10 some architecture areas

will never have patterns. So, architecture pat-

terns will always have a limited solution space.

Similarly, you can’t capture some architec-

tural decisions in terms of patterns because they

depend on the project’s concrete scope and do-

main. Technology-related decisions (such as de-

ciding on a specific technology vendor) or orga-

nizational decisions (such as company guidelines

or project team setup) are just two examples of

project-dependent decisions that have severe

consequences for the resulting architecture. We

need further research to integrate pattern-based

architectural decision documentation with these

kinds of decisions.

A fourth limitation relates to the fact that

architects often use multiple patterns together.

If they don’t understand the various pattern in-

teractions, they might select conflicting pat-

terns. This problem is exacerbated by the fact

that architects tend to use architecture patterns

unsystematically. We’re conducting ongoing re-

search on pattern-based architecture and design

approaches that account for these issues. For ex-

ample, elsewhere16 we proposed an approach to

support pattern selection based on desired qual-

ity attributes, and systematic design decisions

based on patterns. We propose deriving a pattern

language’s grammar to systematically describe

the pattern relationships and annotating the

grammar with effects on quality goals. In a sec-

ond step, we further analyze complex design de-

cisions using the design spaces covered by a set

of related software patterns.

Finally, an important challenge with patterns

is what to do if developers use the wrong pat-

tern but don’t discover this until well into the

implementation phase. As with any architec-

tural decision, backing out is difficult. How-

ever, we might draw on the rich information

that patterns contain to reduce such difficulty.

To our knowledge, this area has yet to be re-

searched at all.

T he power of patterns has so far seen

rather limited industrial usage: archi-

tects focus on their structural solu-

tion and use their names for communication

purposes. However, as we’ve described here,

patterns have great potential for providing in-

valuable architectural knowledge that archi-

tects can turn into application-specific knowl-

edge and document as an architectural asset.

Finally, there remains the challenging ques-

tion of architectural decision rationale—that

is, why an architect made a particular decision.

This key aspect of architectural knowledge

must be recognized and made more explicit and

systematic. Rationale becomes explicit when

we study the similarities between the descrip-

tion formats of patterns and decisions. Patterns

typically have forces that can both provide

deeper insight into the problem and give in-

formation that illuminates the rationale behind

the solution. Patterns can also inform us about

trade-offs (such as space for time), adding

to the decision’s rationale. Ultimately, provid-

ing such information about a decision’s ration-

ale might be a most significant contribution

that patterns make to architectural decision

documentation.

References
1. P. Clements et al., Documenting Software Architectures:

Views and Beyond, Addison-Wesley, 2002.

4 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Architecture
patterns don’t

relieve the
architect of all
responsibility

for
documenting

decisions.

J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 4 5

About the Authors

Neil B. Harrison is an assistant professor of computer science at Utah Valley State Col-
lege. His research interests include software patterns, effective organizations, and software
testing. He has an MS in computer science from Purdue University. He is coauthor of Organiza-
tional Patterns of Agile Software Development (Prentice Hall, 2004). The Pattern Languages of
Programs conference series named its Neil Harrison Shepherding award in his honor. He’s a
member of the ACM. Contact him at Utah Valley State College, 800 W. University Parkway,
Orem, UT 84058; harrisne@uvsc.edu.

Paris Avgeriou is an assistant professor in the Department of Mathematics and Comput-
ing Science at the University of Groningen. His research interests include software engineering
and software architecture, with an emphasis on architectural knowledge, modeling, evolution,
and patterns. He received his PhD in software engineering from the National Technical Univer-
sity of Athens. He is a member of the IEEE, the European Research Initiative on Informatics and
Mathematics, and Hillside Europe. Contact him at the Dept. of Mathematics and Computing Sci-
ence, Univ. of Groningen, Groningen, Netherlands; paris@cs.rug.nl.

Uwe Zdun is an assistant professor at the Vienna University of Technology. His research
interests include software patterns, software architecture, service-oriented architecture, distrib-
uted systems, language engineering, and object orientation. He received his doctoral degree in
computer science from the University of Essen. He is a coauthor of Remoting Patterns—Foun-
dations of Enterprise, Internet, and Realtime Distributed Object Middleware (John Wiley &
Sons, 2004) and Software-Architektur: Grundlagen, Konzepte, Praxis [Software Architecture:
Foundations, Concepts, Practice] (Elsevier/Spektrum, 2005). Contact him at Distributed Sys-
tems Group, Information Systems Inst., Vienna Univ. of Technology, Vienna, Austria; zdun@
acm.org.

2. P. Kruchten, “An Ontology of Architectural Design De-
cisions in Software Intensive Systems,” Proc. 2nd Gron-
ingen Workshop Software Variability, Rijksuniversiteit
Groningen, 2004, pp. 54–61.

3. A.G. Jansen and J. Bosch, “Software Architecture as a
Set of Architectural Design Decisions,” Proc. 4th Work-
ing IEEE/IFIP Conf. Software Architecture (WICSA),
IEEE CS Press, 2005, pp. 109�119.

4. J. Bosch, “Software Architecture: The Next Step,” Proc.
1st European Workshop Software Architecture, LNCS
3047, Springer, 2004, pp. 194–199.

5. P. Kruchten, P. Lago, and H. van Vliet, “Building Up
and Reasoning about Architectural Knowledge,” Proc.
2nd Int’l Conf. Quality of Software Architecture (QOSA
06), Springer, 2006, pp. 42–58.

6. A. Jansen et al., “Tool Support for Using Architectural
Decisions,” Proc. 6th Working IEEE/IFIP Conf. Software
Architecture (WICSA), IEEE CS Press, 2007, pp. 6�9.

7. R. Capilla et al., “A Web-Based Tool for Managing Ar-
chitectural Design Decisions,” Proc. Workshop Sharing
and Reusing Architectural Knowledge (SHARK), Software
Eng. Notes, ACM SIGSOFT, vol. 31, no. 5, 2006.

8. E. Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

9. F. Buschmann et al., Pattern-Oriented Software Archi-
tecture: A System of Patterns, John Wiley & Sons, 1996.

10. P. Avgeriou and U. Zdun, “Architectural Patterns Revis-
ited—A Pattern Language,” Proc. 10th European Conf.
Pattern Languages of Programs (EuroPLoP), UVK Kon-
stanz, 2005, pp. 431–470.

11. D. Garlan, R. Allan, and J. Okerbloom, “Exploring
Style in Architectural Design Environments,” Proc.
ACM Symp. Foundations of Software Eng. (SIGSOFT),
ACM Press, 1994.

12. M. Shaw, “Toward Higher-Level Abstractions for Soft-
ware Systems,” Proc. Tercer Simposio Int’l Conoci-
miento y su Ingerieria [Proc. 3rd Int’l Symp. Knowl-
edge and Its Engineering], 1988, pp. 55�61; reprinted
in Data and Knowledge Eng., vol. 5, 1990, pp. 19�28.

13. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, 2nd ed., Addison-Wesley, 2003.

14. J. Tyree and A. Ackerman, “Architecture Decisions: De-
mystifying Architecture,” IEEE Software, Mar./Apr.
2005, pp. 19�27.

15. P. Lago and P. Avgeriou, “First Workshop on Sharing
and Reusing Architectural Knowledge,” Proc. ACM
Symp. Foundations of Software Eng. (SIGSOFT), ACM
Press, 2006, pp. 32�36.

16. U. Zdun, “Systematic Pattern Selection Using Pattern Lan-
guage Grammars and Design Space Analysis,” to be pub-
lished in Software: Practice and Experience, R.H. Hor-
spool and A.J. Wellings, eds., John Wiley & Sons, 2007.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE Pervasive
Computing

delivers the latest peer-reviewed develop-

ments in pervasive, mobile, and ubiquitous

computing to developers, researchers, and

educators who want to keep abreast of

rapid technology change. With content

that’s accessible and useful today, this

publication acts as a catalyst for progress in

this emerging field, bringing together the

leading experts in such areas as

V I S I T www.computer.org/pervasive

Subscribe
Now!

• Hardware technologies

• Software infrastructure

• Sensing and interaction with the

physical world

• Graceful integration of human users

• Systems considerations, including

scalability, security, and privacy

